File size: 9,664 Bytes
a098bd7 c30bf20 42d887e 57b7640 8c1b44b f8f322b 76af9fe f48a8a6 a098bd7 9d09419 f056a87 f48a8a6 ebea844 a098bd7 c30bf20 42d887e 57b7640 8c1b44b f8f322b 76af9fe a098bd7 9d09419 f056a87 f48a8a6 ebea844 a098bd7 7d5545c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
---
dataset_info:
- config_name: journalistic
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1172734772.6569607
num_examples: 1742725
- name: valid
num_bytes: 1345863.2574352932
num_examples: 2000
- name: test
num_bytes: 28294
num_examples: 36
download_size: 787050993
dataset_size: 1174108929.914396
- config_name: legal
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 145940161.6514062
num_examples: 464416
- name: valid
num_bytes: 628488.9480612477
num_examples: 2000
- name: test
num_bytes: 10385
num_examples: 37
download_size: 89298482
dataset_size: 146579035.59946746
- config_name: literature
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 29744489.161964517
num_examples: 88522
- name: valid
num_bytes: 672024.7884585644
num_examples: 2000
- name: test
num_bytes: 12767
num_examples: 36
download_size: 21126825
dataset_size: 30429280.95042308
- config_name: politics
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 5225298.306540447
num_examples: 3809
- name: valid
num_bytes: 2743658.864027539
num_examples: 2000
- name: test
num_bytes: 64499
num_examples: 48
download_size: 4615891
dataset_size: 8033456.170567986
- config_name: social_media
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 265857455
num_examples: 2020928
download_size: 188356429
dataset_size: 265857455
- config_name: web
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 274547647.613804
num_examples: 138867
- name: valid
num_bytes: 3954109.2932633953
num_examples: 2000
- name: test
num_bytes: 64024
num_examples: 34
download_size: 164325956
dataset_size: 278565780.90706736
configs:
- config_name: journalistic
data_files:
- split: train
path: journalistic/train-*
- split: valid
path: journalistic/valid-*
- split: test
path: journalistic/test-*
- config_name: legal
data_files:
- split: train
path: legal/train-*
- split: valid
path: legal/valid-*
- split: test
path: legal/test-*
- config_name: literature
data_files:
- split: train
path: literature/train-*
- split: valid
path: literature/valid-*
- split: test
path: literature/test-*
- config_name: politics
data_files:
- split: train
path: politics/train-*
- split: valid
path: politics/valid-*
- split: test
path: politics/test-*
- config_name: social_media
data_files:
- split: train
path: social_media/train-*
- config_name: web
data_files:
- split: train
path: web/train-*
- split: valid
path: web/valid-*
- split: test
path: web/test-*
---
# PtBrVId
The developed corpus is a composition of pre-existing datasets initially created for other NLP tasks that provide permissive licenses. The first release of the corpus is available on [Huggingface](https://huggingface.co/datasets/Random-Mary-Smith/port_data_random).
#### Data Sources
The corpus consists of the following datasets:
<p align="center">
<table>
<tr>
<th>Domain</th>
<th>Variety</th>
<th>Dataset</th>
<th>Original Task</th>
<th># Docs</th>
<th>License</th>
<th>Silver Labeled</th>
</tr>
<tr>
<td rowspan="5">Literature</td>
<td rowspan="3">PT-PT</td>
<td><a href="http://arquivopessoa.net/">Arquivo Pessoa</a></td>
<td>-</td>
<td>~4k</td>
<td>CC</td>
<td>✔</td>
</tr>
<tr>
<td><a href="https://www.gutenberg.org/ebooks/bookshelf/99">Gutenberg Project</a></td>
<td>-</td>
<td>6</td>
<td>CC</td>
<td>✔</td>
</tr>
<tr>
<td><a href="https://www.clul.ulisboa.pt/recurso/corpus-de-textos-literarios">LT-Corpus</a></td>
<td>-</td>
<td>56</td>
<td>ELRA END USER</td>
<td>✘</td>
</tr>
<tr>
<td rowspan="2">PT-BR</td>
<td><a href="https://www.kaggle.com/datasets/rtatman/brazilian-portuguese-literature-corpus">Brazilian Literature</a></td>
<td>Author Identification</td>
<td>81</td>
<td>CC</td>
<td>✘</td>
</tr>
<tr>
<td>LT-Corpus</td>
<td>-</td>
<td>8</td>
<td>ELRA END USER</td>
<td>✘</td>
</tr>
<tr>
<td rowspan="2">Politics</td>
<td>PT-PT</td>
<td><a href="http://www.statmt.org/europarl/">Koehn (2005) Europarl</a></td>
<td>Machine Translation</td>
<td>~10k</td>
<td>CC</td>
<td>✘</td>
</tr>
<tr>
<td>PT-BR</td>
<td>Brazilian Senate Speeches</td>
<td>-</td>
<td>~5k</td>
<td>CC</td>
<td>✔</td>
</tr>
<tr>
<td rowspan="2">Journalistic</td>
<td>PT-PT</td>
<td><a href="https://www.linguateca.pt/CETEMPublico/">CETEM Público</a></td>
<td>-</td>
<td>1M</td>
<td>CC</td>
<td>✘</td>
</tr>
<tr>
<td>PT-BR</td>
<td><a href="https://www.linguateca.pt/CETEMFolha/">CETEM Folha</a></td>
<td>-</td>
<td>272k</td>
<td>CC</td>
<td>✘</td>
</tr>
<tr>
<td rowspan="3">Social Media</td>
<td>PT-PT</td>
<td><a href="https://www.aclweb.org/anthology/2021.ranlp-1.37/">Ramalho (2021)</a></td>
<td>Fake News Detection</td>
<td>2M</td>
<td>MIT</td>
<td>✔</td>
</tr>
<tr>
<td rowspan="2">PT-BR</td>
<td><a href="https://www.aclweb.org/anthology/2022.lrec-1.322/">Vargas (2022)</a></td>
<td>Hate Speech Detection</td>
<td>5k</td>
<td>CC-BY-NC-4.0</td>
<td>✘</td>
</tr>
<tr>
<td><a href="https://www.aclweb.org/anthology/2021.wlp-1.72/">Cunha (2021)</a></td>
<td>Fake News Detection</td>
<td>2k</td>
<td>GPL-3.0 license</td>
<td>✔</td>
</tr>
<tr>
<td>Web</td>
<td>BOTH</td>
<td><a href="https://www.aclweb.org/anthology/2020.lrec-1.451/">Ortiz-Suarez (2020)</a></td>
<td>-</td>
<td>10k</td>
<td>CC</td>
<td>✔</td>
</tr>
</table>
</p>
<p align="center">
<em>Table 1: Data Sources</em>
</p>
#####
Note: The dataset "Brazilian Senate Speeches" was created by the authors of this paper, using web crawling of the Brazilian Senate website and is available in the Huggingface repository.
#### Annotation Schema & Data Preprocessing Pipeline
We leveraged our knowledge of the Portuguese language to identify data sources that guaranteed mono-variety documents. However, this first release lacks any kind of supervision, so we cannot guarantee that all documents are mono-variety. In the future, we plan to release a second version of the corpus with a more robust annotation schema, combining automatic and manual annotation.
To improve the quality of the corpus, we applied a preprocessing pipeline to all documents. The pipeline consists of the following steps:
1. Remove all NaN values.
2. Remove all empty documents.
3. Remove all duplicated documents.
4. Apply the [clean_text](https://github.com/jfilter/clean-text) library to remove non-relevant information for language identification from the documents.
5. Remove all documents with a length significantly more than two standard deviations from the mean length of the documents in the corpus.
The pipeline is illustrated in Figure 1.
<p align="center">
<img src="assets/pipeline_lid.jpg" alt="Image Description">
</p>
<p align="center">
<em>Figure 1: Data Pre-Processing Pipeline</em>
</p>
#### Class Distribution
The class distribution of the corpus is presented in Table 2. The corpus is highly imbalanced, with the majority of the documents being from the journalistic domain. In the future, we plan to release a second version of the corpus with a more balanced distribution across the six domains. Depending on the imbalance of the textual domain, we used different strategies to perform train-validation-test splits. For the heavily imbalanced domains, we ensured a minimum of 100 documents for validation and 400 for testing. In the other domains, we applied a stratified split.
<p align="center">
<table>
<tr>
<th>Domain</th>
<th># PT-PT</th>
<th># PT-BR</th>
<th>Stratified</th>
</tr>
<tr>
<td>Politics</td>
<td>6500</td>
<td>4894</td>
<td>✓</td>
</tr>
<tr>
<td>Web</td>
<td>7960</td>
<td>21592</td>
<td>✓</td>
</tr>
<tr>
<td>Literature</td>
<td>18282</td>
<td>2772</td>
<td>✓</td>
</tr>
<tr>
<td>Law</td>
<td>392839</td>
<td>5766</td>
<td>✕</td>
</tr>
<tr>
<td>Journalistic</td>
<td>1494494</td>
<td>354180</td>
<td>✓</td>
</tr>
<tr>
<td>Social Media</td>
<td>2013951</td>
<td>6222</td>
<td>✕</td>
</tr>
</table>
</p>
<p align="center">
<em>Table 2: Class Balance across the six textual domains in both varieties of Portuguese.</em>
</p>
#### Future Releases & How to Contribute
We plan to release a second version of this corpus considering more textual domains and extending the scope to other Portuguese varieties. If you want to contribute to this corpus, please [contact us]().
|