|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Covid Dialog dataset in English and Chinese""" |
|
|
|
|
|
import copy |
|
import os |
|
import re |
|
import textwrap |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
|
|
_DESCRIPTION = textwrap.dedent( |
|
""" |
|
""" |
|
) |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
|
|
import datasets |
|
import os |
|
import json |
|
|
|
names = ["all", "assignment", "grouping", "miscellaneous", "ordering"] |
|
|
|
class LsatQA(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description=_DESCRIPTION) for name in names] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"references": datasets.Sequence(datasets.Value("string")), |
|
"gold_index": datasets.Value("int64"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=f"LSAT QA dataset, as preprocessed and shuffled in HELM", |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
test = dl_manager.download(os.path.join(self.config.name, "test.jsonl")) |
|
train = dl_manager.download(os.path.join(self.config.name, "train.jsonl")) |
|
val = dl_manager.download(os.path.join(self.config.name, "valid.jsonl")) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file": train}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"file": val}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"file": test}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, file): |
|
with open(file, encoding="utf-8") as f: |
|
for ix, line in enumerate(f): |
|
yield ix, json.loads(line) |
|
|