File size: 6,768 Bytes
4788d75
9391278
 
1dfa1af
4788d75
 
 
 
 
 
 
1dfa1af
4788d75
 
 
 
1dfa1af
4788d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7731d54
4788d75
 
 
 
 
 
 
 
 
7731d54
4788d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffbf7a
4788d75
1dfa1af
4788d75
 
 
7731d54
4788d75
 
 
7731d54
4788d75
 
 
7731d54
4788d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7731d54
4788d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dfa1af
4788d75
 
 
 
 
7731d54
4788d75
7731d54
4788d75
 
 
7731d54
4788d75
1dfa1af
 
 
 
 
 
4788d75
 
7731d54
4788d75
1dfa1af
 
 
 
 
 
4788d75
 
7731d54
4788d75
 
 
7731d54
4788d75
7731d54
4788d75
 
 
7731d54
4788d75
 
 
7731d54
4788d75
 
 
7731d54
4788d75
7731d54
4788d75
 
 
7731d54
4788d75
 
 
7731d54
4788d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
languages:
- en
paperswithcode_id: newsroom
---

# Dataset Card for "newsroom"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://summari.es](https://summari.es)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 5057.49 MB
- **Total amount of disk used:** 5057.49 MB

### Dataset Summary

NEWSROOM is a large dataset for training and evaluating summarization systems.
It contains 1.3 million articles and summaries written by authors and
editors in the newsrooms of 38 major publications.

Dataset features includes:
  - text: Input news text.
  - summary: Summary for the news.
And additional features:
  - title: news title.
  - url: url of the news.
  - date: date of the article.
  - density: extractive density.
  - coverage: extractive coverage.
  - compression: compression ratio.
  - density_bin: low, medium, high.
  - coverage_bin: extractive, abstractive.
  - compression_bin: low, medium, high.

This dataset can be downloaded upon requests. Unzip all the contents
"train.jsonl, dev.josnl, test.jsonl" to the `tfds` folder.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

We show detailed information for up to 5 configurations of the dataset.

### Data Instances

#### default

- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 5057.49 MB
- **Total amount of disk used:** 5057.49 MB

An example of 'train' looks as follows.
```
{
    "compression": 33.880001068115234,
    "compression_bin": "medium",
    "coverage": 1.0,
    "coverage_bin": "high",
    "date": "200600000",
    "density": 11.720000267028809,
    "density_bin": "extractive",
    "summary": "some summary 1",
    "text": "some text 1",
    "title": "news title 1",
    "url": "url.html"
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `text`: a `string` feature.
- `summary`: a `string` feature.
- `title`: a `string` feature.
- `url`: a `string` feature.
- `date`: a `string` feature.
- `density_bin`: a `string` feature.
- `coverage_bin`: a `string` feature.
- `compression_bin`: a `string` feature.
- `density`: a `float32` feature.
- `coverage`: a `float32` feature.
- `compression`: a `float32` feature.

### Data Splits

| name  |train |validation| test |
|-------|-----:|---------:|-----:|
|default|995041|    108837|108862|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```

@inproceedings{N18-1065,
  author    = {Grusky, Max and Naaman, Mor and Artzi, Yoav},
  title     = {NEWSROOM: A Dataset of 1.3 Million Summaries
               with Diverse Extractive Strategies},
  booktitle = {Proceedings of the 2018 Conference of the
               North American Chapter of the Association for
               Computational Linguistics: Human Language Technologies},
  year      = {2018},
}

```


### Contributions

Thanks to [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@yoavartzi](https://github.com/yoavartzi), [@thomwolf](https://github.com/thomwolf) for adding this dataset.