Jeronymous commited on
Commit
22832d3
·
verified ·
1 Parent(s): 923f2e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -65,6 +65,7 @@ _Note: if the data viewer is not working, use the "example" subset._
65
  # SUMM-RE
66
 
67
  The SUMM-RE dataset is a collection of transcripts of French conversations, aligned with the audio signal.
 
68
  It is a corpus of meeting-style conversations in French created for the purpose of the SUMM-RE project (ANR-20-CE23-0017).
69
 
70
  The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of French meeting-style conversations".
@@ -77,11 +78,10 @@ The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of Fre
77
 
78
  ## Dataset Description
79
 
80
- Data from the `dev` and `test` splits have been manually transcribed and aligned and so are suitable for the evaluation of automatic speech recognition and voice activity detection models.
81
 
82
  Data from the `train` split has been automatically transcribed and aligned with the Whisper pipeline described in Yamasaki et al. (2023): "Transcribing And Aligning Conversational Speech: A Hybrid Pipeline Applied To French Conversations".
83
-
84
- The audio and transcripts used to evaluate this pipeline, a subset of the `dev` split<sup>*</sup>, can be found on [Ortolang](https://www.ortolang.fr/market/corpora/summ-re-asru/).
85
 
86
  The `dev` and `test` splits of SUMM-RE can be used for the evaluation of automatic speech recognition models and voice activity detection for conversational, spoken French.
87
  Speaker diarization can also be evaluated if several tracks of a same meeting are merged together.
@@ -295,7 +295,7 @@ Hiroyoshi Yamasaki, Jérôme Louradour, Julie Hunter and Laurent Prévot (2023):
295
  organization={IEEE}
296
  }
297
  ```
298
- <sup>*</sup>The following meetings were used to evaluate the pipeline in Yamasaki et al. (2023):
299
 
300
  ```python
301
  asru = ['018a_EARZ_055', '018a_EARZ_056', '018a_EARZ_057', '018a_EARZ_058', '020b_EBDZ_017', '020b_EBDZ_053', '020b_EBDZ_057', '020b_EBDZ_063', '027a_EBRH_025', '027a_EBRH_075', '027a_EBRH_078', '032b_EADH_084', '032b_EADH_085', '032b_EADH_086', '032b_EADH_087', '033a_EBRH_091', '033a_EBRH_092', '033a_EBRH_093', '033a_EBRH_094', '033c_EBPH_091', '033c_EBPH_092', '033c_EBPH_093', '033c_EBPH_094', '034a_EBRH_095', '034a_EBRH_096', '034a_EBRH_097', '034a_EBRH_098', '035b_EADH_088', '035b_EADH_096', '035b_EADH_097', '035b_EADH_098', '036c_EAPH_091', '036c_EAPH_092', '036c_EAPH_093', '036c_EAPH_099', '069c_EEPL_156', '069c_EEPL_157', '069c_EEPL_158', '069c_EEPL_159']
 
65
  # SUMM-RE
66
 
67
  The SUMM-RE dataset is a collection of transcripts of French conversations, aligned with the audio signal.
68
+
69
  It is a corpus of meeting-style conversations in French created for the purpose of the SUMM-RE project (ANR-20-CE23-0017).
70
 
71
  The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of French meeting-style conversations".
 
78
 
79
  ## Dataset Description
80
 
81
+ Data from the `dev` and `test` splits have been manually transcribed and aligned.
82
 
83
  Data from the `train` split has been automatically transcribed and aligned with the Whisper pipeline described in Yamasaki et al. (2023): "Transcribing And Aligning Conversational Speech: A Hybrid Pipeline Applied To French Conversations".
84
+ The audio and transcripts used to evaluate this pipeline, a subset of the `dev` split<sup>(*)</sup>, can be found on [Ortolang](https://www.ortolang.fr/market/corpora/summ-re-asru/).
 
85
 
86
  The `dev` and `test` splits of SUMM-RE can be used for the evaluation of automatic speech recognition models and voice activity detection for conversational, spoken French.
87
  Speaker diarization can also be evaluated if several tracks of a same meeting are merged together.
 
295
  organization={IEEE}
296
  }
297
  ```
298
+ <sup>(*)</sup>The following meetings were used to evaluate the pipeline in Yamasaki et al. (2023):
299
 
300
  ```python
301
  asru = ['018a_EARZ_055', '018a_EARZ_056', '018a_EARZ_057', '018a_EARZ_058', '020b_EBDZ_017', '020b_EBDZ_053', '020b_EBDZ_057', '020b_EBDZ_063', '027a_EBRH_025', '027a_EBRH_075', '027a_EBRH_078', '032b_EADH_084', '032b_EADH_085', '032b_EADH_086', '032b_EADH_087', '033a_EBRH_091', '033a_EBRH_092', '033a_EBRH_093', '033a_EBRH_094', '033c_EBPH_091', '033c_EBPH_092', '033c_EBPH_093', '033c_EBPH_094', '034a_EBRH_095', '034a_EBRH_096', '034a_EBRH_097', '034a_EBRH_098', '035b_EADH_088', '035b_EADH_096', '035b_EADH_097', '035b_EADH_098', '036c_EAPH_091', '036c_EAPH_092', '036c_EAPH_093', '036c_EAPH_099', '069c_EEPL_156', '069c_EEPL_157', '069c_EEPL_158', '069c_EEPL_159']