Jeronymous
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -65,6 +65,7 @@ _Note: if the data viewer is not working, use the "example" subset._
|
|
65 |
# SUMM-RE
|
66 |
|
67 |
The SUMM-RE dataset is a collection of transcripts of French conversations, aligned with the audio signal.
|
|
|
68 |
It is a corpus of meeting-style conversations in French created for the purpose of the SUMM-RE project (ANR-20-CE23-0017).
|
69 |
|
70 |
The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of French meeting-style conversations".
|
@@ -77,11 +78,10 @@ The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of Fre
|
|
77 |
|
78 |
## Dataset Description
|
79 |
|
80 |
-
Data from the `dev` and `test` splits have been manually transcribed and aligned
|
81 |
|
82 |
Data from the `train` split has been automatically transcribed and aligned with the Whisper pipeline described in Yamasaki et al. (2023): "Transcribing And Aligning Conversational Speech: A Hybrid Pipeline Applied To French Conversations".
|
83 |
-
|
84 |
-
The audio and transcripts used to evaluate this pipeline, a subset of the `dev` split<sup>*</sup>, can be found on [Ortolang](https://www.ortolang.fr/market/corpora/summ-re-asru/).
|
85 |
|
86 |
The `dev` and `test` splits of SUMM-RE can be used for the evaluation of automatic speech recognition models and voice activity detection for conversational, spoken French.
|
87 |
Speaker diarization can also be evaluated if several tracks of a same meeting are merged together.
|
@@ -295,7 +295,7 @@ Hiroyoshi Yamasaki, Jérôme Louradour, Julie Hunter and Laurent Prévot (2023):
|
|
295 |
organization={IEEE}
|
296 |
}
|
297 |
```
|
298 |
-
<sup
|
299 |
|
300 |
```python
|
301 |
asru = ['018a_EARZ_055', '018a_EARZ_056', '018a_EARZ_057', '018a_EARZ_058', '020b_EBDZ_017', '020b_EBDZ_053', '020b_EBDZ_057', '020b_EBDZ_063', '027a_EBRH_025', '027a_EBRH_075', '027a_EBRH_078', '032b_EADH_084', '032b_EADH_085', '032b_EADH_086', '032b_EADH_087', '033a_EBRH_091', '033a_EBRH_092', '033a_EBRH_093', '033a_EBRH_094', '033c_EBPH_091', '033c_EBPH_092', '033c_EBPH_093', '033c_EBPH_094', '034a_EBRH_095', '034a_EBRH_096', '034a_EBRH_097', '034a_EBRH_098', '035b_EADH_088', '035b_EADH_096', '035b_EADH_097', '035b_EADH_098', '036c_EAPH_091', '036c_EAPH_092', '036c_EAPH_093', '036c_EAPH_099', '069c_EEPL_156', '069c_EEPL_157', '069c_EEPL_158', '069c_EEPL_159']
|
|
|
65 |
# SUMM-RE
|
66 |
|
67 |
The SUMM-RE dataset is a collection of transcripts of French conversations, aligned with the audio signal.
|
68 |
+
|
69 |
It is a corpus of meeting-style conversations in French created for the purpose of the SUMM-RE project (ANR-20-CE23-0017).
|
70 |
|
71 |
The full dataset is described in Hunter et al. (2024): "SUMM-RE: A corpus of French meeting-style conversations".
|
|
|
78 |
|
79 |
## Dataset Description
|
80 |
|
81 |
+
Data from the `dev` and `test` splits have been manually transcribed and aligned.
|
82 |
|
83 |
Data from the `train` split has been automatically transcribed and aligned with the Whisper pipeline described in Yamasaki et al. (2023): "Transcribing And Aligning Conversational Speech: A Hybrid Pipeline Applied To French Conversations".
|
84 |
+
The audio and transcripts used to evaluate this pipeline, a subset of the `dev` split<sup>(*)</sup>, can be found on [Ortolang](https://www.ortolang.fr/market/corpora/summ-re-asru/).
|
|
|
85 |
|
86 |
The `dev` and `test` splits of SUMM-RE can be used for the evaluation of automatic speech recognition models and voice activity detection for conversational, spoken French.
|
87 |
Speaker diarization can also be evaluated if several tracks of a same meeting are merged together.
|
|
|
295 |
organization={IEEE}
|
296 |
}
|
297 |
```
|
298 |
+
<sup>(*)</sup>The following meetings were used to evaluate the pipeline in Yamasaki et al. (2023):
|
299 |
|
300 |
```python
|
301 |
asru = ['018a_EARZ_055', '018a_EARZ_056', '018a_EARZ_057', '018a_EARZ_058', '020b_EBDZ_017', '020b_EBDZ_053', '020b_EBDZ_057', '020b_EBDZ_063', '027a_EBRH_025', '027a_EBRH_075', '027a_EBRH_078', '032b_EADH_084', '032b_EADH_085', '032b_EADH_086', '032b_EADH_087', '033a_EBRH_091', '033a_EBRH_092', '033a_EBRH_093', '033a_EBRH_094', '033c_EBPH_091', '033c_EBPH_092', '033c_EBPH_093', '033c_EBPH_094', '034a_EBRH_095', '034a_EBRH_096', '034a_EBRH_097', '034a_EBRH_098', '035b_EADH_088', '035b_EADH_096', '035b_EADH_097', '035b_EADH_098', '036c_EAPH_091', '036c_EAPH_092', '036c_EAPH_093', '036c_EAPH_099', '069c_EEPL_156', '069c_EEPL_157', '069c_EEPL_158', '069c_EEPL_159']
|