File size: 16,799 Bytes
66acecb 7b9a5a3 66acecb 3936ef8 66acecb 7b9a5a3 66acecb 701513a 66acecb e5a26fe 66acecb 98f4edf 7b9a5a3 8f9c8f4 e5a26fe 98f4edf 7b9a5a3 8f9c8f4 7b9a5a3 e5a26fe 7b9a5a3 a0dd0f9 7b9a5a3 a0dd0f9 7b9a5a3 a0dd0f9 7b9a5a3 98f4edf 7b9a5a3 f719847 7b9a5a3 f719847 7b9a5a3 701513a 7b9a5a3 701513a 06508aa 7b9a5a3 06508aa 13c48df 7b9a5a3 13c48df 7b9a5a3 13c48df 7b9a5a3 c74860e 7b9a5a3 a2d6f67 7b9a5a3 a2d6f67 7b9a5a3 7942256 7b9a5a3 7942256 7b9a5a3 7942256 7b9a5a3 c758e87 7b9a5a3 c758e87 7b9a5a3 c758e87 7b9a5a3 b397707 7b9a5a3 b397707 7b9a5a3 b397707 7b9a5a3 e233102 7b9a5a3 e233102 7b9a5a3 e233102 7b9a5a3 c300a91 7b9a5a3 c300a91 7b9a5a3 c300a91 7b9a5a3 c74860e 7b9a5a3 3f5fa90 7b9a5a3 3f5fa90 7b9a5a3 2724416 7b9a5a3 2724416 7b9a5a3 2724416 7b9a5a3 3d78fee 737991e 8492681 bef0a34 8492681 737991e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
---
language:
- ar
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-to-audio
license: cc-by-4.0
version: 1.0
dataset_info:
- config_name: default
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
- config_name: ApprendreLeTunisienVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 848053745.75
num_examples: 6146
download_size: 798703655
dataset_size: 848053745.75
- config_name: MASCNoiseLess
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 899534814
num_examples: 48
download_size: 779814839
dataset_size: 899534814
- config_name: MASC_NoiseLess_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 6296721494
num_examples: 336
download_size: 5217710107
dataset_size: 6296721494
- config_name: OneStoryVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 1070456874
num_examples: 216
download_size: 1006929556
dataset_size: 1070456874
- config_name: TunSwitchCS_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 16206738130.134
num_examples: 37639
download_size: 18867420765
dataset_size: 16206738130.134
- config_name: TunSwitchTO_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 5925270364.08
num_examples: 15365
download_size: 5235538863
dataset_size: 5925270364.08
- config_name: Youtube_AbdelAzizErwi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 39021114751
num_examples: 125
download_size: 30061308054
dataset_size: 39021114751
- config_name: Youtube_BayariBilionaireVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 565584490
num_examples: 30
download_size: 555263280
dataset_size: 565584490
- config_name: Youtube_DiwanFM_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 12123804326
num_examples: 252
download_size: 11965432173
dataset_size: 12123804326
- config_name: Youtube_HkeyetTounsiaMensia_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 3883139384
num_examples: 35
download_size: 3802885881
dataset_size: 3883139384
- config_name: Youtube_LobnaMajjedi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 2126325798
num_examples: 14
download_size: 2045365871
dataset_size: 2126325798
- config_name: Youtube_MohamedKhammessi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 3849873729
num_examples: 14
download_size: 3802956958
dataset_size: 3849873729
- config_name: Youtube_Shorts_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 8399398140
num_examples: 945
download_size: 8278146449
dataset_size: 8399398140
- config_name: Youtube_TNScrappedNoiseLess_V1
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 465311776
num_examples: 52
download_size: 429334774
dataset_size: 465311776
- config_name: Youtube_TNScrapped_NoiseLess_VCA_V1
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 8972747522
num_examples: 364
download_size: 7560689256
dataset_size: 8972747522
configs:
- config_name: default
default: true
data_files:
- split: train
path: data/*/train/train-*
- config_name: ApprendreLeTunisienVCA
data_files:
- split: train
path: data/ApprendreLeTunisien_VCA/train/train-*
- config_name: MASCNoiseLess
data_files:
- split: train
path: data/MASC_NoiseLess/train/train-*
- config_name: MASC_NoiseLess_VCA
data_files:
- split: train
path: data/MASC_NoiseLess_VCA/train/train-*
- config_name: OneStoryVCA
data_files:
- split: train
path: data/OneStory_VCA/train/train-*
- config_name: TunSwitchCS_VCA
data_files:
- split: train
path: data/TunSwitchCS_VCA/train/train-*
- config_name: TunSwitchTO_VCA
data_files:
- split: train
path: data/TunSwitchTO_VCA/train/train-*
- config_name: Youtube_AbdelAzizErwi_VCA
data_files:
- split: train
path: data/Youtube_AbdelAzizErwi_VCA/train/train-*
- config_name: Youtube_BayariBilionaireVCA
data_files:
- split: train
path: data/Youtube_BayariBilionaire_VCA/train/train-*
- config_name: Youtube_DiwanFM_VCA
data_files:
- split: train
path: data/Youtube_DiwanFM_VCA/train/train-*
- config_name: Youtube_HkeyetTounsiaMensia_VCA
data_files:
- split: train
path: data/Youtube_HkeyetTounsiaMensia_VCA/train/train-*
- config_name: Youtube_LobnaMajjedi_VCA
data_files:
- split: train
path: data/Youtube_LobnaMajjedi_VCA/train/train-*
- config_name: Youtube_MohamedKhammessi_VCA
data_files:
- split: train
path: data/Youtube_MohamedKhammessi_VCA/train/train-*
- config_name: Youtube_Shorts_VCA
data_files:
- split: train
path: data/Youtube_Shorts_VCA/train/train-*
- config_name: Youtube_TNScrappedNoiseLess_V1
data_files:
- split: train
path: data/Youtube_TNScrapped_V1_NoiseLess/train/train-*
- config_name: Youtube_TNScrapped_NoiseLess_VCA_V1
data_files:
- split: train
path: data/Youtube_TNScrapped_V1_NoiseLess_VCA/train/train-*
---
# LinTO DataSet Audio for Arabic Tunisian Augmented v0.1 <br />*A collection of Tunisian dialect audio and its annotations for STT task*
This is the augmented datasets used to train the Linto Tunisian dialect with code-switching STT [linagora/linto-asr-ar-tn-0.1](https://huggingface.co/linagora/linto-asr-ar-tn-0.1).
* [Dataset Summary](#dataset-summary)
* [Dataset composition](#dataset-composition)
* [Sources](#sources)
* [Content Types](#content-types)
* [Languages and Dialects](#languages-and-dialects)
* [Example use (python)](#example-use-python)
* [License](#license)
* [Citations](#citations)
## Dataset Summary
The **LinTO DataSet Audio for Arabic Tunisian Augmented v0.1** is a dataset that builds on **LinTO DataSet Audio for Arabic Tunisian v0.1**, using a subset of the original audio data. Augmentation techniques, including noise reduction and SoftVC VITS Singing Voice Conversion (SVC), have been applied to enhance the dataset for improved performance in Arabic Tunisian Automatic Speech Recognition (ASR) tasks.
## Dataset Composition:
The **LinTO DataSet Audio for Arabic Tunisian Augmented v0.1** comprises a diverse range of augmented audio samples using different techniques. Below is a breakdown of the dataset’s composition:
### Sources
| **subset** | **audio duration** | **labeled audio duration** | **# audios** | **# segments** | **# words** | **# characters** |
| --- | --- | --- | --- | --- | --- | --- |
| ApprendreLeTunisienVCA | 2h 40m 6s | 2h 40m 6s | 6146 | 6146 | 8078 | 36687 |
| MASCNoiseLess | 2h 49m 56s | 1h 38m 17s | 48 | 1742 | 11909 | 59876 |
| MASC_NoiseLess_VCA | 19h 49m 31s | 11h 27m 59s | 336 | 12194 | 83377 | 411999 |
| OneStoryVCA | 9h 16m 51s | 9h 7m 32s | 216 | 2964 | 73962 | 341670 |
| TunSwitchCS_VCA | 59h 39m 10s | 59h 39m 10s | 37639 | 37639 | 531727 | 2760268 |
| TunSwitchTO_VCA | 18h 57m 34s | 18h 57m 34s | 15365 | 15365 | 129304 | 659295 |
| Youtube_AbdelAzizErwi_VCA | 122h 51m 1s | 109h 32m 39s | 125 | 109700 | 657720 | 3117170 |
| Youtube_BayariBilionaireVCA | 4h 54m 8s | 4h 35m 25s | 30 | 5400 | 39065 | 199155 |
| Youtube_DiwanFM_VCA | 38h 10m 6s | 28h 18m 58s | 252 | 32690 | 212170 | 1066464 |
| Youtube_HkeyetTounsiaMensia_VCA | 12h 13m 29s | 9h 53m 22s | 35 | 10626 | 73696 | 360990 |
| Youtube_LobnaMajjedi_VCA | 6h 41m 38s | 6h 12m 31s | 14 | 6202 | 42938 | 211512 |
| Youtube_MohamedKhammessi_VCA | 12h 7m 8s | 10h 58m 21s | 14 | 12775 | 92512 | 448987 |
| Youtube_Shorts_VCA | 26h 26m 25s | 23h 45m 58s | 945 | 14154 | 201138 | 1021713 |
| Youtube_TNScrappedNoiseLess_V1 | 4h 2m 9s | 2h 33m 30s | 52 | 2538 | 18777 | 92530 |
| Youtube_TNScrapped_NoiseLess_VCA_V1 | 28h 15m 1s | 17h 54m 32s | 364 | 17766 | 132587 | 642292 |
| **TOTAL** | **402h 47m 10s** | **389h 43m 37s** | **58129** | **276204** | **1311134** | **7405055** |
### Data Proccessing:
- **Noise Reduction**: Applying techniques to minimize background noise and enhance audio clarity for better model performance. For this, we used **Deezer [Spleeter](https://github.com/deezer/spleeter)**, a library with pretrained models, to separate vocals from music.
- **Voice Conversion**: Modifying speaker characteristics (e.g., pitch) through voice conversion techniques to simulate diverse speaker profiles and enrich the dataset. For this, we chose **SoftVC VITS Singing Voice Conversion** ([SVC](https://github.com/voicepaw/so-vits-svc-fork)) to alter the original voices using 7 different pretrained models.
The image below shows the difference between the original and the augmented audio:
![Wave Interface](https://huggingface.co/datasets/linagora/linto-dataset-audio-ar-tn-augmented-0.1/resolve/main/img.png)
- The first row shows the original waveform.
- The second row shows the audio after noise reduction.
- The last row shows the audio with voice conversion augmentation.
-
### Content Types
- **FootBall**: Includes recordings of football news and reviews.
- **Documentaries**: Audio from documentaries about history and nature.
- **Podcasts**: Conversations and discussions from various podcast episodes.
- **Authors**: Audio recordings of authors reading or discussing different stories: horror, children's literature, life lessons, and others.
- **Lessons**: Learning resources for the Tunisian dialect.
- **Others**: Mixed recordings with various subjects.
### Languages and Dialects
- **Tunisian Arabic**: The primary focus of the dataset, including Tunisian Arabic and some Modern Standard Arabic (MSA).
- **French**: Some instances of French code-switching.
- **English**: Some instances of English code-switching.
### Characteristics
- **Audio Duration**: The dataset contains more than 317 hours of audio recordings.
- **Segments Duration**: This dataset contains segments, each with a duration of less than 30 seconds.
- **Labeled Data**: Includes annotations and transcriptions for a significant portion of the audio content.
### Data Distribution
- **Training Set**: Includes a diverse range of augmented audio with 5 to 7 different voices, as well as noise reduction applied to two datasets.
## Example use (python)
- **Load the dataset in python**:
```python
from datasets import load_dataset
# dataset will be loaded as a DatasetDict of train and test
dataset = load_dataset("linagora/linto-dataset-audio-ar-tn-augmented-0.1")
```
Check the containt of dataset:
```python
example = dataset['train'][0]
audio_array = example['audio']["array"]
segments = example['segments']
transcription = example['transcript']
print(f"Audio array: {audio_array}")
print(f"Segments: {segments}")
print(f"Transcription: {transcription}")
```
**Example**
```bash
Audio array: [0. 0. 0. ... 0. 0. 0.]
Transcription: أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي
segments: [{'end': 14.113, 'start': 0.0, 'transcript': 'أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي'}]
```
## License
Given that some of the corpora used for training and evaluation are available only under CC-BY-4.0 licenses, we have chosen to license the entire dataset under CC-BY-4.0.
## Citations
When using the **LinTO DataSet Audio for Arabic Tunisian v0.1** corpus, please cite this page:
```bibtex
@misc{linagora2024Linto-tn,
author = {Hedi Naouara and Jérôme Louradour and Jean-Pierre Lorré and Sarah zribi and Wajdi Ghezaiel},
title = {LinTO DataSet Audio for Arabic Tunisian v0.1},
year = {2024},
publisher = {HuggingFace},
journal = {HuggingFace},
howpublished = {\url{https://huggingface.co/datasets/linagora/linto-dataset-audio-ar-tn-0.1}},
}
```
```bibtex
@misc{abdallah2023leveraging,
title={Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition},
author={Ahmed Amine Ben Abdallah and Ata Kabboudi and Amir Kanoun and Salah Zaiem},
year={2023},
eprint={2309.11327},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
```
```bibtex
@data{e1qb-jv46-21,
doi = {10.21227/e1qb-jv46},
url = {https://dx.doi.org/10.21227/e1qb-jv46},
author = {Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha},
publisher = {IEEE Dataport},
title = {MASC: Massive Arabic Speech Corpus},
year = {2021} }
```
|