File size: 18,299 Bytes
66acecb
7b9a5a3
 
 
 
 
 
bbd4f5c
3936ef8
ee5ed3a
bbd4f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
ee5ed3a
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
a782587
 
09dce0a
 
 
 
 
 
 
 
bbd4f5c
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
ee5ed3a
a782587
 
ee5ed3a
 
 
 
9a8d7f7
 
 
 
bbd4f5c
 
1d7ded0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd4f5c
1d7ded0
bbd4f5c
 
 
 
 
09dce0a
 
 
 
c28f482
09dce0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5ed3a
 
9a8d7f7
bbd4f5c
1d7ded0
 
 
3d78fee
59856e7
3d78fee
59856e7
737991e
 
 
 
 
 
 
 
 
 
 
 
59856e7
737991e
 
 
59856e7
737991e
 
 
 
 
 
70e1b81
737991e
 
 
 
 
 
 
 
 
bbd4f5c
 
70e1b81
 
bbd4f5c
 
737991e
 
 
 
 
 
8492681
 
59856e7
8492681
 
 
 
a7727da
737991e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59856e7
737991e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59856e7
737991e
 
 
 
bf1b3a7
737991e
 
 
59856e7
737991e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
---
language:
- ar
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-to-audio
license: cc-by-4.0
version: 1.0
dataset_info:
- config_name: default
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string

- config_name: ApprendreLeTunisienVCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 839147756.322
    num_examples: 6146
  download_size: 798894474
  dataset_size: 839147756.322

- config_name: MASC_NoiseLess
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 1798927453.0
    num_examples: 48
  download_size: 1508394957
  dataset_size: 1798927453.0
  
- config_name: MASC_NoiseLess_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 6297517576.0
    num_examples: 336
  download_size: 5218109270
  dataset_size: 6297517576.0
  
- config_name: OneStory_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 2948770377.0
    num_examples: 216
  download_size: 2745380587
  dataset_size: 2948770377.0

- config_name: TunSwitchCS_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 16211221231.134
    num_examples: 37639
  download_size: 18870351203
  dataset_size: 16211221231.134

- config_name: TunSwitchTO_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 5926536342.08
    num_examples: 15365
  download_size: 5236455978
  dataset_size: 5926536342.08

- config_name: Youtube_AbdelAzizErwi_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 39027242686.0
    num_examples: 125
  download_size: 30064752032
  dataset_size: 39027242686.0
  
- config_name: Youtube_BayariBilionaireVCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 1557801334.0
    num_examples: 30
  download_size: 1524983572
  dataset_size: 1557801334.0

- config_name: Youtube_DiwanFM_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 12125888408.0
    num_examples: 252
  download_size: 11966562052
  dataset_size: 12125888408.0

- config_name: Youtube_HkeyetTounsiaMensia_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 3883840637.0
    num_examples: 35
  download_size: 3803268888
  dataset_size: 3883840637.0

- config_name: Youtube_LobnaMajjedi_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 2126737013.0
    num_examples: 14
  download_size: 2045521265
  dataset_size: 2126737013.0

- config_name: Youtube_MohamedKhammessi_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 3850743255.0
    num_examples: 14
  download_size: 3803407855
  dataset_size: 3850743255.0

- config_name: Youtube_Shorts_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 8401284864.0
    num_examples: 945
  download_size: 8279119035
  dataset_size: 8401284864.0
  
- config_name: Youtube_TNScrapped_V1_NoiseLess
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 2510511859.0
    num_examples: 52
  download_size: 2163493076
  dataset_size: 2510511859.0

- config_name: Youtube_TNScrapped_V1_NoiseLess_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 8973984541.0
    num_examples: 364
  download_size: 7561296937
  dataset_size: 8973984541.0

- config_name: Youtube_TV_VCA
  features:
  - name: audio_id
    dtype: string
  - name: audio
    dtype: audio
  - name: segments
    list:
    - name: end
      dtype: float64
    - name: start
      dtype: float64
    - name: transcript
      dtype: string
    - name: transcript_raw
      dtype: string
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 1357183734.0
    num_examples: 28
  download_size: 1317232730
  dataset_size: 1357183734.0

configs:
- config_name: default
  default: true
  data_files:
  - split: train
    path: data/*/train/train-*
- config_name: ApprendreLeTunisienVCA
  data_files:
  - split: train
    path: data/ApprendreLeTunisien_VCA/train/train-*
- config_name: MASC_NoiseLess
  data_files:
  - split: train
    path: data/MASC_NoiseLess/train/train-*
- config_name: MASC_NoiseLess_VCA
  data_files:
  - split: train
    path: data/MASC_NoiseLess_VCA/train/train-*
- config_name: OneStoryVCA
  data_files:
  - split: train
    path: data/OneStory_VCA/train/train-*
- config_name: TunSwitchCS_VCA
  data_files:
  - split: train
    path: data/TunSwitchCS_VCA/train/train-*
- config_name: TunSwitchTO_VCA
  data_files:
  - split: train
    path: data/TunSwitchTO_VCA/train/train-*
- config_name: Youtube_AbdelAzizErwi_VCA
  data_files:
  - split: train
    path: data/Youtube_AbdelAzizErwi_VCA/train/train-*
- config_name: Youtube_BayariBilionaireVCA
  data_files:
  - split: train
    path: data/Youtube_BayariBilionaire_VCA/train/train-*
- config_name: Youtube_DiwanFM_VCA
  data_files:
  - split: train
    path: data/Youtube_DiwanFM_VCA/train/train-*
- config_name: Youtube_HkeyetTounsiaMensia_VCA
  data_files:
  - split: train
    path: data/Youtube_HkeyetTounsiaMensia_VCA/train/train-*
- config_name: Youtube_LobnaMajjedi_VCA
  data_files:
  - split: train
    path: data/Youtube_LobnaMajjedi_VCA/train/train-*
- config_name: Youtube_MohamedKhammessi_VCA
  data_files:
  - split: train
    path: data/Youtube_MohamedKhammessi_VCA/train/train-*
- config_name: Youtube_Shorts_VCA
  data_files:
  - split: train
    path: data/Youtube_Shorts_VCA/train/train-*
- config_name: Youtube_TNScrapped_V1_NoiseLess
  data_files:
  - split: train
    path: data/Youtube_TNScrapped_V1_NoiseLess/train/train-*
- config_name: Youtube_TNScrapped_V1_NoiseLess_VCA
  data_files:
  - split: train
    path: data/Youtube_TNScrapped_V1_NoiseLess_VCA/train/train-*
- config_name: Youtube_TV_VCA
  data_files:
  - split: train
    path: data/Youtube_TV_VCA/train/train-*
---
# LinTO DataSet Audio for Arabic Tunisian Augmented <br />*A collection of Tunisian dialect audio and its annotations for STT task*

This is the augmented datasets used to train the Linto Tunisian dialect with code-switching STT [linagora/linto-asr-ar-tn](https://huggingface.co/linagora/linto-asr-ar-tn).

* [Dataset Summary](#dataset-summary)
* [Dataset composition](#dataset-composition)
  * [Sources](#sources)
  * [Content Types](#content-types)
  * [Languages and Dialects](#languages-and-dialects)
* [Example use (python)](#example-use-python)
* [License](#license)
* [Citations](#citations)

## Dataset Summary

The **LinTO DataSet Audio for Arabic Tunisian Augmented** is a dataset that builds on [**LinTO DataSet Audio for Arabic Tunisian**](https://huggingface.co/datasets/linagora/linto-dataset-audio-ar-tn), using a subset of the original audio data. Augmentation techniques, including noise reduction and SoftVC VITS Singing Voice Conversion (SVC), have been applied to enhance the dataset for improved performance in Arabic Tunisian Automatic Speech Recognition (ASR) tasks.

## Dataset Composition:

The **LinTO DataSet Audio for Arabic Tunisian Augmented** comprises a diverse range of augmented audio samples using different techniques. Below is a breakdown of the dataset’s composition:

### Sources

| **subset** | **audio duration** | **labeled audio duration** | **# audios** | **# segments** | **# words** | **# characters** |
| --- | --- | --- | --- | --- | --- | --- |
| ApprendreLeTunisienVCA | 2h 40m 6s | 2h 40m 6s | 6146 | 6146 | 8078 | 36687 |
| MASC_NoiseLess | 2h 49m 56s | 1h 38m 17s | 48 | 1742 | 11909 | 59876 |
| MASC_NoiseLess_VCA | 19h 49m 31s | 11h 27m 59s | 336 | 12194 | 83377 | 411999 |
| OneStoryVCA | 9h 16m 51s | 9h 7m 32s | 216 | 2964 | 73962 | 341670 |
| TunSwitchCS_VCA | 59h 39m 10s | 59h 39m 10s | 37639 | 37639 | 531727 | 2760268 |
| TunSwitchTO_VCA | 18h 57m 34s | 18h 57m 34s | 15365 | 15365 | 129304 | 659295 |
| Youtube_AbdelAzizErwi_VCA | 122h 51m 1s | 109h 32m 39s | 125 | 109700 | 657720 | 3117170 |
| Youtube_BayariBilionaireVCA | 4h 54m 8s | 4h 35m 25s | 30 | 5400 | 39065 | 199155 |
| Youtube_DiwanFM_VCA | 38h 10m 6s | 28h 18m 58s | 252 | 32690 | 212170 | 1066464 |
| Youtube_HkeyetTounsiaMensia_VCA | 12h 13m 29s | 9h 53m 22s | 35 | 10626 | 73696 | 360990 |
| Youtube_LobnaMajjedi_VCA | 6h 41m 38s | 6h 12m 31s | 14 | 6202 | 42938 | 211512 |
| Youtube_MohamedKhammessi_VCA | 12h 7m 7s | 10h 58m 21s | 14 | 12775 | 92512 | 448987 |
| Youtube_Shorts_VCA | 26h 26m 25s | 23h 45m 25s | 945 | 14154 | 201138 | 1021713 |
| Youtube_TNScrapped_V1_NoiseLess | 4h 2m 9s | 2h 31m 05s | 52 | 2538 | 18777 | 92530 |
| Youtube_TNScrapped_V1_NoiseLess_VCA | 28h 15m 1s | 17h 37m 36s | 364 | 17766 | 132587 | 642292 |
| Youtube_TV_VCA | 4h 16m 16s | 3h 40m 56s | 28 | 4676 | 33376 | 311500 |
| **TOTAL** | **373h 10m 28s** | **320h 36m 58s** | **61609** | **292257** | **2342336** | **11742108** |


### Data Proccessing:
- **Noise Reduction**: Applying techniques to minimize background noise and enhance audio clarity for better model performance. For this, we used **Deezer [Spleeter](https://github.com/deezer/spleeter)**, a library with pretrained models, to separate vocals from music.
- **Voice Conversion**: Modifying speaker characteristics (e.g., pitch) through voice conversion techniques to simulate diverse speaker profiles and enrich the dataset. For this, we chose **SoftVC VITS Singing Voice Conversion** ([SVC](https://github.com/voicepaw/so-vits-svc-fork)) to alter the original voices using 7 different pretrained models.

The image below shows the difference between the original and the augmented audio:

![Wave Interface](img.png)

- The first row shows the original waveform.
- The second row shows the audio after noise reduction.
- The last row shows the audio with voice conversion augmentation.

### Content Types
- **FootBall**: Includes recordings of football news and reviews.
- **Documentaries**: Audio from documentaries about history and nature.
- **Podcasts**: Conversations and discussions from various podcast episodes.
- **Authors**:  Audio recordings of authors reading or discussing different stories: horror, children's literature, life lessons, and others.
- **Lessons**: Learning resources for the Tunisian dialect.
- **Others**: Mixed recordings with various subjects.

### Languages and Dialects
- **Tunisian Arabic**:  The primary focus of the dataset, including Tunisian Arabic and some Modern Standard Arabic (MSA).
- **French**: Some instances of French code-switching.
- **English**: Some instances of English code-switching.

### Characteristics
- **Audio Duration**: The dataset contains more than 317 hours of audio recordings.
- **Segments Duration**: This dataset contains segments, each with a duration of less than 30 seconds.
- **Labeled Data**: Includes annotations and transcriptions for a significant portion of the audio content.

### Data Distribution
- **Training Set**: Includes a diverse range of augmented audio with 5 to 7 different voices, as well as noise reduction applied to two datasets. 

## Example use (python)
- **Load  the dataset in python**:
```python
from datasets import load_dataset

# dataset will be loaded as a DatasetDict of train and test
dataset = load_dataset("linagora/linto-dataset-audio-ar-tn-augmented")
```

Check the containt of dataset:
```python
example = dataset['train'][0] 
audio_array = example['audio']["array"]
segments = example['segments']
transcription = example['transcript']

print(f"Audio array: {audio_array}")
print(f"Segments: {segments}")
print(f"Transcription: {transcription}")
```
**Example**
```bash
Audio array: [0. 0. 0. ... 0. 0. 0.]
Transcription: أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي
segments: [{'end': 14.113, 'start': 0.0, 'transcript': 'أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي'}]
```

## License
Given that some of the corpora used for training and evaluation are available only under CC-BY-4.0 licenses, we have chosen to license the entire dataset under CC-BY-4.0.

## Citations
When using the **LinTO DataSet Audio for Arabic Tunisian** corpus, please cite this page:

```bibtex
@misc{linagora2024Linto-tn,
  author = {Hedi Naouara and Jérôme Louradour and Jean-Pierre Lorré and Sarah zribi and Wajdi Ghezaiel},
  title = {LinTO Audio and Textual Datasets to Train and Evaluate Automatic Speech Recognition in Tunisian Arabic Dialect},
  year = {2024},
  publisher = {HuggingFace},
  journal = {HuggingFace},
  howpublished = {\url{https://huggingface.co/datasets/linagora/linto-dataset-audio-ar-tn}},
}
```

```bibtex
@misc{abdallah2023leveraging,
      title={Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition}, 
      author={Ahmed Amine Ben Abdallah and Ata Kabboudi and Amir Kanoun and Salah Zaiem},
      year={2023},
      eprint={2309.11327},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
```

```bibtex
@data{e1qb-jv46-21,
doi = {10.21227/e1qb-jv46},
url = {https://dx.doi.org/10.21227/e1qb-jv46},
author = {Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha},
publisher = {IEEE Dataport},
title = {MASC: Massive Arabic Speech Corpus},
year = {2021} }
```