name: mBert stanzas evaluation project: stanzas-mbert-eval program: stanzas_eval.py command: - ${env} - ${interpreter} - ${program} - ${args} method: grid metric: name: eval:f1_macro goal: maximize parameters: dataset_name: value: linhd-postdata/stanzas task_name: value: sequence model_name: value: bert-base-multilingual-cased # force_download: # value: true num_train_epochs: value: 3 # warmup_steps: # value: 0.1 weight_decay: value: 0.0 learning_rate: value: 3e-5 train_batch_size: value: 8 cache_dir: value: ./cache output_dir: value: ./output save_artifacts: value: true # run: # values: [1, 2, 3]