Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ task_categories:
|
|
5 |
language:
|
6 |
- en
|
7 |
size_categories:
|
8 |
-
-
|
9 |
---
|
10 |
|
11 |
TL;DR: The datasets for the temporal knowledge graph reasoning task.
|
@@ -25,21 +25,21 @@ See also: [[ICEWS14]](https://huggingface.co/datasets/linxy/ICEWS14) [[GDELT]](h
|
|
25 |
```python
|
26 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "all")
|
27 |
>>> len(dataset["train"]) + len(dataset["validation"]) + len(dataset["test"])
|
28 |
-
|
29 |
>>> dataset["train"][0]
|
30 |
-
{'query_name': 'Pe_aPt',
|
31 |
-
'definition': 'def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))',
|
32 |
-
'query': [6291, 372, 5683, 283, 5264],
|
33 |
-
'answer': [1077],
|
34 |
-
'easy_answer': [],
|
35 |
-
'args': ['e1', 'r1', 'e2', 'r2', 'e3']}
|
36 |
-
>>> dataset["test"][0]
|
37 |
{'query_name': 'Pe',
|
38 |
'definition': 'def Pe(e1, r1, t1): return Pe(e1, r1, t1)',
|
39 |
-
'query': [
|
40 |
-
'answer': [
|
41 |
'easy_answer': [],
|
42 |
'args': ['e1', 'r1', 't1']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
|
45 |
'args' is the argument list of the query function, where name starting with 'e' is entity, and 'r' for relation, 't' for timestamp.
|
@@ -53,14 +53,14 @@ Therefore, we use the code below to load meta info which contains the vocabulary
|
|
53 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "meta")
|
54 |
>>> meta_info = dataset_meta["train"][0]
|
55 |
>>> meta_info
|
56 |
-
{'dataset': '
|
57 |
-
'entity_count':
|
58 |
-
'relation_count':
|
59 |
-
'timestamp_count':
|
60 |
-
'valid_triples_count':
|
61 |
-
'test_triples_count':
|
62 |
-
'train_triples_count':
|
63 |
-
'triple_count':
|
64 |
'query_meta': {'query_name': [...], 'queries_count': [...], 'avg_answers_count': [...], ...},
|
65 |
'entity2idx': {'name': [...], 'id': [...]},
|
66 |
'relation2idx': {'name': [...], 'id': [...]},
|
@@ -71,7 +71,7 @@ Since the ids in the vocabulary are already sorted, we directly decode to access
|
|
71 |
|
72 |
```python
|
73 |
>>> query
|
74 |
-
[
|
75 |
>>> args
|
76 |
['e1', 'r1', 't1']
|
77 |
>>> for idx, arg_type in zip(query, args):
|
@@ -87,7 +87,7 @@ Besides, we also provide query-type-specific subparts.
|
|
87 |
|
88 |
```python
|
89 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "e2i")
|
90 |
-
>>> some_datasets = [load_dataset("linxy/
|
91 |
```
|
92 |
|
93 |
Help yourself!
|
|
|
5 |
language:
|
6 |
- en
|
7 |
size_categories:
|
8 |
+
- 100M<n<1B
|
9 |
---
|
10 |
|
11 |
TL;DR: The datasets for the temporal knowledge graph reasoning task.
|
|
|
25 |
```python
|
26 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "all")
|
27 |
>>> len(dataset["train"]) + len(dataset["validation"]) + len(dataset["test"])
|
28 |
+
4651939
|
29 |
>>> dataset["train"][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
{'query_name': 'Pe',
|
31 |
'definition': 'def Pe(e1, r1, t1): return Pe(e1, r1, t1)',
|
32 |
+
'query': [3751, 125, 1330],
|
33 |
+
'answer': [10136],
|
34 |
'easy_answer': [],
|
35 |
'args': ['e1', 'r1', 't1']}
|
36 |
+
>>> dataset["test"][0]
|
37 |
+
{'query_name': 'Pe2',
|
38 |
+
'definition': 'def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)',
|
39 |
+
'query': [7262, 425, 3943, 144, 2619],
|
40 |
+
'answer': [2473, 5870],
|
41 |
+
'easy_answer': [5870],
|
42 |
+
'args': ['e1', 'r1', 't1', 'r2', 't2']}
|
43 |
```
|
44 |
|
45 |
'args' is the argument list of the query function, where name starting with 'e' is entity, and 'r' for relation, 't' for timestamp.
|
|
|
53 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "meta")
|
54 |
>>> meta_info = dataset_meta["train"][0]
|
55 |
>>> meta_info
|
56 |
+
{'dataset': 'ICEWS05_15',
|
57 |
+
'entity_count': 10488,
|
58 |
+
'relation_count': 251,
|
59 |
+
'timestamp_count': 4017,
|
60 |
+
'valid_triples_count': 46275,
|
61 |
+
'test_triples_count': 46092,
|
62 |
+
'train_triples_count': 368962,
|
63 |
+
'triple_count': 461329,
|
64 |
'query_meta': {'query_name': [...], 'queries_count': [...], 'avg_answers_count': [...], ...},
|
65 |
'entity2idx': {'name': [...], 'id': [...]},
|
66 |
'relation2idx': {'name': [...], 'id': [...]},
|
|
|
71 |
|
72 |
```python
|
73 |
>>> query
|
74 |
+
[3751, 125, 1330]
|
75 |
>>> args
|
76 |
['e1', 'r1', 't1']
|
77 |
>>> for idx, arg_type in zip(query, args):
|
|
|
87 |
|
88 |
```python
|
89 |
>>> dataset = load_dataset("linxy/ICEWS05_15", "e2i")
|
90 |
+
>>> some_datasets = [load_dataset("linxy/ICEWS05_15", query_name) for query_name in meta_info['query_meta']['query_name']]
|
91 |
```
|
92 |
|
93 |
Help yourself!
|