File size: 1,453 Bytes
6f71fda b310d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
dataset_info:
features:
- name: question_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: answer
dtype: string
- name: image_source
dtype: string
- name: capability
dtype: string
splits:
- name: test
num_bytes: 77298608.0
num_examples: 218
download_size: 67180444
dataset_size: 77298608.0
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%">
</p>
# Large-scale Multi-modality Models Evaluation Suite
> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`
π [Homepage](https://lmms-lab.github.io/) | π [Documentation](docs/README.md) | π€ [Huggingface Datasets](https://huggingface.co/lmms-lab)
# This Dataset
This is a formatted version of [MM-Vet](https://github.com/yuweihao/MM-Vet). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.
```
@misc{yu2023mmvet,
title={MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities},
author={Weihao Yu and Zhengyuan Yang and Linjie Li and Jianfeng Wang and Kevin Lin and Zicheng Liu and Xinchao Wang and Lijuan Wang},
year={2023},
eprint={2308.02490},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
``` |