Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
File size: 1,453 Bytes
6f71fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b310d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
dataset_info:
  features:
  - name: question_id
    dtype: string
  - name: image
    dtype: image
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: image_source
    dtype: string
  - name: capability
    dtype: string
  splits:
  - name: test
    num_bytes: 77298608.0
    num_examples: 218
  download_size: 67180444
  dataset_size: 77298608.0
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---
<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png"  width="100%" height="80%">
</p>

# Large-scale Multi-modality Models Evaluation Suite

> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`

🏠 [Homepage](https://lmms-lab.github.io/) | πŸ“š [Documentation](docs/README.md) | πŸ€— [Huggingface Datasets](https://huggingface.co/lmms-lab)

# This Dataset

This is a formatted version of [MM-Vet](https://github.com/yuweihao/MM-Vet). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.

```
@misc{yu2023mmvet,
      title={MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities}, 
      author={Weihao Yu and Zhengyuan Yang and Linjie Li and Jianfeng Wang and Kevin Lin and Zicheng Liu and Xinchao Wang and Lijuan Wang},
      year={2023},
      eprint={2308.02490},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```