Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Russian
Size:
10K<n<100K
ArXiv:
Tags:
question-generation
License:
File size: 3,466 Bytes
b95a841 1dc50f7 50040d1 9984d19 50040d1 b95a841 1dc50f7 b95a841 628df02 b95a841 50040d1 b95a841 1dc50f7 b95a841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
""" python -c "from datasets import load_dataset;load_dataset('.')" """
import json
from itertools import chain
import datasets
logger = datasets.logging.get_logger(__name__)
_VERSION = "5.0.1"
_NAME = "qg_ruquad"
_CITATION = """
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """[SberSQuAD](https://huggingface.co/datasets/sberquad) dataset for question generation (QG) task."""
_URL = 'https://huggingface.co/datasets/lmqg/qg_ruquad/resolve/main/data/processed'
_URLS = {
str(datasets.Split.TEST): [f'{_URL}/test{i:02d}.jsonl' for i in range(8)],
str(datasets.Split.TRAIN): [f'{_URL}/train{i:02d}.jsonl' for i in range(58)],
str(datasets.Split.VALIDATION): [f'{_URL}/validation{i:02d}.jsonl' for i in range(8)],
# str(datasets.Split.TEST): f'{_URL}/test.jsonl',
# str(datasets.Split.TRAIN): f'{_URL}/train.jsonl',
# str(datasets.Split.VALIDATION): f'{_URL}/validation.jsonl'
}
class QGRuQuADConfig(datasets.BuilderConfig):
"""BuilderConfig for SquadQG"""
def __init__(self, **kwargs):
"""BuilderConfig for SquadQG.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QGRuQuADConfig, self).__init__(**kwargs)
class QGRuQuAD(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
QGRuQuADConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"answer": datasets.Value("string"), "paragraph_question": datasets.Value("string"),
"question": datasets.Value("string"),
"sentence": datasets.Value("string"),
"paragraph": datasets.Value("string"),
"sentence_answer": datasets.Value("string"),
"paragraph_answer": datasets.Value("string"),
"paragraph_sentence": datasets.Value("string"),
"paragraph_id": datasets.Value("string")
}
),
supervised_keys=None,
homepage="https://github.com/asahi417/lm-question-generation"
)
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = f.read().split('\n')
if _list[-1] == '':
_list = _list[:-1]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1
|