File size: 9,806 Bytes
2429dd8
 
 
 
 
6734ef8
2429dd8
6734ef8
 
2429dd8
 
 
6328b83
2429dd8
 
 
07fd10c
2429dd8
 
aae9cc7
e636722
911fa1c
 
 
 
37d3286
 
 
 
 
 
 
 
 
 
 
 
52ec3db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d3286
 
 
 
52ec3db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d3286
 
 
 
52ec3db
 
 
 
37d3286
 
 
 
 
 
 
 
6308c4c
 
 
37d3286
 
2429dd8
 
 
 
 
 
 
f365713
2429dd8
 
 
f365713
 
2429dd8
 
 
 
 
 
 
 
 
 
 
 
 
8039149
2429dd8
 
 
 
 
 
 
e636722
2429dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8039149
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
pretty_name: LST20
tags:
- word-segmentation
- clause-segmentation
- sentence-segmentation
dataset_info:
  features:
  - name: id
    dtype: string
  - name: fname
    dtype: string
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          '0': NN
          '1': VV
          '2': PU
          '3': CC
          '4': PS
          '5': AX
          '6': AV
          '7': FX
          '8': NU
          '9': AJ
          '10': CL
          '11': PR
          '12': NG
          '13': PA
          '14': XX
          '15': IJ
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B_BRN
          '2': B_DES
          '3': B_DTM
          '4': B_LOC
          '5': B_MEA
          '6': B_NUM
          '7': B_ORG
          '8': B_PER
          '9': B_TRM
          '10': B_TTL
          '11': I_BRN
          '12': I_DES
          '13': I_DTM
          '14': I_LOC
          '15': I_MEA
          '16': I_NUM
          '17': I_ORG
          '18': I_PER
          '19': I_TRM
          '20': I_TTL
          '21': E_BRN
          '22': E_DES
          '23': E_DTM
          '24': E_LOC
          '25': E_MEA
          '26': E_NUM
          '27': E_ORG
          '28': E_PER
          '29': E_TRM
          '30': E_TTL
  - name: clause_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B_CLS
          '2': I_CLS
          '3': E_CLS
  config_name: lst20
  splits:
  - name: train
    num_bytes: 107725145
    num_examples: 63310
  - name: validation
    num_bytes: 9646167
    num_examples: 5620
  - name: test
    num_bytes: 8217425
    num_examples: 5250
  download_size: 0
  dataset_size: 125588737
---

# Dataset Card for LST20

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://aiforthai.in.th/
- **Repository:**
- **Paper:** 
- **Leaderboard:**
- **Point of Contact:** [email](thepchai@nectec.or.th)

### Dataset Summary

LST20 Corpus is a dataset for Thai language processing developed by National Electronics and Computer Technology Center (NECTEC), Thailand.
It offers five layers of linguistic annotation: word boundaries, POS tagging, named entities, clause boundaries, and sentence boundaries.
At a large scale, it consists of 3,164,002 words, 288,020 named entities, 248,181 clauses, and 74,180 sentences, while it is annotated with
16 distinct POS tags. All 3,745 documents are also annotated with one of 15 news genres. Regarding its sheer size, this dataset is
considered large enough for developing joint neural models for NLP.
Manually download at https://aiforthai.in.th/corpus.php
See `LST20 Annotation Guideline.pdf` and `LST20 Brief Specification.pdf` within the downloaded `AIFORTHAI-LST20Corpus.tar.gz` for more details.

### Supported Tasks and Leaderboards

- POS tagging
- NER tagging
- clause segmentation
- sentence segmentation
- word tokenization

### Languages

Thai

## Dataset Structure

### Data Instances

```
{'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '0', 'ner_tags': [8, 0, 0, 0, 0, 0, 0, 0, 25], 'pos_tags': [0, 0, 0, 1, 0, 8, 8, 8, 0], 'tokens': ['ธรรมนูญ', 'แชมป์', 'สิงห์คลาสสิก', 'กวาด', 'รางวัล', 'แสน', 'สี่', 'หมื่น', 'บาท']}
{'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '1', 'ner_tags': [8, 18, 28, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 15, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6], 'pos_tags': [0, 2, 0, 2, 1, 1, 2, 8, 2, 10, 2, 8, 2, 1, 0, 1, 0, 4, 7, 1, 0, 2, 8, 2, 10, 1, 10, 4, 2, 8, 2, 4, 0, 4, 0, 2, 8, 2, 10, 2, 8], 'tokens': ['ธรรมนูญ', '_', 'ศรีโรจน์', '_', 'เก็บ', 'เพิ่ม', '_', '4', '_', 'อันเดอร์พาร์', '_', '68', '_', 'เข้า', 'ป้าย', 'รับ', 'แชมป์', 'ใน', 'การ', 'เล่น', 'อาชีพ', '_', '19', '_', 'ปี', 'เป็น', 'ครั้ง', 'ที่', '_', '8', '_', 'ใน', 'ชีวิต', 'ด้วย', 'สกอร์', '_', '18', '_', 'อันเดอร์พาร์', '_', '270']}
```

### Data Fields

- `id`: nth sentence in each set, starting at 0
- `fname`: text file from which the sentence comes from
- `tokens`: word tokens
- `pos_tags`: POS tags
- `ner_tags`: NER tags
- `clause_tags`: clause tags

### Data Splits

|                      | train     | eval        | test        | all       |
|----------------------|-----------|-------------|-------------|-----------|
| words                | 2,714,848 | 240,891     | 207,295     | 3,163,034 |
| named entities       | 246,529   | 23,176      | 18,315      | 288,020   |
| clauses              | 214,645   | 17,486      | 16,050      | 246,181   |
| sentences            | 63,310    | 5,620       | 5,250       | 74,180    |
| distinct words       | 42,091    | (oov) 2,595 | (oov) 2,006 | 46,692    |
| breaking spaces※     | 63,310    | 5,620       | 5,250       | 74,180    |
| non-breaking spaces※※| 402,380   | 39,920      | 32,204      | 475,504   |

※ Breaking space = space that is used as a sentence boundary marker
※※ Non-breaking space = space that is not used as a sentence boundary marker

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

Respective authors of the news articles

### Annotations

#### Annotation process

Detailed annotation guideline can be found in `LST20 Annotation Guideline.pdf`.

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

All texts are from public news. No personal and sensitive information is expected to be included.

## Considerations for Using the Data

### Social Impact of Dataset

- Large-scale Thai NER & POS tagging, clause & sentence segmentatation, word tokenization

### Discussion of Biases

- All 3,745 texts are from news domain:
  - politics: 841
  - crime and accident: 592
  - economics: 512
  - entertainment: 472
  - sports: 402
  - international: 279
  - science, technology and education: 216
  - health: 92
  - general: 75
  - royal: 54
  - disaster: 52
  - development: 45
  - environment: 40
  - culture: 40
  - weather forecast: 33
- Word tokenization is done accoding to Inter­BEST 2009 Guideline.


### Other Known Limitations

- Some NER tags do not correspond with given labels (`B`, `I`, and so on)

## Additional Information

### Dataset Curators

[NECTEC](https://www.nectec.or.th/en/)

### Licensing Information

1. Non-commercial use, research, and open source

Any non-commercial use of the dataset for research and open-sourced projects is encouraged and free of charge. Please cite our technical report for reference.

If you want to perpetuate your models trained on our dataset and share them to the research community in Thailand, please send your models, code, and APIs to the AI for Thai Project. Please contact Dr. Thepchai Supnithi via thepchai@nectec.or.th for more information.

Note that modification and redistribution of the dataset by any means are strictly prohibited unless authorized by the corpus authors.

2. Commercial use

In any commercial use of the dataset, there are two options.

- Option 1 (in kind): Contributing a dataset of 50,000 words completely annotated with our annotation scheme within 1 year. Your data will also be shared and recognized as a dataset co-creator in the research community in Thailand.

- Option 2 (in cash): Purchasing a lifetime license for the entire dataset is required. The purchased rights of use cover only this dataset.

In both options, please contact Dr. Thepchai Supnithi via thepchai@nectec.or.th for more information.

### Citation Information

```
@article{boonkwan2020annotation,
  title={The Annotation Guideline of LST20 Corpus},
  author={Boonkwan, Prachya and Luantangsrisuk, Vorapon and Phaholphinyo, Sitthaa and Kriengket, Kanyanat and Leenoi, Dhanon and Phrombut, Charun and Boriboon, Monthika and Kosawat, Krit and Supnithi, Thepchai},
  journal={arXiv preprint arXiv:2008.05055},
  year={2020}
}
```

### Contributions

Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset.