prompt
stringlengths
70
19.8k
completion
stringlengths
8
1.03k
api
stringlengths
23
93
get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay1.txt'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay2.txt'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay3.txt'") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader( input_files=["./data/paul_graham/paul_graham_essay1.txt"] ) docs = reader.load_data() print(f"Loaded {len(docs)} docs") reader =
SimpleDirectoryReader(input_dir="./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks') get_ipython().run_line_magic('pip', 'install llama-index') import os os.environ["FIREWORKS_API_KEY"] = "" from llama_index.llms.fireworks import Fireworks llm = Fireworks( model="accounts/fireworks/models/firefunction-v1", temperature=0 ) from pydantic import BaseModel from llama_index.llms.openai.utils import to_openai_tool class Song(BaseModel): """A song with name and artist""" name: str artist: str song_fn = to_openai_tool(Song) response = llm.complete("Generate a song from Beyonce", tools=[song_fn]) tool_calls = response.additional_kwargs["tool_calls"] print(tool_calls) from llama_index.program.openai import OpenAIPydanticProgram prompt_template_str = "Generate a song about {artist_name}" program = OpenAIPydanticProgram.from_defaults( output_cls=Song, prompt_template_str=prompt_template_str, llm=llm ) output = program(artist_name="Eminem") output from llama_index.agent.openai import OpenAIAgent from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool =
FunctionTool.from_defaults(fn=add)
llama_index.core.tools.FunctionTool.from_defaults
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.graphql.base import GraphQLToolSpec url = "https://spacex-production.up.railway.app/" headers = { "content-type": "application/json", } graphql_spec =
GraphQLToolSpec(url=url, headers=headers)
llama_index.tools.graphql.base.GraphQLToolSpec
get_ipython().system('pip install llama-index-llms-ollama') get_ipython().system('pip install llama-index') from llama_index.llms.ollama import Ollama gemma_2b = Ollama(model="gemma:2b", request_timeout=30.0) gemma_7b =
Ollama(model="gemma:7b", request_timeout=30.0)
llama_index.llms.ollama.Ollama
from llama_index.llms.openai import OpenAI from llama_index.core import VectorStoreIndex from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.postprocessor import LLMRerank from llama_index.core import VectorStoreIndex from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import Settings from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.packs.koda_retriever import KodaRetriever import os from pinecone import Pinecone pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) index = pc.Index("sample-movies") Settings.llm = OpenAI() Settings.embed_model = OpenAIEmbedding() vector_store = PineconeVectorStore(pinecone_index=index, text_key="summary") vector_index = VectorStoreIndex.from_vector_store( vector_store=vector_store, embed_model=Settings.embed_model ) reranker = LLMRerank(llm=Settings.llm) # optional retriever = KodaRetriever( index=vector_index, llm=Settings.llm, reranker=reranker, # optional verbose=True, ) query = "How many Jurassic Park movies are there?" results = retriever.retrieve(query) results query_engine =
RetrieverQueryEngine.from_args(retriever=retriever)
llama_index.core.query_engine.RetrieverQueryEngine.from_args
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.wolfram_alpha.base import WolframAlphaToolSpec wolfram_spec =
WolframAlphaToolSpec(app_id="your-key")
llama_index.tools.wolfram_alpha.base.WolframAlphaToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(data) from llama_index.core.memory import ChatMemoryBuffer memory = ChatMemoryBuffer.from_defaults(token_limit=3900) chat_engine = index.as_chat_engine( chat_mode="condense_plus_context", memory=memory, llm=llm, context_prompt=( "You are a chatbot, able to have normal interactions, as well as talk" " about an essay discussing Paul Grahams life." "Here are the relevant documents for the context:\n" "{context_str}" "\nInstruction: Use the previous chat history, or the context above, to interact and help the user." ), verbose=False, ) response = chat_engine.chat("What did Paul Graham do growing up") print(response) response_2 = chat_engine.chat("Can you tell me more?") print(response_2) chat_engine.reset() response = chat_engine.chat("Hello! What do you know?") print(response) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core import Settings llm =
OpenAI(model="gpt-3.5-turbo", temperature=0)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import datasets dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR") dataset from llama_index.core import get_tokenizer import re from typing import Set, List tokenizer = get_tokenizer() sample_size = 5 def get_reactions_row(raw_target: str) -> List[str]: """Get reactions from a single row.""" reaction_pattern = re.compile(r"reactions:\s*(.*)") reaction_match = reaction_pattern.search(raw_target) if reaction_match: reactions = reaction_match.group(1).split(",") reactions = [r.strip().lower() for r in reactions] else: reactions = [] return reactions def get_reactions_set(dataset) -> Set[str]: """Get set of all reactions.""" reactions = set() for data in dataset["train"]: reactions.update(set(get_reactions_row(data["target"]))) return reactions def get_samples(dataset, sample_size: int = 5): """Get processed sample. Contains source text and also the reaction label. Parse reaction text to specifically extract reactions. """ samples = [] for idx, data in enumerate(dataset["train"]): if idx >= sample_size: break text = data["fulltext_processed"] raw_target = data["target"] reactions = get_reactions_row(raw_target) samples.append({"text": text, "reactions": reactions}) return samples from llama_index.packs.infer_retrieve_rerank import InferRetrieveRerankPack from llama_index.core.llama_pack import download_llama_pack InferRetrieveRerankPack = download_llama_pack( "InferRetrieveRerankPack", "./irr_pack", ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-16k") pred_context = """\ The output predictins should be a list of comma-separated adverse \ drug reactions. \ """ reranker_top_n = 10 pack = InferRetrieveRerankPack( get_reactions_set(dataset), llm=llm, pred_context=pred_context, reranker_top_n=reranker_top_n, verbose=True, ) samples = get_samples(dataset, sample_size=5) pred_reactions = pack.run(inputs=[s["text"] for s in samples]) gt_reactions = [s["reactions"] for s in samples] pred_reactions[2] gt_reactions[2] from llama_index.core.retrievers import BaseRetriever from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank from llama_index.core.output_parsers import ChainableOutputParser from typing import List import random all_reactions = get_reactions_set(dataset) random.sample(all_reactions, 5) from llama_index.core.schema import TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core import VectorStoreIndex reaction_nodes = [TextNode(text=r) for r in all_reactions] pipeline = IngestionPipeline(transformations=[OpenAIEmbedding()]) reaction_nodes = await pipeline.arun(documents=reaction_nodes) index = VectorStoreIndex(reaction_nodes) reaction_nodes[0].embedding reaction_retriever = index.as_retriever(similarity_top_k=2) nodes = reaction_retriever.retrieve("abdominal") print([n.get_content() for n in nodes]) infer_prompt_str = """\ Your job is to output a list of predictions given context from a given piece of text. The text context, and information regarding the set of valid predictions is given below. Return the predictions as a comma-separated list of strings. Text Context: {doc_context} Prediction Info: {pred_context} Predictions: """ infer_prompt = PromptTemplate(infer_prompt_str) class PredsOutputParser(ChainableOutputParser): """Predictions output parser.""" def parse(self, output: str) -> List[str]: """Parse predictions.""" tokens = output.split(",") return [t.strip() for t in tokens] preds_output_parser = PredsOutputParser() rerank_str = """\ Given a piece of text, rank the {num} labels above based on their relevance \ to this piece of text. The labels \ should be listed in descending order using identifiers. \ The most relevant labels should be listed first. \ The output format should be [] > [], e.g., [1] > [2]. \ Only response the ranking results, \ do not say any word or explain. \ Here is a given piece of text: {query}. """ rerank_prompt =
PromptTemplate(rerank_str)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass import openai openai.api_key = "sk-" import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex from llama_index.vector_stores.chroma import ChromaVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Mafia"), MetadataFilter(key="year", value=1972), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT)
llama_index.core.vector_stores.MetadataFilter
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.core import Settings llama_debug = LlamaDebugHandler(print_trace_on_end=True) callback_manager =
CallbackManager([llama_debug])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.core import Document, VectorStoreIndex from llama_index.readers.file import PyMuPDFReader from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] node_parser = SimpleNodeParser.from_defaults() nodes = node_parser.get_nodes_from_documents(docs) len(nodes) get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") dataset_generator = DatasetGenerator( nodes[:20], llm=llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60) eval_dataset.save_json("data/llama2_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI eval_llm = OpenAI(model="gpt-4-1106-preview") evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s =
SemanticSimilarityEvaluator(llm=eval_llm)
llama_index.core.evaluation.SemanticSimilarityEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai') get_ipython().system('pip install llama-index') from llama_index.llms.mistralai import MistralAI llm = MistralAI() resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."), ChatMessage(role="user", content="Tell me the story about La plateforme"), ] resp = MistralAI().chat(messages) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import PromptTemplate text_qa_template_str = ( "Context information is" " below.\n---------------------\n{context_str}\n---------------------\nUsing" " both the context information and also using your own knowledge, answer" " the question: {query_str}\nIf the context isn't helpful, you can also" " answer the question on your own.\n" ) text_qa_template = PromptTemplate(text_qa_template_str) refine_template_str = ( "The original question is as follows: {query_str}\nWe have provided an" " existing answer: {existing_answer}\nWe have the opportunity to refine" " the existing answer (only if needed) with some more context" " below.\n------------\n{context_msg}\n------------\nUsing both the new" " context and your own knowledge, update or repeat the existing answer.\n" ) refine_template = PromptTemplate(refine_template_str) import openai import os os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.gmail.base import GmailToolSpec tool_spec =
GmailToolSpec()
llama_index.tools.gmail.base.GmailToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.chat_engine import SimpleChatEngine chat_engine =
SimpleChatEngine.from_defaults()
llama_index.core.chat_engine.SimpleChatEngine.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "ht@runllama.ai" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index =
GoogleIndex.from_corpus(corpus_id="")
llama_index.indices.managed.google.GoogleIndex.from_corpus
get_ipython().system('pip install llama-index-llms-ollama') get_ipython().system('pip install llama-index') from llama_index.llms.ollama import Ollama gemma_2b =
Ollama(model="gemma:2b", request_timeout=30.0)
llama_index.llms.ollama.Ollama
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") index = VectorStoreIndex(base_nodes) query_engine = index.as_query_engine(similarity_top_k=2) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.core.node_parser import SimpleNodeParser dataset_generator = DatasetGenerator( base_nodes[:20], llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60) eval_dataset.save_json("data/llama2_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) import random full_qr_pairs = eval_dataset.qr_pairs num_exemplars = 2 num_eval = 40 exemplar_qr_pairs = random.sample(full_qr_pairs, num_exemplars) eval_qr_pairs = random.sample(full_qr_pairs, num_eval) len(exemplar_qr_pairs) from llama_index.core.evaluation.eval_utils import get_responses from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-3.5-turbo")) evaluator_dict = { "correctness": evaluator_c, } batch_runner =
BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
llama_index.core.evaluation.BatchEvalRunner
get_ipython().run_line_magic('pip', 'install llama-index-packs-node-parser-semantic-chunking') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-node-parser-semantic-chunking-base') from llama_index.core import SimpleDirectoryReader get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'pg_essay.txt'") documents = SimpleDirectoryReader(input_files=["pg_essay.txt"]).load_data() from llama_index.packs.node_parser_semantic_chunking.base import SemanticChunker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "SemanticChunkingQueryEnginePack", "./semantic_chunking_pack", skip_load=True, ) from semantic_chunking_pack.base import SemanticChunker from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() splitter = SemanticChunker( buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model ) base_splitter = SentenceSplitter(chunk_size=512) nodes = splitter.get_nodes_from_documents(documents) print(nodes[1].get_content()) print(nodes[2].get_content()) print(nodes[3].get_content()) base_nodes = base_splitter.get_nodes_from_documents(documents) print(base_nodes[2].get_content()) from llama_index.core import VectorStoreIndex from llama_index.core.response.notebook_utils import display_source_node vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() base_vector_index = VectorStoreIndex(base_nodes) base_query_engine = base_vector_index.as_query_engine() response = query_engine.query( "Tell me about the author's programming journey through childhood to college" ) print(str(response)) for n in response.source_nodes: display_source_node(n, source_length=20000) base_response = base_query_engine.query( "Tell me about the author's programming journey through childhood to college" ) print(str(base_response)) for n in base_response.source_nodes: display_source_node(n, source_length=20000) response = query_engine.query("Tell me about the author's experience in YC") print(str(response)) base_response = base_query_engine.query("Tell me about the author's experience in YC") print(str(base_response)) from llama_index.packs.node_parser_semantic_chunking import ( SemanticChunkingQueryEnginePack, ) from llama_index.core.llama_pack import download_llama_pack pack =
SemanticChunkingQueryEnginePack(documents)
llama_index.packs.node_parser_semantic_chunking.SemanticChunkingQueryEnginePack
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "ht@runllama.ai" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes:
display_source_node(r, source_length=1000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings from llama_index.core import StorageContext, VectorStoreIndex from llama_index.core import SummaryIndex Settings.llm = OpenAI() Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) summary_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", use_async=True, ) vector_query_engine = vector_index.as_query_engine() from llama_index.core.tools import QueryEngineTool summary_tool = QueryEngineTool.from_defaults( query_engine=summary_query_engine, name="summary_tool", description=( "Useful for summarization questions related to the author's life" ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, name="vector_tool", description=( "Useful for retrieving specific context to answer specific questions about the author's life" ), ) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="QA bot", instructions="You are a bot designed to answer questions about the author", openai_tools=[], tools=[summary_tool, vector_tool], verbose=True, run_retrieve_sleep_time=1.0, ) response = agent.chat("Can you give me a summary about the author's life?") print(str(response)) response = agent.query("What did the author do after RICS?") print(str(response)) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") try: pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) except Exception: pass pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True, namespace="test") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.tools import FunctionTool from llama_index.core.vector_stores import ( VectorStoreInfo, MetadataInfo, ExactMatchFilter, MetadataFilters, ) from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.query_engine import RetrieverQueryEngine from typing import List, Tuple, Any from pydantic import BaseModel, Field top_k = 3 vector_store_info = VectorStoreInfo( content_info="brief biography of celebrities", metadata_info=[ MetadataInfo( name="category", type="str", description=( "Category of the celebrity, one of [Sports, Entertainment," " Business, Music]" ), ), MetadataInfo( name="country", type="str", description=( "Country of the celebrity, one of [United States, Barbados," " Portugal]" ), ), ], ) class AutoRetrieveModel(BaseModel): query: str = Field(..., description="natural language query string") filter_key_list: List[str] = Field( ..., description="List of metadata filter field names" ) filter_value_list: List[str] = Field( ..., description=( "List of metadata filter field values (corresponding to names" " specified in filter_key_list)" ), ) def auto_retrieve_fn( query: str, filter_key_list: List[str], filter_value_list: List[str] ): """Auto retrieval function. Performs auto-retrieval from a vector database, and then applies a set of filters. """ query = query or "Query" exact_match_filters = [
ExactMatchFilter(key=k, value=v)
llama_index.core.vector_stores.ExactMatchFilter
get_ipython().system('pip install llama-index') get_ipython().system('pip install sentence-transformers') import os os.environ["OPENAI_API_KEY"] = "YOUR OPENAI API KEY" from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, ) from llama_index.core.postprocessor import SentenceTransformerRerank get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(documents=documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.core import Document, VectorStoreIndex from llama_index.readers.file import PyMuPDFReader from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] node_parser = SimpleNodeParser.from_defaults() nodes = node_parser.get_nodes_from_documents(docs) len(nodes) get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") dataset_generator = DatasetGenerator( nodes[:20], llm=llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60) eval_dataset.save_json("data/llama2_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI eval_llm =
OpenAI(model="gpt-4-1106-preview")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-cross-encoders') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system('pip install datasets --quiet') get_ipython().system('pip install sentence-transformers --quiet') get_ipython().system('pip install openai --quiet') from datasets import load_dataset import random dataset = load_dataset("allenai/qasper") train_dataset = dataset["train"] validation_dataset = dataset["validation"] test_dataset = dataset["test"] random.seed(42) # Set a random seed for reproducibility train_sampled_indices = random.sample(range(len(train_dataset)), 800) train_samples = [train_dataset[i] for i in train_sampled_indices] test_sampled_indices = random.sample(range(len(test_dataset)), 80) test_samples = [test_dataset[i] for i in test_sampled_indices] from typing import List def get_full_text(sample: dict) -> str: """ :param dict sample: the row sample from QASPER """ title = sample["title"] abstract = sample["abstract"] sections_list = sample["full_text"]["section_name"] paragraph_list = sample["full_text"]["paragraphs"] combined_sections_with_paras = "" if len(sections_list) == len(paragraph_list): combined_sections_with_paras += title + "\t" combined_sections_with_paras += abstract + "\t" for index in range(0, len(sections_list)): combined_sections_with_paras += str(sections_list[index]) + "\t" combined_sections_with_paras += "".join(paragraph_list[index]) return combined_sections_with_paras else: print("Not the same number of sections as paragraphs list") def get_questions(sample: dict) -> List[str]: """ :param dict sample: the row sample from QASPER """ questions_list = sample["qas"]["question"] return questions_list doc_qa_dict_list = [] for train_sample in train_samples: full_text = get_full_text(train_sample) questions_list = get_questions(train_sample) local_dict = {"paper": full_text, "questions": questions_list} doc_qa_dict_list.append(local_dict) len(doc_qa_dict_list) import pandas as pd df_train = pd.DataFrame(doc_qa_dict_list) df_train.to_csv("train.csv") """ The Answers field in the dataset follow the below format:- Unanswerable answers have "unanswerable" set to true. The remaining answers have exactly one of the following fields being non-empty. "extractive_spans" are spans in the paper which serve as the answer. "free_form_answer" is a written out answer. "yes_no" is true iff the answer is Yes, and false iff the answer is No. We accept only free-form answers and for all the other kind of answers we set their value to 'Unacceptable', to better evaluate the performance of the query engine using pairwise comparision evaluator as it uses GPT-4 which is biased towards preferring long answers more. https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1 So in the case of 'yes_no' answers it can favour Query Engine answers more than reference answers. Also in the case of extracted spans it can favour reference answers more than Query engine generated answers. """ eval_doc_qa_answer_list = [] def get_answers(sample: dict) -> List[str]: """ :param dict sample: the row sample from the train split of QASPER """ final_answers_list = [] answers = sample["qas"]["answers"] for answer in answers: local_answer = "" types_of_answers = answer["answer"][0] if types_of_answers["unanswerable"] == False: if types_of_answers["free_form_answer"] != "": local_answer = types_of_answers["free_form_answer"] else: local_answer = "Unacceptable" else: local_answer = "Unacceptable" final_answers_list.append(local_answer) return final_answers_list for test_sample in test_samples: full_text = get_full_text(test_sample) questions_list = get_questions(test_sample) answers_list = get_answers(test_sample) local_dict = { "paper": full_text, "questions": questions_list, "answers": answers_list, } eval_doc_qa_answer_list.append(local_dict) len(eval_doc_qa_answer_list) import pandas as pd df_test = pd.DataFrame(eval_doc_qa_answer_list) df_test.to_csv("test.csv") get_ipython().system('pip install llama-index --quiet') import os from llama_index.core import SimpleDirectoryReader import openai from llama_index.finetuning.cross_encoders.dataset_gen import ( generate_ce_fine_tuning_dataset, generate_synthetic_queries_over_documents, ) from llama_index.finetuning.cross_encoders import CrossEncoderFinetuneEngine os.environ["OPENAI_API_KEY"] = "sk-" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import Document final_finetuning_data_list = [] for paper in doc_qa_dict_list: questions_list = paper["questions"] documents = [Document(text=paper["paper"])] local_finetuning_dataset = generate_ce_fine_tuning_dataset( documents=documents, questions_list=questions_list, max_chunk_length=256, top_k=5, ) final_finetuning_data_list.extend(local_finetuning_dataset) len(final_finetuning_data_list) import pandas as pd df_finetuning_dataset = pd.DataFrame(final_finetuning_data_list) df_finetuning_dataset.to_csv("fine_tuning.csv") finetuning_dataset = final_finetuning_data_list finetuning_dataset[0] get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0') import pandas as pd import ast # Used to safely evaluate the string as a list df_test = pd.read_csv("/content/test.csv", index_col=0) df_test["questions"] = df_test["questions"].apply(ast.literal_eval) df_test["answers"] = df_test["answers"].apply(ast.literal_eval) print(f"Number of papers in the test sample:- {len(df_test)}") from llama_index.core import Document final_eval_data_list = [] for index, row in df_test.iterrows(): documents = [
Document(text=row["paper"])
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() from llama_index.core import VectorStoreIndex from llama_index.agent.openai import OpenAIAgent from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core import VectorStoreIndex tool_dict = {} for wiki_title in wiki_titles: vector_index = VectorStoreIndex.from_documents( city_docs[wiki_title], ) vector_query_engine = vector_index.as_query_engine(llm=llm) vector_tool = QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=wiki_title, description=("Useful for questions related to" f" {wiki_title}"), ), ) tool_dict[wiki_title] = vector_tool from llama_index.core import VectorStoreIndex from llama_index.core.objects import ObjectIndex, SimpleToolNodeMapping tool_mapping = SimpleToolNodeMapping.from_objects(list(tool_dict.values())) tool_index = ObjectIndex.from_objects( list(tool_dict.values()), tool_mapping, VectorStoreIndex, ) tool_retriever = tool_index.as_retriever(similarity_top_k=1) from llama_index.core.llms import ChatMessage from llama_index.core import ChatPromptTemplate from typing import List GEN_SYS_PROMPT_STR = """\ Task information is given below. Given the task, please generate a system prompt for an OpenAI-powered bot to solve this task: {task} \ """ gen_sys_prompt_messages = [ ChatMessage( role="system", content="You are helping to build a system prompt for another bot.", ), ChatMessage(role="user", content=GEN_SYS_PROMPT_STR), ] GEN_SYS_PROMPT_TMPL = ChatPromptTemplate(gen_sys_prompt_messages) agent_cache = {} def create_system_prompt(task: str): """Create system prompt for another agent given an input task.""" llm = OpenAI(llm="gpt-4") fmt_messages = GEN_SYS_PROMPT_TMPL.format_messages(task=task) response = llm.chat(fmt_messages) return response.message.content def get_tools(task: str): """Get the set of relevant tools to use given an input task.""" subset_tools = tool_retriever.retrieve(task) return [t.metadata.name for t in subset_tools] def create_agent(system_prompt: str, tool_names: List[str]): """Create an agent given a system prompt and an input set of tools.""" llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().system('pip install llama-index') import os from llama_index.llms.litellm import LiteLLM from llama_index.core.llms import ChatMessage os.environ["OPENAI_API_KEY"] = "your-api-key" os.environ["COHERE_API_KEY"] = "your-api-key" message = ChatMessage(role="user", content="Hey! how's it going?") llm =
LiteLLM("gpt-3.5-turbo")
llama_index.llms.litellm.LiteLLM
get_ipython().run_line_magic('pip', 'install -q llama-index-vector-stores-chroma llama-index-llms-fireworks llama-index-embeddings-fireworks==0.1.2') get_ipython().run_line_magic('pip', 'install -q llama-index') get_ipython().system('pip install llama-index chromadb --quiet') get_ipython().system('pip install -q chromadb') get_ipython().system('pip install -q pydantic==1.10.11') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.fireworks import FireworksEmbedding from llama_index.llms.fireworks import Fireworks from IPython.display import Markdown, display import chromadb import getpass fw_api_key = getpass.getpass("Fireworks API Key:") get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.llms.fireworks import Fireworks from llama_index.embeddings.fireworks import FireworksEmbedding llm = Fireworks( temperature=0, model="accounts/fireworks/models/mixtral-8x7b-instruct" ) chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") embed_model = FireworksEmbedding( model_name="nomic-ai/nomic-embed-text-v1.5", ) documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) query_engine = index.as_query_engine(llm=llm) response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) db = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db.get_or_create_collection("quickstart") vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) embed_model = FireworksEmbedding( model_name="nomic-ai/nomic-embed-text-v1.5", api_base="https://api.fireworks.ai/inference/v1", dimensions=128, ) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) db2 = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db2.get_or_create_collection("quickstart") vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[ HTMLNodeParser.from_defaults(), SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) eval_nodes = pipeline.run(documents=docs) eval_llm = OpenAI(model="gpt-3.5-turbo") dataset_generator = DatasetGenerator( eval_nodes[:100], llm=eval_llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100) len(eval_dataset.qr_pairs) eval_dataset.save_json("data/tesla10k_eval_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/tesla10k_eval_dataset.json" ) eval_qs = eval_dataset.questions qr_pairs = eval_dataset.qr_pairs ref_response_strs = [r for (_, r) in qr_pairs] from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_dict = { "correctness": evaluator_c, "semantic_similarity": evaluator_s, } batch_eval_runner = BatchEvalRunner( evaluator_dict, workers=2, show_progress=True ) from llama_index.core import VectorStoreIndex async def run_evals( pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref ): nodes = pipeline.run(documents=docs) vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_eval_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_responses_ref ) return eval_results from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0) sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600) html_parser = HTMLNodeParser.from_defaults() parser_dict = { "sent_parser_o0": sent_parser_o0, "sent_parser_o200": sent_parser_o200, "sent_parser_o500": sent_parser_o500, } from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline pipeline_dict = {} for k, parser in parser_dict.items(): pipeline = IngestionPipeline( documents=docs, transformations=[ html_parser, parser, OpenAIEmbedding(), ], ) pipeline_dict[k] = pipeline eval_results_dict = {} for k, pipeline in pipeline_dict.items(): eval_results = await run_evals( pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs ) eval_results_dict[k] = eval_results import pickle pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb")) eval_results_list = list(eval_results_dict.items()) results_df = get_results_df( [v for _, v in eval_results_list], [k for k, _ in eval_results_list], ["correctness", "semantic_similarity"], ) display(results_df) for k, pipeline in pipeline_dict.items(): pipeline.cache.persist(f"./cache/{k}.json") from llama_index.core.extractors import ( TitleExtractor, QuestionsAnsweredExtractor, SummaryExtractor, ) from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter extractor_dict = { "summary": SummaryExtractor(in_place=False), "qa": QuestionsAnsweredExtractor(in_place=False), "default": None, } html_parser = HTMLNodeParser.from_defaults() sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) pipeline_dict = {} html_parser = HTMLNodeParser.from_defaults() for k, extractor in extractor_dict.items(): if k == "default": transformations = [ html_parser, sent_parser_o200, OpenAIEmbedding(), ] else: transformations = [ html_parser, sent_parser_o200, extractor,
OpenAIEmbedding()
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') import nest_asyncio nest_asyncio.apply() import os HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") import pandas as pd def display_eval_df(question, source, answer_a, answer_b, result) -> None: """Pretty print question/answer + gpt-4 judgement dataset.""" eval_df = pd.DataFrame( { "Question": question, "Source": source, "Model A": answer_a["model"], "Answer A": answer_a["text"], "Model B": answer_b["model"], "Answer B": answer_b["text"], "Score": result.score, "Judgement": result.feedback, }, index=[0], ) eval_df = eval_df.style.set_properties( **{ "inline-size": "300px", "overflow-wrap": "break-word", }, subset=["Answer A", "Answer B"] ) display(eval_df) get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader train_cities = [ "San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Boston", ] test_cities = [ "Tokyo", "Singapore", "Paris", ] train_documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in train_cities] ) test_documents =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp') get_ipython().system('pip install llama-index lm-format-enforcer llama-cpp-python') import lmformatenforcer import re from llama_index.core.prompts.lmformatenforcer_utils import ( activate_lm_format_enforcer, build_lm_format_enforcer_function, ) regex = r'"Hello, my name is (?P<name>[a-zA-Z]*)\. I was born in (?P<hometown>[a-zA-Z]*). Nice to meet you!"' from llama_index.llms.llama_cpp import LlamaCPP llm = LlamaCPP() regex_parser = lmformatenforcer.RegexParser(regex) lm_format_enforcer_fn =
build_lm_format_enforcer_function(llm, regex_parser)
llama_index.core.prompts.lmformatenforcer_utils.build_lm_format_enforcer_function
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') from llama_index.readers.file import ImageTabularChartReader from llama_index.core import SummaryIndex from llama_index.core.response.notebook_utils import display_response from pathlib import Path loader = ImageTabularChartReader(keep_image=True) documents = loader.load_data(file=Path("./marine_chart.png")) print(documents[0].text) summary_index = SummaryIndex.from_documents(documents) response = summary_index.as_query_engine().query( "What is the difference between the shares of Greenland and the share of" " Mauritania?" ) display_response(response, show_source=True) documents = loader.load_data(file=Path("./pew1.png")) print(documents[0].text) summary_index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.agent import ( CustomSimpleAgentWorker, Task, AgentChatResponse, ) from typing import Dict, Any, List, Tuple, Optional from llama_index.core.tools import BaseTool, QueryEngineTool from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.query_engine import RouterQueryEngine from llama_index.core import ChatPromptTemplate, PromptTemplate from llama_index.core.selectors import PydanticSingleSelector from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.llms import ChatMessage, MessageRole DEFAULT_PROMPT_STR = """ Given previous question/response pairs, please determine if an error has occurred in the response, and suggest \ a modified question that will not trigger the error. Examples of modified questions: - The question itself is modified to elicit a non-erroneous response - The question is augmented with context that will help the downstream system better answer the question. - The question is augmented with examples of negative responses, or other negative questions. An error means that either an exception has triggered, or the response is completely irrelevant to the question. Please return the evaluation of the response in the following JSON format. """ def get_chat_prompt_template( system_prompt: str, current_reasoning: Tuple[str, str] ) -> ChatPromptTemplate: system_msg = ChatMessage(role=MessageRole.SYSTEM, content=system_prompt) messages = [system_msg] for raw_msg in current_reasoning: if raw_msg[0] == "user": messages.append( ChatMessage(role=MessageRole.USER, content=raw_msg[1]) ) else: messages.append( ChatMessage(role=MessageRole.ASSISTANT, content=raw_msg[1]) ) return ChatPromptTemplate(message_templates=messages) class ResponseEval(BaseModel): """Evaluation of whether the response has an error.""" has_error: bool = Field( ..., description="Whether the response has an error." ) new_question: str = Field(..., description="The suggested new question.") explanation: str = Field( ..., description=( "The explanation for the error as well as for the new question." "Can include the direct stack trace as well." ), ) from llama_index.core.bridge.pydantic import PrivateAttr class RetryAgentWorker(CustomSimpleAgentWorker): """Agent worker that adds a retry layer on top of a router. Continues iterating until there's no errors / task is done. """ prompt_str: str = Field(default=DEFAULT_PROMPT_STR) max_iterations: int = Field(default=10) _router_query_engine: RouterQueryEngine = PrivateAttr() def __init__(self, tools: List[BaseTool], **kwargs: Any) -> None: """Init params.""" for tool in tools: if not isinstance(tool, QueryEngineTool): raise ValueError( f"Tool {tool.metadata.name} is not a query engine tool." ) self._router_query_engine = RouterQueryEngine( selector=PydanticSingleSelector.from_defaults(), query_engine_tools=tools, verbose=kwargs.get("verbose", False), ) super().__init__( tools=tools, **kwargs, ) def _initialize_state(self, task: Task, **kwargs: Any) -> Dict[str, Any]: """Initialize state.""" return {"count": 0, "current_reasoning": []} def _run_step( self, state: Dict[str, Any], task: Task, input: Optional[str] = None ) -> Tuple[AgentChatResponse, bool]: """Run step. Returns: Tuple of (agent_response, is_done) """ if "new_input" not in state: new_input = task.input else: new_input = state["new_input"] response = self._router_query_engine.query(new_input) state["current_reasoning"].extend( [("user", new_input), ("assistant", str(response))] ) chat_prompt_tmpl = get_chat_prompt_template( self.prompt_str, state["current_reasoning"] ) llm_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(output_cls=ResponseEval), prompt=chat_prompt_tmpl, llm=self.llm, ) response_eval = llm_program( query_str=new_input, response_str=str(response) ) if not response_eval.has_error: is_done = True else: is_done = False state["new_input"] = response_eval.new_question if self.verbose: print(f"> Question: {new_input}") print(f"> Response: {response}") print(f"> Response eval: {response_eval.dict()}") return AgentChatResponse(response=str(response)), is_done def _finalize_task(self, state: Dict[str, Any], **kwargs) -> None: """Finalize task.""" pass from llama_index.core.tools import QueryEngineTool from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) from llama_index.core import SQLDatabase engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) from llama_index.core.query_engine import NLSQLTableQueryEngine sql_database = SQLDatabase(engine, include_tables=["city_stats"]) sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], verbose=True ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, description=( "Useful for translating a natural language query into a SQL query over" " a table containing: city_stats, containing the population/country of" " each city" ), ) from llama_index.readers.wikipedia import WikipediaReader from llama_index.core import VectorStoreIndex cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) vector_tools = [] for city, wiki_doc in zip(cities, wiki_docs): vector_index = VectorStoreIndex.from_documents([wiki_doc]) vector_query_engine = vector_index.as_query_engine() vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description=f"Useful for answering semantic questions about {city}", ) vector_tools.append(vector_tool) from llama_index.core.agent import AgentRunner from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import ( FaithfulnessEvaluator, RelevancyEvaluator, CorrectnessEvaluator, ) from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") faithfulness_gpt4 =
FaithfulnessEvaluator(llm=gpt4)
llama_index.core.evaluation.FaithfulnessEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model =
OpenAIEmbedding(model="text-embedding-3-small")
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-elasticsearch') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-elasticsearch') get_ipython().system('pip install llama-index') from llama_index.embeddings.elasticsearch import ElasticsearchEmbedding from llama_index.vector_stores.elasticsearch import ElasticsearchStore from llama_index.core import StorageContext, VectorStoreIndex from llama_index.core import Settings import os host = os.environ.get("ES_HOST", "localhost:9200") username = os.environ.get("ES_USERNAME", "elastic") password = os.environ.get("ES_PASSWORD", "changeme") index_name = os.environ.get("INDEX_NAME", "your-index-name") model_id = os.environ.get("MODEL_ID", "your-model-id") embeddings = ElasticsearchEmbedding.from_credentials( model_id=model_id, es_url=host, es_username=username, es_password=password ) Settings.embed_model = embeddings Settings.chunk_size = 512 vector_store = ElasticsearchStore( index_name=index_name, es_url=host, es_user=username, es_password=password ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback =
CallbackManager([openai_handler])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import tiktoken from llama_index.core.callbacks import CallbackManager, TokenCountingHandler from llama_index.llms.openai import OpenAI from llama_index.core import Settings token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode ) Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2) Settings.callback_manager = CallbackManager([token_counter]) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import VectorStoreIndex index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [ SentenceSplitter(chunk_size=c, chunk_overlap=20) for c in sub_chunk_sizes ] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [
IndexNode.from_text_node(sn, base_node.node_id)
llama_index.core.schema.IndexNode.from_text_node
get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.query_engine import TransformQueryEngine from IPython.display import Markdown, display documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_str = "what did paul graham do after going to RISD" query_engine = index.as_query_engine() response = query_engine.query(query_str) display(Markdown(f"<b>{response}</b>")) hyde = HyDEQueryTransform(include_original=True) hyde_query_engine =
TransformQueryEngine(query_engine, hyde)
llama_index.core.query_engine.TransformQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=llm_gpt4, verbose=True, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = openai_program(movie_name=movie_name) print(output.json()) events = finetuning_handler.get_finetuning_events() events finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') base_model_slug = "llama2-7b-chat" base_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True ) from llama_index.finetuning import GradientFinetuneEngine finetune_engine = GradientFinetuneEngine( base_model_slug=base_model_slug, name="movies_structured", data_path="mock_finetune_songs.jsonl", verbose=True, max_steps=200, batch_size=1, ) finetune_engine.model_adapter_id epochs = 2 for i in range(epochs): print(f"** EPOCH {i} **") finetune_engine.finetune() ft_llm = finetune_engine.get_finetuned_model( max_tokens=500, is_chat_model=True ) from llama_index.llms.gradient import GradientModelAdapterLLM new_prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ Please only generate one album. """ gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=new_prompt_template_str, llm=ft_llm, verbose=True, ) gradient_program(movie_name="Goodfellas") gradient_program(movie_name="Chucky") base_gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=base_llm, verbose=True, ) base_gradient_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SimpleNodeParser from pathlib import Path from llama_index.core.callbacks import GradientAIFineTuningHandler loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) metadata = { "paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" } docs = [Document(text=doc_text, metadata=metadata)] chunk_size = 1024 node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size) nodes = node_parser.get_nodes_from_documents(docs) len(nodes) finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 =
OpenAI(model="gpt-4-0613", temperature=0.3)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex from llama_index.core import PromptTemplate from IPython.display import Markdown, display get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI gpt35_llm = OpenAI(model="gpt-3.5-turbo") gpt4_llm = OpenAI(model="gpt-4") index = VectorStoreIndex.from_documents(documents) query_str = "What are the potential risks associated with the use of Llama 2 as mentioned in the context?" query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt35_llm) vector_retriever = index.as_retriever(similarity_top_k=2) response = query_engine.query(query_str) print(str(response)) def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) from langchain import hub langchain_prompt = hub.pull("rlm/rag-prompt") from llama_index.core.prompts import LangchainPromptTemplate lc_prompt_tmpl = LangchainPromptTemplate( template=langchain_prompt, template_var_mappings={"query_str": "question", "context_str": "context"}, ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": lc_prompt_tmpl} ) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query(query_str) print(str(response)) from llama_index.core.schema import TextNode few_shot_nodes = [] for line in open("../llama2_qa_citation_events.jsonl", "r"): few_shot_nodes.append(TextNode(text=line)) few_shot_index = VectorStoreIndex(few_shot_nodes) few_shot_retriever = few_shot_index.as_retriever(similarity_top_k=2) import json def few_shot_examples_fn(**kwargs): query_str = kwargs["query_str"] retrieved_nodes = few_shot_retriever.retrieve(query_str) result_strs = [] for n in retrieved_nodes: raw_dict = json.loads(n.get_content()) query = raw_dict["query"] response_dict = json.loads(raw_dict["response"]) result_str = f"""\ Query: {query} Response: {response_dict}""" result_strs.append(result_str) return "\n\n".join(result_strs) qa_prompt_tmpl_str = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, \ answer the query asking about citations over different topics. Please provide your answer in the form of a structured JSON format containing \ a list of authors as the citations. Some examples are given below. {few_shot_examples} Query: {query_str} Answer: \ """ qa_prompt_tmpl = PromptTemplate( qa_prompt_tmpl_str, function_mappings={"few_shot_examples": few_shot_examples_fn}, ) citation_query_str = ( "Which citations are mentioned in the section on Safety RLHF?" ) print( qa_prompt_tmpl.format( query_str=citation_query_str, context_str="test_context" ) ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": qa_prompt_tmpl} ) display_prompt_dict(query_engine.get_prompts()) response = query_engine.query(citation_query_str) print(str(response)) print(response.source_nodes[1].get_content()) from llama_index.core.postprocessor import ( NERPIINodePostprocessor, SentenceEmbeddingOptimizer, ) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore, TextNode pii_processor =
NERPIINodePostprocessor(llm=gpt4_llm)
llama_index.core.postprocessor.NERPIINodePostprocessor
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula') get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai') import os os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY" import logging import sys from llama_index.llms.openai import OpenAI from llama_index.core import Settings logging.basicConfig(stream=sys.stdout, level=logging.INFO) llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 import os import json import openai from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, KnowledgeGraphIndex, ) from llama_index.core import StorageContext from llama_index.graph_stores.nebula import NebulaGraphStore import logging import sys from IPython.display import Markdown, display logging.basicConfig( stream=sys.stdout, level=logging.INFO ) # logging.DEBUG for more verbose output logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) openai.api_type = "azure" openai.api_base = "https://<foo-bar>.openai.azure.com" openai.api_version = "2022-12-01" os.environ["OPENAI_API_KEY"] = "<your-openai-key>" openai.api_key = os.getenv("OPENAI_API_KEY") llm = AzureOpenAI( model="<foo-bar-model>", engine="<foo-bar-deployment>", temperature=0, api_key=openai.api_key, api_type=openai.api_type, api_base=openai.api_base, api_version=openai.api_version, ) embedding_model = OpenAIEmbedding( model="text-embedding-ada-002", deployment_name="<foo-bar-deployment>", api_key=openai.api_key, api_base=openai.api_base, api_type=openai.api_type, api_version=openai.api_version, ) Settings.llm = llm Settings.chunk_size = chunk_size Settings.embed_model = embedding_model from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader from llama_index.core import StorageContext from llama_index.graph_stores.nebula import NebulaGraphStore from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() get_ipython().run_line_magic('pip', 'install nebula3-python') os.environ["NEBULA_USER"] = "root" os.environ[ "NEBULA_PASSWORD" ] = "<password>" # replace with your password, by default it is "nebula" os.environ[ "NEBULA_ADDRESS" ] = "127.0.0.1:9669" # assumed we have NebulaGraph 3.5.0 or newer installed locally space_name = "paul_graham_essay" edge_types, rel_prop_names = ["relationship"], [ "relationship" ] # default, could be omit if create from an empty kg tags = ["entity"] # default, could be omit if create from an empty kg graph_store = NebulaGraphStore( space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, ) storage_context = StorageContext.from_defaults(graph_store=graph_store) index = KnowledgeGraphIndex.from_documents( documents, storage_context=storage_context, max_triplets_per_chunk=2, space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, ) query_engine = index.as_query_engine() response = query_engine.query("Tell me more about Interleaf") display(Markdown(f"<b>{response}</b>")) response = query_engine.query( "Tell me more about what the author worked on at Interleaf" ) display(Markdown(f"<b>{response}</b>")) get_ipython().run_line_magic('pip', 'install ipython-ngql networkx pyvis') get_ipython().run_line_magic('load_ext', 'ngql') get_ipython().run_line_magic('ngql', '--address 127.0.0.1 --port 9669 --user root --password <password>') get_ipython().run_cell_magic('ngql', '', "USE paul_graham_essay;\nMATCH p=(n)-[*1..2]-()\n WHERE id(n) IN ['Interleaf', 'history', 'Software', 'Company'] \nRETURN p LIMIT 100;\n") get_ipython().run_line_magic('ng_draw', '') index = KnowledgeGraphIndex.from_documents( documents, storage_context=storage_context, max_triplets_per_chunk=2, space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, include_embeddings=True, ) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, ) response = query_engine.query( "Tell me more about what the author worked on at Interleaf" ) display(Markdown(f"<b>{response}</b>")) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, explore_global_knowledge=True, ) response = query_engine.query("Tell me more about what the author and Lisp") from pyvis.network import Network g = index.get_networkx_graph() net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(g) net.show("example.html") from llama_index.core.node_parser import SentenceSplitter node_parser =
SentenceSplitter()
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=llm_gpt4, verbose=True, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = openai_program(movie_name=movie_name) print(output.json()) events = finetuning_handler.get_finetuning_events() events finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') base_model_slug = "llama2-7b-chat" base_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True ) from llama_index.finetuning import GradientFinetuneEngine finetune_engine = GradientFinetuneEngine( base_model_slug=base_model_slug, name="movies_structured", data_path="mock_finetune_songs.jsonl", verbose=True, max_steps=200, batch_size=1, ) finetune_engine.model_adapter_id epochs = 2 for i in range(epochs): print(f"** EPOCH {i} **") finetune_engine.finetune() ft_llm = finetune_engine.get_finetuned_model( max_tokens=500, is_chat_model=True ) from llama_index.llms.gradient import GradientModelAdapterLLM new_prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ Please only generate one album. """ gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=new_prompt_template_str, llm=ft_llm, verbose=True, ) gradient_program(movie_name="Goodfellas") gradient_program(movie_name="Chucky") base_gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=base_llm, verbose=True, ) base_gradient_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SimpleNodeParser from pathlib import Path from llama_index.core.callbacks import GradientAIFineTuningHandler loader =
PyMuPDFReader()
llama_index.readers.file.PyMuPDFReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') get_ipython().system('pip install llama-index') from llama_index.program.openai import OpenAIPydanticProgram from llama_index.core.program import ( DFFullProgram, DataFrame, DataFrameRowsOnly, ) from llama_index.llms.openai import OpenAI program = OpenAIPydanticProgram.from_defaults( output_cls=DataFrame, llm=OpenAI(temperature=0, model="gpt-4-0613"), prompt_template_str=( "Please extract the following query into a structured data according" " to: {input_str}.Please extract both the set of column names and a" " set of rows." ), verbose=True, ) response_obj = program( input_str="""My name is John and I am 25 years old. I live in New York and I like to play basketball. His name is Mike and he is 30 years old. He lives in San Francisco and he likes to play baseball. Sarah is 20 years old and she lives in Los Angeles. She likes to play tennis. Her name is Mary and she is 35 years old. She lives in Chicago.""" ) response_obj program = OpenAIPydanticProgram.from_defaults( output_cls=DataFrameRowsOnly, llm=
OpenAI(temperature=0, model="gpt-4-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere') get_ipython().system('pip install llama-index') from llama_index.llms.cohere import Cohere api_key = "Your api key" resp =
Cohere(api_key=api_key)
llama_index.llms.cohere.Cohere
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader(input_files=["pg_essay.txt"]) documents = reader.load_data() from llama_index.core.query_pipeline import QueryPipeline, InputComponent from typing import Dict, Any, List, Optional from llama_index.llms.openai import OpenAI from llama_index.core import Document, VectorStoreIndex from llama_index.core import SummaryIndex from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.schema import NodeWithScore, TextNode from llama_index.core import PromptTemplate from llama_index.core.selectors import LLMSingleSelector hyde_str = """\ Please write a passage to answer the question: {query_str} Try to include as many key details as possible. Passage: """ hyde_prompt = PromptTemplate(hyde_str) llm = OpenAI(model="gpt-3.5-turbo") summarizer = TreeSummarize(llm=llm) vector_index = VectorStoreIndex.from_documents(documents) vector_query_engine = vector_index.as_query_engine(similarity_top_k=2) summary_index = SummaryIndex.from_documents(documents) summary_qrewrite_str = """\ Here's a question: {query_str} You are responsible for feeding the question to an agent that given context will try to answer the question. The context may or may not be relevant. Rewrite the question to highlight the fact that only some pieces of context (or none) maybe be relevant. """ summary_qrewrite_prompt =
PromptTemplate(summary_qrewrite_str)
llama_index.core.PromptTemplate
import warnings warnings.filterwarnings("ignore") import os from llama_index.tools.cogniswitch import CogniswitchToolSpec from llama_index.agent import ReActAgent toolspec = CogniswitchToolSpec(cs_token=cs_token, apiKey=oauth_token) tool_lst = toolspec.to_tool_list() agent =
ReActAgent.from_tools(tool_lst)
llama_index.agent.ReActAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=llm_gpt4, verbose=True, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = openai_program(movie_name=movie_name) print(output.json()) events = finetuning_handler.get_finetuning_events() events finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') base_model_slug = "llama2-7b-chat" base_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True ) from llama_index.finetuning import GradientFinetuneEngine finetune_engine = GradientFinetuneEngine( base_model_slug=base_model_slug, name="movies_structured", data_path="mock_finetune_songs.jsonl", verbose=True, max_steps=200, batch_size=1, ) finetune_engine.model_adapter_id epochs = 2 for i in range(epochs): print(f"** EPOCH {i} **") finetune_engine.finetune() ft_llm = finetune_engine.get_finetuned_model( max_tokens=500, is_chat_model=True ) from llama_index.llms.gradient import GradientModelAdapterLLM new_prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ Please only generate one album. """ gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=new_prompt_template_str, llm=ft_llm, verbose=True, ) gradient_program(movie_name="Goodfellas") gradient_program(movie_name="Chucky") base_gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=base_llm, verbose=True, ) base_gradient_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SimpleNodeParser from pathlib import Path from llama_index.core.callbacks import GradientAIFineTuningHandler loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) metadata = { "paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" } docs = [Document(text=doc_text, metadata=metadata)] chunk_size = 1024 node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size) nodes = node_parser.get_nodes_from_documents(docs) len(nodes) finetuning_handler = GradientAIFineTuningHandler() callback_manager =
CallbackManager([finetuning_handler])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, ) retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) from llama_index.core.response.notebook_utils import display_source_node nodes = retriever.retrieve("What happened at Viaweb and Interleaf?") for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) from llama_index.core.tools import RetrieverTool vector_retriever = VectorIndexRetriever(index) bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) retriever_tools = [ RetrieverTool.from_defaults( retriever=vector_retriever, description="Useful in most cases", ), RetrieverTool.from_defaults( retriever=bm25_retriever, description="Useful if searching about specific information", ), ] from llama_index.core.retrievers import RouterRetriever retriever = RouterRetriever.from_defaults( retriever_tools=retriever_tools, llm=llm, select_multi=True, ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import ( VectorStoreIndex, StorageContext, SimpleDirectoryReader, Document, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() llm = OpenAI(model="gpt-3.5-turbo") splitter =
SentenceSplitter(chunk_size=256)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.chat_engine import SimpleChatEngine chat_engine = SimpleChatEngine.from_defaults() chat_engine.chat_repl() from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo") from llama_index.core.chat_engine import SimpleChatEngine chat_engine = SimpleChatEngine.from_defaults(llm=llm) chat_engine.chat_repl() from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo-0613") from llama_index.core.chat_engine import SimpleChatEngine chat_engine =
SimpleChatEngine.from_defaults(llm=llm)
llama_index.core.chat_engine.SimpleChatEngine.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0.1) Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) from llama_index.core.postprocessor import LongContextReorder reorder =
LongContextReorder()
llama_index.core.postprocessor.LongContextReorder
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass import openai openai.api_key = "sk-" import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex from llama_index.vector_stores.chroma import ChromaVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[
MetadataFilter(key="theme", value="Mafia")
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.postprocessor import ( PIINodePostprocessor, NERPIINodePostprocessor, ) from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core import Document, VectorStoreIndex from llama_index.core.schema import TextNode text = """ Hello Paulo Santos. The latest statement for your credit card account \ 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109. """ node = TextNode(text=text) processor = NERPIINodePostprocessor() from llama_index.core.schema import NodeWithScore new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)]) new_nodes[0].node.get_text() new_nodes[0].node.metadata["__pii_node_info__"] from llama_index.llms.openai import OpenAI processor = PIINodePostprocessor(llm=OpenAI()) from llama_index.core.schema import NodeWithScore new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)]) new_nodes[0].node.get_text() new_nodes[0].node.metadata["__pii_node_info__"] text = """ Hello Paulo Santos. The latest statement for your credit card account \ 4095-2609-9393-4932 was mailed to Seattle, WA 98109. \ IBAN GB90YNTU67299444055881 and social security number is 474-49-7577 were verified on the system. \ Further communications will be sent to paulo@presidio.site """ presidio_node = TextNode(text=text) from llama_index.postprocessor.presidio import PresidioPIINodePostprocessor processor = PresidioPIINodePostprocessor() from llama_index.core.schema import NodeWithScore presidio_new_nodes = processor.postprocess_nodes( [NodeWithScore(node=presidio_node)] ) presidio_new_nodes[0].node.get_text() presidio_new_nodes[0].node.metadata["__pii_node_info__"] index =
VectorStoreIndex([n.node for n in new_nodes])
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader =
PDFReader()
llama_index.readers.file.PDFReader
get_ipython().run_line_magic('pip', 'install llama-index-readers-database') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from __future__ import absolute_import import os os.environ["OPENAI_API_KEY"] = "" from llama_index.readers.database import DatabaseReader from llama_index.core import VectorStoreIndex db = DatabaseReader( scheme="postgresql", # Database Scheme host="localhost", # Database Host port="5432", # Database Port user="postgres", # Database User password="FakeExamplePassword", # Database Password dbname="postgres", # Database Name ) print(type(db)) print(type(db.load_data)) print(type(db.sql_database)) print(type(db.sql_database.from_uri)) print(type(db.sql_database.get_single_table_info)) print(type(db.sql_database.get_table_columns)) print(type(db.sql_database.get_usable_table_names)) print(type(db.sql_database.insert_into_table)) print(type(db.sql_database.run_sql)) print(type(db.sql_database.dialect)) print(type(db.sql_database.engine)) print(type(db.sql_database)) db_from_sql_database =
DatabaseReader(sql_database=db.sql_database)
llama_index.readers.database.DatabaseReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by =
CreatedBy(type=CreatedByType.AI, model_name="gpt-4")
llama_index.core.llama_dataset.CreatedBy
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=') get_ipython().run_line_magic('env', 'BRAINTRUST_API_KEY=') get_ipython().run_line_magic('env', 'TOKENIZERS_PARALLELISM=true # This is needed to avoid a warning message from Chroma') get_ipython().run_line_magic('pip', 'install -U llama_hub llama_index braintrust autoevals pypdf pillow transformers torch torchvision') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [SentenceSplitter(chunk_size=c) for c in sub_chunk_sizes] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model) vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2) retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_chunk.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes: display_source_node(node, source_length=2000) query_engine_chunk = RetrieverQueryEngine.from_args(retriever_chunk, llm=llm) response = query_engine_chunk.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, ) extractors = [ SummaryExtractor(summaries=["self"], show_progress=True), QuestionsAnsweredExtractor(questions=5, show_progress=True), ] metadata_dicts = [] for extractor in extractors: metadata_dicts.extend(extractor.extract(base_nodes)) def save_metadata_dicts(path): with open(path, "w") as fp: for m in metadata_dicts: fp.write(json.dumps(m) + "\n") def load_metadata_dicts(path): with open(path, "r") as fp: metadata_dicts = [json.loads(l) for l in fp.readlines()] return metadata_dicts save_metadata_dicts("data/llama2_metadata_dicts.jsonl") metadata_dicts = load_metadata_dicts("data/llama2_metadata_dicts.jsonl") import copy all_nodes = copy.deepcopy(base_nodes) for idx, d in enumerate(metadata_dicts): inode_q = IndexNode( text=d["questions_this_excerpt_can_answer"], index_id=base_nodes[idx].node_id, ) inode_s = IndexNode( text=d["section_summary"], index_id=base_nodes[idx].node_id ) all_nodes.extend([inode_q, inode_s]) all_nodes_dict = {n.node_id: n for n in all_nodes} from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") vector_index_metadata = VectorStoreIndex(all_nodes) vector_retriever_metadata = vector_index_metadata.as_retriever( similarity_top_k=2 ) retriever_metadata = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_metadata}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_metadata.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes:
display_source_node(node, source_length=2000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lantern') get_ipython().system('pip install llama-index psycopg2-binary asyncpg') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os os.environ["OPENAI_API_KEY"] = "<your-api-key>" import openai openai.api_key = os.environ["OPENAI_API_KEY"] import psycopg2 from sqlalchemy import make_url connection_string = "postgresql://postgres:postgres@localhost:5432" url = make_url(connection_string) db_name = "postgres" conn = psycopg2.connect(connection_string) conn.autocommit = True from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.lantern import LanternVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", }, ), ] vector_store = LanternVectorStore.from_params( database=db_name, host=url.host, password=url.password, port=url.port, user=url.username, table_name="famous_people", embed_dim=1536, # openai embedding dimension m=16, # HNSW M parameter ef_construction=128, # HNSW ef construction parameter ef=64, # HNSW ef search parameter ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index =
VectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings from llama_index.core import StorageContext, VectorStoreIndex from llama_index.core import SummaryIndex Settings.llm = OpenAI() Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) summary_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", use_async=True, ) vector_query_engine = vector_index.as_query_engine() from llama_index.core.tools import QueryEngineTool summary_tool = QueryEngineTool.from_defaults( query_engine=summary_query_engine, name="summary_tool", description=( "Useful for summarization questions related to the author's life" ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, name="vector_tool", description=( "Useful for retrieving specific context to answer specific questions about the author's life" ), ) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="QA bot", instructions="You are a bot designed to answer questions about the author", openai_tools=[], tools=[summary_tool, vector_tool], verbose=True, run_retrieve_sleep_time=1.0, ) response = agent.chat("Can you give me a summary about the author's life?") print(str(response)) response = agent.query("What did the author do after RICS?") print(str(response)) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") try: pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) except Exception: pass pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True, namespace="test") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ),
TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.llms.openai import OpenAI from llama_index.core.tools import QueryEngineTool, ToolMetadata llm = OpenAI(model="gpt-4-1106-preview") get_ipython().system("mkdir -p 'data/10q/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'") march_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_march_2022.pdf"] ).load_data() june_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_june_2022.pdf"] ).load_data() sept_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_sept_2022.pdf"] ).load_data() import os def get_tool(name, full_name, documents=None): if not os.path.exists(f"./data/{name}"): vector_index = VectorStoreIndex.from_documents(documents) vector_index.storage_context.persist(persist_dir=f"./data/{name}") else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=f"./data/{name}"), ) query_engine = vector_index.as_query_engine(similarity_top_k=3, llm=llm) query_engine_tool = QueryEngineTool( query_engine=query_engine, metadata=ToolMetadata( name=name, description=( "Provides information about Uber quarterly financials ending" f" {full_name}" ), ), ) return query_engine_tool march_tool = get_tool("march_2022", "March 2022", documents=march_2022) june_tool = get_tool("june_2022", "June 2022", documents=june_2022) sept_tool = get_tool("sept_2022", "September 2022", documents=sept_2022) query_engine_tools = [march_tool, june_tool, sept_tool] from llama_index.core.agent import AgentRunner, ReActAgent from llama_index.agent.openai import OpenAIAgentWorker, OpenAIAgent from llama_index.agent.openai import OpenAIAgentWorker agent_llm = OpenAI(model="gpt-3.5-turbo") agent = ReActAgent.from_tools( query_engine_tools, llm=agent_llm, verbose=True, max_iterations=20 ) response = agent.chat("Analyze the changes in R&D expenditures and revenue") print(str(response)) task = agent.create_task("Analyze the changes in R&D expenditures and revenue") step_output = agent.run_step(task.task_id) step_output = agent.run_step(task.task_id) step_output = agent.run_step(task.task_id) step_output = agent.run_step(task.task_id, input="What about June?") print(step_output.is_last) step_output = agent.run_step(task.task_id, input="What about September?") step_output = agent.run_step(task.task_id) response = agent.finalize_response(task.task_id) print(str(response)) agent_llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.callbacks import ( CallbackManager, LlamaDebugHandler, CBEventType, ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader docs = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-3.5-turbo", temperature=0)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') import nest_asyncio nest_asyncio.apply() import os HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader cities = [ "San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Tokyo", "Singapore", "Paris", ] documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in cities] ) QUESTION_GEN_PROMPT = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) from llama_index.core.evaluation import DatasetGenerator from llama_index.llms.openai import OpenAI gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) dataset_generator = DatasetGenerator.from_documents( documents, question_gen_query=QUESTION_GEN_PROMPT, llm=gpt_35_llm, num_questions_per_chunk=25, ) qrd = dataset_generator.generate_dataset_from_nodes(num=350) from llama_index.core import VectorStoreIndex from llama_index.core.retrievers import VectorIndexRetriever the_index = VectorStoreIndex.from_documents(documents=documents) the_retriever = VectorIndexRetriever( index=the_index, similarity_top_k=2, ) from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.llms.huggingface import HuggingFaceInferenceAPI llm = HuggingFaceInferenceAPI( model_name="meta-llama/Llama-2-7b-chat-hf", context_window=2048, # to use refine token=HUGGING_FACE_TOKEN, ) query_engine = RetrieverQueryEngine.from_args(retriever=the_retriever, llm=llm) import tqdm train_dataset = [] num_train_questions = int(0.65 * len(qrd.qr_pairs)) for q, a in tqdm.tqdm(qrd.qr_pairs[:num_train_questions]): data_entry = {"question": q, "reference": a} response = query_engine.query(q) response_struct = {} response_struct["model"] = "llama-2" response_struct["text"] = str(response) response_struct["context"] = ( response.source_nodes[0].node.text[:1000] + "..." ) data_entry["response_data"] = response_struct train_dataset.append(data_entry) from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.evaluation import CorrectnessEvaluator finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) gpt_4_llm = OpenAI( temperature=0, model="gpt-4", callback_manager=callback_manager ) gpt4_judge = CorrectnessEvaluator(llm=gpt_4_llm) import tqdm for data_entry in tqdm.tqdm(train_dataset): eval_result = await gpt4_judge.aevaluate( query=data_entry["question"], response=data_entry["response_data"]["text"], context=data_entry["response_data"]["context"], reference=data_entry["reference"], ) judgement = {} judgement["llm"] = "gpt_4" judgement["score"] = eval_result.score judgement["text"] = eval_result.response data_entry["evaluations"] = [judgement] finetuning_handler.save_finetuning_events("correction_finetuning_events.jsonl") from llama_index.finetuning import OpenAIFinetuneEngine finetune_engine = OpenAIFinetuneEngine( "gpt-3.5-turbo", "correction_finetuning_events.jsonl", ) finetune_engine.finetune() finetune_engine.get_current_job() test_dataset = [] for q, a in tqdm.tqdm(qrd.qr_pairs[num_train_questions:]): data_entry = {"question": q, "reference": a} response = query_engine.query(q) response_struct = {} response_struct["model"] = "llama-2" response_struct["text"] = str(response) response_struct["context"] = ( response.source_nodes[0].node.text[:1000] + "..." ) data_entry["response_data"] = response_struct test_dataset.append(data_entry) for data_entry in tqdm.tqdm(test_dataset): eval_result = await gpt4_judge.aevaluate( query=data_entry["question"], response=data_entry["response_data"]["text"], context=data_entry["response_data"]["context"], reference=data_entry["reference"], ) judgement = {} judgement["llm"] = "gpt_4" judgement["score"] = eval_result.score judgement["text"] = eval_result.response data_entry["evaluations"] = [judgement] from llama_index.core.evaluation import EvaluationResult ft_llm = finetune_engine.get_finetuned_model() ft_gpt_3p5_judge = CorrectnessEvaluator(llm=ft_llm) for data_entry in tqdm.tqdm(test_dataset): eval_result = await ft_gpt_3p5_judge.aevaluate( query=data_entry["question"], response=data_entry["response_data"]["text"], context=data_entry["response_data"]["context"], reference=data_entry["reference"], ) judgement = {} judgement["llm"] = "ft_gpt_3p5" judgement["score"] = eval_result.score judgement["text"] = eval_result.response data_entry["evaluations"] += [judgement] gpt_3p5_llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.schema import TextNode from llama_index.core.indices.managed.types import ManagedIndexQueryMode from llama_index.indices.managed.vectara import VectaraIndex from llama_index.indices.managed.vectara import VectaraAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo from llama_index.llms.openai import OpenAI nodes = [ TextNode( text=( "A pragmatic paleontologist touring an almost complete theme park on an island " + "in Central America is tasked with protecting a couple of kids after a power " + "failure causes the park's cloned dinosaurs to run loose." ), metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ),
TextNode( text=( "A thief who steals corporate secrets through the use of dream-sharing technology " + "is given the inverse task of planting an idea into the mind of a C.E.O., " + "but his tragic past may doom the project and his team to disaster." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-zep') get_ipython().system('pip install llama-index') import logging import sys from uuid import uuid4 logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import openai from dotenv import load_dotenv load_dotenv() openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.zep import ZepVectorStore get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("../data/paul_graham/").load_data() from llama_index.core import StorageContext zep_api_url = "http://localhost:8000" collection_name = f"graham{uuid4().hex}" vector_store = ZepVectorStore( api_url=zep_api_url, collection_name=collection_name, embedding_dimensions=1536, ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings from llama_index.core import StorageContext, VectorStoreIndex from llama_index.core import SummaryIndex Settings.llm = OpenAI() Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.storage.kvstore.firestore import FirestoreKVStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.index_store.firestore import FirestoreIndexStore kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=FirestoreIndexStore(kvstore), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=
FirestoreIndexStore(kvstore)
llama_index.storage.index_store.firestore.FirestoreIndexStore
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake') get_ipython().system('pip install llama-index') get_ipython().system('pip install deeplake') import os import textwrap from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.deeplake import DeepLakeVectorStore os.environ["OPENAI_API_KEY"] = "sk-********************************" os.environ["ACTIVELOOP_TOKEN"] = "********************************" import urllib.request urllib.request.urlretrieve( "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt", "data/paul_graham/paul_graham_essay.txt", ) documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().system('pip install -U llama-index-multi-modal-llms-dashscope') get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY') from llama_index.multi_modal_llms.dashscope import ( DashScopeMultiModal, DashScopeMultiModalModels, ) from llama_index.core.multi_modal_llms.generic_utils import load_image_urls image_urls = [ "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg", ] image_documents = load_image_urls(image_urls) dashscope_multi_modal_llm = DashScopeMultiModal( model_name=DashScopeMultiModalModels.QWEN_VL_MAX, ) complete_response = dashscope_multi_modal_llm.complete( prompt="What's in the image?", image_documents=image_documents, ) print(complete_response) multi_image_urls = [ "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg", "https://dashscope.oss-cn-beijing.aliyuncs.com/images/panda.jpeg", ] multi_image_documents =
load_image_urls(multi_image_urls)
llama_index.core.multi_modal_llms.generic_utils.load_image_urls
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id) from llama_index.core import StorageContext vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author learn?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) vector_store =
MilvusVectorStore(dim=1536, overwrite=True)
llama_index.vector_stores.milvus.MilvusVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import bagel from bagel import Settings server_settings = Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai" ) client = bagel.Client(server_settings) collection = client.get_or_create_cluster("testing_embeddings") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.bagel import BagelVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", }, ), ] vector_store = BagelVectorStore(collection=collection) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex from llama_index.core.response.notebook_utils import display_response from llama_index.llms.openai import OpenAI get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.core import Document from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] llm = OpenAI(model="gpt-4") chunk_sizes = [128, 256, 512, 1024] nodes_list = [] vector_indices = [] for chunk_size in chunk_sizes: print(f"Chunk Size: {chunk_size}") splitter = SentenceSplitter(chunk_size=chunk_size) nodes = splitter.get_nodes_from_documents(docs) for node in nodes: node.metadata["chunk_size"] = chunk_size node.excluded_embed_metadata_keys = ["chunk_size"] node.excluded_llm_metadata_keys = ["chunk_size"] nodes_list.append(nodes) vector_index = VectorStoreIndex(nodes) vector_indices.append(vector_index) from llama_index.core.tools import RetrieverTool from llama_index.core.schema import IndexNode retriever_dict = {} retriever_nodes = [] for chunk_size, vector_index in zip(chunk_sizes, vector_indices): node_id = f"chunk_{chunk_size}" node = IndexNode( text=( "Retrieves relevant context from the Llama 2 paper (chunk size" f" {chunk_size})" ), index_id=node_id, ) retriever_nodes.append(node) retriever_dict[node_id] = vector_index.as_retriever() from llama_index.core.selectors import PydanticMultiSelector from llama_index.core.retrievers import RouterRetriever from llama_index.core.retrievers import RecursiveRetriever from llama_index.core import SummaryIndex summary_index = SummaryIndex(retriever_nodes) retriever = RecursiveRetriever( root_id="root", retriever_dict={"root": summary_index.as_retriever(), **retriever_dict}, ) nodes = await retriever.aretrieve( "Tell me about the main aspects of safety fine-tuning" ) print(f"Number of nodes: {len(nodes)}") for node in nodes: print(node.node.metadata["chunk_size"]) print(node.node.get_text()) from llama_index.core.postprocessor import LLMRerank, SentenceTransformerRerank from llama_index.postprocessor.cohere_rerank import CohereRerank reranker = CohereRerank(top_n=10) from llama_index.core.query_engine import RetrieverQueryEngine query_engine = RetrieverQueryEngine(retriever, node_postprocessors=[reranker]) response = query_engine.query( "Tell me about the main aspects of safety fine-tuning" ) display_response( response, show_source=True, source_length=500, show_source_metadata=True ) from collections import defaultdict import pandas as pd def mrr_all(metadata_values, metadata_key, source_nodes): value_to_mrr_dict = {} for metadata_value in metadata_values: mrr = 0 for idx, source_node in enumerate(source_nodes): if source_node.node.metadata[metadata_key] == metadata_value: mrr = 1 / (idx + 1) break else: continue value_to_mrr_dict[metadata_value] = mrr df = pd.DataFrame(value_to_mrr_dict, index=["MRR"]) df.style.set_caption("Mean Reciprocal Rank") return df print("Mean Reciprocal Rank for each Chunk Size") mrr_all(chunk_sizes, "chunk_size", response.source_nodes) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI import nest_asyncio nest_asyncio.apply() eval_llm = OpenAI(model="gpt-4") dataset_generator = DatasetGenerator( nodes_list[-1], llm=eval_llm, show_progress=True, num_questions_per_chunk=2, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60) eval_dataset.save_json("data/llama2_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) import asyncio import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, RelevancyEvaluator, FaithfulnessEvaluator, PairwiseComparisonEvaluator, ) evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_r =
RelevancyEvaluator(llm=eval_llm)
llama_index.core.evaluation.RelevancyEvaluator
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings nodes = Settings.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore from llama_index.core.retrievers import ( BaseRetriever, VectorIndexRetriever, KeywordTableSimpleRetriever, ) from typing import List class CustomRetriever(BaseRetriever): """Custom retriever that performs both semantic search and hybrid search.""" def __init__( self, vector_retriever: VectorIndexRetriever, keyword_retriever: KeywordTableSimpleRetriever, mode: str = "AND", ) -> None: """Init params.""" self._vector_retriever = vector_retriever self._keyword_retriever = keyword_retriever if mode not in ("AND", "OR"): raise ValueError("Invalid mode.") self._mode = mode super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" vector_nodes = self._vector_retriever.retrieve(query_bundle) keyword_nodes = self._keyword_retriever.retrieve(query_bundle) vector_ids = {n.node.node_id for n in vector_nodes} keyword_ids = {n.node.node_id for n in keyword_nodes} combined_dict = {n.node.node_id: n for n in vector_nodes} combined_dict.update({n.node.node_id: n for n in keyword_nodes}) if self._mode == "AND": retrieve_ids = vector_ids.intersection(keyword_ids) else: retrieve_ids = vector_ids.union(keyword_ids) retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids] return retrieve_nodes from llama_index.core import get_response_synthesizer from llama_index.core.query_engine import RetrieverQueryEngine vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=2) keyword_retriever =
KeywordTableSimpleRetriever(index=keyword_index)
llama_index.core.retrievers.KeywordTableSimpleRetriever
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=llm_gpt4, verbose=True, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = openai_program(movie_name=movie_name) print(output.json()) events = finetuning_handler.get_finetuning_events() events finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') base_model_slug = "llama2-7b-chat" base_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True ) from llama_index.finetuning import GradientFinetuneEngine finetune_engine = GradientFinetuneEngine( base_model_slug=base_model_slug, name="movies_structured", data_path="mock_finetune_songs.jsonl", verbose=True, max_steps=200, batch_size=1, ) finetune_engine.model_adapter_id epochs = 2 for i in range(epochs): print(f"** EPOCH {i} **") finetune_engine.finetune() ft_llm = finetune_engine.get_finetuned_model( max_tokens=500, is_chat_model=True ) from llama_index.llms.gradient import GradientModelAdapterLLM new_prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ Please only generate one album. """ gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=new_prompt_template_str, llm=ft_llm, verbose=True, ) gradient_program(movie_name="Goodfellas") gradient_program(movie_name="Chucky") base_gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=base_llm, verbose=True, ) base_gradient_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SimpleNodeParser from pathlib import Path from llama_index.core.callbacks import GradientAIFineTuningHandler loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) metadata = { "paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" } docs = [
Document(text=doc_text, metadata=metadata)
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.node_parser import SentenceWindowNodeParser from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) text_splitter = SentenceSplitter() llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.text_splitter = text_splitter get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() nodes = node_parser.get_nodes_from_documents(documents) base_nodes = text_splitter.get_nodes_from_documents(documents) from llama_index.core import VectorStoreIndex sentence_index = VectorStoreIndex(nodes) base_index = VectorStoreIndex(base_nodes) from llama_index.core.postprocessor import MetadataReplacementPostProcessor query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[ MetadataReplacementPostProcessor(target_metadata_key="window") ], ) window_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(window_response) window = window_response.source_nodes[0].node.metadata["window"] sentence = window_response.source_nodes[0].node.metadata["original_text"] print(f"Window: {window}") print("------------------") print(f"Original Sentence: {sentence}") query_engine = base_index.as_query_engine(similarity_top_k=2) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) query_engine = base_index.as_query_engine(similarity_top_k=5) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) for source_node in window_response.source_nodes: print(source_node.node.metadata["original_text"]) print("--------") for node in vector_response.source_nodes: print("AMOC mentioned?", "AMOC" in node.node.text) print("--------") print(vector_response.source_nodes[2].node.text) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI import nest_asyncio import random nest_asyncio.apply() len(base_nodes) num_nodes_eval = 30 sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval) dataset_generator = DatasetGenerator( sample_eval_nodes, llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=2, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes() eval_dataset.save_json("data/ipcc_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json") import asyncio import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, RelevancyEvaluator, FaithfulnessEvaluator, PairwiseComparisonEvaluator, ) from collections import defaultdict import pandas as pd evaluator_c = CorrectnessEvaluator(llm=
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client = genaix.build_semantic_retriever() genaix.delete_corpus(corpus_id=corpus_id, client=client) def cleanup_colab_corpora(): for corpus in list_corpora(): if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX): try: delete_corpus(corpus_id=corpus.corpus_id) print(f"Deleted corpus {corpus.corpus_id}.") except Exception: pass cleanup_colab_corpora() from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex from llama_index.core import Response import time index = GoogleIndex.create_corpus( corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!" ) print(f"Newly created corpus ID is {index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index.insert_documents(documents) for corpus in list_corpora(): print(corpus) query_engine = index.as_query_engine() response = query_engine.query("What did Paul Graham do growing up?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) index =
GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
llama_index.indices.managed.google.GoogleIndex.from_corpus
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p =
QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True)
llama_index.core.query_pipeline.QueryPipeline
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0.1) Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) from llama_index.core.postprocessor import LongContextReorder reorder = LongContextReorder() reorder_engine = index.as_query_engine( node_postprocessors=[reorder], similarity_top_k=5 ) base_engine = index.as_query_engine(similarity_top_k=5) from llama_index.core.response.notebook_utils import display_response base_response = base_engine.query("Did the author meet Sam Altman?") display_response(base_response) reorder_response = reorder_engine.query("Did the author meet Sam Altman?")
display_response(reorder_response)
llama_index.core.response.notebook_utils.display_response
get_ipython().run_line_magic('pip', 'install llama-index-readers-web') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import SummaryIndex from llama_index.readers.web import SimpleWebPageReader from IPython.display import Markdown, display import os documents = SimpleWebPageReader(html_to_text=True).load_data( ["http://paulgraham.com/worked.html"] ) documents[0] index = SummaryIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) from llama_index.readers.web import TrafilaturaWebReader documents = TrafilaturaWebReader().load_data( ["http://paulgraham.com/worked.html"] ) index = SummaryIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) from llama_index.core import SummaryIndex from llama_index.readers.web import RssReader documents =
RssReader()
llama_index.readers.web.RssReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiply two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-instruct") agent = ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True) response = agent.chat("What is 20+(2*4)? Calculate step by step ") response_gen = agent.stream_chat("What is 20+2*4? Calculate step by step") response_gen.print_response_stream() llm = OpenAI(model="gpt-4") agent =
ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True)
llama_index.core.agent.ReActAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate') import json import pandas as pd from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.evaluation.tonic_validate import ( AnswerConsistencyEvaluator, AnswerSimilarityEvaluator, AugmentationAccuracyEvaluator, AugmentationPrecisionEvaluator, RetrievalPrecisionEvaluator, TonicValidateEvaluator, ) question = "What makes Sam Altman a good founder?" reference_answer = "He is smart and has a great force of will." llm_answer = "He is a good founder because he is smart." retrieved_context_list = [ "Sam Altman is a good founder. He is very smart.", "What makes Sam Altman such a good founder is his great force of will.", ] answer_similarity_evaluator = AnswerSimilarityEvaluator() score = await answer_similarity_evaluator.aevaluate( question, llm_answer, retrieved_context_list, reference_response=reference_answer, ) score answer_consistency_evaluator = AnswerConsistencyEvaluator() score = await answer_consistency_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_accuracy_evaluator = AugmentationAccuracyEvaluator() score = await augmentation_accuracy_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_precision_evaluator = AugmentationPrecisionEvaluator() score = await augmentation_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score retrieval_precision_evaluator = RetrievalPrecisionEvaluator() score = await retrieval_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score tonic_validate_evaluator =
TonicValidateEvaluator()
llama_index.evaluation.tonic_validate.TonicValidateEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index llama-hub') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') domain = "docs.llamaindex.ai" docs_url = "https://docs.llamaindex.ai/en/latest/" get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}') from llama_index.readers.file import UnstructuredReader reader = UnstructuredReader() from pathlib import Path all_files_gen = Path("./docs.llamaindex.ai/").rglob("*") all_files = [f.resolve() for f in all_files_gen] all_html_files = [f for f in all_files if f.suffix.lower() == ".html"] len(all_html_files) from llama_index.core import Document doc_limit = 100 docs = [] for idx, f in enumerate(all_html_files): if idx > doc_limit: break print(f"Idx {idx}/{len(all_html_files)}") loaded_docs = reader.load_data(file=f, split_documents=True) start_idx = 72 loaded_doc = Document( text="\n\n".join([d.get_content() for d in loaded_docs[72:]]), metadata={"path": str(f)}, ) print(loaded_doc.metadata["path"]) docs.append(loaded_doc) import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.agent.openai import OpenAIAgent from llama_index.core import ( load_index_from_storage, StorageContext, VectorStoreIndex, ) from llama_index.core import SummaryIndex from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.node_parser import SentenceSplitter import os from tqdm.notebook import tqdm import pickle async def build_agent_per_doc(nodes, file_base): print(file_base) vi_out_path = f"./data/llamaindex_docs/{file_base}" summary_out_path = f"./data/llamaindex_docs/{file_base}_summary.pkl" if not os.path.exists(vi_out_path): Path("./data/llamaindex_docs/").mkdir(parents=True, exist_ok=True) vector_index = VectorStoreIndex(nodes) vector_index.storage_context.persist(persist_dir=vi_out_path) else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=vi_out_path), ) summary_index = SummaryIndex(nodes) vector_query_engine = vector_index.as_query_engine(llm=llm) summary_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", llm=llm ) if not os.path.exists(summary_out_path): Path(summary_out_path).parent.mkdir(parents=True, exist_ok=True) summary = str( await summary_query_engine.aquery( "Extract a concise 1-2 line summary of this document" ) ) pickle.dump(summary, open(summary_out_path, "wb")) else: summary = pickle.load(open(summary_out_path, "rb")) query_engine_tools = [ QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=f"vector_tool_{file_base}", description=f"Useful for questions related to specific facts", ), ), QueryEngineTool( query_engine=summary_query_engine, metadata=ToolMetadata( name=f"summary_tool_{file_base}", description=f"Useful for summarization questions", ), ), ] function_llm = OpenAI(model="gpt-4") agent = OpenAIAgent.from_tools( query_engine_tools, llm=function_llm, verbose=True, system_prompt=f"""\ You are a specialized agent designed to answer queries about the `{file_base}.html` part of the LlamaIndex docs. You must ALWAYS use at least one of the tools provided when answering a question; do NOT rely on prior knowledge.\ """, ) return agent, summary async def build_agents(docs): node_parser = SentenceSplitter() agents_dict = {} extra_info_dict = {} for idx, doc in enumerate(tqdm(docs)): nodes = node_parser.get_nodes_from_documents([doc]) file_path = Path(doc.metadata["path"]) file_base = str(file_path.parent.stem) + "_" + str(file_path.stem) agent, summary = await build_agent_per_doc(nodes, file_base) agents_dict[file_base] = agent extra_info_dict[file_base] = {"summary": summary, "nodes": nodes} return agents_dict, extra_info_dict agents_dict, extra_info_dict = await build_agents(docs) all_tools = [] for file_base, agent in agents_dict.items(): summary = extra_info_dict[file_base]["summary"] doc_tool = QueryEngineTool( query_engine=agent, metadata=ToolMetadata( name=f"tool_{file_base}", description=summary, ), ) all_tools.append(doc_tool) print(all_tools[0].metadata) from llama_index.core import VectorStoreIndex from llama_index.core.objects import ( ObjectIndex, SimpleToolNodeMapping, ObjectRetriever, ) from llama_index.core.retrievers import BaseRetriever from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.llms.openai import OpenAI llm = OpenAI(model_name="gpt-4-0613") tool_mapping = SimpleToolNodeMapping.from_objects(all_tools) obj_index = ObjectIndex.from_objects( all_tools, tool_mapping, VectorStoreIndex, ) vector_node_retriever = obj_index.as_node_retriever(similarity_top_k=10) class CustomRetriever(BaseRetriever): def __init__(self, vector_retriever, postprocessor=None): self._vector_retriever = vector_retriever self._postprocessor = postprocessor or
CohereRerank(top_n=5)
llama_index.postprocessor.cohere_rerank.CohereRerank
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[ HTMLNodeParser.from_defaults(), SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) eval_nodes = pipeline.run(documents=docs) eval_llm = OpenAI(model="gpt-3.5-turbo") dataset_generator = DatasetGenerator( eval_nodes[:100], llm=eval_llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100) len(eval_dataset.qr_pairs) eval_dataset.save_json("data/tesla10k_eval_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/tesla10k_eval_dataset.json" ) eval_qs = eval_dataset.questions qr_pairs = eval_dataset.qr_pairs ref_response_strs = [r for (_, r) in qr_pairs] from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_dict = { "correctness": evaluator_c, "semantic_similarity": evaluator_s, } batch_eval_runner = BatchEvalRunner( evaluator_dict, workers=2, show_progress=True ) from llama_index.core import VectorStoreIndex async def run_evals( pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref ): nodes = pipeline.run(documents=docs) vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_eval_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_responses_ref ) return eval_results from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0) sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600) html_parser = HTMLNodeParser.from_defaults() parser_dict = { "sent_parser_o0": sent_parser_o0, "sent_parser_o200": sent_parser_o200, "sent_parser_o500": sent_parser_o500, } from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline pipeline_dict = {} for k, parser in parser_dict.items(): pipeline = IngestionPipeline( documents=docs, transformations=[ html_parser, parser, OpenAIEmbedding(), ], ) pipeline_dict[k] = pipeline eval_results_dict = {} for k, pipeline in pipeline_dict.items(): eval_results = await run_evals( pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs ) eval_results_dict[k] = eval_results import pickle pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb")) eval_results_list = list(eval_results_dict.items()) results_df = get_results_df( [v for _, v in eval_results_list], [k for k, _ in eval_results_list], ["correctness", "semantic_similarity"], ) display(results_df) for k, pipeline in pipeline_dict.items(): pipeline.cache.persist(f"./cache/{k}.json") from llama_index.core.extractors import ( TitleExtractor, QuestionsAnsweredExtractor, SummaryExtractor, ) from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter extractor_dict = { "summary": SummaryExtractor(in_place=False), "qa": QuestionsAnsweredExtractor(in_place=False), "default": None, } html_parser = HTMLNodeParser.from_defaults() sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) pipeline_dict = {} html_parser =
HTMLNodeParser.from_defaults()
llama_index.core.node_parser.HTMLNodeParser.from_defaults
import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas pyarrow tqdm') get_ipython().run_line_magic('pip', 'install -q llama-index-readers-web') get_ipython().run_line_magic('pip', 'install -q llama-index-callbacks-openinference') import hashlib import json from pathlib import Path import os import textwrap from typing import List, Union import llama_index.core from llama_index.readers.web import SimpleWebPageReader from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core.callbacks import CallbackManager from llama_index.callbacks.openinference import OpenInferenceCallbackHandler from llama_index.callbacks.openinference.base import ( as_dataframe, QueryData, NodeData, ) from llama_index.core.node_parser import SimpleNodeParser import pandas as pd from tqdm import tqdm documents = SimpleWebPageReader().load_data( [ "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt" ] ) print(documents[0].text) parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(documents) print(nodes[0].text) callback_handler = OpenInferenceCallbackHandler() callback_manager = CallbackManager([callback_handler]) llama_index.core.Settings.callback_manager = callback_manager index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() max_characters_per_line = 80 queries = [ "What did Paul Graham do growing up?", "When and how did Paul Graham's mother die?", "What, in Paul Graham's opinion, is the most distinctive thing about YC?", "When and how did Paul Graham meet Jessica Livingston?", "What is Bel, and when and where was it written?", ] for query in queries: response = query_engine.query(query) print("Query") print("=====") print(textwrap.fill(query, max_characters_per_line)) print() print("Response") print("========") print(textwrap.fill(str(response), max_characters_per_line)) print() query_data_buffer = callback_handler.flush_query_data_buffer() query_dataframe =
as_dataframe(query_data_buffer)
llama_index.callbacks.openinference.base.as_dataframe
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [
Document(text=doc_text)
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') import json from llama_index.core import SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import MetadataMode get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") TRAIN_FILES = ["./data/10k/lyft_2021.pdf"] VAL_FILES = ["./data/10k/uber_2021.pdf"] TRAIN_CORPUS_FPATH = "./data/train_corpus.json" VAL_CORPUS_FPATH = "./data/val_corpus.json" def load_corpus(files, verbose=False): if verbose: print(f"Loading files {files}") reader = SimpleDirectoryReader(input_files=files) docs = reader.load_data() if verbose: print(f"Loaded {len(docs)} docs") parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(docs, show_progress=verbose) if verbose: print(f"Parsed {len(nodes)} nodes") return nodes train_nodes = load_corpus(TRAIN_FILES, verbose=True) val_nodes = load_corpus(VAL_FILES, verbose=True) from llama_index.finetuning import generate_qa_embedding_pairs from llama_index.core.evaluation import EmbeddingQAFinetuneDataset import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.llms.openai import OpenAI train_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes ) val_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes ) train_dataset.save_json("train_dataset.json") val_dataset.save_json("val_dataset.json") train_dataset =
EmbeddingQAFinetuneDataset.from_json("train_dataset.json")
llama_index.core.evaluation.EmbeddingQAFinetuneDataset.from_json
get_ipython().system('pip install llama-index-multi-modal-llms-anthropic') get_ipython().system('pip install llama-index-vector-stores-qdrant') get_ipython().system('pip install matplotlib') import os os.environ["ANTHROPIC_API_KEY"] = "" # Your ANTHROPIC API key here from PIL import Image import matplotlib.pyplot as plt img = Image.open("../data/images/prometheus_paper_card.png") plt.imshow(img) from llama_index.core import SimpleDirectoryReader from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal image_documents = SimpleDirectoryReader( input_files=["../data/images/prometheus_paper_card.png"] ).load_data() anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) response = anthropic_mm_llm.complete( prompt="Describe the images as an alternative text", image_documents=image_documents, ) print(response) from PIL import Image import requests from io import BytesIO import matplotlib.pyplot as plt from llama_index.core.multi_modal_llms.generic_utils import load_image_urls image_urls = [ "https://venturebeat.com/wp-content/uploads/2024/03/Screenshot-2024-03-04-at-12.49.41%E2%80%AFAM.png", ] img_response = requests.get(image_urls[0]) img = Image.open(BytesIO(img_response.content)) plt.imshow(img) image_url_documents = load_image_urls(image_urls) response = anthropic_mm_llm.complete( prompt="Describe the images as an alternative text", image_documents=image_url_documents, ) print(response) from llama_index.core import SimpleDirectoryReader image_documents = SimpleDirectoryReader( input_files=["../data/images/ark_email_sample.PNG"] ).load_data() from PIL import Image import matplotlib.pyplot as plt img = Image.open("../data/images/ark_email_sample.PNG") plt.imshow(img) from pydantic import BaseModel from typing import List class TickerInfo(BaseModel): """List of ticker info.""" direction: str ticker: str company: str shares_traded: int percent_of_total_etf: float class TickerList(BaseModel): """List of stock tickers.""" fund: str tickers: List[TickerInfo] from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal from llama_index.core.program import MultiModalLLMCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser prompt_template_str = """\ Can you get the stock information in the image \ and return the answer? Pick just one fund. Make sure the answer is a JSON format corresponding to a Pydantic schema. The Pydantic schema is given below. """ anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) llm_program = MultiModalLLMCompletionProgram.from_defaults( output_cls=TickerList, image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=anthropic_mm_llm, verbose=True, ) response = llm_program() print(str(response)) get_ipython().system('wget "https://www.dropbox.com/scl/fi/c1ec6osn0r2ggnitijqhl/mixed_wiki_images_small.zip?rlkey=swwxc7h4qtwlnhmby5fsnderd&dl=1" -O mixed_wiki_images_small.zip') get_ipython().system('unzip mixed_wiki_images_small.zip') from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) from llama_index.core.schema import TextNode from pathlib import Path from llama_index.core import SimpleDirectoryReader nodes = [] for img_file in Path("mixed_wiki_images_small").glob("*.png"): print(img_file) image_documents =
SimpleDirectoryReader(input_files=[img_file])
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.lancedb import LanceDBVectorStore import textwrap import openai openai.api_key = "" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash) vector_store = LanceDBVectorStore(uri="/tmp/lancedb") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("How much did Viaweb charge per month?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) del index index = VectorStoreIndex.from_documents( [Document(text="The sky is purple in Portland, Maine")], uri="/tmp/new_dataset", ) query_engine = index.as_query_engine() response = query_engine.query("Where is the sky purple?") print(textwrap.fill(str(response), 100)) index =
VectorStoreIndex.from_documents(documents, uri="/tmp/new_dataset")
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere') get_ipython().system('pip install llama-index') import os cohere_api_key = "YOUR_API_KEY" os.environ["COHERE_API_KEY"] = cohere_api_key from llama_index.embeddings.cohere import CohereEmbedding embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_query", ) embeddings = embed_model.get_text_embedding("Hello CohereAI!") print(len(embeddings)) print(embeddings[:5]) embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_document", ) embeddings = embed_model.get_text_embedding("Hello CohereAI!") print(len(embeddings)) print(embeddings[:5]) embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v2.0" ) embeddings = embed_model.get_text_embedding("Hello CohereAI!") print(len(embeddings)) print(embeddings[:5]) import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.litellm import LiteLLM from llama_index.core.response.notebook_utils import display_source_node from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = LiteLLM("command-nightly") embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_document", ) index = VectorStoreIndex.from_documents( documents=documents, embed_model=embed_model ) embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_query", ) search_query_retriever = index.as_retriever() search_query_retrieved_nodes = search_query_retriever.retrieve( "What happened in the summer of 1995?" ) for n in search_query_retrieved_nodes:
display_source_node(n, source_length=2000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().system('pip install llama-index weaviate-client') import os import openai os.environ["OPENAI_API_KEY"] = "sk-<your key here>" openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import weaviate resource_owner_config = weaviate.AuthClientPassword( username="", password="", ) client = weaviate.Client( "https://test.weaviate.network", auth_client_secret=resource_owner_config, ) from llama_index.core import VectorStoreIndex from llama_index.vector_stores.weaviate import WeaviateVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name="LlamaIndex_filter" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) retriever = index.as_retriever() retriever.retrieve("What is inception?") from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Mafia"), MetadataFilter(key="year", value=1972), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[
MetadataFilter(key="theme", value="Fiction")
llama_index.core.vector_stores.MetadataFilter
get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes =
Settings.node_parser.get_nodes_from_documents(documents)
llama_index.core.Settings.node_parser.get_nodes_from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import bagel from bagel import Settings server_settings = Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai" ) client = bagel.Client(server_settings) collection = client.get_or_create_cluster("testing_embeddings") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.bagel import BagelVectorStore from llama_index.core.schema import TextNode nodes = [
TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-postgres') get_ipython().system('pip install llama-index') from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.postgres import PGVectorStore import textwrap import openai import os os.environ["OPENAI_API_KEY"] = "<your key>" openai.api_key = "<your key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings nodes = Settings.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore from llama_index.core.retrievers import ( BaseRetriever, VectorIndexRetriever, KeywordTableSimpleRetriever, ) from typing import List class CustomRetriever(BaseRetriever): """Custom retriever that performs both semantic search and hybrid search.""" def __init__( self, vector_retriever: VectorIndexRetriever, keyword_retriever: KeywordTableSimpleRetriever, mode: str = "AND", ) -> None: """Init params.""" self._vector_retriever = vector_retriever self._keyword_retriever = keyword_retriever if mode not in ("AND", "OR"): raise ValueError("Invalid mode.") self._mode = mode super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" vector_nodes = self._vector_retriever.retrieve(query_bundle) keyword_nodes = self._keyword_retriever.retrieve(query_bundle) vector_ids = {n.node.node_id for n in vector_nodes} keyword_ids = {n.node.node_id for n in keyword_nodes} combined_dict = {n.node.node_id: n for n in vector_nodes} combined_dict.update({n.node.node_id: n for n in keyword_nodes}) if self._mode == "AND": retrieve_ids = vector_ids.intersection(keyword_ids) else: retrieve_ids = vector_ids.union(keyword_ids) retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids] return retrieve_nodes from llama_index.core import get_response_synthesizer from llama_index.core.query_engine import RetrieverQueryEngine vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=2) keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index) custom_retriever = CustomRetriever(vector_retriever, keyword_retriever) response_synthesizer =
get_response_synthesizer()
llama_index.core.get_response_synthesizer
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True ) response = agent.chat("What is (121 * 3) + 42?") print(str(response)) response = agent.stream_chat("What is (121 * 3) + 42?") import nest_asyncio nest_asyncio.apply() response = await agent.achat("What is (121 * 3) + 42?") print(str(response)) response = await agent.astream_chat("What is (121 * 3) + 42?") response_gen = response.response_gen async for token in response.async_response_gen(): print(token, end="") import json def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" if "tokyo" in location.lower(): return json.dumps( {"location": location, "temperature": "10", "unit": "celsius"} ) elif "san francisco" in location.lower(): return json.dumps( {"location": location, "temperature": "72", "unit": "fahrenheit"} ) else: return json.dumps( {"location": location, "temperature": "22", "unit": "celsius"} ) weather_tool =
FunctionTool.from_defaults(fn=get_current_weather)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') get_ipython().run_line_magic('pip', 'install unstructured replicate') get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm') get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git') get_ipython().run_line_magic('pip', 'install torch torchvision') get_ipython().run_line_magic('pip', 'install matplotlib scikit-image') get_ipython().run_line_magic('pip', 'install -U qdrant_client') import os REPLICATE_API_TOKEN = "..." # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1UU0xc3uLXs-WG0aDQSXjGacUkp142rLS" -O texas.jpg') from llama_index.readers.file import FlatReader from pathlib import Path from llama_index.core.node_parser import UnstructuredElementNodeParser reader =
FlatReader()
llama_index.readers.file.FlatReader
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import DatasetGenerator documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() import random random.seed(42) random.shuffle(documents) gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context from a " "report on climate change and the oceans, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( documents[:50], question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("train_questions.txt", "w") as f: for question in questions: f.write(question + "\n") dataset_generator = DatasetGenerator.from_documents( documents[ 50: ], # since we generated ~1 question for 40 documents, we can skip the first 40 question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("eval_questions.txt", "w") as f: for question in questions: f.write(question + "\n") questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex, Settings Settings.context_window = 2048 gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt_35_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm =
OpenAI(model="gpt-4", temperature=0.3)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=llm_gpt4, verbose=True, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = openai_program(movie_name=movie_name) print(output.json()) events = finetuning_handler.get_finetuning_events() events finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') base_model_slug = "llama2-7b-chat" base_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True ) from llama_index.finetuning import GradientFinetuneEngine finetune_engine = GradientFinetuneEngine( base_model_slug=base_model_slug, name="movies_structured", data_path="mock_finetune_songs.jsonl", verbose=True, max_steps=200, batch_size=1, ) finetune_engine.model_adapter_id epochs = 2 for i in range(epochs): print(f"** EPOCH {i} **") finetune_engine.finetune() ft_llm = finetune_engine.get_finetuned_model( max_tokens=500, is_chat_model=True ) from llama_index.llms.gradient import GradientModelAdapterLLM new_prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ Please only generate one album. """ gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=new_prompt_template_str, llm=ft_llm, verbose=True, ) gradient_program(movie_name="Goodfellas") gradient_program(movie_name="Chucky") base_gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=base_llm, verbose=True, ) base_gradient_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SimpleNodeParser from pathlib import Path from llama_index.core.callbacks import GradientAIFineTuningHandler loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) metadata = { "paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" } docs = [Document(text=doc_text, metadata=metadata)] chunk_size = 1024 node_parser =
SimpleNodeParser.from_defaults(chunk_size=chunk_size)
llama_index.core.node_parser.SimpleNodeParser.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-cross-encoders') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system('pip install datasets --quiet') get_ipython().system('pip install sentence-transformers --quiet') get_ipython().system('pip install openai --quiet') from datasets import load_dataset import random dataset = load_dataset("allenai/qasper") train_dataset = dataset["train"] validation_dataset = dataset["validation"] test_dataset = dataset["test"] random.seed(42) # Set a random seed for reproducibility train_sampled_indices = random.sample(range(len(train_dataset)), 800) train_samples = [train_dataset[i] for i in train_sampled_indices] test_sampled_indices = random.sample(range(len(test_dataset)), 80) test_samples = [test_dataset[i] for i in test_sampled_indices] from typing import List def get_full_text(sample: dict) -> str: """ :param dict sample: the row sample from QASPER """ title = sample["title"] abstract = sample["abstract"] sections_list = sample["full_text"]["section_name"] paragraph_list = sample["full_text"]["paragraphs"] combined_sections_with_paras = "" if len(sections_list) == len(paragraph_list): combined_sections_with_paras += title + "\t" combined_sections_with_paras += abstract + "\t" for index in range(0, len(sections_list)): combined_sections_with_paras += str(sections_list[index]) + "\t" combined_sections_with_paras += "".join(paragraph_list[index]) return combined_sections_with_paras else: print("Not the same number of sections as paragraphs list") def get_questions(sample: dict) -> List[str]: """ :param dict sample: the row sample from QASPER """ questions_list = sample["qas"]["question"] return questions_list doc_qa_dict_list = [] for train_sample in train_samples: full_text = get_full_text(train_sample) questions_list = get_questions(train_sample) local_dict = {"paper": full_text, "questions": questions_list} doc_qa_dict_list.append(local_dict) len(doc_qa_dict_list) import pandas as pd df_train = pd.DataFrame(doc_qa_dict_list) df_train.to_csv("train.csv") """ The Answers field in the dataset follow the below format:- Unanswerable answers have "unanswerable" set to true. The remaining answers have exactly one of the following fields being non-empty. "extractive_spans" are spans in the paper which serve as the answer. "free_form_answer" is a written out answer. "yes_no" is true iff the answer is Yes, and false iff the answer is No. We accept only free-form answers and for all the other kind of answers we set their value to 'Unacceptable', to better evaluate the performance of the query engine using pairwise comparision evaluator as it uses GPT-4 which is biased towards preferring long answers more. https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1 So in the case of 'yes_no' answers it can favour Query Engine answers more than reference answers. Also in the case of extracted spans it can favour reference answers more than Query engine generated answers. """ eval_doc_qa_answer_list = [] def get_answers(sample: dict) -> List[str]: """ :param dict sample: the row sample from the train split of QASPER """ final_answers_list = [] answers = sample["qas"]["answers"] for answer in answers: local_answer = "" types_of_answers = answer["answer"][0] if types_of_answers["unanswerable"] == False: if types_of_answers["free_form_answer"] != "": local_answer = types_of_answers["free_form_answer"] else: local_answer = "Unacceptable" else: local_answer = "Unacceptable" final_answers_list.append(local_answer) return final_answers_list for test_sample in test_samples: full_text = get_full_text(test_sample) questions_list = get_questions(test_sample) answers_list = get_answers(test_sample) local_dict = { "paper": full_text, "questions": questions_list, "answers": answers_list, } eval_doc_qa_answer_list.append(local_dict) len(eval_doc_qa_answer_list) import pandas as pd df_test = pd.DataFrame(eval_doc_qa_answer_list) df_test.to_csv("test.csv") get_ipython().system('pip install llama-index --quiet') import os from llama_index.core import SimpleDirectoryReader import openai from llama_index.finetuning.cross_encoders.dataset_gen import ( generate_ce_fine_tuning_dataset, generate_synthetic_queries_over_documents, ) from llama_index.finetuning.cross_encoders import CrossEncoderFinetuneEngine os.environ["OPENAI_API_KEY"] = "sk-" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import Document final_finetuning_data_list = [] for paper in doc_qa_dict_list: questions_list = paper["questions"] documents = [Document(text=paper["paper"])] local_finetuning_dataset = generate_ce_fine_tuning_dataset( documents=documents, questions_list=questions_list, max_chunk_length=256, top_k=5, ) final_finetuning_data_list.extend(local_finetuning_dataset) len(final_finetuning_data_list) import pandas as pd df_finetuning_dataset = pd.DataFrame(final_finetuning_data_list) df_finetuning_dataset.to_csv("fine_tuning.csv") finetuning_dataset = final_finetuning_data_list finetuning_dataset[0] get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0') import pandas as pd import ast # Used to safely evaluate the string as a list df_test = pd.read_csv("/content/test.csv", index_col=0) df_test["questions"] = df_test["questions"].apply(ast.literal_eval) df_test["answers"] = df_test["answers"].apply(ast.literal_eval) print(f"Number of papers in the test sample:- {len(df_test)}") from llama_index.core import Document final_eval_data_list = [] for index, row in df_test.iterrows(): documents = [Document(text=row["paper"])] query_list = row["questions"] local_eval_dataset = generate_ce_fine_tuning_dataset( documents=documents, questions_list=query_list, max_chunk_length=256, top_k=5, ) relevant_query_list = [] relevant_context_list = [] for item in local_eval_dataset: if item.score == 1: relevant_query_list.append(item.query) relevant_context_list.append(item.context) if len(relevant_query_list) > 0: final_eval_data_list.append( { "paper": row["paper"], "questions": relevant_query_list, "context": relevant_context_list, } ) len(final_eval_data_list) import pandas as pd df_finetuning_dataset = pd.DataFrame(final_eval_data_list) df_finetuning_dataset.to_csv("reranking_test.csv") get_ipython().system('pip install huggingface_hub --quiet') from huggingface_hub import notebook_login notebook_login() from sentence_transformers import SentenceTransformer finetuning_engine = CrossEncoderFinetuneEngine( dataset=finetuning_dataset, epochs=2, batch_size=8 ) finetuning_engine.finetune() finetuning_engine.push_to_hub( repo_id="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2" ) get_ipython().system('pip install nest-asyncio --quiet') import nest_asyncio nest_asyncio.apply() get_ipython().system('wget -O reranking_test.csv https://www.dropbox.com/scl/fi/mruo5rm46k1acm1xnecev/reranking_test.csv?rlkey=hkniwowq0xrc3m0ywjhb2gf26&dl=0') import pandas as pd import ast df_reranking = pd.read_csv("/content/reranking_test.csv", index_col=0) df_reranking["questions"] = df_reranking["questions"].apply(ast.literal_eval) df_reranking["context"] = df_reranking["context"].apply(ast.literal_eval) print(f"Number of papers in the reranking eval dataset:- {len(df_reranking)}") df_reranking.head(1) from llama_index.core.postprocessor import SentenceTransformerRerank from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.core.retrievers import VectorIndexRetriever from llama_index.llms.openai import OpenAI from llama_index.core import Document from llama_index.core import Settings import os import openai import pandas as pd os.environ["OPENAI_API_KEY"] = "sk-" openai.api_key = os.environ["OPENAI_API_KEY"] Settings.chunk_size = 256 rerank_base = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3 ) rerank_finetuned = SentenceTransformerRerank( model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3 ) without_reranker_hits = 0 base_reranker_hits = 0 finetuned_reranker_hits = 0 total_number_of_context = 0 for index, row in df_reranking.iterrows(): documents = [Document(text=row["paper"])] query_list = row["questions"] context_list = row["context"] assert len(query_list) == len(context_list) vector_index = VectorStoreIndex.from_documents(documents) retriever_without_reranker = vector_index.as_query_engine( similarity_top_k=3, response_mode="no_text" ) retriever_with_base_reranker = vector_index.as_query_engine( similarity_top_k=8, response_mode="no_text", node_postprocessors=[rerank_base], ) retriever_with_finetuned_reranker = vector_index.as_query_engine( similarity_top_k=8, response_mode="no_text", node_postprocessors=[rerank_finetuned], ) for index in range(0, len(query_list)): query = query_list[index] context = context_list[index] total_number_of_context += 1 response_without_reranker = retriever_without_reranker.query(query) without_reranker_nodes = response_without_reranker.source_nodes for node in without_reranker_nodes: if context in node.node.text or node.node.text in context: without_reranker_hits += 1 response_with_base_reranker = retriever_with_base_reranker.query(query) with_base_reranker_nodes = response_with_base_reranker.source_nodes for node in with_base_reranker_nodes: if context in node.node.text or node.node.text in context: base_reranker_hits += 1 response_with_finetuned_reranker = ( retriever_with_finetuned_reranker.query(query) ) with_finetuned_reranker_nodes = ( response_with_finetuned_reranker.source_nodes ) for node in with_finetuned_reranker_nodes: if context in node.node.text or node.node.text in context: finetuned_reranker_hits += 1 assert ( len(with_finetuned_reranker_nodes) == len(with_base_reranker_nodes) == len(without_reranker_nodes) == 3 ) without_reranker_scores = [without_reranker_hits] base_reranker_scores = [base_reranker_hits] finetuned_reranker_scores = [finetuned_reranker_hits] reranker_eval_dict = { "Metric": "Hits", "OpenAI_Embeddings": without_reranker_scores, "Base_cross_encoder": base_reranker_scores, "Finetuned_cross_encoder": finetuned_reranker_hits, "Total Relevant Context": total_number_of_context, } df_reranker_eval_results = pd.DataFrame(reranker_eval_dict) display(df_reranker_eval_results) get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0') import pandas as pd import ast # Used to safely evaluate the string as a list df_test = pd.read_csv("/content/test.csv", index_col=0) df_test["questions"] = df_test["questions"].apply(ast.literal_eval) df_test["answers"] = df_test["answers"].apply(ast.literal_eval) print(f"Number of papers in the test sample:- {len(df_test)}") df_test.head(1) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core import Document from llama_index.core.evaluation import PairwiseComparisonEvaluator from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) import os import openai import pandas as pd os.environ["OPENAI_API_KEY"] = "sk-" openai.api_key = os.environ["OPENAI_API_KEY"] gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4) pairwise_scores_list = [] no_reranker_dict_list = [] for index, row in df_test.iterrows(): documents = [
Document(text=row["paper"])
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent = AgentRunner(agent_worker, callback_manager=callback_manager) response = agent.chat("What is (121 * 3) + 42?") response agent.memory.get_all() get_ipython().system('pip install llama-index-readers-wikipedia') from llama_index.readers.wikipedia import WikipediaReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"] city_docs = {} reader = WikipediaReader() for wiki_title in wiki_titles: docs = reader.load_data(pages=[wiki_title]) city_docs[wiki_title] = docs from llama_index.core import ServiceContext from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import CallbackManager llm = OpenAI(temperature=0, model="gpt-4") service_context = ServiceContext.from_defaults(llm=llm) callback_manager = CallbackManager([]) from llama_index.core import load_index_from_storage, StorageContext from llama_index.core.node_parser import SentenceSplitter from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core import VectorStoreIndex import os node_parser = SentenceSplitter() query_engine_tools = [] for idx, wiki_title in enumerate(wiki_titles): nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title]) if not os.path.exists(f"./data/{wiki_title}"): vector_index = VectorStoreIndex( nodes, service_context=service_context, callback_manager=callback_manager ) vector_index.storage_context.persist(persist_dir=f"./data/{wiki_title}") else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=f"./data/{wiki_title}"), service_context=service_context, callback_manager=callback_manager, ) vector_query_engine = vector_index.as_query_engine() query_engine_tools.append( QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=f"vector_tool_{wiki_title}", description=( "Useful for questions related to specific aspects of" f" {wiki_title} (e.g. the history, arts and culture," " sports, demographics, or more)." ), ), ) ) from llama_index.core.agent import AgentRunner from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4") agent_worker = LLMCompilerAgentWorker.from_tools( query_engine_tools, llm=llm, verbose=True, callback_manager=callback_manager, ) agent =
AgentRunner(agent_worker, callback_manager=callback_manager)
llama_index.core.agent.AgentRunner
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-elasticsearch') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.elasticsearch import ElasticsearchStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "A bunch of scientists bring back dinosaurs and mayhem breaks" " loose" ), metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ),
TextNode( text=( "Leo DiCaprio gets lost in a dream within a dream within a dream" " within a ..." )
llama_index.core.schema.TextNode