Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
mciancone commited on
Commit
d999778
1 Parent(s): cd27468

Upload build_reranking_dataset_BM25.py

Browse files
Files changed (1) hide show
  1. build_reranking_dataset_BM25.py +174 -0
build_reranking_dataset_BM25.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from rank_bm25 import BM25Plus
2
+ import datasets
3
+ from sklearn.base import BaseEstimator
4
+ from sklearn.model_selection import GridSearchCV
5
+
6
+ from huggingface_hub import create_repo
7
+ from huggingface_hub.utils._errors import HfHubHTTPError
8
+
9
+
10
+ N_NEGATIVE_DOCS = 10
11
+
12
+ # Prepare documents
13
+ def create_text(example:dict) -> str:
14
+ return "\n".join([example["section"], example["title"], example["content"]])
15
+
16
+ documents = datasets.load_dataset("lyon-nlp/mteb-fr-retrieval-syntec-s2p", "documents")["test"]
17
+ documents = documents.add_column("text", [create_text(x) for x in documents])
18
+ documents = documents.rename_column("id", "doc_id")
19
+ documents = documents.remove_columns(["url", "title", "section", "content"])
20
+
21
+ # Prepare queries
22
+ queries = datasets.load_dataset("lyon-nlp/mteb-fr-retrieval-syntec-s2p", "queries")["test"]
23
+ queries = queries.rename_columns({"Question": "queries", "Article": "doc_id"})
24
+ queries = queries.map(lambda x: {"doc_id": [x["doc_id"]]})
25
+
26
+ # Optimize BM25 parameters
27
+ ### Build sklearn estimator feature BM25
28
+ class BM25Estimator(BaseEstimator):
29
+
30
+ def __init__(self, corpus_dataset:datasets.Dataset, *, k1:float=1.5, b:float=.75, delta:int=1):
31
+ """Initialize BM25 estimator using the coprus dataset.
32
+ The dataset must contain 2 columns:
33
+ - "doc_id" : the documents ids
34
+ - "text" : the document texts
35
+
36
+ Args:
37
+ corpus_dataset (datasets.Dataset): _description_
38
+ k1 (float, optional): _description_. Defaults to 1.5.
39
+ b (float, optional): _description_. Defaults to .75.
40
+ delta (int, optional): _description_. Defaults to 1.
41
+ """
42
+ self.is_fitted_ = False
43
+
44
+ self.corpus_dataset = corpus_dataset
45
+ self.k1 = k1
46
+ self.b = b
47
+ self.delta=delta
48
+ self.bm25 = None
49
+
50
+ def tokenize_corpus(self, corpus:list[str]) -> list[str]:
51
+ """Tokenize a corpus of strings
52
+
53
+ Args:
54
+ corpus (list[str]): the list of string to tokenize
55
+
56
+ Returns:
57
+ list[str]: the tokeinzed corpus
58
+ """
59
+ if isinstance(corpus, str):
60
+ return corpus.lower().split()
61
+
62
+ return [c.lower().split() for c in corpus]
63
+
64
+ def fit(self, X=None, y=None):
65
+ """Fits the BM25 using the dataset of documents
66
+ Args are placeholders required by sklearn
67
+ """
68
+ tokenized_corpus = self.tokenize_corpus(self.corpus_dataset["text"])
69
+ self.bm25 = BM25Plus(
70
+ corpus=tokenized_corpus,
71
+ k1=self.k1,
72
+ b=self.b,
73
+ delta=self.delta
74
+ )
75
+ self.is_fitted_ = True
76
+
77
+ return self
78
+
79
+ def predict(self, query:str, topN:int=10) -> list[str]:
80
+ """Returns the best doc ids in order of best relevance first
81
+
82
+ Args:
83
+ query (str): _description_
84
+ topN (int, optional): _description_. Defaults to 10.
85
+
86
+ Returns:
87
+ list[str]: _description_
88
+ """
89
+ if not self.is_fitted_:
90
+ self.fit()
91
+
92
+ tokenized_query = self.tokenize_corpus(query)
93
+ best_docs = self.bm25.get_top_n(tokenized_query, self.corpus_dataset["text"], n=topN)
94
+ best_docs_ids = [self.corpus_dataset["doc_id"][self.corpus_dataset["text"].index(doc)] for doc in best_docs]
95
+
96
+ return best_docs_ids
97
+
98
+ def score(self, queries:list[str], relevant_docs:list[list[str]]):
99
+ """Scores the bm25 using the queries and relevant docs,
100
+ using MRR as the metric.
101
+
102
+ Args:
103
+ queries (list[str]): list of queries
104
+ relevant_docs (list[list[str]]): list of relevant documents ids for each query
105
+ """
106
+ best_docs_ids_preds = [self.predict(q, len(self.corpus_dataset)) for q in queries]
107
+ best_docs_isrelevant = [
108
+ [
109
+ doc in rel_docs for doc in best_docs_ids_pred
110
+ ]
111
+ for best_docs_ids_pred, rel_docs in zip(best_docs_ids_preds, relevant_docs)
112
+ ]
113
+ mrrs = [self._compute_mrr(preds) for preds in best_docs_isrelevant]
114
+ mrr = sum(mrrs)/len(mrrs)
115
+
116
+ return mrr
117
+
118
+ def _compute_mrr(self, predictions:list[bool]) -> float:
119
+ """Compute the mrr considering a list of boolean predictions.
120
+ Example:
121
+ if predictions = [False, False, True, False], it would indicate
122
+ that only the third document was labeled as relevant to the query
123
+
124
+ Args:
125
+ predictions (list[bool]): the binarized relevancy of predictions
126
+
127
+ Returns:
128
+ float: the mrr
129
+ """
130
+ if any(predictions):
131
+ mrr = [1/(i+1) for i, pred in enumerate(predictions) if pred]
132
+ mrr = sum(mrr)/len(mrr)
133
+ return mrr
134
+ else:
135
+ return 0
136
+
137
+ ### Perform gridSearch to find best parameters for BM25
138
+ print("Optimizing BM25 parameters...")
139
+
140
+ params = {
141
+ "k1":[1., 1.25, 1.5, 1.75],
142
+ "b": [.5, .75, 1.],
143
+ "delta": [0, 1, 2]
144
+ }
145
+
146
+ gscv = GridSearchCV(BM25Estimator(documents), params)
147
+ gscv.fit(queries["queries"], queries["doc_id"])
148
+
149
+ print("Best parameterss :", gscv.best_params_)
150
+ print("Best MRR score :", gscv.best_score_)
151
+
152
+
153
+ # Build reranking dataset with positives and negative queries using best estimator
154
+ reranking_dataset = datasets.Dataset.from_dict(
155
+ {
156
+ "query": queries["queries"],
157
+ "positive": queries["doc_id"],
158
+ "negative": [
159
+ [doc_id for doc_id in gscv.estimator.predict(q, N_NEGATIVE_DOCS) if doc_id not in relevant_ids]
160
+ for q, relevant_ids in zip(queries["queries"], queries["doc_id"])
161
+ ]
162
+ })
163
+
164
+ # Push dataset to hub
165
+ ### create HF repo
166
+ repo_id = "lyon-nlp/mteb-fr-reranking-syntec-s2p"
167
+ try:
168
+ create_repo(repo_id, repo_type="dataset")
169
+ except HfHubHTTPError as e:
170
+ print("HF repo already exist")
171
+
172
+ ### push to hub
173
+ reranking_dataset.push_to_hub(repo_id, config_name="queries", split="test")
174
+ documents.push_to_hub(repo_id, config_name="documents", split="test")