|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@misc{RecipeNLGLite, |
|
author = {Mehrdad Farahani}, |
|
title = {RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation (Lite)}, |
|
year = 2021, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {url{https://github.com/m3hrdadfi/recipe-nlg-lite}}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation - Lite version |
|
The dataset we publish contains 7,198 cooking recipes (>7K). |
|
It's processed in more careful way and provides more samples than any other dataset in the area.""" |
|
|
|
_HOMEPAGE = "https://github.com/m3hrdadfi/recipe-nlg-lite" |
|
_LICENSE = "MIT License" |
|
|
|
_URLs = { |
|
"1.0.0": { |
|
"data": "https://drive.google.com/uc?id=1PGH5H_oW7wUvMw_5xaXvbEN7DFll-wDX", |
|
"features": [ |
|
{"name": "uid", "type": datasets.Value("string")}, |
|
{"name": "name", "type": datasets.Value("string")}, |
|
{"name": "description", "type": datasets.Value("string")}, |
|
{"name": "link", "type": datasets.Value("string")}, |
|
{"name": "ner", "type": datasets.Value("string")}, |
|
{"name": "ingredients", "type": datasets.Value("string")}, |
|
{"name": "steps", "type": datasets.Value("string")}, |
|
], |
|
} |
|
} |
|
|
|
|
|
class RecipeNLGLiteConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RecipeNLGLite.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for RecipeNLGLite. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(RecipeNLGLiteConfig, self).__init__(**kwargs) |
|
|
|
|
|
class RecipeNLGLite(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
RecipeNLGLiteConfig( |
|
name="1.0.0", version=datasets.Version("1.0.0"), description="The first version of recipe_nlg_lite" |
|
), |
|
] |
|
|
|
def _info(self): |
|
feature_names_types = _URLs[self.config.name]["features"] |
|
features = datasets.Features({f["name"]: f["type"] for f in feature_names_types}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
my_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(my_urls["data"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "recipe_nlg_lite", "train.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "recipe_nlg_lite", "test.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
feature_names_types = _URLs[self.config.name]["features"] |
|
features = [f["name"] for f in feature_names_types] |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
reader = csv.DictReader(csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_MINIMAL) |
|
|
|
for _id, row in enumerate(reader): |
|
if len(row) == len(features): |
|
yield _id, {f: row[f] for f in features} |
|
|