File size: 2,596 Bytes
a900bc7
7f781bc
a900bc7
 
 
 
 
7f781bc
a900bc7
7f781bc
a900bc7
 
d64a6c2
 
a900bc7
 
 
7f781bc
a900bc7
7f781bc
a900bc7
 
7f781bc
a900bc7
7f781bc
d64a6c2
 
a900bc7
 
 
 
 
 
 
 
 
 
7f781bc
 
 
 
d64a6c2
 
7f781bc
 
a900bc7
 
 
d64a6c2
a900bc7
 
 
 
 
 
 
 
 
 
 
 
7f781bc
 
 
 
 
 
a900bc7
 
 
 
 
 
 
7f781bc
a900bc7
 
 
 
7f781bc
 
a900bc7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import csv
from ast import literal_eval

import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """"""

_DESCRIPTION = """"""

_DOWNLOAD_URLS = {
    "train": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_train.csv",
    "test": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_test.csv",
}


class ParsTwiNERConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(ParsTwiNERConfig, self).__init__(**kwargs)


class ParsTwiNER(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        ParsTwiNERConfig(
            name="nerutc",
            version=datasets.Version("1.1.1"),
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-UNI",
                                "I-UNI",
                            ]
                        )
                    ),
                }
            ),
            homepage="https://huggingface.co/datasets/mahdiyehebrahimi/nerutc",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """
        Return SplitGenerators.
        """

        train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
        test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
            ),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)

            next(csv_reader, None)

            for id_, row in enumerate(csv_reader):
                tokens, ner_tags = row
                # Optional preprocessing here
                tokens = literal_eval(tokens)
                ner_tags = literal_eval(ner_tags)
                yield id_, {"tokens": tokens, "ner_tags": ner_tags}