nerutc / nerutc.py
mahdiyehebrahimi's picture
Rename ner_dataset_script.py to nerutc.py
f4f86da verified
raw
history blame
3.11 kB
import csv
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """Citation"""
_DESCRIPTION = """Description"""
_DOWNLOAD_URLS = {
"train": "Splitdataset\nerutc_train.csv",
"test": "Splitdataset\nerutc_test.csv",
}
class DatasetNameConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(DatasetNameConfig, self).__init__(**kwargs)
class DatasetName(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DatasetNameConfig(
name="nerutc",
version=datasets.Version("1.1.1"),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
# TODO YOU SHOULD PUT THE EXTRACTED UNIQUE TAGS IN YOUR DATASET HERE. THIS LIST IS JUST AN EXAMPLE
"""
To extract unique tags from a pandas dataframe use this code and paste the output list below.
```python
unique_tags = df["TAGS_COLUMN_NAME"].explode().unique()
print(unique_tags)
```
"""
"ner_tags": datasets.Sequence( # USE `pos_tags`, `ner_tags`, `chunk_tags`, etc.
datasets.features.ClassLabel(names=['O' 'B-UNI' 'I-UNI']) # TODO
),
}
),
homepage="PUT PATH TO THE ORIGINAL DATASET HOME PAGE HERE (OPTIONAL BUT RECOMMENDED)",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
Return SplitGenerators.
"""
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
# TODO
def _generate_examples(self, filepath):
"""
Per each file_path read the csv file and iterate it.
For each row yield a tuple of (id, {"tokens": ..., "tags": ..., ...})
Each call to this method yields an output like below:
```
(124, {"tokens": ["hello", "world"], "pos_tags": ["NOUN", "NOUN"]})
```
"""
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
# Uncomment below line to skip the first row if your csv file has a header row
# next(csv_reader, None)
for id_, row in enumerate(csv_reader):
tokens, ner_tags = row
# Optional preprocessing here
yield id_, {"tokens": tokens, "ner_tags": ner_tags}