Datasets:
Tasks:
Token Classification
Languages:
Persian
import csv | |
from ast import literal_eval | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """""" | |
_DESCRIPTION = """""" | |
_DOWNLOAD_URLS = { | |
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_train.csv", | |
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_test.csv", | |
} | |
class ParsTwiNERConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(ParsTwiNERConfig, self).__init__(**kwargs) | |
class ParsTwiNER(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
ParsTwiNERConfig( | |
name="nerutc", | |
version=datasets.Version("1.1.1"), | |
description=_DESCRIPTION, | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-UNI", | |
"I-UNI", | |
] | |
) | |
), | |
} | |
), | |
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/nerutc", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
""" | |
Return SplitGenerators. | |
""" | |
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"]) | |
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} | |
), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True) | |
next(csv_reader, None) | |
for id_, row in enumerate(csv_reader): | |
tokens, ner_tags = row | |
# Optional preprocessing here | |
tokens = literal_eval(tokens) | |
ner_tags = literal_eval(ner_tags) | |
yield id_, {"tokens": tokens, "ner_tags": ner_tags} |