nerutc / nerutc.py
mahdiyehebrahimi's picture
Update nerutc.py
d64a6c2 verified
import csv
from ast import literal_eval
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """"""
_DESCRIPTION = """"""
_DOWNLOAD_URLS = {
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_train.csv",
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/nerutc/raw/main/nerutc_test.csv",
}
class ParsTwiNERConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(ParsTwiNERConfig, self).__init__(**kwargs)
class ParsTwiNER(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
ParsTwiNERConfig(
name="nerutc",
version=datasets.Version("1.1.1"),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-UNI",
"I-UNI",
]
)
),
}
),
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/nerutc",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
Return SplitGenerators.
"""
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
next(csv_reader, None)
for id_, row in enumerate(csv_reader):
tokens, ner_tags = row
# Optional preprocessing here
tokens = literal_eval(tokens)
ner_tags = literal_eval(ner_tags)
yield id_, {"tokens": tokens, "ner_tags": ner_tags}