import csv import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """Citation""" _DESCRIPTION = """Description""" _DOWNLOAD_URLS = { "train": "Splitdataset\nerutc_train.csv", "test": "Splitdataset\nerutc_test.csv", } class DatasetNameConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(DatasetNameConfig, self).__init__(**kwargs) class DatasetName(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DatasetNameConfig( name="nerutc", version=datasets.Version("1.1.1"), description=_DESCRIPTION, ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), # TODO YOU SHOULD PUT THE EXTRACTED UNIQUE TAGS IN YOUR DATASET HERE. THIS LIST IS JUST AN EXAMPLE """ To extract unique tags from a pandas dataframe use this code and paste the output list below. ```python unique_tags = df["TAGS_COLUMN_NAME"].explode().unique() print(unique_tags) ``` """ "ner_tags": datasets.Sequence( # USE `pos_tags`, `ner_tags`, `chunk_tags`, etc. datasets.features.ClassLabel(names=['O' 'B-UNI' 'I-UNI']) # TODO ), } ), homepage="PUT PATH TO THE ORIGINAL DATASET HOME PAGE HERE (OPTIONAL BUT RECOMMENDED)", citation=_CITATION, ) def _split_generators(self, dl_manager): """ Return SplitGenerators. """ train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"]) test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] # TODO def _generate_examples(self, filepath): """ Per each file_path read the csv file and iterate it. For each row yield a tuple of (id, {"tokens": ..., "tags": ..., ...}) Each call to this method yields an output like below: ``` (124, {"tokens": ["hello", "world"], "pos_tags": ["NOUN", "NOUN"]}) ``` """ logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True) # Uncomment below line to skip the first row if your csv file has a header row # next(csv_reader, None) for id_, row in enumerate(csv_reader): tokens, ner_tags = row # Optional preprocessing here yield id_, {"tokens": tokens, "ner_tags": ner_tags}