Datasets:
Tasks:
Text Classification
Languages:
Persian
mahdiyehebrahimi
commited on
Commit
•
2e8cf3d
1
Parent(s):
776d277
Update Tc.py
Browse files
Tc.py
CHANGED
@@ -1,52 +1,82 @@
|
|
1 |
import csv
|
|
|
2 |
import datasets
|
3 |
from datasets.tasks import TextClassification
|
4 |
|
5 |
|
6 |
-
|
7 |
-
IUT Ticket Classification
|
8 |
-
"""
|
9 |
|
10 |
-
_DOWNLOAD_URLS = {
|
11 |
|
|
|
|
|
|
|
|
|
12 |
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_train.csv",
|
13 |
-
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_test.csv"
|
14 |
}
|
15 |
|
16 |
|
17 |
-
class
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def _info(self):
|
|
|
|
|
|
|
|
|
21 |
return datasets.DatasetInfo(
|
22 |
description=_DESCRIPTION,
|
23 |
features=datasets.Features(
|
24 |
-
{
|
25 |
),
|
26 |
-
supervised_keys=None,
|
27 |
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification",
|
28 |
-
|
|
|
29 |
)
|
30 |
|
31 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
32 |
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
33 |
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
|
|
34 |
return [
|
35 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
36 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
37 |
]
|
38 |
|
|
|
39 |
def _generate_examples(self, filepath):
|
40 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
|
|
|
42 |
with open(filepath, encoding="utf-8") as csv_file:
|
43 |
-
csv_reader = csv.reader(
|
44 |
-
|
45 |
-
|
46 |
-
# skip the first row if your csv file has a header row
|
47 |
next(csv_reader, None)
|
|
|
48 |
for id_, row in enumerate(csv_reader):
|
49 |
-
text, label
|
50 |
label = label2id(label)
|
51 |
-
|
52 |
-
yield id_, {"text": text, "label": label}
|
|
|
1 |
import csv
|
2 |
+
|
3 |
import datasets
|
4 |
from datasets.tasks import TextClassification
|
5 |
|
6 |
|
7 |
+
logger = datasets.logging.get_logger(__name__)
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
+
_CITATION = """Citation"""
|
11 |
+
_DESCRIPTION = """Description"""
|
12 |
+
|
13 |
+
_DOWNLOAD_URLS = {
|
14 |
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_train.csv",
|
15 |
+
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_test.csv",
|
16 |
}
|
17 |
|
18 |
|
19 |
+
class DatasetNameConfig(datasets.BuilderConfig):
|
20 |
+
def __init__(self, **kwargs):
|
21 |
+
super(DatasetNameConfig, self).__init__(**kwargs)
|
22 |
+
|
23 |
+
|
24 |
+
class DatasetName(datasets.GeneratorBasedBuilder):
|
25 |
+
BUILDER_CONFIGS = [
|
26 |
+
DatasetNameConfig(
|
27 |
+
name="University's Tickets",
|
28 |
+
version=datasets.Version("1.1.1"),
|
29 |
+
description=_DESCRIPTION,
|
30 |
+
),
|
31 |
+
]
|
32 |
|
33 |
def _info(self):
|
34 |
+
text_column = "text"
|
35 |
+
label_column = "label"
|
36 |
+
# TODO PROVIDE THE LABELS HERE
|
37 |
+
label_names = ["drop_withdraw", "centralauthentication_email","supervisor_seminar_proposal_defense", "registration"]
|
38 |
return datasets.DatasetInfo(
|
39 |
description=_DESCRIPTION,
|
40 |
features=datasets.Features(
|
41 |
+
{text_column: datasets.Value("string"), label_column: datasets.features.ClassLabel(names=label_names)}
|
42 |
),
|
|
|
43 |
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification",
|
44 |
+
citation=_CITATION,
|
45 |
+
task_templates=[TextClassification(text_column=text_column, label_column=label_column)],
|
46 |
)
|
47 |
|
48 |
def _split_generators(self, dl_manager):
|
49 |
+
"""
|
50 |
+
Return SplitGenerators.
|
51 |
+
"""
|
52 |
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
53 |
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
54 |
+
|
55 |
return [
|
56 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
57 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
58 |
]
|
59 |
|
60 |
+
# TODO
|
61 |
def _generate_examples(self, filepath):
|
62 |
+
"""
|
63 |
+
Per each file_path read the csv file and iterate it.
|
64 |
+
For each row yield a tuple of (id, {"text": ..., "label": ..., ...})
|
65 |
+
Each call to this method yields an output like below:
|
66 |
+
```
|
67 |
+
(123, {"text": "I liked it", "label": "positive"})
|
68 |
+
```
|
69 |
+
"""
|
70 |
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
|
71 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
72 |
with open(filepath, encoding="utf-8") as csv_file:
|
73 |
+
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
74 |
+
|
75 |
+
# Uncomment below line to skip the first row if your csv file has a header row
|
|
|
76 |
next(csv_reader, None)
|
77 |
+
|
78 |
for id_, row in enumerate(csv_reader):
|
79 |
+
text, label = row
|
80 |
label = label2id(label)
|
81 |
+
# Optional preprocessing here
|
82 |
+
yield id_, {"text": text, "label": label}
|