Datasets:
Tasks:
Text Classification
Languages:
Persian
Upload dataset_script.py
Browse files- dataset_script.py +83 -0
dataset_script.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from datasets.tasks import TextClassification
|
5 |
+
|
6 |
+
|
7 |
+
logger = datasets.logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
_CITATION = """Citation"""
|
11 |
+
_DESCRIPTION = """Description"""
|
12 |
+
|
13 |
+
_DOWNLOAD_URLS = {
|
14 |
+
"train": "D:\Ticket Calssification\TC Code & Data\Split Dataset\IntegratedDataTrain.csv",
|
15 |
+
"dev": "D:\Ticket Calssification\TC Code & Data\Split Dataset\IntegratedDataDev.csv",
|
16 |
+
"test": "D:\Ticket Calssification\TC Code & Data\Split Dataset\IntegratedDataTest.csv",
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
class DatasetNameConfig(datasets.BuilderConfig):
|
21 |
+
def __init__(self, **kwargs):
|
22 |
+
super(DatasetNameConfig, self).__init__(**kwargs)
|
23 |
+
|
24 |
+
|
25 |
+
class DatasetName(datasets.GeneratorBasedBuilder):
|
26 |
+
BUILDER_CONFIGS = [
|
27 |
+
DatasetNameConfig(
|
28 |
+
name="University's Tickets",
|
29 |
+
version=datasets.Version("1.1.1"),
|
30 |
+
description=_DESCRIPTION,
|
31 |
+
),
|
32 |
+
]
|
33 |
+
|
34 |
+
def _info(self):
|
35 |
+
text_column = "text"
|
36 |
+
label_column = "label"
|
37 |
+
# TODO PROVIDE THE LABELS HERE
|
38 |
+
label_names = ['drop_withdraw', 'centralauthentication_email', 'supervisor_seminar_proposal_defense', 'registration']
|
39 |
+
return datasets.DatasetInfo(
|
40 |
+
description=_DESCRIPTION,
|
41 |
+
features=datasets.Features(
|
42 |
+
{text_column: datasets.Value("string"), label_column: datasets.features.ClassLabel(names=label_names)}
|
43 |
+
),
|
44 |
+
homepage="HOMEPAGE",
|
45 |
+
citation=_CITATION,
|
46 |
+
task_templates=[TextClassification(text_column=text_column, label_column=label_column)],
|
47 |
+
)
|
48 |
+
|
49 |
+
def _split_generators(self, dl_manager):
|
50 |
+
"""
|
51 |
+
Return SplitGenerators.
|
52 |
+
"""
|
53 |
+
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
54 |
+
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
55 |
+
|
56 |
+
return [
|
57 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
58 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
59 |
+
]
|
60 |
+
|
61 |
+
# TODO
|
62 |
+
def _generate_examples(self, filepath):
|
63 |
+
"""
|
64 |
+
Per each file_path read the csv file and iterate it.
|
65 |
+
For each row yield a tuple of (id, {"text": ..., "label": ..., ...})
|
66 |
+
Each call to this method yields an output like below:
|
67 |
+
```
|
68 |
+
(123, {"text": "I liked it", "label": "positive"})
|
69 |
+
```
|
70 |
+
"""
|
71 |
+
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
|
72 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
73 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
74 |
+
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
75 |
+
|
76 |
+
# Uncomment below line to skip the first row if your csv file has a header row
|
77 |
+
next(csv_reader, None)
|
78 |
+
|
79 |
+
for id_, row in enumerate(csv_reader):
|
80 |
+
label, text = row
|
81 |
+
label = label2id(label)
|
82 |
+
# Optional preprocessing here
|
83 |
+
yield id_, {"text": text, "label": label}
|