Datasets:
Tasks:
Text Classification
Languages:
Persian
mahdiyehebrahimi
commited on
Commit
•
57fa245
1
Parent(s):
ac8d781
Update tc.py
Browse files
tc.py
CHANGED
@@ -1,82 +1,51 @@
|
|
1 |
import csv
|
2 |
-
|
3 |
import datasets
|
4 |
from datasets.tasks import TextClassification
|
5 |
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
_CITATION = """Citation"""
|
11 |
-
_DESCRIPTION = """Tickets of IUT university"""
|
12 |
|
13 |
_DOWNLOAD_URLS = {
|
|
|
14 |
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/tc_train.csv",
|
15 |
-
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/tc_test.csv"
|
16 |
}
|
17 |
|
18 |
|
19 |
-
class
|
20 |
-
|
21 |
-
super(DatasetNameConfig, self).__init__(**kwargs)
|
22 |
-
|
23 |
-
|
24 |
-
class DatasetName(datasets.GeneratorBasedBuilder):
|
25 |
-
BUILDER_CONFIGS = [
|
26 |
-
DatasetNameConfig(
|
27 |
-
name="University's Tickets",
|
28 |
-
version=datasets.Version("1.1.1"),
|
29 |
-
description=_DESCRIPTION,
|
30 |
-
),
|
31 |
-
]
|
32 |
|
33 |
def _info(self):
|
34 |
-
text_column = "text"
|
35 |
-
label_column = "label"
|
36 |
-
# TODO PROVIDE THE LABELS HERE
|
37 |
-
label_names = ['drop_withdraw', 'centralauthentication_email', 'supervisor_seminar_proposal_defense', 'registration']
|
38 |
return datasets.DatasetInfo(
|
39 |
description=_DESCRIPTION,
|
40 |
features=datasets.Features(
|
41 |
-
{
|
42 |
),
|
|
|
43 |
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification",
|
44 |
-
|
45 |
-
task_templates=[TextClassification(text_column=text_column, label_column=label_column)],
|
46 |
)
|
47 |
|
48 |
def _split_generators(self, dl_manager):
|
49 |
-
"""
|
50 |
-
Return SplitGenerators.
|
51 |
-
"""
|
52 |
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
53 |
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
54 |
-
|
55 |
return [
|
56 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
57 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
58 |
]
|
59 |
|
60 |
-
# TODO
|
61 |
def _generate_examples(self, filepath):
|
62 |
-
"""
|
63 |
-
Per each file_path read the csv file and iterate it.
|
64 |
-
For each row yield a tuple of (id, {"text": ..., "label": ..., ...})
|
65 |
-
Each call to this method yields an output like below:
|
66 |
-
```
|
67 |
-
(123, {"text": "I liked it", "label": "positive"})
|
68 |
-
```
|
69 |
-
"""
|
70 |
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
|
71 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
72 |
with open(filepath, encoding="utf-8") as csv_file:
|
73 |
-
csv_reader = csv.reader(
|
74 |
-
|
75 |
-
|
|
|
76 |
next(csv_reader, None)
|
77 |
-
|
78 |
for id_, row in enumerate(csv_reader):
|
79 |
label, text = row
|
80 |
label = label2id(label)
|
81 |
-
|
82 |
-
yield id_, {"text": text, "label": label}
|
|
|
1 |
import csv
|
|
|
2 |
import datasets
|
3 |
from datasets.tasks import TextClassification
|
4 |
|
5 |
|
6 |
+
_DESCRIPTION = """\
|
7 |
+
IUT Ticket Classification
|
8 |
+
"""
|
|
|
|
|
9 |
|
10 |
_DOWNLOAD_URLS = {
|
11 |
+
|
12 |
"train": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/tc_train.csv",
|
13 |
+
"test": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/tc_test.csv"
|
14 |
}
|
15 |
|
16 |
|
17 |
+
class SentimentDKSF(datasets.GeneratorBasedBuilder):
|
18 |
+
"""IUT Tickets"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def _info(self):
|
|
|
|
|
|
|
|
|
21 |
return datasets.DatasetInfo(
|
22 |
description=_DESCRIPTION,
|
23 |
features=datasets.Features(
|
24 |
+
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=['drop_withdraw', 'centralauthentication_email', 'supervisor_seminar_proposal_defense', 'registration'])}
|
25 |
),
|
26 |
+
supervised_keys=None,
|
27 |
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification",
|
28 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
|
|
29 |
)
|
30 |
|
31 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
32 |
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
33 |
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
|
|
34 |
return [
|
35 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
36 |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
37 |
]
|
38 |
|
|
|
39 |
def _generate_examples(self, filepath):
|
40 |
+
"""Generate examples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
|
|
|
42 |
with open(filepath, encoding="utf-8") as csv_file:
|
43 |
+
csv_reader = csv.reader(
|
44 |
+
csv_file, quotechar='"', skipinitialspace=True
|
45 |
+
)
|
46 |
+
# skip the first row if your csv file has a header row
|
47 |
next(csv_reader, None)
|
|
|
48 |
for id_, row in enumerate(csv_reader):
|
49 |
label, text = row
|
50 |
label = label2id(label)
|
51 |
+
yield id_, {"text": text, "label": label}
|
|