import csv import datasets from datasets.tasks import TextClassification logger = datasets.logging.get_logger(__name__) _CITATION = """Citation""" _DESCRIPTION = """Description""" _DOWNLOAD_URLS = { "utc_train_text": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_text.csv", "utc_test_text": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_text.csv", "utc_train_ner": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_ner.csv", "utc_test_ner": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_ner.csv", "utc_train_concate": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_concate.csv", "utc_test_concate": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_concate.csv", } class DatasetNameConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(DatasetNameConfig, self).__init__(**kwargs) class DatasetName(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DatasetNameConfig( name="utc", version=datasets.Version("1.1.1"), description=_DESCRIPTION, ), ] def _info(self): text_column = "text" label_column = "label" # TODO PROVIDE THE LABELS HERE label_names = ["drop_withdraw", "centralauthentication_email","supervisor_seminar_proposal_defense", "registration"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {text_column: datasets.Value("string"), label_column: datasets.features.ClassLabel(names=label_names)} ), homepage="https://huggingface.co/datasets/mahdiyehebrahimi/utc", citation=_CITATION, task_templates=[TextClassification(text_column=text_column, label_column=label_column)], ) def _split_generators(self, dl_manager): """ Return SplitGenerators. """ utc_train_text_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_text"]) utc_test_text_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_text"]) utc_train_ner_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_ner"]) utc_test_ner_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_ner"]) utc_train_concate_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_concate"]) utc_test_concate_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_concate"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_text_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_text_path}), datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_ner_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_ner_path}), datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_concate_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_concate_path}), ] # TODO def _generate_examples(self, filepath): """ Per each file_path read the csv file and iterate it. For each row yield a tuple of (id, {"text": ..., "label": ..., ...}) Each call to this method yields an output like below: ``` (123, {"text": "I liked it", "label": "positive"}) ``` """ label2id = self.info.features[self.info.task_templates[0].label_column].str2int logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True) # Uncomment below line to skip the first row if your csv file has a header row next(csv_reader, None) for id_, row in enumerate(csv_reader): text, label = row label = label2id(label) # Optional preprocessing here yield id_, {"text": text, "label": label}