File size: 6,849 Bytes
cea124a
df3d7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825464
 
 
 
 
 
 
 
 
faee758
1825464
 
 
 
 
 
 
cea124a
 
df3d7ed
 
 
 
 
 
82c7f60
df3d7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
language:
- tr
paperswithcode_id: winogrande
pretty_name: WinoGrande
dataset_info:
- config_name: winogrande_xs
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 20704
    num_examples: 160
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 412552
- config_name: winogrande_s
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 82308
    num_examples: 640
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 474156
- config_name: winogrande_m
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 329001
    num_examples: 2558
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 720849
- config_name: winogrande_l
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 1319576
    num_examples: 10234
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 1711424
- config_name: winogrande_xl
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 5185832
    num_examples: 40398
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 5577680
- config_name: winogrande_debiased
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 1203420
    num_examples: 9248
  - name: test
    num_bytes: 227649
    num_examples: 1767
  - name: validation
    num_bytes: 164199
    num_examples: 1267
  download_size: 3395492
  dataset_size: 1595268
  configs:
- config_name: winogrande_debiased
  data_files:
  - split: train
    path: winogrande_debiased/*_train-*
  - split: test
    path: winogrande_debiased/*_test-*
  - split: validation
    path: winogrande_debiased/*_validation-*
- config_name: winogrande_m
  data_files:
  - split: train
    path: winogrande_m/winogrande_m_train-*
  - split: test
    path: winogrande_m/winogrande_m_test-*
  - split: validation
    path: winogrande_m/winogrande_m_validation-*
license: apache-2.0
---

# Dataset Card for "winogrande"

This Dataset is part of a series of datasets aimed at advancing Turkish LLM Developments by establishing rigid Turkish benchmarks to evaluate the performance of LLM's Produced in the Turkish Language.
malhajar/winogrande-tr is a translated version of [`winogrande`]( https://huggingface.co/datasets/winogrande) aimed specifically to be used in the [`OpenLLMTurkishLeaderboard`](https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard) 

**Translated by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) 

### Dataset Summary

WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
commonsense reasoning.

### Supported Tasks and Leaderboards

aimed specifically to be used in the [`OpenLLMTurkishLeaderboard`](https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard)

### Languages

Turkish

## Dataset Structure

### Data Instances

#### winogrande_debiased

- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 1.59 MB
- **Total amount of disk used:** 4.99 MB

An example of 'train' looks as follows.
```

```

#### winogrande_l

- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 1.71 MB
- **Total amount of disk used:** 5.11 MB

An example of 'validation' looks as follows.
```

```

#### winogrande_m

- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 0.72 MB
- **Total amount of disk used:** 4.12 MB

An example of 'validation' looks as follows.
```

```

#### winogrande_s

- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 0.47 MB
- **Total amount of disk used:** 3.87 MB

An example of 'validation' looks as follows.
```

```

#### winogrande_xl

- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 5.58 MB
- **Total amount of disk used:** 8.98 MB

An example of 'train' looks as follows.
```

```

### Data Fields

The data fields are the same among all splits.

#### winogrande_debiased
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.

#### winogrande_l
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.

#### winogrande_m
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.

#### winogrande_s
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.

#### winogrande_xl
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.

### Data Splits

|       name        |train|validation|test|
|-------------------|----:|---------:|---:|
|winogrande_debiased| 9248|      1267|1767|
|winogrande_l       |10234|      1267|1767|
|winogrande_m       | 2558|      1267|1767|
|winogrande_s       |  640|      1267|1767|
|winogrande_xl      |40398|      1267|1767|
|winogrande_xs      |  160|      1267|1767|


### Citation Information

```
@InProceedings{ai2:winogrande,
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
},
year={2019}
}

`