## Script to sanitize and split Boldini2024 dataset | |
#1. Import modules | |
pip install rdkit | |
pip install molvs | |
import pandas as pd | |
import numpy as np | |
import urllib.request | |
import tqdm | |
import rdkit | |
from rdkit import Chem | |
import molvs | |
standardizer = molvs.Standardizer() | |
fragment_remover = molvs.fragment.FragmentRemover() | |
#2. Download the original datasets | |
# Download the original datasets from the paper | |
#. Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery | |
#. Davide Boldini, Lukas Friedrich, Daniel Kuhn, and Stephan A. Sieber* | |
#. https://github.com/dahvida/AIC_Finder/tree/main/Datasets | |
#3. Import one of the 17 datasets | |
#. Here we chose GPCR.csv for example | |
df = pd.read_csv("GPCR.csv") | |
#4. Sanitize with MolVS and print problems | |
df['X'] = [ \ | |
rdkit.Chem.MolToSmiles( | |
fragment_remover.remove( | |
standardizer.standardize( | |
rdkit.Chem.MolFromSmiles( | |
smiles)))) | |
for smiles in df['smiles']] | |
problems = [] | |
for index, row in tqdm.tqdm(df.iterrows()): | |
result = molvs.validate_smiles(row['X']) | |
if len(result) == 0: | |
continue | |
problems.append( (row['ID'], result) ) | |
# Most are because it includes the salt form and/or it is not neutralized | |
for id, alert in problems: | |
print(f"ID: {id}, problem: {alert[0]}") | |
# Result interpretation | |
# - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed | |
# It doesn't mean that the molecules are bad, it just means that normalization failed | |
#5. Select columns and rename the dataset | |
df.rename(columns={'X': 'SMILES'}, inplace=True) | |
df[['SMILES', 'Primary', 'Score', 'Confirmatory']].to_csv('GPCR_sanitized.csv', index=False) | |