--- license: mit task_categories: - text-classification language: - en tags: - chemistry size_categories: - 1K- Curation of 50 published resources of categorical and numeric measurements of Blood-Brain Barrier penetration. citation: >- COPY AND PASTE WHAT YOU GOT FROM THE BIBTEX WEBSITE config_names: - B3DB_classification - B3DB_classification_extended - B3DB_regression - B3DB_regression_extended configs: - config_name: B3DB_classification data_files: - split: test path: B3DB_classification/test.csv - split: train path: B3DB_classification/train.csv - config_name: B3DB_classification_extended data_files: - split: test path: B3DB_classification_extended/test.csv - split: train path: B3DB_classification_extended/train.csv - config_name: B3DB_regression data_files: - split: test path: B3DB_regression/test.csv - split: train path: B3DB_regression/train.csv - config_name: B3DB_regression_extended data_files: - split: test path: B3DB_regression_extended/test.csv - split: train path: B3DB_regression_extended/train.csv dataset_info: - config_name: B3DB_regression_extended features: - name: "NO." dtype: int64 - name: "compound_name" dtype: object - name: "IUPAC_name" dtype: object - name: "SMILES" dtype: object - name: "CID" dtype: object - name: "logBB" dtype: float64 - name: "Inchi" dtype: object - name: "reference" dtype: object - name: "smiles_result" dtype: object - name: "group" dtype: object - name: "comments" dtype: float64 - name: "ClusterNo" dtype: int64 - name: "MolCount" dtype: int64 splits: - name: train num_bytes: 82808 num_examples: 795 - name: test num_bytes: 27480 num_examples: 263 --- # Blood-Brain Barrier Database ## Quickstart Usage ### Load a dataset in python Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. First, from the command line install the `datasets` library $ pip install datasets then, from within python load the datasets library >>> import datasets and load one of the `B3DB` datasets, e.g., and inspecting the loaded dataset ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the a catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite split_dataset = load_dataset('maomlab/B3DB', name = 'B3DB_classification') split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_classifier", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['BBB+/BBB-']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) classification_suite = load_suite("classification") scores = classification_suite.compute( references=split_featurised_dataset["test"]['BBB+/BBB-'], predictions=preds["cat_boost_classifier::BBB+/BBB-"]) >>> B3DB_classification = datasets.load_dataset("maomlab/B3DB", name = "B3DB_classification") Downloading readme: 100%|██████████████████████████████████████| 100/100 [00:00<00:00, 635500.61%/s] Downloading data: 100%|█████████████████████████████████| 82808/82808 [00:00<00:00, 524655476.79%/s] Downloading data: 100%|█████████████████████████████████| 27480/27480 [00:00<00:00, 195686712.94%/s] Generating test split: 100%|██████████████████████████| 795/795 [00:00<00:00, 5218265.54 examples/s] Generating train split: 100%|█████████████████████████| 263/263 [00:00<00:00, 1835444.18 examples/s]## About the B3DB ### Features of B3DB ### Data splits The original B3DB dataset does not define splits, so here we have used the `Realistic Split` method described in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166). ###Citation