File size: 5,556 Bytes
5fe44a1
5b1b3c1
5fe44a1
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe44a1
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
pretty_name: WikiHow-ES
license: cc-by-nc-sa-3.0
size_categories: 1K<n<10K
language: es
multilinguality: monolingual
task_categories:
- text-classification
- question-answering
- conversational
- summarization
tags:
- Spanish
- WikiHow
- Wiki Articles
- Tutorials
- Step-By-Step
- Instruction Tuning
---

### Dataset Summary

Articles retrieved from the [Spanish WikiHow website](https://es.wikihow.com) on September 2023.

Each article contains a tutorial about a specific topic. The format is always a "How to" question 
followed by a detailed step-by-step explanation. In some cases, the response includes several methods. 

The main idea is to use this data for instruction tuning of Spanish LLMs, but given its nature it 
could also be used for other tasks such as text classification or summarization.

### Languages

- Spanish (ES)

### Usage

To load the full dataset:
```python
from datasets import load_dataset

all_articles = load_dataset("mapama247/wikihow_es")
print(all_articles.num_rows) # output: {'train': 7380}
```

To load only examples from a specific category:
```python
from datasets import load_dataset

sports_articles = load_dataset("mapama247/wikihow_es", "deportes")
print(sports_articles.num_rows) # output: {'train': 201}
```

List of available categories, with the repective number of examples:
```
computadoras-y-electrónica       821
salud                            804
pasatiempos                      729
cuidado-y-estilo-personal        724
carreras-y-educación             564
en-la-casa-y-el-jardín           496
finanzas-y-negocios              459
comida-y-diversión               454
relaciones                       388
mascotas-y-animales              338
filosofía-y-religión             264
arte-y-entretenimiento           254
en-el-trabajo                    211
adolescentes                     201
deportes                         201
vida-familiar                    147
viajes                           139
automóviles-y-otros-vehículos    100
días-de-fiesta-y-tradiciones      86
```

### Supported Tasks

This dataset can be used to train a model for...

- `instruction-tuning`
- `text-classification`
- `question-answering`
- `conversational`
- `summarization`

## Dataset Structure

### Data Instances

```python
{
    'category': str,
    'question': str,
    'introduction': str,
    'answers': List[str],
    'short_answers': List[str],
    'url': str,
    'num_answers': int,
    'num_refs': int,
    'expert_author': bool,
}
```

### Data Fields

- `category`: The category (from [this list](https://es.wikihow.com/Especial:CategoryListing)) to which the example belongs to.
- `label`: Numerical representation of the category, for text classification purposes.
- `question`: The article's title, which always starts with "¿Cómo ...".
- `introduction`: Introductory text that precedes the step-by-step explanation.
- `answers`: List of complete answers, with the full explanation of each step.
- `short_answers`: List of shorter answers that only contain one-sentence steps.
- `num_answers`: The number of alternative answers provided (e.g. length of `answers`).
- `num_ref`: Number of references provided in the article.
- `expert_authors`: Whether the article's author claims to be an expert on the topic or not.
- `url`: The URL address of the original article.

### Data Splits

There is only one split (`train`) that contains a total of 7,380 examples.

## Dataset Creation

### Curation Rationale

This dataset was created for language model alignment to end tasks and user preferences.

### Source Data

How-To questions with detailed step-by-step answers, retrieved from the WikiHow website.

#### Data Collection and Normalization

All articles available in September 2023 were extracted, no filters applied.

Along with the article's content, some metadata was retrieved as well.

#### Source language producers

WikiHow users. All the content is human-generated.

### Personal and Sensitive Information

The data does not include personal or sensitive information.

## Considerations

### Social Impact

The Spanish community can benefit from the high-quality data provided by this dataset.

### Bias

No post-processing steps have been applied to mitigate potential social biases.

## Additional Information

### Curators

Marc Pàmes @ Barcelona Supercomputing Center.

### License

This dataset is licensed under a **Creative Commons CC BY-NC-SA 3.0** license.

Quote from [WikiHow's Terms of Use](https://www.wikihow.com/wikiHow:Terms-of-Use):

> All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as 
> provided herein. The Creative Commons license allows such user generated text content to be used freely for personal, 
> non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of 
> the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction 
> on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants 
> each User of the Service a license to all text content that Users contribute to the Service under the terms and 
> conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully. 
> You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as 
> you wish, whether for commercial or non-commercial purposes.