File size: 17,828 Bytes
5fe44a1
5b1b3c1
c36c15f
5b1b3c1
c36c15f
5b1b3c1
 
 
 
 
c36c15f
5b1b3c1
 
 
 
 
 
 
c36c15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe44a1
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ad3cb
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
---
language: es
license: cc-by-nc-sa-3.0
multilinguality: monolingual
size_categories: 1K<n<10K
task_categories:
- text-classification
- question-answering
- conversational
- summarization
pretty_name: WikiHow-ES
tags:
- Spanish
- WikiHow
- Wiki Articles
- Tutorials
- Step-By-Step
- Instruction Tuning
dataset_info:
- config_name: adolescentes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1991245
    num_examples: 201
  download_size: 1153947
  dataset_size: 1991245
- config_name: all
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 70513673
    num_examples: 7380
  download_size: 38605450
  dataset_size: 70513673
- config_name: arte-y-entretenimiento
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 2567138
    num_examples: 254
  download_size: 1438019
  dataset_size: 2567138
- config_name: automóviles-y-otros-vehículos
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 890122
    num_examples: 100
  download_size: 480587
  dataset_size: 890122
- config_name: carreras-y-educación
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 6020903
    num_examples: 564
  download_size: 3261593
  dataset_size: 6020903
- config_name: comida-y-diversión
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 3602835
    num_examples: 454
  download_size: 1866935
  dataset_size: 3602835
- config_name: computadoras-y-electrónica
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 5457681
    num_examples: 821
  download_size: 2647916
  dataset_size: 5457681
- config_name: cuidado-y-estilo-personal
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 7368188
    num_examples: 724
  download_size: 4088837
  dataset_size: 7368188
- config_name: deportes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1935432
    num_examples: 201
  download_size: 1028678
  dataset_size: 1935432
- config_name: días-de-fiesta-y-tradiciones
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 920660
    num_examples: 86
  download_size: 534900
  dataset_size: 920660
- config_name: en-el-trabajo
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 2313935
    num_examples: 211
  download_size: 1274004
  dataset_size: 2313935
- config_name: en-la-casa-y-el-jardín
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 4311584
    num_examples: 496
  download_size: 2293097
  dataset_size: 4311584
- config_name: filosofía-y-religión
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 2717929
    num_examples: 264
  download_size: 1547991
  dataset_size: 2717929
- config_name: finanzas-y-negocios
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 5183587
    num_examples: 459
  download_size: 2761337
  dataset_size: 5183587
- config_name: mascotas-y-animales
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 3224822
    num_examples: 338
  download_size: 1772324
  dataset_size: 3224822
- config_name: pasatiempos
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 6366593
    num_examples: 729
  download_size: 3430327
  dataset_size: 6366593
- config_name: relaciones
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 4053092
    num_examples: 388
  download_size: 2270175
  dataset_size: 4053092
- config_name: salud
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 8334993
    num_examples: 804
  download_size: 4538289
  dataset_size: 8334993
- config_name: viajes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1509893
    num_examples: 139
  download_size: 851347
  dataset_size: 1509893
- config_name: vida-familiar
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1743050
    num_examples: 147
  download_size: 984068
  dataset_size: 1743050
configs:
- config_name: adolescentes
  data_files:
  - split: train
    path: adolescentes/train-*
- config_name: all
  data_files:
  - split: train
    path: all/train-*
  default: true
- config_name: arte-y-entretenimiento
  data_files:
  - split: train
    path: arte-y-entretenimiento/train-*
- config_name: automóviles-y-otros-vehículos
  data_files:
  - split: train
    path: automóviles-y-otros-vehículos/train-*
- config_name: carreras-y-educación
  data_files:
  - split: train
    path: carreras-y-educación/train-*
- config_name: comida-y-diversión
  data_files:
  - split: train
    path: comida-y-diversión/train-*
- config_name: computadoras-y-electrónica
  data_files:
  - split: train
    path: computadoras-y-electrónica/train-*
- config_name: cuidado-y-estilo-personal
  data_files:
  - split: train
    path: cuidado-y-estilo-personal/train-*
- config_name: deportes
  data_files:
  - split: train
    path: deportes/train-*
- config_name: días-de-fiesta-y-tradiciones
  data_files:
  - split: train
    path: días-de-fiesta-y-tradiciones/train-*
- config_name: en-el-trabajo
  data_files:
  - split: train
    path: en-el-trabajo/train-*
- config_name: en-la-casa-y-el-jardín
  data_files:
  - split: train
    path: en-la-casa-y-el-jardín/train-*
- config_name: filosofía-y-religión
  data_files:
  - split: train
    path: filosofía-y-religión/train-*
- config_name: finanzas-y-negocios
  data_files:
  - split: train
    path: finanzas-y-negocios/train-*
- config_name: mascotas-y-animales
  data_files:
  - split: train
    path: mascotas-y-animales/train-*
- config_name: pasatiempos
  data_files:
  - split: train
    path: pasatiempos/train-*
- config_name: relaciones
  data_files:
  - split: train
    path: relaciones/train-*
- config_name: salud
  data_files:
  - split: train
    path: salud/train-*
- config_name: viajes
  data_files:
  - split: train
    path: viajes/train-*
- config_name: vida-familiar
  data_files:
  - split: train
    path: vida-familiar/train-*
---

### Dataset Summary

Articles retrieved from the [Spanish WikiHow website](https://es.wikihow.com) on September 2023.

Each article contains a tutorial about a specific topic. The format is always a "How to" question 
followed by a detailed step-by-step explanation. In some cases, the response includes several methods. 

The main idea is to use this data for instruction tuning of Spanish LLMs, but given its nature it 
could also be used for other tasks such as text classification or summarization.

### Languages

- Spanish (ES)

### Usage

To load the full dataset:
```python
from datasets import load_dataset

all_articles = load_dataset("mapama247/wikihow_es", trust_remote_code=True)
print(all_articles.num_rows) # output: {'train': 7380}
```

To load only examples from a specific category:
```python
from datasets import load_dataset

sports_articles = load_dataset("mapama247/wikihow_es", "deportes")
print(sports_articles.num_rows) # output: {'train': 201}
```

List of available categories, with the repective number of examples:
```
computadoras-y-electrónica       821
salud                            804
pasatiempos                      729
cuidado-y-estilo-personal        724
carreras-y-educación             564
en-la-casa-y-el-jardín           496
finanzas-y-negocios              459
comida-y-diversión               454
relaciones                       388
mascotas-y-animales              338
filosofía-y-religión             264
arte-y-entretenimiento           254
en-el-trabajo                    211
adolescentes                     201
deportes                         201
vida-familiar                    147
viajes                           139
automóviles-y-otros-vehículos    100
días-de-fiesta-y-tradiciones      86
```

### Supported Tasks

This dataset can be used to train a model for...

- `instruction-tuning`
- `text-classification`
- `question-answering`
- `conversational`
- `summarization`

## Dataset Structure

### Data Instances

```python
{
    'category': str,
    'question': str,
    'introduction': str,
    'answers': List[str],
    'short_answers': List[str],
    'url': str,
    'num_answers': int,
    'num_refs': int,
    'expert_author': bool,
}
```

### Data Fields

- `category`: The category (from [this list](https://es.wikihow.com/Especial:CategoryListing)) to which the example belongs to.
- `label`: Numerical representation of the category, for text classification purposes.
- `question`: The article's title, which always starts with "¿Cómo ...".
- `introduction`: Introductory text that precedes the step-by-step explanation.
- `answers`: List of complete answers, with the full explanation of each step.
- `short_answers`: List of shorter answers that only contain one-sentence steps.
- `num_answers`: The number of alternative answers provided (e.g. length of `answers`).
- `num_ref`: Number of references provided in the article.
- `expert_authors`: Whether the article's author claims to be an expert on the topic or not.
- `url`: The URL address of the original article.

### Data Splits

There is only one split (`train`) that contains a total of 7,380 examples.

## Dataset Creation

### Curation Rationale

This dataset was created for language model alignment to end tasks and user preferences.

### Source Data

How-To questions with detailed step-by-step answers, retrieved from the WikiHow website.

#### Data Collection and Normalization

All articles available in September 2023 were extracted, no filters applied.

Along with the article's content, some metadata was retrieved as well.

#### Source language producers

WikiHow users. All the content is human-generated.

### Personal and Sensitive Information

The data does not include personal or sensitive information.

## Considerations

### Social Impact

The Spanish community can benefit from the high-quality data provided by this dataset.

### Bias

No post-processing steps have been applied to mitigate potential social biases.

## Additional Information

### Curators

Marc Pàmes @ Barcelona Supercomputing Center.

### License

This dataset is licensed under a **Creative Commons CC BY-NC-SA 3.0** license.

Quote from [WikiHow's Terms of Use](https://www.wikihow.com/wikiHow:Terms-of-Use):

> All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as 
> provided herein. The Creative Commons license allows such user generated text content to be used freely for personal, 
> non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of 
> the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction 
> on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants 
> each User of the Service a license to all text content that Users contribute to the Service under the terms and 
> conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully. 
> You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as 
> you wish, whether for commercial or non-commercial purposes.