"""The Stanford Sentiment Treebank translated to Portuguese.""" import csv import datasets from datasets.tasks import TextClassification _DESCRIPTION = """\ The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of their sentiment. The task is to predict the sentiment of a given sentence. We use the two-way (positive/negative) class split, and use only sentence-level labels. """ _CITATION = """\ @inproceedings{socher2013recursive, title={Recursive deep models for semantic compositionality over a sentiment treebank}, author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher}, booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing}, pages={1631--1642}, year={2013} } """ _HOMEPAGE = "https://nlp.stanford.edu/sentiment/" _DOWNLOAD_URL = "https://huggingface.co/datasets/maritaca-ai/sst2_pt/resolve/main" class SST2(datasets.GeneratorBasedBuilder): """The Stanford Sentiment Treebank translated to Portuguese.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["negativo", "positivo"])} ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/train.csv") validation_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/validation.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path, "split": "validation"} ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True ) next(csv_reader) # Skip header (first line) for row in csv_reader: idx, text, label = row yield idx, {"text": text, "label": label}