File size: 18,495 Bytes
75f46bf
 
3fdb4ba
 
 
 
 
eb4fcf5
3fdb4ba
 
 
52d24d7
3fdb4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
52d24d7
3fdb4ba
 
 
 
 
 
 
 
 
 
 
52d24d7
3fdb4ba
 
 
 
 
 
 
 
 
52d24d7
 
 
 
 
 
 
 
3fdb4ba
 
52d24d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c207349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a06b25
 
 
 
 
 
 
 
 
 
c207349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a06b25
 
 
 
 
 
 
 
 
 
c207349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d24d7
c207349
 
 
 
 
 
 
 
 
 
 
 
 
52d24d7
c207349
 
 
 
 
 
 
 
 
 
 
52d24d7
c207349
 
 
 
 
 
 
 
 
52d24d7
 
 
 
 
 
 
 
b6b3f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c207349
 
 
 
 
3fdb4ba
 
 
 
 
 
75f46bf
3fdb4ba
3051c5f
3fdb4ba
bc57ad2
3fdb4ba
5f7080d
 
bc57ad2
788519b
3fdb4ba
 
3d450a1
3fdb4ba
eb4fcf5
 
 
3fdb4ba
74be81c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b3f4c
 
 
 
 
 
 
 
 
74be81c
 
 
 
 
 
 
 
 
92f8869
74be81c
 
3fdb4ba
 
eb4fcf5
3fdb4ba
eb4fcf5
 
 
 
 
3051c5f
c207349
3051c5f
eb4fcf5
 
9d45782
eb4fcf5
 
788519b
e894d84
8b7b120
788519b
eb4fcf5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
---
license: cc-by-sa-4.0
task_categories:
- text-generation
- question-answering
language:
- en
pretty_name: AutoMathText
size_categories:
- 10B<n<100B
configs:
- config_name: web-0.50-to-1.00
  data_files: 
  - split: train
    path: 
    - data/web/0.95-1.00.jsonl
    - data/web/0.90-0.95.jsonl
    - data/web/0.85-0.90.jsonl
    - data/web/0.80-0.85.jsonl
    - data/web/0.75-0.80.jsonl
    - data/web/0.70-0.75.jsonl
    - data/web/0.65-0.70.jsonl
    - data/web/0.60-0.65.jsonl
    - data/web/0.55-0.60.jsonl
    - data/web/0.50-0.55.jsonl
  default: true
- config_name: web-0.60-to-1.00
  data_files: 
  - split: train
    path: 
    - data/web/0.95-1.00.jsonl
    - data/web/0.90-0.95.jsonl
    - data/web/0.85-0.90.jsonl
    - data/web/0.80-0.85.jsonl
    - data/web/0.75-0.80.jsonl
    - data/web/0.70-0.75.jsonl
    - data/web/0.65-0.70.jsonl
    - data/web/0.60-0.65.jsonl
- config_name: web-0.70-to-1.00
  data_files: 
  - split: train
    path: 
    - data/web/0.95-1.00.jsonl
    - data/web/0.90-0.95.jsonl
    - data/web/0.85-0.90.jsonl
    - data/web/0.80-0.85.jsonl
    - data/web/0.75-0.80.jsonl
    - data/web/0.70-0.75.jsonl
- config_name: web-0.80-to-1.00
  data_files: 
  - split: train
    path: 
    - data/web/0.95-1.00.jsonl
    - data/web/0.90-0.95.jsonl
    - data/web/0.85-0.90.jsonl
    - data/web/0.80-0.85.jsonl
- config_name: web-full
  data_files: data/web/*.jsonl
- config_name: arxiv-0.50-to-1.00
  data_files: 
  - split: train
    path:
    - data/arxiv/0.90-1.00/*.jsonl 
    - data/arxiv/0.80-0.90/*.jsonl
    - data/arxiv/0.70-0.80/*.jsonl
    - data/arxiv/0.60-0.70/*.jsonl
    - data/arxiv/0.50-0.60/*.jsonl
- config_name: arxiv-0.60-to-1.00
  data_files: 
  - split: train
    path:
    - data/arxiv/0.90-1.00/*.jsonl 
    - data/arxiv/0.80-0.90/*.jsonl
    - data/arxiv/0.70-0.80/*.jsonl
    - data/arxiv/0.60-0.70/*.jsonl
- config_name: arxiv-0.70-to-1.00
  data_files: 
  - split: train
    path:
    - data/arxiv/0.90-1.00/*.jsonl 
    - data/arxiv/0.80-0.90/*.jsonl
    - data/arxiv/0.70-0.80/*.jsonl
- config_name: arxiv-0.80-to-1.00
  data_files: 
  - split: train
    path:
    - data/arxiv/0.90-1.00/*.jsonl 
    - data/arxiv/0.80-0.90/*.jsonl
- config_name: arxiv-full
  data_files: 
  - split: train
    path: 
    - data/arxiv/0.90-1.00/*.jsonl 
    - data/arxiv/0.80-0.90/*.jsonl
    - data/arxiv/0.70-0.80/*.jsonl
    - data/arxiv/0.60-0.70/*.jsonl
    - data/arxiv/0.50-0.60/*.jsonl
    - data/arxiv/0.00-0.50/*.jsonl
- config_name: code-0.50-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/agda/0.95-1.00.jsonl
    - data/code/agda/0.90-0.95.jsonl
    - data/code/agda/0.85-0.90.jsonl
    - data/code/agda/0.80-0.85.jsonl
    - data/code/agda/0.75-0.80.jsonl
    - data/code/agda/0.70-0.75.jsonl
    - data/code/agda/0.65-0.70.jsonl
    - data/code/agda/0.60-0.65.jsonl
    - data/code/agda/0.55-0.60.jsonl
    - data/code/agda/0.50-0.55.jsonl
    - data/code/c/0.95-1.00.jsonl
    - data/code/c/0.90-0.95.jsonl
    - data/code/c/0.85-0.90.jsonl
    - data/code/c/0.80-0.85.jsonl
    - data/code/c/0.75-0.80.jsonl
    - data/code/c/0.70-0.75.jsonl
    - data/code/c/0.65-0.70.jsonl
    - data/code/c/0.60-0.65.jsonl
    - data/code/c/0.55-0.60.jsonl
    - data/code/c/0.50-0.55.jsonl
    - data/code/cpp/0.95-1.00.jsonl
    - data/code/cpp/0.90-0.95.jsonl
    - data/code/cpp/0.85-0.90.jsonl
    - data/code/cpp/0.80-0.85.jsonl
    - data/code/cpp/0.75-0.80.jsonl
    - data/code/cpp/0.70-0.75.jsonl
    - data/code/cpp/0.65-0.70.jsonl
    - data/code/cpp/0.60-0.65.jsonl
    - data/code/cpp/0.55-0.60.jsonl
    - data/code/cpp/0.50-0.55.jsonl
    - data/code/fortran/0.95-1.00.jsonl
    - data/code/fortran/0.90-0.95.jsonl
    - data/code/fortran/0.85-0.90.jsonl
    - data/code/fortran/0.80-0.85.jsonl
    - data/code/fortran/0.75-0.80.jsonl
    - data/code/fortran/0.70-0.75.jsonl
    - data/code/fortran/0.65-0.70.jsonl
    - data/code/fortran/0.60-0.65.jsonl
    - data/code/fortran/0.55-0.60.jsonl
    - data/code/fortran/0.50-0.55.jsonl
    - data/code/gap/0.95-1.00.jsonl
    - data/code/gap/0.90-0.95.jsonl
    - data/code/gap/0.85-0.90.jsonl
    - data/code/gap/0.80-0.85.jsonl
    - data/code/gap/0.75-0.80.jsonl
    - data/code/gap/0.70-0.75.jsonl
    - data/code/gap/0.65-0.70.jsonl
    - data/code/gap/0.60-0.65.jsonl
    - data/code/gap/0.55-0.60.jsonl
    - data/code/gap/0.50-0.55.jsonl
    - data/code/github-coq-train/0.95-1.00.jsonl
    - data/code/github-coq-train/0.90-0.95.jsonl
    - data/code/github-coq-train/0.85-0.90.jsonl
    - data/code/github-coq-train/0.80-0.85.jsonl
    - data/code/github-coq-train/0.75-0.80.jsonl
    - data/code/github-coq-train/0.70-0.75.jsonl
    - data/code/github-coq-train/0.65-0.70.jsonl
    - data/code/github-coq-train/0.60-0.65.jsonl
    - data/code/github-coq-train/0.55-0.60.jsonl
    - data/code/github-coq-train/0.50-0.55.jsonl
    - data/code/github-isabelle-train/0.95-1.00.jsonl
    - data/code/github-isabelle-train/0.90-0.95.jsonl
    - data/code/github-isabelle-train/0.85-0.90.jsonl
    - data/code/github-isabelle-train/0.80-0.85.jsonl
    - data/code/github-isabelle-train/0.75-0.80.jsonl
    - data/code/github-isabelle-train/0.70-0.75.jsonl
    - data/code/github-isabelle-train/0.65-0.70.jsonl
    - data/code/github-isabelle-train/0.60-0.65.jsonl
    - data/code/github-isabelle-train/0.55-0.60.jsonl
    - data/code/github-isabelle-train/0.50-0.55.jsonl
    - data/code/github-lean-train/0.95-1.00.jsonl
    - data/code/github-lean-train/0.90-0.95.jsonl
    - data/code/github-lean-train/0.85-0.90.jsonl
    - data/code/github-lean-train/0.80-0.85.jsonl
    - data/code/github-lean-train/0.75-0.80.jsonl
    - data/code/github-lean-train/0.70-0.75.jsonl
    - data/code/github-lean-train/0.65-0.70.jsonl
    - data/code/github-lean-train/0.60-0.65.jsonl
    - data/code/github-lean-train/0.55-0.60.jsonl
    - data/code/github-lean-train/0.50-0.55.jsonl
    - data/code/github-MATLAB-train/0.95-1.00.jsonl
    - data/code/github-MATLAB-train/0.90-0.95.jsonl
    - data/code/github-MATLAB-train/0.85-0.90.jsonl
    - data/code/github-MATLAB-train/0.80-0.85.jsonl
    - data/code/github-MATLAB-train/0.75-0.80.jsonl
    - data/code/github-MATLAB-train/0.70-0.75.jsonl
    - data/code/github-MATLAB-train/0.65-0.70.jsonl
    - data/code/github-MATLAB-train/0.60-0.65.jsonl
    - data/code/github-MATLAB-train/0.55-0.60.jsonl
    - data/code/github-MATLAB-train/0.50-0.55.jsonl
    - data/code/haskell/0.95-1.00.jsonl
    - data/code/haskell/0.90-0.95.jsonl
    - data/code/haskell/0.85-0.90.jsonl
    - data/code/haskell/0.80-0.85.jsonl
    - data/code/haskell/0.75-0.80.jsonl
    - data/code/haskell/0.70-0.75.jsonl
    - data/code/haskell/0.65-0.70.jsonl
    - data/code/haskell/0.60-0.65.jsonl
    - data/code/haskell/0.55-0.60.jsonl
    - data/code/haskell/0.50-0.55.jsonl
    - data/code/idris/0.95-1.00.jsonl
    - data/code/idris/0.90-0.95.jsonl
    - data/code/idris/0.85-0.90.jsonl
    - data/code/idris/0.80-0.85.jsonl
    - data/code/idris/0.75-0.80.jsonl
    - data/code/idris/0.70-0.75.jsonl
    - data/code/idris/0.65-0.70.jsonl
    - data/code/idris/0.60-0.65.jsonl
    - data/code/idris/0.55-0.60.jsonl
    - data/code/idris/0.50-0.55.jsonl
    - data/code/isa_proofsteps/0.95-1.00.jsonl
    - data/code/isa_proofsteps/0.90-0.95.jsonl
    - data/code/isa_proofsteps/0.85-0.90.jsonl
    - data/code/isa_proofsteps/0.80-0.85.jsonl
    - data/code/isa_proofsteps/0.75-0.80.jsonl
    - data/code/isa_proofsteps/0.70-0.75.jsonl
    - data/code/isa_proofsteps/0.65-0.70.jsonl
    - data/code/isa_proofsteps/0.60-0.65.jsonl
    - data/code/isa_proofsteps/0.55-0.60.jsonl
    - data/code/isa_proofsteps/0.50-0.55.jsonl
    - data/code/julia/0.95-1.00.jsonl
    - data/code/julia/0.90-0.95.jsonl
    - data/code/julia/0.85-0.90.jsonl
    - data/code/julia/0.80-0.85.jsonl
    - data/code/julia/0.75-0.80.jsonl
    - data/code/julia/0.70-0.75.jsonl
    - data/code/julia/0.65-0.70.jsonl
    - data/code/julia/0.60-0.65.jsonl
    - data/code/julia/0.55-0.60.jsonl
    - data/code/julia/0.50-0.55.jsonl
    - data/code/jupyter-notebook/0.95-1.00.jsonl
    - data/code/jupyter-notebook/0.90-0.95.jsonl
    - data/code/jupyter-notebook/0.85-0.90.jsonl
    - data/code/jupyter-notebook/0.80-0.85.jsonl
    - data/code/jupyter-notebook/0.75-0.80.jsonl
    - data/code/jupyter-notebook/0.70-0.75.jsonl
    - data/code/jupyter-notebook/0.65-0.70.jsonl
    - data/code/jupyter-notebook/0.60-0.65.jsonl
    - data/code/jupyter-notebook/0.55-0.60.jsonl
    - data/code/jupyter-notebook/0.50-0.55.jsonl
    - data/code/lean_proofsteps/0.95-1.00.jsonl
    - data/code/lean_proofsteps/0.90-0.95.jsonl
    - data/code/lean_proofsteps/0.85-0.90.jsonl
    - data/code/lean_proofsteps/0.80-0.85.jsonl
    - data/code/lean_proofsteps/0.75-0.80.jsonl
    - data/code/lean_proofsteps/0.70-0.75.jsonl
    - data/code/lean_proofsteps/0.65-0.70.jsonl
    - data/code/lean_proofsteps/0.60-0.65.jsonl
    - data/code/lean_proofsteps/0.55-0.60.jsonl
    - data/code/lean_proofsteps/0.50-0.55.jsonl
    - data/code/maple/0.95-1.00.jsonl
    - data/code/maple/0.90-0.95.jsonl
    - data/code/maple/0.85-0.90.jsonl
    - data/code/maple/0.80-0.85.jsonl
    - data/code/maple/0.75-0.80.jsonl
    - data/code/maple/0.70-0.75.jsonl
    - data/code/maple/0.65-0.70.jsonl
    - data/code/maple/0.60-0.65.jsonl
    - data/code/maple/0.55-0.60.jsonl
    - data/code/maple/0.50-0.55.jsonl
    - data/code/python/0.95-1.00.jsonl
    - data/code/python/0.90-0.95.jsonl
    - data/code/python/0.85-0.90.jsonl
    - data/code/python/0.80-0.85.jsonl
    - data/code/python/0.75-0.80.jsonl
    - data/code/python/0.70-0.75.jsonl
    - data/code/python/0.65-0.70.jsonl
    - data/code/python/0.60-0.65.jsonl
    - data/code/python/0.55-0.60.jsonl
    - data/code/python/0.50-0.55.jsonl
    - data/code/r/0.95-1.00.jsonl
    - data/code/r/0.90-0.95.jsonl
    - data/code/r/0.85-0.90.jsonl
    - data/code/r/0.80-0.85.jsonl
    - data/code/r/0.75-0.80.jsonl
    - data/code/r/0.70-0.75.jsonl
    - data/code/r/0.65-0.70.jsonl
    - data/code/r/0.60-0.65.jsonl
    - data/code/r/0.55-0.60.jsonl
    - data/code/r/0.50-0.55.jsonl
    - data/code/tex/0.95-1.00.jsonl
    - data/code/tex/0.90-0.95.jsonl
    - data/code/tex/0.85-0.90.jsonl
    - data/code/tex/0.80-0.85.jsonl
    - data/code/tex/0.75-0.80.jsonl
    - data/code/tex/0.70-0.75.jsonl
    - data/code/tex/0.65-0.70.jsonl
    - data/code/tex/0.60-0.65.jsonl
    - data/code/tex/0.55-0.60.jsonl
    - data/code/tex/0.50-0.55.jsonl
- config_name: code-python-0.50-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/python/0.95-1.00.jsonl
    - data/code/python/0.90-0.95.jsonl
    - data/code/python/0.85-0.90.jsonl
    - data/code/python/0.80-0.85.jsonl
    - data/code/python/0.75-0.80.jsonl
    - data/code/python/0.70-0.75.jsonl
    - data/code/python/0.65-0.70.jsonl
    - data/code/python/0.60-0.65.jsonl
    - data/code/python/0.55-0.60.jsonl
    - data/code/python/0.50-0.55.jsonl
- config_name: code-python-0.60-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/python/0.95-1.00.jsonl
    - data/code/python/0.90-0.95.jsonl
    - data/code/python/0.85-0.90.jsonl
    - data/code/python/0.80-0.85.jsonl
    - data/code/python/0.75-0.80.jsonl
    - data/code/python/0.70-0.75.jsonl
    - data/code/python/0.65-0.70.jsonl
    - data/code/python/0.60-0.65.jsonl
- config_name: code-python-0.70-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/python/0.95-1.00.jsonl
    - data/code/python/0.90-0.95.jsonl
    - data/code/python/0.85-0.90.jsonl
    - data/code/python/0.80-0.85.jsonl
    - data/code/python/0.75-0.80.jsonl
    - data/code/python/0.70-0.75.jsonl
- config_name: code-python-0.80-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/python/0.95-1.00.jsonl
    - data/code/python/0.90-0.95.jsonl
    - data/code/python/0.85-0.90.jsonl
    - data/code/python/0.80-0.85.jsonl
- config_name: code-jupyter-notebook-0.50-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/jupyter-notebook/0.95-1.00.jsonl
    - data/code/jupyter-notebook/0.90-0.95.jsonl
    - data/code/jupyter-notebook/0.85-0.90.jsonl
    - data/code/jupyter-notebook/0.80-0.85.jsonl
    - data/code/jupyter-notebook/0.75-0.80.jsonl
    - data/code/jupyter-notebook/0.70-0.75.jsonl
    - data/code/jupyter-notebook/0.65-0.70.jsonl
    - data/code/jupyter-notebook/0.60-0.65.jsonl
    - data/code/jupyter-notebook/0.55-0.60.jsonl
    - data/code/jupyter-notebook/0.50-0.55.jsonl
- config_name: code-jupyter-notebook-0.60-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/jupyter-notebook/0.95-1.00.jsonl
    - data/code/jupyter-notebook/0.90-0.95.jsonl
    - data/code/jupyter-notebook/0.85-0.90.jsonl
    - data/code/jupyter-notebook/0.80-0.85.jsonl
    - data/code/jupyter-notebook/0.75-0.80.jsonl
    - data/code/jupyter-notebook/0.70-0.75.jsonl
    - data/code/jupyter-notebook/0.65-0.70.jsonl
    - data/code/jupyter-notebook/0.60-0.65.jsonl
- config_name: code-jupyter-notebook-0.70-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/jupyter-notebook/0.95-1.00.jsonl
    - data/code/jupyter-notebook/0.90-0.95.jsonl
    - data/code/jupyter-notebook/0.85-0.90.jsonl
    - data/code/jupyter-notebook/0.80-0.85.jsonl
    - data/code/jupyter-notebook/0.75-0.80.jsonl
    - data/code/jupyter-notebook/0.70-0.75.jsonl
- config_name: code-jupyter-notebook-0.80-to-1.00
  data_files: 
  - split: train
    path: 
    - data/code/jupyter-notebook/0.95-1.00.jsonl
    - data/code/jupyter-notebook/0.90-0.95.jsonl
    - data/code/jupyter-notebook/0.85-0.90.jsonl
    - data/code/jupyter-notebook/0.80-0.85.jsonl
- config_name: code-full
  data_files: 
  - split: train
    path: 
    - data/code/*/*.jsonl
tags:
- mathematical-reasoning
- reasoning
- finetuning
- pretraining
- llm
---

# AutoMathText

**AutoMathText** is an extensive and carefully curated dataset encompassing around **200 GB** of mathematical texts. It's a compilation sourced from a diverse range of platforms including various websites, arXiv, and GitHub (OpenWebMath, RedPajama, Algebraic Stack). This rich repository has been **autonomously selected (labeled) by the state-of-the-art open-source language model**, Qwen-72B. Each piece of content in the dataset is assigned **a score `lm_q1q2_score` within the range of [0, 1]**, reflecting its relevance, quality and educational value in the context of mathematical intelligence.

GitHub homepage: https://github.com/yifanzhang-pro/AutoMathText

ArXiv paper: https://arxiv.org/abs/2402.07625

## Objective

The primary aim of the **AutoMathText** dataset is to provide a comprehensive and reliable resource for a wide array of users - from academic researchers and educators to AI practitioners and mathematics enthusiasts. This dataset is particularly geared towards:

- Facilitating advanced research in **the intersection of mathematics and artificial intelligence**.
- Serving as an educational tool for **learning and teaching complex mathematical concepts**.
- Providing **a foundation for developing and training AI models** specialized in processing and understanding **mathematical content**.

## Configs

```YAML
configs:
  - config_name: web-0.50-to-1.00
    data_files:
      - split: train
        path:
          - data/web/0.95-1.00.jsonl
          - data/web/0.90-0.95.jsonl
          - ...
          - data/web/0.50-0.55.jsonl
    default: true
  - config_name: web-0.60-to-1.00
  - config_name: web-0.70-to-1.00
  - config_name: web-0.80-to-1.00
  - config_name: web-full
    data_files: data/web/*.jsonl
  - config_name: arxiv-0.50-to-1.00
    data_files:
      - split: train
        path:
          - data/arxiv/0.90-1.00/*.jsonl
          - ...
          - data/arxiv/0.50-0.60/*.jsonl
  - config_name: arxiv-0.60-to-1.00
  - config_name: arxiv-0.70-to-1.00
  - config_name: arxiv-0.80-to-1.00
  - config_name: arxiv-full
    data_files: data/arxiv/*/*.jsonl
  - config_name: code-0.50-to-1.00
    data_files:
      - split: train
        path:
          - data/code/*/0.95-1.00.jsonl
          - ...
          - data/code/*/0.50-0.55.jsonl
  - config_name: code-python-0.50-to-1.00
      - split: train
        path:
          - data/code/python/0.95-1.00.jsonl
          - ...
          - data/code/python/0.50-0.55.jsonl
  - config_name: code-python-0.60-to-1.00
  - config_name: code-python-0.70-to-1.00
  - config_name: code-python-0.80-to-1.00
  - config_name: code-jupyter-notebook-0.50-to-1.00
      - split: train
        path:
          - data/code/jupyter-notebook/0.95-1.00.jsonl
          - ...
          - data/code/jupyter-notebook/0.50-0.55.jsonl
  - config_name: code-jupyter-notebook-0.60-to-1.00
  - config_name: code-jupyter-notebook-0.70-to-1.00
  - config_name: code-jupyter-notebook-0.80-to-1.00
  - config_name: code-full
    data_files: data/code/*/*.jsonl
```

How to load data:

```python
from datasets import load_dataset

ds = load_dataset("math-ai/AutoMathText", "web-0.50-to-1.00") # or any valid config_name
```

## Features

- **Volume**: Approximately 200 GB of text data (in natural language and programming language).
- **Content**: A diverse collection of mathematical texts, including but not limited to research papers, educational articles, and code documentation.
- **Labeling**: Every text is **scored** by Qwen-72B, a sophisticated language model, ensuring a high standard of relevance and accuracy.
- **Scope**: Covers a wide spectrum of mathematical topics, making it suitable for various applications in advanced research and education.

## References

- OpenWebMath [[link]](https://huggingface.co/datasets/open-web-math/open-web-math)
- RedPajama [[link]](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
- Algebraick Stack [[link]](https://huggingface.co/datasets/EleutherAI/proof-pile-2) (a subset of Proof-Pile-2)

## Citation 
We appreciate your use of **AutoMathText** in your work. If you find this repository helpful, please consider citing it and star this repo. Feel free to contact zhangyif21@mails.tsinghua.edu.cn or open an issue if you have any questions (GitHub homepage: https://github.com/yifanzhang-pro/AutoMathText).

```bibtex
@article{zhang2024automathtext,
      title={Autonomous Data Selection with Language Models for Mathematical Texts},
      author={Zhang, Yifan and Luo, Yifan and Yuan, Yang and Yao, Andrew Chi-Chih},
      journal={arXiv preprint arXiv:2402.07625},
      year={2024},
}
```