File size: 3,329 Bytes
2855028
 
 
 
92dd194
fbb5670
 
 
 
 
 
2855028
 
92dd194
2855028
 
 
92dd194
2855028
 
 
 
92dd194
 
 
2855028
 
 
fbb5670
 
87ccba2
 
2855028
92dd194
2855028
92dd194
 
 
2855028
 
 
 
 
 
fbb5670
2855028
87ccba2
2855028
fbb5670
 
 
87ccba2
 
 
 
 
 
fbb5670
2855028
87ccba2
 
fbb5670
87ccba2
 
 
 
2855028
92dd194
 
2855028
92dd194
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import datasets
import zstandard as zstd
import io


class LichessConfig(datasets.BuilderConfig):
    def __init__(self, features, **kwargs):
        super(LichessConfig, self).__init__(**kwargs)
        self.features = features


class Lichess(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = LichessConfig
    BUILDER_CONFIGS = [LichessConfig(features=["WhiteElo",
                                               "BlackElo",
                                               "fens",
                                               "moves",
                                               "scores"])]

    def _info(self):
        features_dict = {feature: datasets.Value("uint16") for feature in self.config.features}

        features_dict["fens"] = datasets.Value("null")
        features_dict["moves"] = datasets.Value("null")
        features_dict["scores"] = datasets.Value("null")

        info = datasets.DatasetInfo(datasets.Features(features_dict))
        return info

    def _get_filepaths(self):
        months = ["01", "02", "03", "04", "05", "06",
                  "07", "08", "09", "10", "11", "12"]
        shards = ["0", "1", "2", "3"]
        filepaths = ["fen/2023/" + m for m in months]
        
        paths = []
        for shard in shards:
            paths.extend([filepath + "/" + shard + "_fen.zst" for filepath in filepaths])
        return paths

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        filepaths = self._get_filepaths()
        downloaded_files = dl_manager.download(filepaths)
        generator = datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                            gen_kwargs={'filepaths': downloaded_files})
        return [generator]
    
    def _generate_examples(self, filepaths):
        """ Each worker receives a random set of the .zst files (the raw dataset).
            Each worker will cycle through its set of files. They read a single game
            from file 1, then a single game from file 2, etc. ...
            The purpose is to create batches that contain games from a diverse mix
            of time periods. -> Reduces distribution shift.
        """
        files =          [open(filepath, "rb")     for filepath in filepaths]
        dctxs =          [zstd.ZstdDecompressor()  for file in files]
        stream_readers = [dctx.stream_reader(file) for dctx, file in zip(dctxs, files)]
        pgns =           [io.TextIOWrapper(sr)     for sr in stream_readers]

        n = 0
        n_files = len(files)
        # approximate number of positions per .zst file
        n_positions = 2 * 10**6
        while n <= n_files * n_positions:
            # cycle through the different shards
            pgn = pgns[n % n_files]

            elos = pgn.readline()
            game = pgn.readline()

            if game:
                white_elo, black_elo = elos.split(" ")
                fens, moves, scores = game.split(";")
                _id = n
                n += 1
                yield _id, {"WhiteElo": int(white_elo),
                            "BlackElo": int(black_elo),
                            "fens": fens.split(","),
                            "moves": moves.split(","),
                            "scores": scores.rstrip("\n").split(",")}
            else:
                break