mauricett commited on
Commit
6e4503c
1 Parent(s): 315cb18

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -20
README.md CHANGED
@@ -58,19 +58,27 @@ Use `datasets.shuffle()` to properly shuffle the dataset. Use `datasets.map()` t
58
  ```py
59
  # Shuffle and apply your own preprocessing.
60
  dataset = dataset.shuffle(seed=42)
61
- dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer})
 
62
  ```
63
 
64
- For a quick working example, you can try to use the following:
65
  ```py
 
66
  class Tokenizer:
 
 
67
  def __call__(self, example):
68
  return example
69
 
70
- def preprocess(example, useful_fn):
 
 
 
 
71
  # Get number of moves made in the game.
72
  max_ply = len(example['moves'])
73
- pick_random_move = random.randint(0, max_ply)
74
 
75
  # Get the FEN, move and score for our random choice.
76
  fen = example['fens'][pick_random_move]
@@ -78,16 +86,19 @@ def preprocess(example, useful_fn):
78
  score = example['scores'][pick_random_move]
79
 
80
  # Transform data into the format of your choice.
81
- example['fens'] = useful_fn(fen)
82
- example['moves'] = useful_fn(move)
83
- example['scores'] = useful_fn(score)
84
  return example
 
 
85
  ```
86
  <br>
87
  <br>
88
  <br>
89
 
90
  # Complete Example
 
91
 
92
  ```py
93
  import random
@@ -107,19 +118,19 @@ def score_fn(score):
107
 
108
  def preprocess(example, tokenizer, score_fn):
109
  # Get number of moves made in the game.
110
- max_ply = len(example['moves'])
111
- pick_random_move = random.randint(0, max_ply-1)
112
-
113
- # Get the FEN, move and score for our random choice.
114
- fen = example['fens'][pick_random_move]
115
- move = example['moves'][pick_random_move]
116
- score = example['scores'][pick_random_move]
117
-
118
- # Transform data into the format of your choice.
119
- example['fens'] = tokenizer(fen)
120
- example['moves'] = tokenizer(move)
121
- example['scores'] = score_fn(score)
122
- return example
123
 
124
 
125
  tokenizer = Tokenizer()
 
58
  ```py
59
  # Shuffle and apply your own preprocessing.
60
  dataset = dataset.shuffle(seed=42)
61
+ dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
62
+ 'score_fn': score_fn})
63
  ```
64
 
65
+ In this example, we're passing two additional arguments to the preprocess function in dataset.map(). You can use the following mock examples for inspiration:
66
  ```py
67
+ # A mock tokenizer and functions for demonstration.
68
  class Tokenizer:
69
+ def __init__(self):
70
+ pass
71
  def __call__(self, example):
72
  return example
73
 
74
+ # Transform Stockfish score and terminal outcomes.
75
+ def score_fn(score):
76
+ return score
77
+
78
+ def preprocess(example, tokenizer, score_fn):
79
  # Get number of moves made in the game.
80
  max_ply = len(example['moves'])
81
+ pick_random_move = random.randint(0, max_ply-1)
82
 
83
  # Get the FEN, move and score for our random choice.
84
  fen = example['fens'][pick_random_move]
 
86
  score = example['scores'][pick_random_move]
87
 
88
  # Transform data into the format of your choice.
89
+ example['fens'] = tokenizer(fen)
90
+ example['moves'] = tokenizer(move)
91
+ example['scores'] = score_fn(score)
92
  return example
93
+
94
+ tokenizer = Tokenizer()
95
  ```
96
  <br>
97
  <br>
98
  <br>
99
 
100
  # Complete Example
101
+ You can try pasting this into Colab and it should work fine. Have fun!
102
 
103
  ```py
104
  import random
 
118
 
119
  def preprocess(example, tokenizer, score_fn):
120
  # Get number of moves made in the game.
121
+ max_ply = len(example['moves'])
122
+ pick_random_move = random.randint(0, max_ply-1)
123
+
124
+ # Get the FEN, move and score for our random choice.
125
+ fen = example['fens'][pick_random_move]
126
+ move = example['moves'][pick_random_move]
127
+ score = example['scores'][pick_random_move]
128
+
129
+ # Transform data into the format of your choice.
130
+ example['fens'] = tokenizer(fen)
131
+ example['moves'] = tokenizer(move)
132
+ example['scores'] = score_fn(score)
133
+ return example
134
 
135
 
136
  tokenizer = Tokenizer()