--- dataset_info: features: - name: tokens sequence: string - name: tags sequence: class_label: names: '0': O '1': r0:arg0|agt '2': r0:arg0|cau '3': r0:arg0|exp '4': r0:arg0|pat '5': r0:arg0|src '6': r0:arg1|ext '7': r0:arg1|loc '8': r0:arg1|pat '9': r0:arg1|tem '10': r0:arg2|atr '11': r0:arg2|ben '12': r0:arg2|efi '13': r0:arg2|exp '14': r0:arg2|ext '15': r0:arg2|ins '16': r0:arg2|loc '17': r0:arg2|tem '18': r0:arg3|ben '19': r0:arg3|ein '20': r0:arg3|exp '21': r0:arg3|fin '22': r0:arg3|ins '23': r0:arg3|loc '24': r0:arg3|ori '25': r0:arg4|des '26': r0:arg4|efi '27': r0:argM|LOC '28': r0:argM|adv '29': r0:argM|atr '30': r0:argM|cau '31': r0:argM|ext '32': r0:argM|fin '33': r0:argM|ins '34': r0:argM|loc '35': r0:argM|mnr '36': r0:argM|tmp '37': r0:root '38': r10:arg0|agt '39': r10:arg1|pat '40': r10:arg1|tem '41': r10:arg2|atr '42': r10:arg2|ben '43': r10:arg2|efi '44': r10:arg2|loc '45': r10:arg3|ben '46': r10:arg4|des '47': r10:argM|adv '48': r10:argM|atr '49': r10:argM|fin '50': r10:argM|loc '51': r10:argM|tmp '52': r10:root '53': r11:arg0|agt '54': r11:arg0|cau '55': r11:arg1|pat '56': r11:arg1|tem '57': r11:arg2|atr '58': r11:arg2|ben '59': r11:arg2|loc '60': r11:arg4|des '61': r11:argM|adv '62': r11:argM|loc '63': r11:argM|mnr '64': r11:argM|tmp '65': r11:root '66': r12:arg0|agt '67': r12:arg0|cau '68': r12:arg1|pat '69': r12:arg1|tem '70': r12:arg2|atr '71': r12:argM|adv '72': r12:argM|cau '73': r12:argM|loc '74': r12:argM|tmp '75': r12:root '76': r13:arg0|agt '77': r13:arg0|cau '78': r13:arg1|pat '79': r13:arg1|tem '80': r13:arg2|atr '81': r13:arg2|ben '82': r13:argM|adv '83': r13:argM|atr '84': r13:argM|loc '85': r13:root '86': r14:arg0|agt '87': r14:arg1|pat '88': r14:arg2|ben '89': r14:argM|adv '90': r14:argM|loc '91': r14:argM|mnr '92': r14:root '93': r15:arg0|cau '94': r15:arg1|tem '95': r15:arg2|atr '96': r15:arg3|ben '97': r15:root '98': r16:arg0|agt '99': r16:arg0|cau '100': r16:arg1|pat '101': r16:arg1|tem '102': r16:argM|loc '103': r16:argM|tmp '104': r16:root '105': r1:arg0|agt '106': r1:arg0|cau '107': r1:arg0|exp '108': r1:arg0|src '109': r1:arg1|ext '110': r1:arg1|loc '111': r1:arg1|pat '112': r1:arg1|tem '113': r1:arg2|atr '114': r1:arg2|ben '115': r1:arg2|efi '116': r1:arg2|exp '117': r1:arg2|ext '118': r1:arg2|ins '119': r1:arg2|loc '120': r1:arg3|atr '121': r1:arg3|ben '122': r1:arg3|des '123': r1:arg3|ein '124': r1:arg3|exp '125': r1:arg3|fin '126': r1:arg3|ins '127': r1:arg3|ori '128': r1:arg4|des '129': r1:arg4|efi '130': r1:argM|adv '131': r1:argM|atr '132': r1:argM|cau '133': r1:argM|ext '134': r1:argM|fin '135': r1:argM|ins '136': r1:argM|loc '137': r1:argM|mnr '138': r1:argM|tmp '139': r1:root '140': r2:arg0|agt '141': r2:arg0|cau '142': r2:arg0|exp '143': r2:arg0|src '144': r2:arg1|ext '145': r2:arg1|loc '146': r2:arg1|pat '147': r2:arg1|tem '148': r2:arg2|atr '149': r2:arg2|ben '150': r2:arg2|efi '151': r2:arg2|exp '152': r2:arg2|ext '153': r2:arg2|ins '154': r2:arg2|loc '155': r2:arg3|atr '156': r2:arg3|ben '157': r2:arg3|ein '158': r2:arg3|exp '159': r2:arg3|fin '160': r2:arg3|loc '161': r2:arg3|ori '162': r2:arg4|des '163': r2:arg4|efi '164': r2:argM|adv '165': r2:argM|atr '166': r2:argM|cau '167': r2:argM|ext '168': r2:argM|fin '169': r2:argM|ins '170': r2:argM|loc '171': r2:argM|mnr '172': r2:argM|tmp '173': r2:root '174': r3:arg0|agt '175': r3:arg0|cau '176': r3:arg0|exp '177': r3:arg0|src '178': r3:arg1|ext '179': r3:arg1|loc '180': r3:arg1|pat '181': r3:arg1|tem '182': r3:arg2|atr '183': r3:arg2|ben '184': r3:arg2|efi '185': r3:arg2|exp '186': r3:arg2|ext '187': r3:arg2|ins '188': r3:arg2|loc '189': r3:arg2|tem '190': r3:arg3|ben '191': r3:arg3|ein '192': r3:arg3|fin '193': r3:arg3|loc '194': r3:arg3|ori '195': r3:arg4|des '196': r3:arg4|efi '197': r3:argM|adv '198': r3:argM|atr '199': r3:argM|cau '200': r3:argM|ext '201': r3:argM|fin '202': r3:argM|ins '203': r3:argM|loc '204': r3:argM|mnr '205': r3:argM|tmp '206': r3:root '207': r4:arg0|agt '208': r4:arg0|cau '209': r4:arg0|exp '210': r4:arg0|src '211': r4:arg1|ext '212': r4:arg1|loc '213': r4:arg1|pat '214': r4:arg1|tem '215': r4:arg2|atr '216': r4:arg2|ben '217': r4:arg2|efi '218': r4:arg2|exp '219': r4:arg2|ext '220': r4:arg2|ins '221': r4:arg2|loc '222': r4:arg3|ben '223': r4:arg3|ein '224': r4:arg3|exp '225': r4:arg3|fin '226': r4:arg3|ori '227': r4:arg4|des '228': r4:arg4|efi '229': r4:argM|adv '230': r4:argM|atr '231': r4:argM|cau '232': r4:argM|ext '233': r4:argM|fin '234': r4:argM|ins '235': r4:argM|loc '236': r4:argM|mnr '237': r4:argM|tmp '238': r4:root '239': r5:arg0|agt '240': r5:arg0|cau '241': r5:arg1|ext '242': r5:arg1|loc '243': r5:arg1|pat '244': r5:arg1|tem '245': r5:arg2|atr '246': r5:arg2|ben '247': r5:arg2|efi '248': r5:arg2|exp '249': r5:arg2|ext '250': r5:arg2|loc '251': r5:arg3|ben '252': r5:arg3|ein '253': r5:arg3|fin '254': r5:arg3|ins '255': r5:arg3|ori '256': r5:arg4|des '257': r5:arg4|efi '258': r5:argM|adv '259': r5:argM|atr '260': r5:argM|cau '261': r5:argM|ext '262': r5:argM|fin '263': r5:argM|loc '264': r5:argM|mnr '265': r5:argM|tmp '266': r5:root '267': r6:arg0|agt '268': r6:arg0|cau '269': r6:arg1|loc '270': r6:arg1|pat '271': r6:arg1|tem '272': r6:arg2|atr '273': r6:arg2|ben '274': r6:arg2|efi '275': r6:arg2|exp '276': r6:arg2|ext '277': r6:arg2|loc '278': r6:arg3|ben '279': r6:arg3|ori '280': r6:arg4|des '281': r6:argM|adv '282': r6:argM|atr '283': r6:argM|cau '284': r6:argM|ext '285': r6:argM|fin '286': r6:argM|loc '287': r6:argM|mnr '288': r6:argM|tmp '289': r6:root '290': r7:arg0|agt '291': r7:arg0|cau '292': r7:arg1|loc '293': r7:arg1|pat '294': r7:arg1|tem '295': r7:arg2|atr '296': r7:arg2|ben '297': r7:arg2|efi '298': r7:arg2|loc '299': r7:arg3|ben '300': r7:arg3|exp '301': r7:arg3|fin '302': r7:arg3|ori '303': r7:arg4|des '304': r7:argM|adv '305': r7:argM|atr '306': r7:argM|cau '307': r7:argM|fin '308': r7:argM|ins '309': r7:argM|loc '310': r7:argM|mnr '311': r7:argM|tmp '312': r7:root '313': r8:arg0|agt '314': r8:arg0|cau '315': r8:arg0|src '316': r8:arg1|pat '317': r8:arg1|tem '318': r8:arg2|atr '319': r8:arg2|ben '320': r8:arg2|ext '321': r8:arg2|loc '322': r8:arg3|ori '323': r8:arg4|des '324': r8:argM|adv '325': r8:argM|cau '326': r8:argM|ext '327': r8:argM|fin '328': r8:argM|loc '329': r8:argM|mnr '330': r8:argM|tmp '331': r8:root '332': r9:arg0|agt '333': r9:arg0|cau '334': r9:arg1|pat '335': r9:arg1|tem '336': r9:arg2|atr '337': r9:arg2|ben '338': r9:arg2|ins '339': r9:arg2|loc '340': r9:arg4|des '341': r9:argM|adv '342': r9:argM|cau '343': r9:argM|fin '344': r9:argM|loc '345': r9:argM|mnr '346': r9:argM|tmp '347': r9:root - name: ids dtype: int64 splits: - name: train num_bytes: 7401018 num_examples: 14328 - name: test num_bytes: 876498 num_examples: 1724 - name: dev num_bytes: 870737 num_examples: 1654 download_size: 2426369 dataset_size: 9148253 license: cc-by-nc-sa-3.0 task_categories: - token-classification language: - es pretty_name: SpanishSRL size_categories: - 10K>> dataset['train'].features['tags'].feature.names ``` ### Data Fields - `tokens`: a list of strings - `tags`: a list of integers - `ids`: a sentence id, as an integer ### Data Splits The data is split into a development, training, and test set. The final structure and split sizes are as follow: ``` DatasetDict({ dev: Dataset({ features: ['tokens', 'tags', 'ids'], num_rows: 1654 }) test: Dataset({ features: ['tokens', 'tags', 'ids'], num_rows: 1724 }) train: Dataset({ features: ['tokens', 'tags', 'ids'], num_rows: 14328 }) }) ``` ## Dataset Creation ### Curation Rationale SpanishSRL was built to test the verbal indexing method as introduced in the publication listed in the citation against an established baseline. ### Source Data #### Initial Data Collection and Normalization Data was collected from the [2009 CoNLL Shared Task](https://ufal.mff.cuni.cz/conll2009-st/). For more information, please refer to the publication listed in the citation. ## Additional Information ### Dataset Curators The dataset was created by Micaella Bruton, as part of her Master's thesis. ### Citation Information ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```