File size: 4,762 Bytes
1ae129a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""ToQAD: The Turkish Question Answering Dataset."""


import json

import datasets
from datasets.tasks import QuestionAnsweringExtractive


logger = datasets.logging.get_logger(__name__)


_CITATION = """
"""

_DESCRIPTION = """\
    Turkish Question Answering Dataset - Base
"""

_URL = "https://raw.githubusercontent.com/meetyildiz/toqad/main/data/"
_URLS = {
    "train": _URL + "toqad-aug-train.json",
    "dev": _URL + "toqad-dev.json",
    "test": _URL + "toqad-test.json",
}

class ToqadConfig(datasets.BuilderConfig):
    """BuilderConfig for Toqad."""

    def __init__(self, **kwargs):
        """BuilderConfig for Toqad.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ToqadConfig, self).__init__(**kwargs)


class Toqad(datasets.GeneratorBasedBuilder):
    """Toqad: The Stanford Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        ToqadConfig(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://github.com/meetyildiz/toqad",
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            
            for document in squad["data"]: 
                for par in document['paragraphs']:
                    for qas in par['qas']:
                        if len(qas['answers']) == 0: #no answer
                            ans_start = -1
                            ans_end = -1
                            ans_text = ""
                        else:
                            ans_start = int(qas['answers'][0]['answer_start'])
                            ans_end = ans_start + len(qas['answers'][0]['text'])
                            ans_text = qas['answers'][0]['text']

                        ex = {
                            "id": qas["id"],
                            "title": document["title"],
                            "context": par['context'],
                            "question": qas['question'],
                            "answers": {
                                "text": [ans_text],
                                "answer_start": [ans_start],
                            },
                        }

                        yield key, ex
                        key += 1