|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SQUAD: The Stanford Question Answering Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Turkish Question Answering Dataset - Base |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/meetyildiz/toqad/main/data/" |
|
_URLS = { |
|
"train": _URL + "toqad-train.json", |
|
"dev": _URL + "toqad-dev.json", |
|
"test": _URL + "toqad-test.json", |
|
} |
|
|
|
class ToqadConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Toqad.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Toqad. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ToqadConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Toqad(datasets.GeneratorBasedBuilder): |
|
"""Toqad: The Stanford Question Answering Dataset. Version 1.1.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ToqadConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://github.com/meetyildiz/toqad", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
squad = json.load(f) |
|
|
|
for document in squad["data"]: |
|
for par in document['paragraphs']: |
|
for qas in par['qas']: |
|
if len(qas['answers']) == 0: |
|
ans_start = -1 |
|
ans_end = -1 |
|
ans_text = "" |
|
else: |
|
ans_start = int(qas['answers'][0]['answer_start']) |
|
ans_end = ans_start + len(qas['answers'][0]['text']) |
|
ans_text = qas['answers'][0]['text'] |
|
|
|
ex = { |
|
"id": qas["id"], |
|
"title": document["title"], |
|
"context": par['context'], |
|
"question": qas['question'], |
|
"answers": { |
|
"text": [ans_text], |
|
"answer_start": [ans_start], |
|
}, |
|
} |
|
|
|
yield key, ex |
|
key += 1 |
|
|