# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SQUAD: The Stanford Question Answering Dataset.""" import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """\ Turkish Question Answering Dataset - Base """ _URL = "https://raw.githubusercontent.com/meetyildiz/toqad/main/data/" _URLS = { "train": _URL + "toqad-train.json", "dev": _URL + "toqad-dev.json", "test": _URL + "toqad-test.json", } class ToqadConfig(datasets.BuilderConfig): """BuilderConfig for Toqad.""" def __init__(self, **kwargs): """BuilderConfig for Toqad. Args: **kwargs: keyword arguments forwarded to super. """ super(ToqadConfig, self).__init__(**kwargs) class Toqad(datasets.GeneratorBasedBuilder): """Toqad: The Stanford Question Answering Dataset. Version 1.1.""" BUILDER_CONFIGS = [ ToqadConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://github.com/meetyildiz/toqad", citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: squad = json.load(f) for document in squad["data"]: for par in document['paragraphs']: for qas in par['qas']: if len(qas['answers']) == 0: #no answer ans_start = -1 ans_end = -1 ans_text = "" else: ans_start = int(qas['answers'][0]['answer_start']) ans_end = ans_start + len(qas['answers'][0]['text']) ans_text = qas['answers'][0]['text'] ex = { "id": qas["id"], "title": document["title"], "context": par['context'], "question": qas['question'], "answers": { "text": [ans_text], "answer_start": [ans_start], }, } yield key, ex key += 1