Datasets:

Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
License:
File size: 21,617 Bytes
9c52d99
 
 
 
 
6a13b3b
9c52d99
6a13b3b
9c52d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e8ba5
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2429
 
 
6a3ebf4
 
 
 
 
9c52d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111de4
9c52d99
 
 
 
 
 
1111de4
9c52d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ebf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
- extended|yelp_review_full
- extended|other-amazon_reviews_ucsd
- extended|other-tripadvisor_reviews
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: subjqa
pretty_name: subjqa
dataset_info:
- config_name: books
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 2473128
    num_examples: 1314
  - name: test
    num_bytes: 649413
    num_examples: 345
  - name: validation
    num_bytes: 460214
    num_examples: 256
  download_size: 11384657
  dataset_size: 3582755
- config_name: electronics
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 2123648
    num_examples: 1295
  - name: test
    num_bytes: 608899
    num_examples: 358
  - name: validation
    num_bytes: 419042
    num_examples: 255
  download_size: 11384657
  dataset_size: 3151589
- config_name: grocery
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 1317488
    num_examples: 1124
  - name: test
    num_bytes: 721827
    num_examples: 591
  - name: validation
    num_bytes: 254432
    num_examples: 218
  download_size: 11384657
  dataset_size: 2293747
- config_name: movies
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 2986348
    num_examples: 1369
  - name: test
    num_bytes: 620513
    num_examples: 291
  - name: validation
    num_bytes: 589663
    num_examples: 261
  download_size: 11384657
  dataset_size: 4196524
- config_name: restaurants
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 1823331
    num_examples: 1400
  - name: test
    num_bytes: 335453
    num_examples: 266
  - name: validation
    num_bytes: 349354
    num_examples: 267
  download_size: 11384657
  dataset_size: 2508138
- config_name: tripadvisor
  features:
  - name: domain
    dtype: string
  - name: nn_mod
    dtype: string
  - name: nn_asp
    dtype: string
  - name: query_mod
    dtype: string
  - name: query_asp
    dtype: string
  - name: q_reviews_id
    dtype: string
  - name: question_subj_level
    dtype: int64
  - name: ques_subj_score
    dtype: float32
  - name: is_ques_subjective
    dtype: bool
  - name: review_id
    dtype: string
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: text
      dtype: string
    - name: answer_start
      dtype: int32
    - name: answer_subj_level
      dtype: int64
    - name: ans_subj_score
      dtype: float32
    - name: is_ans_subjective
      dtype: bool
  splits:
  - name: train
    num_bytes: 1575021
    num_examples: 1165
  - name: test
    num_bytes: 689508
    num_examples: 512
  - name: validation
    num_bytes: 312645
    num_examples: 230
  download_size: 11384657
  dataset_size: 2577174
---

# Dataset Card for subjqa

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** https://github.com/lewtun/SubjQA
- **Paper:** https://arxiv.org/abs/2004.14283
- **Point of Contact:** [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com)

### Dataset Summary

SubjQA is a question answering dataset that focuses on subjective (as opposed to factual) questions and answers. The dataset consists of roughly **10,000** questions over reviews from 6 different domains: books, movies, grocery, electronics, TripAdvisor (i.e. hotels), and restaurants. Each question is paired with a review and a span is highlighted as the answer to the question (with some questions having no answer). Moreover, both questions and answer spans are assigned a _subjectivity_ label by annotators. Questions such as _"How much does this product weigh?"_ is a factual question (i.e., low subjectivity), while "Is this easy to use?" is a subjective question (i.e., high subjectivity).

In short, SubjQA provides a setting to study how well extractive QA systems perform on finding answer that are less factual and to what extent modeling subjectivity can improve the performance of QA systems.

_Note:_ Much of the information provided on this dataset card is taken from the README provided by the authors in their GitHub repository ([link](https://github.com/megagonlabs/SubjQA)).

To load a domain with `datasets` you can run the following:

```python
from datasets import load_dataset

# other options include: electronics, grocery, movies, restaurants, tripadvisor
dataset = load_dataset("subjqa", "books")
```

### Supported Tasks and Leaderboards

* `question-answering`: The dataset can be used to train a model for extractive question answering, which involves questions whose answer can be identified as a span of text in a review. Success on this task is typically measured by achieving a high Exact Match or F1 score. The BERT model that is first fine-tuned on SQuAD 2.0 and then further fine-tuned on SubjQA achieves the scores shown in the figure below.

![scores](https://user-images.githubusercontent.com/26859204/117199763-e02e1100-adea-11eb-9198-f3190329a588.png)


### Languages

The text in the dataset is in English and the associated BCP-47 code is `en`.

## Dataset Structure

### Data Instances

An example from `books` domain is shown below:

```json
{
    "answers": {
        "ans_subj_score": [1.0],
        "answer_start": [324],
        "answer_subj_level": [2],
        "is_ans_subjective": [true],
        "text": ["This is a wonderfully written book"],
    },
    "context": "While I would not recommend this book to a young reader due to a couple pretty explicate scenes I would recommend it to any adult who just loves a good book.  Once I started reading it I could not put it down.  I hesitated reading it because I didn't think that the subject matter would be interesting, but I was so wrong.  This is a wonderfully written book.",
    "domain": "books",
    "id": "0255768496a256c5ed7caed9d4e47e4c",
    "is_ques_subjective": false,
    "nn_asp": "matter",
    "nn_mod": "interesting",
    "q_reviews_id": "a907837bafe847039c8da374a144bff9",
    "query_asp": "part",
    "query_mod": "fascinating",
    "ques_subj_score": 0.0,
    "question": "What are the parts like?",
    "question_subj_level": 2,
    "review_id": "a7f1a2503eac2580a0ebbc1d24fffca1",
    "title": "0002007770",
}
```

### Data Fields

Each domain and split consists of the following columns:

* ```title```: The id of the item/business discussed in the review.
* ```question```: The question (written based on a query opinion).
* ```id```: A unique id assigned to the question-review pair.
* ```q_reviews_id```: A unique id assigned to all question-review pairs with a shared question.
* ```question_subj_level```: The subjectivity level of the question (on a 1 to 5 scale with 1 being the most subjective).
* ```ques_subj_score```: The subjectivity score of the question computed using the [TextBlob](https://textblob.readthedocs.io/en/dev/) package.
* ```context```: The review (that mentions the neighboring opinion).
* ```review_id```: A unique id associated with the review.
* ```answers.text```: The span labeled by annotators as the answer.
* ```answers.answer_start```: The (character-level) start index of the answer span highlighted by annotators.
* ```is_ques_subjective```: A boolean subjectivity label derived from ```question_subj_level``` (i.e., scores below 4 are considered as subjective)
* ```answers.answer_subj_level```: The subjectivity level of the answer span (on a 1 to 5 scale with 1 being the most subjective).
* ```answers.ans_subj_score```: The subjectivity score of the answer span computed usign the [TextBlob](https://textblob.readthedocs.io/en/dev/) package.
* ```answers.is_ans_subjective```: A boolean subjectivity label derived from ```answer_subj_level``` (i.e., scores below 4 are considered as subjective)
* ```domain```: The category/domain of the review (e.g., hotels, books, ...).
* ```nn_mod```: The modifier of the neighboring opinion (which appears in the review).
* ```nn_asp```: The aspect of the neighboring opinion (which appears in the review).
* ```query_mod```: The modifier of the query opinion (around which a question is manually written).
* ```query_asp```: The aspect of the query opinion (around which a question is manually written).

### Data Splits

The question-review pairs from each domain are split into training, development, and test sets. The table below shows the size of the dataset per each domain and split.

| Domain      | Train | Dev | Test | Total |
|-------------|-------|-----|------|-------|
| TripAdvisor | 1165  | 230 | 512  | 1686  |
| Restaurants | 1400  | 267 | 266  | 1683  |
| Movies      | 1369  | 261 | 291  | 1677  |
| Books       | 1314  | 256 | 345  | 1668  |
| Electronics | 1295  | 255 | 358  | 1659  |
| Grocery     | 1124  | 218 | 591  | 1725  |

Based on the subjectivity labels provided by annotators, one observes that 73% of the questions and 74% of the answers in the dataset are subjective. This provides a substantial number of subjective QA pairs as well as a reasonable number of factual questions to compare and constrast the performance of QA systems on each type of QA pairs.

Finally, the next table summarizes the average length of the question, the review, and the highlighted answer span for each category.

| Domain      | Review Len | Question Len | Answer Len | % answerable |
|-------------|------------|--------------|------------|--------------|
| TripAdvisor | 187.25     | 5.66         | 6.71       | 78.17        |
| Restaurants | 185.40     | 5.44         | 6.67       | 60.72        |
| Movies      | 331.56     | 5.59         | 7.32       | 55.69        |
| Books       | 285.47     | 5.78         | 7.78       | 52.99        |
| Electronics | 249.44     | 5.56         | 6.98       | 58.89        |
| Grocery     | 164.75     | 5.44         | 7.25       | 64.69        |

## Dataset Creation

### Curation Rationale

Most question-answering datasets like SQuAD and Natural Questions focus on answering questions over factual data such as Wikipedia and news articles. However, in domains like e-commerce the questions and answers are often _subjective_, that is, they depend on the personal experience of the users. For example, a customer on Amazon may ask "Is the sound quality any good?", which is more difficult to answer than a factoid question like "What is the capital of Australia?" These considerations motivate the creation of SubjQA as a tool to investigate the relationship between subjectivity and question-answering.

### Source Data

#### Initial Data Collection and Normalization

The SubjQA dataset is constructed based on publicly available review datasets. Specifically, the _movies_, _books_, _electronics_, and _grocery_ categories are constructed using reviews from the [Amazon Review dataset](http://jmcauley.ucsd.edu/data/amazon/links.html). The _TripAdvisor_ category, as the name suggests, is constructed using reviews from TripAdvisor which can be found [here](http://times.cs.uiuc.edu/~wang296/Data/). Finally, the _restaurants_ category is constructed using the [Yelp Dataset](https://www.yelp.com/dataset) which is also publicly available.

The process of constructing SubjQA is discussed in detail in the [paper](https://arxiv.org/abs/2004.14283). In a nutshell, the dataset construction consists of the following steps:

1. First, all _opinions_ expressed in reviews are extracted. In the pipeline, each opinion is modeled as a (_modifier_, _aspect_) pair which is a pair of spans where the former describes the latter. (good, hotel), and (terrible, acting) are a few examples of extracted opinions.
2. Using Matrix Factorization techniques, implication relationships between different expressed opinions are mined. For instance, the system mines that "responsive keys" implies "good keyboard". In our pipeline, we refer to the conclusion of an implication (i.e., "good keyboard" in this examples) as the _query_ opinion, and we refer to the premise (i.e., "responsive keys") as its _neighboring_ opinion.
3. Annotators are then asked to write a question based on _query_ opinions. For instance given "good keyboard" as the query opinion, they might write "Is this keyboard any good?"
4. Each question written based on a _query_ opinion is then paired with a review that mentions its _neighboring_ opinion. In our example, that would be a review that mentions "responsive keys".
5. The question and review pairs are presented to annotators to select the correct answer span, and rate the subjectivity level of the question as well as the subjectivity level of the highlighted answer span.

A visualisation of the data collection pipeline is shown in the image below.

![preview](https://user-images.githubusercontent.com/26859204/117258393-3764cd80-ae4d-11eb-955d-aa971dbb282e.jpg)

#### Who are the source language producers?

As described above, the source data for SubjQA is customer reviews of products and services on e-commerce websites like Amazon and TripAdvisor.

### Annotations

#### Annotation process

The generation of questions and answer span labels were obtained through the [Appen](https://appen.com/) platform. From the SubjQA paper:

> The platform provides quality control by showing the workers 5 questions at a time, out of which one is labeled by the experts. A worker who fails to maintain 70% accuracy is kicked out by the platform and his judgements are ignored ... To ensure good quality labels, we paid each worker 5 cents per annotation.

The instructions for generating a question are shown in the following figure:

<img width="874" alt="ques_gen" src="https://user-images.githubusercontent.com/26859204/117259092-03d67300-ae4e-11eb-81f2-9077fee1085f.png">

Similarly, the interface for the answer span and subjectivity labelling tasks is shown below:

![span_collection](https://user-images.githubusercontent.com/26859204/117259223-1fda1480-ae4e-11eb-9305-658ee6e3971d.png)

As described in the SubjQA paper, the workers assign subjectivity scores (1-5) to each question and the selected answer span. They can also indicate if a question cannot be answered from the given review. 


#### Who are the annotators?

Workers on the Appen platform.

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

The SubjQA dataset can be used to develop question-answering systems that can provide better on-demand answers to e-commerce customers who are interested in subjective questions about products and services.

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

The people involved in creating the SubjQA dataset are the authors of the accompanying paper:

* Johannes Bjerva1, Department of Computer Science, University of Copenhagen, Department of Computer Science, Aalborg University
* Nikita Bhutani, Megagon Labs, Mountain View
* Behzad Golshan, Megagon Labs, Mountain View
* Wang-Chiew Tan, Megagon Labs, Mountain View
* Isabelle Augenstein, Department of Computer Science, University of Copenhagen

### Licensing Information

The SubjQA dataset is provided "as-is", and its creators make no representation as to its accuracy.

The SubjQA dataset is constructed based on the following datasets and thus contains subsets of their data:
* [Amazon Review Dataset](http://jmcauley.ucsd.edu/data/amazon/links.html) from UCSD
    * Used for _books_, _movies_, _grocery_, and _electronics_ domains
* [The TripAdvisor Dataset](http://times.cs.uiuc.edu/~wang296/Data/) from UIUC's Database and Information Systems Laboratory
    * Used for the _TripAdvisor_ domain
* [The Yelp Dataset](https://www.yelp.com/dataset)
    * Used for the _restaurants_ domain

Consequently, the data within each domain of the SubjQA dataset should be considered under the same license as the dataset it was built upon.

### Citation Information

If you are using the dataset, please cite the following in your work:
```
@inproceedings{bjerva20subjqa,
    title = "SubjQA: A Dataset for Subjectivity and Review Comprehension",
    author = "Bjerva, Johannes  and
      Bhutani, Nikita  and
      Golahn, Behzad  and
      Tan, Wang-Chiew  and
      Augenstein, Isabelle",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = November,
    year = "2020",
    publisher = "Association for Computational Linguistics",
}
```

### Contributions

Thanks to [@lewtun](https://github.com/lewtun) for adding this dataset.