Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Size:
100K - 1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""EXAMS: a benchmark dataset for multilingual and cross-lingual question answering""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@article{hardalov2020exams, | |
title={EXAMS: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering}, | |
author={Hardalov, Momchil and Mihaylov, Todor and Dimitrina Zlatkova and Yoan Dinkov and Ivan Koychev and Preslav Nvakov}, | |
journal={arXiv preprint arXiv:2011.03080}, | |
year={2020} | |
} | |
""" | |
_DESCRIPTION = """\ | |
EXAMS is a benchmark dataset for multilingual and cross-lingual question answering from high school examinations. | |
It consists of more than 24,000 high-quality high school exam questions in 16 languages, | |
covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others. | |
""" | |
_HOMEPAGE = "https://github.com/mhardalov/exams-qa" | |
_LICENSE = "CC-BY-SA-4.0" | |
_URLS_LIST = [ | |
("alignments", "https://github.com/mhardalov/exams-qa/raw/main/data/exams/parallel_questions.jsonl"), | |
] | |
_URLS_LIST += [ | |
( | |
"multilingual_train", | |
"https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/train.jsonl.tar.gz", | |
), | |
("multilingual_dev", "https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/dev.jsonl.tar.gz"), | |
("multilingual_test", "https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/test.jsonl.tar.gz"), | |
( | |
"multilingual_with_para_train", | |
"https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/with_paragraphs/train_with_para.jsonl.tar.gz", | |
), | |
( | |
"multilingual_with_para_dev", | |
"https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/with_paragraphs/dev_with_para.jsonl.tar.gz", | |
), | |
( | |
"multilingual_with_para_test", | |
"https://github.com/mhardalov/exams-qa/raw/main/data/exams/multilingual/with_paragraphs/test_with_para.jsonl.tar.gz", | |
), | |
] | |
_CROSS_LANGUAGES = ["bg", "hr", "hu", "it", "mk", "pl", "pt", "sq", "sr", "tr", "vi"] | |
_URLS_LIST += [ | |
("crosslingual_test", "https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/test.jsonl.tar.gz"), | |
( | |
"crosslingual_with_para_test", | |
"https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/with_paragraphs/test_with_para.jsonl.tar.gz", | |
), | |
] | |
for ln in _CROSS_LANGUAGES: | |
_URLS_LIST += [ | |
( | |
f"crosslingual_{ln}_train", | |
f"https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/train_{ln}.jsonl.tar.gz", | |
), | |
( | |
f"crosslingual_with_para_{ln}_train", | |
f"https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/with_paragraphs/train_{ln}_with_para.jsonl.tar.gz", | |
), | |
( | |
f"crosslingual_{ln}_dev", | |
f"https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/dev_{ln}.jsonl.tar.gz", | |
), | |
( | |
f"crosslingual_with_para_{ln}_dev", | |
f"https://github.com/mhardalov/exams-qa/raw/main/data/exams/cross-lingual/with_paragraphs/dev_{ln}_with_para.jsonl.tar.gz", | |
), | |
] | |
_URLs = dict(_URLS_LIST) | |
class ExamsConfig(datasets.BuilderConfig): | |
def __init__(self, lang, with_para, **kwargs): | |
super(ExamsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
self.lang = lang | |
self.with_para = "_with_para" if with_para else "" | |
class Exams(datasets.GeneratorBasedBuilder): | |
"""Exams dataset""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIG_CLASS = ExamsConfig | |
BUILDER_CONFIGS = [ | |
ExamsConfig( | |
lang="", | |
with_para=False, | |
name="alignments", | |
description="loads the alignment between question IDs across languages", | |
), | |
ExamsConfig( | |
lang="all", | |
with_para=False, | |
name="multilingual", | |
description="Loads the unified multilingual train/dev/test split", | |
), | |
ExamsConfig( | |
lang="all", | |
with_para=True, | |
name="multilingual_with_para", | |
description="Loads the unified multilingual train/dev/test split with Wikipedia support paragraphs", | |
), | |
ExamsConfig( | |
lang="all", with_para=False, name="crosslingual_test", description="Loads crosslingual test set only" | |
), | |
ExamsConfig( | |
lang="all", | |
with_para=True, | |
name="crosslingual_with_para_test", | |
description="Loads crosslingual test set only with Wikipedia support paragraphs", | |
), | |
] | |
for ln in _CROSS_LANGUAGES: | |
BUILDER_CONFIGS += [ | |
ExamsConfig( | |
lang=ln, | |
with_para=False, | |
name=f"crosslingual_{ln}", | |
description=f"Loads crosslingual train and dev set for {ln}", | |
), | |
ExamsConfig( | |
lang=ln, | |
with_para=True, | |
name=f"crosslingual_with_para_{ln}", | |
description=f"Loads crosslingual train and dev set for {ln} with Wikipedia support paragraphs", | |
), | |
] | |
DEFAULT_CONFIG_NAME = ( | |
"multilingual_with_para" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
if self.config.name == "alignments": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"source_id": datasets.Value("string"), | |
"target_id_list": datasets.Sequence(datasets.Value("string")), | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"question": { | |
"stem": datasets.Value("string"), | |
"choices": datasets.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
"para": datasets.Value("string"), | |
} | |
), | |
}, | |
"answerKey": datasets.Value("string"), | |
"info": { | |
"grade": datasets.Value("int32"), | |
"subject": datasets.Value("string"), | |
"language": datasets.Value("string"), | |
}, | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, # Here we define them above because they are different between the two configurations | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
if self.config.name == "alignments": | |
return [ | |
datasets.SplitGenerator( | |
name="full", | |
gen_kwargs={ | |
"filepath": data_dir["alignments"], | |
}, | |
), | |
] | |
elif self.config.name in ["multilingual", "multilingual_with_para"]: | |
return [ | |
datasets.SplitGenerator( | |
name=spl_enum, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir[f"{self.config.name}_{spl}"], f"{spl}{self.config.with_para}.jsonl" | |
), | |
}, | |
) | |
for spl, spl_enum in [ | |
("train", datasets.Split.TRAIN), | |
("dev", datasets.Split.VALIDATION), | |
("test", datasets.Split.TEST), | |
] | |
] | |
elif self.config.name in ["crosslingual_test", "crosslingual_with_para_test"]: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir[f"{self.config.name}"], f"test{self.config.with_para}.jsonl" | |
), | |
}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=spl_enum, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir[f"{self.config.name}_{spl}"], | |
f"{spl}_{self.config.lang}{self.config.with_para}.jsonl", | |
) | |
}, | |
) | |
for spl, spl_enum in [ | |
("train", datasets.Split.TRAIN), | |
("dev", datasets.Split.VALIDATION), | |
] | |
] | |
def _generate_examples(self, filepath): | |
f = open(filepath, encoding="utf-8") | |
if self.config.name == "alignments": | |
for id_, line in enumerate(f): | |
line_dict = json.loads(line.strip()) | |
in_id, out_list = list(line_dict.items())[0] | |
yield id_, {"source_id": in_id, "target_id_list": out_list} | |
else: | |
for id_, line in enumerate(f): | |
line_dict = json.loads(line.strip()) | |
for choice in line_dict["question"]["choices"]: | |
choice["para"] = choice.get("para", "") | |
yield id_, line_dict | |