Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
semeval2017 / semeval2017.py
dibyaaaaax's picture
Upload semeval2017.py
0db8b3f
raw
history blame
5.89 kB
import json
import datasets
# _SPLIT = ['test']
_CITATION = """\
@article{DBLP:journals/corr/AugensteinDRVM17,
author = {Isabelle Augenstein and
Mrinal Das and
Sebastian Riedel and
Lakshmi Vikraman and
Andrew McCallum},
title = {SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations
from Scientific Publications},
journal = {CoRR},
volume = {abs/1704.02853},
year = {2017},
url = {http://arxiv.org/abs/1704.02853},
eprinttype = {arXiv},
eprint = {1704.02853},
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
biburl = {https://dblp.org/rec/journals/corr/AugensteinDRVM17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
_URLS = {
"test": "test.jsonl"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class SemEval2017(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="extraction", version=VERSION,
description="This part of my dataset covers extraction"),
datasets.BuilderConfig(name="generation", version=VERSION,
description="This part of my dataset covers generation"),
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
]
DEFAULT_CONFIG_NAME = "extraction"
def _info(self):
if self.config.name == "extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("string"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))
}
)
elif self.config.name == "generation":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"other_metadata": datasets.features.Sequence(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"bio_tags": datasets.features.Sequence(datasets.Value("string"))
}
)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "extraction":
# Yields examples as (key, example) tuples
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data.get("doc_bio_tags")
}
elif self.config.name == "generation":
yield key, {
"id": data['paper_id'],
"document": data["document"],
"extractive_keyphrases": data.get("extractive_keyphrases"),
"abstractive_keyphrases": data.get("abstractive_keyphrases")
}
else:
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data.get("doc_bio_tags"),
"extractive_keyphrases": data.get("extractive_keyphrases"),
"abstractive_keyphrases": data.get("abstractive_keyphrases"),
"other_metadata": data["other_metadata"]
}