repo_name
stringlengths
7
92
path
stringlengths
5
129
copies
stringclasses
201 values
size
stringlengths
4
6
content
stringlengths
1.03k
375k
license
stringclasses
15 values
justincely/rolodex
setup.py
1
2102
from setuptools import setup, find_packages setup( name = 'cos_monitoring', version = '0.0.1', description = 'Provide utilities and monotiring of cos data', author = 'Justin Ely', author_email = 'ely@stsci.edu', keywords = ['astronomy'], classifiers = ['Programming Language :: Python', 'Programming Language :: Python :: 3', 'Development Status :: 1 - Planning', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Astronomy', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Software Development :: Libraries :: Python Modules'], packages = find_packages(), requires = ['numpy', 'scipy', 'astropy', 'matplotlib'], entry_points = {'console_scripts': ['clean_slate=cos_monitoring.database:clean_slate', 'cm_ingest=cos_monitoring.database:ingest_all', 'cm_monitors=cos_monitoring.database:run_all_monitors', 'create_master_csv=scripts.create_master_csv:main', 'cosmo_retrieval=cos_monitoring.retrieval.run_cosmo_retrieval', 'cm_reports=cos_monitoring.database.report:query_all', 'cm_delete=cos_monitoring.database.database:cm_delete', 'cm_describe=cos_monitoring.database.database:cm_describe', 'cm_tot_gain=cos_monitoring.cci.gainmap:make_all_gainmaps_entry'], }, install_requires = ['setuptools', 'numpy>=1.11.1', 'astropy>=1.0.1', 'sqlalchemy>=1.0.12', 'pymysql', 'matplotlib', 'scipy', 'fitsio', 'psutil', 'beautifulsoup4', 'pyfastcopy'] )
bsd-3-clause
pycroscopy/pycroscopy
pycroscopy/processing/svd_utils.py
1
20291
# -*- coding: utf-8 -*- """ USID utilities for performing randomized singular value decomposition and reconstructing results Created on Mon Mar 28 09:45:08 2016 @author: Suhas Somnath, Chris Smith """ from __future__ import division, print_function, absolute_import import time from multiprocessing import cpu_count import numpy as np from sklearn.utils import gen_batches from sklearn.utils.extmath import randomized_svd from sidpy.hdf.reg_ref import get_indices_for_region_ref, create_region_reference from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, copy_attributes from sidpy.proc.comp_utils import get_available_memory from sidpy.base.string_utils import format_time from sidpy.hdf.dtype_utils import check_dtype, stack_real_to_target_dtype from pyUSID.processing.process import Process from .proc_utils import get_component_slice from pyUSID.io.hdf_utils import find_results_groups, \ reshape_to_n_dims, write_main_dataset, create_results_group, \ create_indexed_group, find_dataset from pyUSID import Dimension from pyUSID.io.anc_build_utils import calc_chunks from pyUSID import USIDataset import h5py from matplotlib import pyplot as plt from pyUSID.viz import plot_utils class SVD(Process): """ This class provides a file-wrapper around the :meth:`sklearn.utils.extmath.randomized_svd` function. In other words, it extracts and then reformats the data present in the provided :class:`pyUSID.USIDataset` object, performs the randomized SVD operation and writes the results back to the USID HDF5 file after formatting the results in an USID compliant manner. """ def __init__(self, h5_main, num_components=None, **kwargs): """ Perform the SVD decomposition on the selected dataset and write the results to h5 file. Parameters ---------- h5_main : :class:`pyUSID.USIDataset` object USID Main HDF5 dataset that will be decomposed num_components : int, optional Number of components to decompose h5_main into. Default None. h5_target_group : h5py.Group, optional. Default = None Location where to look for existing results and to place newly computed results. Use this kwarg if the results need to be written to a different HDF5 file. By default, this value is set to the parent group containing `h5_main` kwargs Arguments to be sent to Process """ super(SVD, self).__init__(h5_main, 'SVD', **kwargs) ''' Calculate the size of the main data in memory and compare to max_mem We use the minimum of the actual dtype's itemsize and float32 since we don't want to read it in yet and do the proper type conversions. ''' n_samples, n_features = h5_main.shape self.data_transform_func, is_complex, is_compound, n_features, type_mult = check_dtype(h5_main) if num_components is None: num_components = min(n_samples, n_features) else: num_components = min(n_samples, n_features, num_components) self.num_components = num_components # Check that we can actually compute the SVD with the selected number of components self._check_available_mem() self.parms_dict = {'num_components': num_components} self.duplicate_h5_groups, self.partial_h5_groups = self._check_for_duplicates() # supercharge h5_main! self.h5_main = USIDataset(self.h5_main) self.__u = None self.__v = None self.__s = None def test(self, override=False): """ Applies randomised VD to the dataset. This function does NOT write results to the hdf5 file. Call compute() to write to the file. Handles complex, compound datasets such that the V matrix is of the same data-type as the input matrix. Parameters ---------- override : bool, optional. default = False Set to true to recompute results if prior results are available. Else, returns existing results Returns ------- U : :class:`numpy.ndarray` Abundance matrix S : :class:`numpy.ndarray` variance vector V : :class:`numpy.ndarray` eigenvector matrix """ ''' Check if a number of compnents has been set and ensure that the number is less than the minimum axis length of the data. If both conditions are met, use fsvd. If not use the regular svd. C.Smith -- We might need to put a lower limit on num_comps in the future. I don't know enough about svd to be sure. ''' if not override: if isinstance(self.duplicate_h5_groups, list) and len(self.duplicate_h5_groups) > 0: self.h5_results_grp = self.duplicate_h5_groups[-1] print('Returning previously computed results from: {}'.format(self.h5_results_grp.name)) print('set the "override" flag to True to recompute results') return reshape_to_n_dims(self.h5_results_grp['U'])[0], self.h5_results_grp['S'][()], \ reshape_to_n_dims(self.h5_results_grp['V'])[0] self.h5_results_grp = None t1 = time.time() self.__u, self.__s, self.__v = randomized_svd(self.data_transform_func(self.h5_main), self.num_components, n_iter=3) self.__v = stack_real_to_target_dtype(self.__v, self.h5_main.dtype) print('Took {} to compute randomized SVD'.format(format_time(time.time() - t1))) u_mat, success = reshape_to_n_dims(self.__u, h5_pos=self.h5_main.h5_pos_inds, h5_spec=np.expand_dims(np.arange(self.__u.shape[1]), axis=0)) if not success: raise ValueError('Could not reshape U to N-Dimensional dataset! Error:' + success) # When the source dataset has a singular valued spectroscopic dimension # stack_real_to_target causes V to lose all its dimensions if self.__v.ndim == 0: # However, we want V to be 2D: self.__v = np.atleast_2d(self.__v) v_mat, success = reshape_to_n_dims(self.__v, h5_pos=np.expand_dims(np.arange(self.__u.shape[1]), axis=1), h5_spec=self.h5_main.h5_spec_inds) if not success: raise ValueError('Could not reshape V to N-Dimensional dataset! Error:' + success) return u_mat, self.__s, v_mat def compute(self, override=False): """ Computes SVD (by calling test_on_subset() if it has not already been called) and writes results to file. Consider calling test() to check results before writing to file. Results are deleted from memory upon writing to the HDF5 file Parameters ---------- override : bool, optional. default = False Set to true to recompute results if prior results are available. Else, returns existing results Returns ------- h5_results_grp : :class:`h5py.Group` object HDF5 Group containing all the results """ if self.__u is None and self.__v is None and self.__s is None: self.test(override=override) if self.h5_results_grp is None: self._write_results_chunk() self.delete_results() h5_group = self.h5_results_grp return h5_group def delete_results(self): """ Deletes results from memory. """ del self.__u, self.__s, self.__v self.__u = None self.__v = None self.__s = None def _write_results_chunk(self): """ Writes the provided SVD results to file Parameters ---------- """ comp_dim = Dimension('Principal Component', 'a. u.', len(self.__s)) h5_svd_group = create_results_group(self.h5_main, self.process_name, h5_parent_group=self._h5_target_group) self.h5_results_grp = h5_svd_group self._write_source_dset_provenance() write_simple_attrs(h5_svd_group, self.parms_dict) write_simple_attrs(h5_svd_group, {'svd_method': 'sklearn-randomized'}) h5_u = write_main_dataset(h5_svd_group, np.float32(self.__u), 'U', 'Abundance', 'a.u.', None, comp_dim, h5_pos_inds=self.h5_main.h5_pos_inds, h5_pos_vals=self.h5_main.h5_pos_vals, dtype=np.float32, chunks=calc_chunks(self.__u.shape, np.float32(0).itemsize)) # print(get_attr(self.h5_main, 'quantity')[0]) h5_v = write_main_dataset(h5_svd_group, self.__v, 'V', get_attr(self.h5_main, 'quantity')[0], 'a.u.', comp_dim, None, h5_spec_inds=self.h5_main.h5_spec_inds, h5_spec_vals=self.h5_main.h5_spec_vals, chunks=calc_chunks(self.__v.shape, self.h5_main.dtype.itemsize)) # No point making this 1D dataset a main dataset h5_s = h5_svd_group.create_dataset('S', data=np.float32(self.__s)) ''' Check h5_main for plot group references. Copy them into V if they exist ''' for key in self.h5_main.attrs.keys(): if '_Plot_Group' not in key: continue ref_inds = get_indices_for_region_ref(self.h5_main, self.h5_main.attrs[key], return_method='corners') ref_inds = ref_inds.reshape([-1, 2, 2]) ref_inds[:, 1, 0] = h5_v.shape[0] - 1 svd_ref = create_region_reference(h5_v, ref_inds) h5_v.attrs[key] = svd_ref # Marking completion: self._status_dset_name = 'completed_positions' self._h5_status_dset = h5_svd_group.create_dataset(self._status_dset_name, data=np.ones(self.h5_main.shape[0], dtype=np.uint8)) # keeping legacy option: h5_svd_group.attrs['last_pixel'] = self.h5_main.shape[0] def _check_available_mem(self): """ Check that there is enough memory to perform the SVD decomposition. Returns ------- sufficient_mem : bool True is enough memory found, False otherwise. """ if self.verbose: print('Checking memory availability.') n_samples, n_features = self.h5_main.shape s_mem_per_comp = np.float32(0).itemsize u_mem_per_comp = np.float32(0).itemsize * n_samples v_mem_per_comp = self.h5_main.dtype.itemsize * n_features mem_per_comp = s_mem_per_comp + u_mem_per_comp + v_mem_per_comp max_mem = get_available_memory() avail_mem = 0.75 * max_mem free_mem = avail_mem - self.h5_main.__sizeof__() if free_mem <= 0: error_message = 'Cannot load main dataset into memory.\n' + \ 'Available memory is {}. Dataset needs {}.'.format(avail_mem, self.h5_main.__sizeof__()) raise MemoryError(error_message) if self.verbose: print('Memory available for SVD is {}.'.format(free_mem)) print('Memory needed per component is {}.'.format(mem_per_comp)) cant_svd = (free_mem - self.num_components * mem_per_comp) <= 0 if cant_svd: max_comps = np.floor(free_mem / mem_per_comp, dtype=int) error_message = 'Not enough free memory for performing SVD with requested number of parameters.\n' + \ 'Maximum possible parameters is {}.'.format(max_comps) raise MemoryError(error_message) ############################################################################### def simplified_kpca(kpca, source_data): """ Performs kernel PCA on the provided dataset and returns the familiar eigenvector, eigenvalue, and scree matrices. Note that the positions in the eigenvalues may need to be transposed Parameters ---------- kpca : KernelPCA object configured Kernel PCA object ready to perform analysis source_data : 2D numpy array Data arranged as [iteration, features] example - [position, time] Returns ------- eigenvalues : 2D numpy array Eigenvalues in the original space arranged as [component,iteration] scree : 1D numpy array S component eigenvector : 2D numpy array Eigenvectors in the original space arranged as [component,features] """ X_kpca = kpca.fit(source_data.T) eigenvectors = X_kpca.alphas_.T eigenvalues = X_kpca.fit_transform(source_data) # kpca_explained_variance = np.var(kpca.fit_transform(source_data), axis=0) # information_content = kpca_explained_variance / np.sum(kpca_explained_variance) scree = kpca.lambdas_ return eigenvalues, scree, eigenvectors def rebuild_svd(h5_main, components=None, cores=None, max_RAM_mb=1024): """ Rebuild the Image from the SVD results on the windows Optionally, only use components less than n_comp. Parameters ---------- h5_main : hdf5 Dataset dataset which SVD was performed on components : {int, iterable of int, slice} optional Defines which components to keep Default - None, all components kept Input Types integer : Components less than the input will be kept length 2 iterable of integers : Integers define start and stop of component slice to retain other iterable of integers or slice : Selection of component indices to retain cores : int, optional How many cores should be used to rebuild Default - None, all but 2 cores will be used, min 1 max_RAM_mb : int, optional Maximum ammount of memory to use when rebuilding, in Mb. Default - 1024Mb Returns ------- rebuilt_data : HDF5 Dataset the rebuilt dataset """ comp_slice, num_comps = get_component_slice(components, total_components=h5_main.shape[1]) if isinstance(comp_slice, np.ndarray): comp_slice = list(comp_slice) dset_name = h5_main.name.split('/')[-1] # Ensuring that at least one core is available for use / 2 cores are available for other use max_cores = max(1, cpu_count() - 2) # print('max_cores',max_cores) if cores is not None: cores = min(round(abs(cores)), max_cores) else: cores = max_cores max_memory = min(max_RAM_mb * 1024 ** 2, 0.75 * get_available_memory()) if cores != 1: max_memory = int(max_memory / 2) ''' Get the handles for the SVD results ''' try: h5_svd_group = find_results_groups(h5_main, 'SVD')[-1] h5_S = h5_svd_group['S'] h5_U = h5_svd_group['U'] h5_V = h5_svd_group['V'] except KeyError: raise KeyError('SVD Results for {dset} were not found.'.format(dset=dset_name)) except: raise func, is_complex, is_compound, n_features, type_mult = check_dtype(h5_V) ''' Calculate the size of a single batch that will fit in the available memory ''' n_comps = h5_S[comp_slice].size mem_per_pix = (h5_U.dtype.itemsize + h5_V.dtype.itemsize * h5_V.shape[1]) * n_comps fixed_mem = h5_main.size * h5_main.dtype.itemsize if cores is None: free_mem = max_memory - fixed_mem else: free_mem = max_memory * 2 - fixed_mem batch_size = int(round(float(free_mem) / mem_per_pix)) batch_slices = gen_batches(h5_U.shape[0], batch_size) print('Reconstructing in batches of {} positions.'.format(batch_size)) print('Batchs should be {} Mb each.'.format(mem_per_pix * batch_size / 1024.0 ** 2)) ''' Loop over all batches. ''' ds_V = np.dot(np.diag(h5_S[comp_slice]), func(h5_V[comp_slice, :])) rebuild = np.zeros((h5_main.shape[0], ds_V.shape[1])) for ibatch, batch in enumerate(batch_slices): rebuild[batch, :] += np.dot(h5_U[batch, comp_slice], ds_V) rebuild = stack_real_to_target_dtype(rebuild, h5_V.dtype) print('Completed reconstruction of data from SVD results. Writing to file.') ''' Create the Group and dataset to hold the rebuild data ''' rebuilt_grp = create_indexed_group(h5_svd_group, 'Rebuilt_Data') h5_rebuilt = write_main_dataset(rebuilt_grp, rebuild, 'Rebuilt_Data', get_attr(h5_main, 'quantity'), get_attr(h5_main, 'units'), None, None, h5_pos_inds=h5_main.h5_pos_inds, h5_pos_vals=h5_main.h5_pos_vals, h5_spec_inds=h5_main.h5_spec_inds, h5_spec_vals=h5_main.h5_spec_vals, chunks=h5_main.chunks, compression=h5_main.compression) if isinstance(comp_slice, slice): rebuilt_grp.attrs['components_used'] = '{}-{}'.format(comp_slice.start, comp_slice.stop) else: rebuilt_grp.attrs['components_used'] = components copy_attributes(h5_main, h5_rebuilt, skip_refs=False) h5_main.file.flush() print('Done writing reconstructed data to file.') return h5_rebuilt def plot_svd(h5_main, savefig=False, num_plots = 16, **kwargs): ''' Replots the SVD showing the skree, abundance maps, and eigenvectors. If h5_main is a Dataset, it will default to the most recent SVD group from that Dataset. If h5_main is the results group, then it will plot the values for that group. Parameters ---------- h5_main : USIDataset or h5py Dataset or h5py Group savefig : bool, optional Saves the figures to disk with some default names num_plots : int Default number of eigenvectors and abundance plots to show kwargs : dict, optional keyword arguments for svd filtering Returns ------- None ''' if isinstance(h5_main, h5py.Group): _U = find_dataset(h5_main, 'U')[-1] _V = find_dataset(h5_main, 'V')[-1] units = 'arbitrary (a.u.)' h5_spec_vals = np.arange(_V.shape[1]) h5_svd_group = _U.parent else: h5_svd_group = find_results_groups(h5_main, 'SVD')[-1] units = h5_main.attrs['quantity'] h5_spec_vals = h5_main.get_spec_values('Time') h5_U = h5_svd_group['U'] h5_V = h5_svd_group['V'] h5_S = h5_svd_group['S'] _U = USIDataset(h5_U) [num_rows, num_cols] = _U.pos_dim_sizes abun_maps = np.reshape(h5_U[:,:16], (num_rows, num_cols,-1)) eigen_vecs = h5_V[:16, :] skree_sum = np.zeros(h5_S.shape) for i in range(h5_S.shape[0]): skree_sum[i] = np.sum(h5_S[:i])/np.sum(h5_S) plt.figure() plt.plot(skree_sum, 'bo') plt.title('Cumulative Variance') plt.xlabel('Total Components') plt.ylabel('Total variance ratio (a.u.)') if savefig: plt.savefig('Cumulative_variance_plot.png') fig_skree, axes = plot_utils.plot_scree(h5_S, title='Scree plot') fig_skree.tight_layout() if savefig: plt.savefig('Scree_plot.png') fig_abun, axes = plot_utils.plot_map_stack(abun_maps, num_comps=num_plots, title='SVD Abundance Maps', color_bar_mode='single', cmap='inferno', reverse_dims=True, fig_mult=(3.5,3.5), facecolor='white', **kwargs) fig_abun.tight_layout() if savefig: plt.savefig('Abundance_maps.png') fig_eigvec, axes = plot_utils.plot_curves(h5_spec_vals*1e3, eigen_vecs, use_rainbow_plots=False, x_label='Time (ms)', y_label=units, num_plots=num_plots, subtitle_prefix='Component', title='SVD Eigenvectors', evenly_spaced=False, **kwargs) fig_eigvec.tight_layout() if savefig: plt.savefig('Eigenvectors.png') return
mit
juliojsb/sarviewer
plotters/matplotlib/swap.py
1
2062
#!/usr/bin/env python2 """ Author :Julio Sanz Website :www.elarraydejota.com Email :juliojosesb@gmail.com Description :Script to create a graph about swap usage Dependencies :Python 2.x, matplotlib Usage :python swap.py License :GPLv3 """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import csv from datetime import datetime import matplotlib.dates # ====================== # VARIABLES # ====================== # Aesthetic parameters plt.rcParams.update({'font.size': 8}) plt.rcParams['lines.linewidth'] = 1.5 time_format = matplotlib.dates.DateFormatter('%H:%M:%S') plt.gca().xaxis.set_major_formatter(time_format) plt.gcf().autofmt_xdate() # Time (column 0) x = [] # Data arrays swap_free = [] swap_used = [] # ====================== # FUNCTIONS # ====================== def generate_graph(): with open('../../data/swap.dat', 'r') as csvfile: data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True) for row in data_source: # [0] column is a time column # Convert to datetime data type a = datetime.strptime((row[0]),'%H:%M:%S') x.append((a)) # The remaining columns contain data swap_free.append(str(int(row[1])/1024)) swap_used.append(str(int(row[2])/1024)) # Plot lines plt.plot(x,swap_used, label='Used', color='r', antialiased=True) plt.plot(x,swap_free, label='Free', color='g', antialiased=True) # Graph properties plt.xlabel('Time',fontstyle='italic') plt.ylabel('SWAP (MB)',fontstyle='italic') plt.title('SWAP usage graph') plt.grid(linewidth=0.4, antialiased=True) plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True) plt.autoscale(True) # Graph saved to PNG file plt.savefig('../../graphs/swap.png', bbox_inches='tight') #plt.show() # ====================== # MAIN # ====================== if __name__ == '__main__': generate_graph()
gpl-3.0
deepmind/grid-cells
utils.py
1
5720
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for creating the training graph and plotting. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import ensembles # pylint: disable=g-bad-import-order np.seterr(invalid="ignore") def get_place_cell_ensembles( env_size, neurons_seed, targets_type, lstm_init_type, n_pc, pc_scale): """Create the ensembles for the Place cells.""" place_cell_ensembles = [ ensembles.PlaceCellEnsemble( n, stdev=s, pos_min=-env_size / 2.0, pos_max=env_size / 2.0, seed=neurons_seed, soft_targets=targets_type, soft_init=lstm_init_type) for n, s in zip(n_pc, pc_scale) ] return place_cell_ensembles def get_head_direction_ensembles( neurons_seed, targets_type, lstm_init_type, n_hdc, hdc_concentration): """Create the ensembles for the Head direction cells.""" head_direction_ensembles = [ ensembles.HeadDirectionCellEnsemble( n, concentration=con, seed=neurons_seed, soft_targets=targets_type, soft_init=lstm_init_type) for n, con in zip(n_hdc, hdc_concentration) ] return head_direction_ensembles def encode_initial_conditions(init_pos, init_hd, place_cell_ensembles, head_direction_ensembles): initial_conds = [] for ens in place_cell_ensembles: initial_conds.append( tf.squeeze(ens.get_init(init_pos[:, tf.newaxis, :]), axis=1)) for ens in head_direction_ensembles: initial_conds.append( tf.squeeze(ens.get_init(init_hd[:, tf.newaxis, :]), axis=1)) return initial_conds def encode_targets(target_pos, target_hd, place_cell_ensembles, head_direction_ensembles): ensembles_targets = [] for ens in place_cell_ensembles: ensembles_targets.append(ens.get_targets(target_pos)) for ens in head_direction_ensembles: ensembles_targets.append(ens.get_targets(target_hd)) return ensembles_targets def clip_all_gradients(g, var, limit): # print(var.name) return (tf.clip_by_value(g, -limit, limit), var) def clip_bottleneck_gradient(g, var, limit): if ("bottleneck" in var.name or "pc_logits" in var.name): return (tf.clip_by_value(g, -limit, limit), var) else: return (g, var) def no_clipping(g, var): return (g, var) def concat_dict(acc, new_data): """Dictionary concatenation function.""" def to_array(kk): if isinstance(kk, np.ndarray): return kk else: return np.asarray([kk]) for k, v in new_data.iteritems(): if isinstance(v, dict): if k in acc: acc[k] = concat_dict(acc[k], v) else: acc[k] = concat_dict(dict(), v) else: v = to_array(v) if k in acc: acc[k] = np.concatenate([acc[k], v]) else: acc[k] = np.copy(v) return acc def get_scores_and_plot(scorer, data_abs_xy, activations, directory, filename, plot_graphs=True, # pylint: disable=unused-argument nbins=20, # pylint: disable=unused-argument cm="jet", sort_by_score_60=True): """Plotting function.""" # Concatenate all trajectories xy = data_abs_xy.reshape(-1, data_abs_xy.shape[-1]) act = activations.reshape(-1, activations.shape[-1]) n_units = act.shape[1] # Get the rate-map for each unit s = [ scorer.calculate_ratemap(xy[:, 0], xy[:, 1], act[:, i]) for i in xrange(n_units) ] # Get the scores score_60, score_90, max_60_mask, max_90_mask, sac = zip( *[scorer.get_scores(rate_map) for rate_map in s]) # Separations # separations = map(np.mean, max_60_mask) # Sort by score if desired if sort_by_score_60: ordering = np.argsort(-np.array(score_60)) else: ordering = range(n_units) # Plot cols = 16 rows = int(np.ceil(n_units / cols)) fig = plt.figure(figsize=(24, rows * 4)) for i in xrange(n_units): rf = plt.subplot(rows * 2, cols, i + 1) acr = plt.subplot(rows * 2, cols, n_units + i + 1) if i < n_units: index = ordering[i] title = "%d (%.2f)" % (index, score_60[index]) # Plot the activation maps scorer.plot_ratemap(s[index], ax=rf, title=title, cmap=cm) # Plot the autocorrelation of the activation maps scorer.plot_sac( sac[index], mask_params=max_60_mask[index], ax=acr, title=title, cmap=cm) # Save if not os.path.exists(directory): os.makedirs(directory) with PdfPages(os.path.join(directory, filename), "w") as f: plt.savefig(f, format="pdf") plt.close(fig) return (np.asarray(score_60), np.asarray(score_90), np.asarray(map(np.mean, max_60_mask)), np.asarray(map(np.mean, max_90_mask)))
apache-2.0
looooo/paraBEM
examples/plots/lifting_line.py
1
1404
from __future__ import division import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import paraBEM from paraBEM.liftingline import LiftingLine from paraBEM.utils import check_path # WingGeometry spw = 2 numpos = 50 z_fac_1 = -0.3 z_fac_2 = -0.7 y = np.sin(np.linspace(0, np.pi/2, numpos)) * spw/2 x = [0. for _ in y] z = [i**2 * z_fac_1 + i**6 * z_fac_2 for i in y] mirror = lambda xyz: [xyz[0], -xyz[1], xyz[2]] wing = list(zip(x, y, z)) wing = list(map(mirror, wing))[::-1] + list(wing)[1:] wing = [paraBEM.Vector3(*i) for i in wing] # LiftingLine lifting_line = LiftingLine(wing) lifting_line.v_inf = paraBEM.Vector3(1, 0, 0) lifting_line.solve_for_best_gamma(1) gamma = [i.best_gamma for i in lifting_line.segments] gamma_max = max(gamma) # Plot gamma_el = lambda y: gamma_max * (1 - (y / spw * 2)**2)**(1 / 2) mids = [[i.mids.x, i.mids.y, i.mids.z] for i in lifting_line.segments] x, y, z = zip(*mids) fig = plt.figure() ax1 = fig.add_subplot(3, 1, 1) ax1.plot(y, z) ax2 = fig.add_subplot(3, 1, 2) ax2.plot(y, x, marker="x") ax3 = fig.add_subplot(3, 1, 3) y_el = np.linspace(-1, 1, 400) ax3.plot([-spw/2] + list(y) + [spw/2], [0] + gamma + [0], marker="x") ax3.plot(y_el, list(map(gamma_el, y_el))) plt.savefig(check_path("results/2d/liftingline.png")) total = 0 for i in lifting_line.segments: total += i.lift_factor * i.best_gamma print(total)
gpl-3.0
tdhopper/scikit-learn
examples/svm/plot_svm_scale_c.py
223
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
DTUWindEnergy/Python4WindEnergy
lesson 3/results/ebra.py
1
8402
# -*- coding: utf-8 -*- <nbformat>3.0</nbformat> # <headingcell level=1> # Plotting with Matplotlib # <headingcell level=2> # Prepare for action # <codecell> import numpy as np import scipy as sp import sympy # Pylab combines the pyplot functionality (for plotting) with the numpy # functionality (for mathematics and for working with arrays) in a single namespace # aims to provide a closer MATLAB feel (the easy way). Note that his approach # should only be used when doing some interactive quick and dirty data inspection. # DO NOT USE THIS FOR SCRIPTS #from pylab import * # the convienient Matplotib plotting interface pyplot (the tidy/right way) # use this for building scripts. The examples here will all use pyplot. import matplotlib.pyplot as plt # for using the matplotlib API directly (the hard and verbose way) # use this when building applications, and/or backends import matplotlib as mpl # <markdowncell> # How would you like the IPython notebook show your plots? In order to use the # matplotlib IPython magic youre IPython notebook should be launched as # # ipython notebook --matplotlib=inline # # Make plots appear as a pop up window, chose the backend: 'gtk', 'inline', 'osx', 'qt', 'qt4', 'tk', 'wx' # # %matplotlib qt # # or inline the notebook (no panning, zooming through the plot). Not working in IPython 0.x # # %matplotib inline # # <codecell> # activate pop up plots #%matplotlib qt # or change to inline plots # %matplotlib inline # <headingcell level=3> # Matplotlib documentation # <markdowncell> # Finding your own way (aka RTFM). Hint: there is search box available! # # * http://matplotlib.org/contents.html # # The Matplotlib API docs: # # * http://matplotlib.org/api/index.html # # Pyplot, object oriented plotting: # # * http://matplotlib.org/api/pyplot_api.html # * http://matplotlib.org/api/pyplot_summary.html # # Extensive gallery with examples: # # * http://matplotlib.org/gallery.html # <headingcell level=3> # Tutorials for those who want to start playing # <markdowncell> # If reading manuals is too much for you, there is a very good tutorial available here: # # * http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb # # Note that this tutorial uses # # from pylab import * # # which is usually not adviced in more advanced script environments. When using # # import matplotlib.pyplot as plt # # you need to preceed all plotting commands as used in the above tutorial with # # plt. # <markdowncell> # Give me more! # # [EuroScipy 2012 Matlotlib tutorial](http://www.loria.fr/~rougier/teaching/matplotlib/). Note that here the author uses ```from pylab import * ```. When using ```import matplotliblib.pyplot as plt``` the plotting commands need to be proceeded with ```plt.``` # <headingcell level=2> # Plotting template starting point # <codecell> # some sample data x = np.arange(-10,10,0.1) # <markdowncell> # To change the default plot configuration values. # <codecell> page_width_cm = 13 dpi = 200 inch = 2.54 # inch in cm # setting global plot configuration using the RC configuration style plt.rc('font', family='serif') plt.rc('xtick', labelsize=12) # tick labels plt.rc('ytick', labelsize=20) # tick labels plt.rc('axes', labelsize=20) # axes labels # If you don’t need LaTeX, don’t use it. It is slower to plot, and text # looks just fine without. If you need it, e.g. for symbols, then use it. #plt.rc('text', usetex=True) #<- P-E: Doesn't work on my Mac # <codecell> # create a figure instance, note that figure size is given in inches! fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6)) # set the big title (note aligment relative to figure) fig.suptitle("suptitle 16, figure alignment", fontsize=16) # actual plotting ax.plot(x, x**2, label="label 12") # set axes title (note aligment relative to axes) ax.set_title("title 14, axes alignment", fontsize=14) # axes labels ax.set_xlabel('xlabel 12') ax.set_ylabel(r'$y_{\alpha}$ 12', fontsize=8) # legend ax.legend(fontsize=12, loc="best") # saving the figure in different formats # fig.savefig('figure-%03i.png' % dpi, dpi=dpi) # fig.savefig('figure.svg') # fig.savefig('figure.eps') # <codecell> # following steps are only relevant when using figures as pop up windows (with %matplotlib qt) # to update a figure with has been modified fig.canvas.draw() # show a figure fig.show() # <headingcell level=2> # Exercise # <markdowncell> # The current section is about you trying to figure out how to do several plotting features. You should use the previously mentioned resources to find how to do that. In many cases, google is your friend! # <markdowncell> # * add a grid to the plot # <codecell> plt.plot(x,x**2) plt.grid('on') # <markdowncell> # * change the location of the legend to different places # <codecell> plt.plot(x,x**2, label="label 12") plt.legend(fontsize=12, loc="upper right") # <markdowncell> # * find a way to control the line type and color, marker type and color, control the frequency of the marks (`markevery`). See plot options at: http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot # <codecell> stride = max( int(len(x) / 20), 1) plt.plot(x,x**2, 'ko-',color='forestgreen', markevery=stride,label="label 12") plt.legend(fontsize=12, loc="upper center") # <markdowncell> # * add different sub-plots # <codecell> fig, axes = plt.subplots(nrows=2, ncols=1,sharex=True) axes[0].plot(x,x**2) axes[1].plot(x,-x**2) # <markdowncell> # * size the figure such that when included on an A4 page the fonts are given in their true size # <codecell> # matplotlib.rcParams.update({'font.size': 22}) fig, axes = plt.subplots(nrows=2, ncols=1,sharex=True) axes[0].plot(x,x**2) axes[1].plot(x,-x**2) fig.set_size_inches(8.2,3) # using A4 width in inches? fig.set_dpi(100) for ax in axes: for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(12) # ax[0].set('xtick', labelsize=12) # tick labels # .rc('ytick', labelsize=20) # tick labels # .rc('axes', labelsize=20) # axes labels # fig.savefig('figure.pdf') # <markdowncell> # * make a contour plot # <codecell> X, Y = np.meshgrid(x,x) plt.figure() plt.contourf(X,Y,X*Y,linewidth=0.3,cmap=plt.get_cmap('hsv'),levels=np.arange(-1,1,0.1)) plt.show # im=ax.contourf(x,y,ui,levels=np.arange(Umean-5*Ustd,Umean+5*Ustd,Ustd/30),cmap=plt.get_cmap('hsv'),linewidth=0.1) # <markdowncell> # * use twinx() to create a second axis on the right for the second plot # <codecell> plt.figure() ax=plt.gca() ax.plot(x,x**2) ax2 = ax.twinx() ax2.plot(x,x**4, 'r') # <markdowncell> # * add horizontal and vertical lines using axvline(), axhline() # <codecell> plt.figure() plt.plot(x,x**2) plt.axvline(2) plt.axhline(10) # <markdowncell> # * autoformat dates for nice printing on the x-axis using fig.autofmt_xdate() # <codecell> import datetime dates = np.array([datetime.datetime.now() + datetime.timedelta(days=i) for i in xrange(24)]) fig, ax = plt.subplots(nrows=1, ncols=1) ax.plot(dates,xrange(24)) fig.autofmt_xdate() # <headingcell level=2> # Advanced exercises # <markdowncell> # We are going to play a bit with regression # <markdowncell> # * Create a vector x of equally spaced number between $x \in [0, 5\pi]$ of 1000 points (keyword: linspace) # <codecell> n=1000 x=np.linspace(0,5*np.pi,n) # <markdowncell> # * create a vector y, so that y=sin(x) with some random noise # <codecell> y = np.sin(x) +np.random.rand(n)-0.5 yth = np.sin(x) # <markdowncell> # * plot it like this: ![test](files/plt1.png) # <codecell> fig=plt.figure() ax=plt.gca() ax.plot(x,y,'b.') ax.plot(x,yth,'k--',label=r'$y=sin(x)$') # <markdowncell> # Try to do a polynomial fit on y(x) with different polynomial degree (Use numpy.polyfit to obtain coefficients) # # Plot it like this (use np.poly1d(coef)(x) to plot polynomials) ![test](files/plt2.png) # <codecell> for order in xrange(9): coeff=np.polyfit(x,y,order) ax.plot(x,np.poly1d(coeff)(x),label='deg %d'%order) # shrink current axis by 20% box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) # Put a legend to the right of the current axis ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() # <codecell>
apache-2.0
B3AU/waveTree
sklearn/utils/testing.py
4
12125
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # License: BSD 3 clause import inspect import pkgutil import warnings import scipy as sp from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import sklearn from sklearn.base import BaseEstimator from .fixes import savemat # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message # To remove when we support numpy 1.7 def assert_warns(warning_class, func, *args, **kw): with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not w[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, w[0])) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exception, message, function, *args, **kwargs): """Helper function to test error messages in exceptions""" try: function(*args, **kwargs) raise AssertionError("Should have raised %r" % exception(message)) except exception as e: error_message = str(e) assert_in(message, error_message) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. meta_estimators = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly other = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_others : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV type_filter : string or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): module = __import__(modname, fromlist="dummy") if ".tests." in modname: continue classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_other: estimators = [c for c in estimators if not c[0] in other] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in meta_estimators] if type_filter == 'classifier': estimators = [est for est in estimators if issubclass(est[1], ClassifierMixin)] elif type_filter == 'regressor': estimators = [est for est in estimators if issubclass(est[1], RegressorMixin)] elif type_filter == 'transformer': estimators = [est for est in estimators if issubclass(est[1], TransformerMixin)] elif type_filter == 'cluster': estimators = [est for est in estimators if issubclass(est[1], ClusterMixin)] elif type_filter is not None: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # We sort in order to have reproducible test failures return sorted(estimators) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified matplotlib.pylab.figure() except: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test
bsd-3-clause
ahye/FYS2140-Resources
examples/animation/func_animate_sin.py
1
1284
#!/usr/bin/env python """ Created on Mon 2 Dec 2013 Eksempelscript som viser hvordan en sinusboelge kan animeres med funksjonsanimasjon. @author Benedicte Emilie Braekken """ from numpy import * from matplotlib.pyplot import * from matplotlib import animation def wave( x, t ): ''' Funksjonen beskriver en sinusboelge ved tiden t og punktet x. ''' omega = 1 # Vinkelhastighet k = 1 # Boelgetall return sin( k * x - omega * t ) T = 10 dt = 0.01 nx = 1e3 nt = int( T / dt ) # Antall tidssteg t = 0 all_waves = [] # Tom liste for aa ta vare paa boelgetilstandene x = linspace( -pi, pi, nx ) while t < T: # Legger til en ny boelgetilstand for hver kjoering all_waves.append( wave( x, t ) ) t += dt # Tegner initialtilstanden fig = figure() # Passer paa aa ta vare paa figuren line, = plot( x, all_waves[0] ) draw() # Konstanter til animasjonen FPS = 60 # Bilder i sekundet inter = 1. / FPS # Tid mellom hvert bilde def init(): ''' ''' line.set_data( [], [] ) return line, def get_frame( frame ): ''' ''' line.set_data( x, all_waves[ frame ] ) return line, anim = animation.FuncAnimation( fig, get_frame, init_func=init, frames=nt, interval=inter, blit=True ) show()
mit
briandalessandro/courses
deeplearning1/nbs/utils/utils.py
8
7644
from __future__ import division,print_function import math, os, json, sys, re import cPickle as pickle from glob import glob import numpy as np from matplotlib import pyplot as plt from operator import itemgetter, attrgetter, methodcaller from collections import OrderedDict import itertools from itertools import chain import pandas as pd import PIL from PIL import Image from numpy.random import random, permutation, randn, normal, uniform, choice from numpy import newaxis import scipy from scipy import misc, ndimage from scipy.ndimage.interpolation import zoom from scipy.ndimage import imread from sklearn.metrics import confusion_matrix import bcolz from sklearn.preprocessing import OneHotEncoder from sklearn.manifold import TSNE from IPython.lib.display import FileLink import theano from theano import shared, tensor as T from theano.tensor.nnet import conv2d, nnet from theano.tensor.signal import pool import keras from keras import backend as K from keras.utils.data_utils import get_file from keras.utils import np_utils from keras.utils.np_utils import to_categorical from keras.models import Sequential, Model from keras.layers import Input, Embedding, Reshape, merge, LSTM, Bidirectional from keras.layers import TimeDistributed, Activation, SimpleRNN, GRU from keras.layers.core import Flatten, Dense, Dropout, Lambda from keras.regularizers import l2, activity_l2, l1, activity_l1 from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD, RMSprop, Adam from keras.utils.layer_utils import layer_from_config from keras.metrics import categorical_crossentropy, categorical_accuracy from keras.layers.convolutional import * from keras.preprocessing import image, sequence from keras.preprocessing.text import Tokenizer from vgg16 import * from vgg16bn import * np.set_printoptions(precision=4, linewidth=100) to_bw = np.array([0.299, 0.587, 0.114]) def gray(img): return np.rollaxis(img,0,3).dot(to_bw) def to_plot(img): return np.rollaxis(img, 0, 3).astype(np.uint8) def plot(img): plt.imshow(to_plot(img)) def floor(x): return int(math.floor(x)) def ceil(x): return int(math.ceil(x)) def plots(ims, figsize=(12,6), rows=1, interp=False, titles=None): if type(ims[0]) is np.ndarray: ims = np.array(ims).astype(np.uint8) if (ims.shape[-1] != 3): ims = ims.transpose((0,2,3,1)) f = plt.figure(figsize=figsize) for i in range(len(ims)): sp = f.add_subplot(rows, len(ims)//rows, i+1) if titles is not None: sp.set_title(titles[i], fontsize=18) plt.imshow(ims[i], interpolation=None if interp else 'none') def do_clip(arr, mx): clipped = np.clip(arr, (1-mx)/1, mx) return clipped/clipped.sum(axis=1)[:, np.newaxis] def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=4, class_mode='categorical', target_size=(224,224)): return gen.flow_from_directory(dirname, target_size=target_size, class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) def onehot(x): return to_categorical(x) def wrap_config(layer): return {'class_name': layer.__class__.__name__, 'config': layer.get_config()} def copy_layer(layer): return layer_from_config(wrap_config(layer)) def copy_layers(layers): return [copy_layer(layer) for layer in layers] def copy_weights(from_layers, to_layers): for from_layer,to_layer in zip(from_layers, to_layers): to_layer.set_weights(from_layer.get_weights()) def copy_model(m): res = Sequential(copy_layers(m.layers)) copy_weights(m.layers, res.layers) return res def insert_layer(model, new_layer, index): res = Sequential() for i,layer in enumerate(model.layers): if i==index: res.add(new_layer) copied = layer_from_config(wrap_config(layer)) res.add(copied) copied.set_weights(layer.get_weights()) return res def adjust_dropout(weights, prev_p, new_p): scal = (1-prev_p)/(1-new_p) return [o*scal for o in weights] def get_data(path, target_size=(224,224)): batches = get_batches(path, shuffle=False, batch_size=1, class_mode=None, target_size=target_size) return np.concatenate([batches.next() for i in range(batches.nb_sample)]) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. (This function is copied from the scikit docs.) """ plt.figure() plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def save_array(fname, arr): c=bcolz.carray(arr, rootdir=fname, mode='w') c.flush() def load_array(fname): return bcolz.open(fname)[:] def mk_size(img, r2c): r,c,_ = img.shape curr_r2c = r/c new_r, new_c = r,c if r2c>curr_r2c: new_r = floor(c*r2c) else: new_c = floor(r/r2c) arr = np.zeros((new_r, new_c, 3), dtype=np.float32) r2=(new_r-r)//2 c2=(new_c-c)//2 arr[floor(r2):floor(r2)+r,floor(c2):floor(c2)+c] = img return arr def mk_square(img): x,y,_ = img.shape maxs = max(img.shape[:2]) y2=(maxs-y)//2 x2=(maxs-x)//2 arr = np.zeros((maxs,maxs,3), dtype=np.float32) arr[floor(x2):floor(x2)+x,floor(y2):floor(y2)+y] = img return arr def vgg_ft(out_dim): vgg = Vgg16() vgg.ft(out_dim) model = vgg.model return model def vgg_ft_bn(out_dim): vgg = Vgg16BN() vgg.ft(out_dim) model = vgg.model return model def get_classes(path): batches = get_batches(path+'train', shuffle=False, batch_size=1) val_batches = get_batches(path+'valid', shuffle=False, batch_size=1) test_batches = get_batches(path+'test', shuffle=False, batch_size=1) return (val_batches.classes, batches.classes, onehot(val_batches.classes), onehot(batches.classes), val_batches.filenames, batches.filenames, test_batches.filenames) def split_at(model, layer_type): layers = model.layers layer_idx = [index for index,layer in enumerate(layers) if type(layer) is layer_type][-1] return layers[:layer_idx+1], layers[layer_idx+1:] class MixIterator(object): def __init__(self, iters): self.iters = iters self.multi = type(iters) is list if self.multi: self.N = sum([it[0].N for it in self.iters]) else: self.N = sum([it.N for it in self.iters]) def reset(self): for it in self.iters: it.reset() def __iter__(self): return self def next(self, *args, **kwargs): if self.multi: nexts = [[next(it) for it in o] for o in self.iters] n0s = np.concatenate([n[0] for n in o]) n1s = np.concatenate([n[1] for n in o]) return (n0, n1) else: nexts = [next(it) for it in self.iters] n0 = np.concatenate([n[0] for n in nexts]) n1 = np.concatenate([n[1] for n in nexts]) return (n0, n1)
apache-2.0
rnowling/pop-gen-models
single-pop/single_pop.py
1
3379
import sys import numpy as np import numpy.random as npr from sklearn.neighbors.kde import KernelDensity from scipy.special import gammaln import matplotlib.pyplot as plt from calculate_phist import read_counts from calculate_phist import normalize_haplotypes def log_factorial(n): return gammaln(n+1) def log_multinomial(xs, ps): n = np.sum(xs) log_prob = log_factorial(n) - np.sum(log_factorial(xs)) + np.sum(xs * np.log(ps + 0.0000000000001)) return log_prob class KDE_MCMC_Sampler(object): def __init__(self, observed_counts): """ Observed counts is 3D matrix of pop, locus, haplotype """ self.observed_counts = observed_counts self.individual_counts = observed_counts.sum(axis=2) self.observed_frequencies = normalize_haplotypes(observed_counts) self.n_loci, self.n_pop, self.n_haplotypes = self.observed_counts.shape # from bamova self.DWEIGHT = 1.0 self.DADD = 0.00001 self.SMALL_NUM = 0.0000000000001 print "initializing frequencies" self.freq = np.zeros((self.n_loci, self.n_haplotypes)) for l in xrange(self.n_loci): self.freq[l, :] = self.sample_locus_freq(self.observed_frequencies[l, 0, :]) def sample_locus_freq(self, freq): alphas = self.DWEIGHT * freq + self.DADD + self.SMALL_NUM return npr.dirichlet(alphas) def locus_prob(self, locus_obs_counts, locus_freq): log_prob_sum = 0.0 for p in xrange(self.n_pop): log_prob_sum += log_multinomial(locus_obs_counts[p], locus_freq) return log_prob_sum def step(self): total_log_prob = 0.0 for l in xrange(self.n_loci): locus_indiv_counts = self.individual_counts[l, :] locus_obs_counts = self.observed_counts[l, :, :] log_prob = self.locus_prob(locus_obs_counts, self.freq[l, :]) proposed_locus_freq = self.sample_locus_freq(self.freq[l, :]) proposed_log_prob = self.locus_prob(locus_obs_counts, proposed_locus_freq) log_prob_ratio = proposed_log_prob - log_prob log_r = np.log(npr.random()) if proposed_log_prob >= log_prob or log_r <= log_prob_ratio: self.freq[l, :] = proposed_locus_freq log_prob = proposed_log_prob total_log_prob += log_prob locus_prob = [] for l in xrange(self.n_loci): log_prob = self.locus_prob(locus_obs_counts, self.freq[l, :]) locus_prob.append(log_prob) return self.freq, total_log_prob, locus_prob def plot_log_prob(flname, log_probs): plt.clf() plt.hold(True) plt.hist(log_probs, bins=30) plt.xlabel("Log Probability", fontsize=16) plt.xlim([min(log_probs), 0.0]) plt.ylabel("Occurrences (Loci)", fontsize=16) plt.savefig(flname, DPI=200) def simulate(occur_fl, n_steps, plot_flname, prob_flname): print "reading occurrences" observed_counts = read_counts(occur_fl) individual_counts = observed_counts.sum(axis=2) observed_frequencies = normalize_haplotypes(observed_counts) sampler = KDE_MCMC_Sampler(observed_counts) fl = open(prob_flname, "w") locus_log_prob = [] for i in xrange(n_steps): freq, log_prob, locus_log_prob = sampler.step() print "step", i, "log prob", log_prob if i % 100 == 0: for j, prob in enumerate(locus_log_prob): fl.write("%s %s %s\n" % (i, j, prob)) fl.close() plot_log_prob(plot_flname, locus_log_prob) if __name__ == "__main__": occur_fl = sys.argv[1] n_steps = int(sys.argv[2]) plot_flname = sys.argv[3] prob_flname = sys.argv[4] simulate(occur_fl, n_steps, plot_flname, prob_flname)
apache-2.0
elvandy/nltools
nltools/data/adjacency.py
1
34227
from __future__ import division ''' This data class is for working with similarity/dissimilarity matrices ''' __author__ = ["Luke Chang"] __license__ = "MIT" import os import pandas as pd import numpy as np import six from copy import deepcopy from sklearn.metrics.pairwise import pairwise_distances from sklearn.manifold import MDS from sklearn.utils import check_random_state from scipy.spatial.distance import squareform from scipy.stats import ttest_1samp import seaborn as sns import matplotlib.pyplot as plt from nltools.stats import (correlation_permutation, one_sample_permutation, two_sample_permutation, summarize_bootstrap, matrix_permutation) from nltools.stats import regress as regression from nltools.plotting import (plot_stacked_adjacency, plot_silhouette) from nltools.utils import (all_same, attempt_to_import, concatenate, _bootstrap_apply_func) from .design_matrix import Design_Matrix from joblib import Parallel, delayed # Optional dependencies nx = attempt_to_import('networkx', 'nx') MAX_INT = np.iinfo(np.int32).max class Adjacency(object): ''' Adjacency is a class to represent Adjacency matrices as a vector rather than a 2-dimensional matrix. This makes it easier to perform data manipulation and analyses. Args: data: pandas data instance or list of files matrix_type: (str) type of matrix. Possible values include: ['distance','similarity','directed','distance_flat', 'similarity_flat','directed_flat'] Y: Pandas DataFrame of training labels **kwargs: Additional keyword arguments ''' def __init__(self, data=None, Y=None, matrix_type=None, labels=None, **kwargs): if matrix_type is not None: if matrix_type.lower() not in ['distance','similarity','directed', 'distance_flat','similarity_flat', 'directed_flat']: raise ValueError("matrix_type must be [None,'distance', " "'similarity','directed','distance_flat', " "'similarity_flat','directed_flat']") if data is None: self.data = np.array([]) self.matrix_type = 'empty' self.is_single_matrix = np.nan self.issymmetric = np.nan elif isinstance(data, list): if isinstance(data[0], Adjacency): tmp = concatenate(data) for item in ['data', 'matrix_type', 'Y','issymmetric']: setattr(self, item, getattr(tmp,item)) else: d_all = []; symmetric_all = []; matrix_type_all = [] for d in data: data_tmp, issymmetric_tmp, matrix_type_tmp, _ = self._import_single_data(d, matrix_type=matrix_type) d_all.append(data_tmp) symmetric_all.append(issymmetric_tmp) matrix_type_all.append(matrix_type_tmp) if not all_same(symmetric_all): raise ValueError('Not all matrices are of the same ' 'symmetric type.') if not all_same(matrix_type_all): raise ValueError('Not all matrices are of the same matrix ' 'type.') self.data = np.array(d_all) self.issymmetric = symmetric_all[0] self.matrix_type = matrix_type_all[0] self.is_single_matrix = False else: self.data, self.issymmetric, self.matrix_type, self.is_single_matrix = self._import_single_data(data, matrix_type=matrix_type) if Y is not None: if isinstance(Y, six.string_types): if os.path.isfile(Y): Y = pd.read_csv(Y, header=None, index_col=None) if isinstance(Y, pd.DataFrame): if self.data.shape[0] != len(Y): raise ValueError("Y does not match the correct size of " "data") self.Y = Y else: raise ValueError("Make sure Y is a pandas data frame.") else: self.Y = pd.DataFrame() if labels is not None: if not isinstance(labels, (list, np.ndarray)): raise ValueError( "Make sure labels is a list or numpy array.") if self.is_single_matrix: if len(labels) != self.square_shape()[0]: raise ValueError('Make sure the length of labels matches the shape of data.') self.labels = deepcopy(labels) else: if len(labels) != len(self): if len(labels) != self.square_shape()[0]: raise ValueError('Make sure length of labels either ' 'matches the number of Adjacency ' 'matrices or the size of a single ' 'matrix.') else: self.labels = list(labels) * len(self) else: if np.all(np.array([len(x) for x in labels]) !=self.square_shape()[0]): raise ValueError("All lists of labels must be same length as shape of data.") self.labels = deepcopy(labels) else: self.labels = None def __repr__(self): return ("%s.%s(shape=%s, square_shape=%s, Y=%s, is_symmetric=%s," "matrix_type=%s)") % ( self.__class__.__module__, self.__class__.__name__, self.shape(), self.square_shape(), len(self.Y), self.issymmetric, self.matrix_type) def __getitem__(self,index): new = self.copy() if isinstance(index, int): new.data = np.array(self.data[index, :]).flatten() new.is_single_matrix = True else: new.data = np.array(self.data[index, :]) if not self.Y.empty: new.Y = self.Y.iloc[index] return new def __len__(self): if self.is_single_matrix: return 1 else: return self.data.shape[0] def __iter__(self): for x in range(len(self)): yield self[x] def __add__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data + y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = new.data + y.data return new def __sub__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data - y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = new.data - y.data return new def __mul__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data * y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = np.multiply(new.data, y.data) return new def _import_single_data(self, data, matrix_type=None): ''' Helper function to import single data matrix.''' if isinstance(data, six.string_types): if os.path.isfile(data): data = pd.read_csv(data) else: raise ValueError('Make sure you have specified a valid file ' 'path.') def test_is_single_matrix(data): if len(data.shape) == 1: return True else: return False if matrix_type is not None: if matrix_type.lower() == 'distance_flat': matrix_type = 'distance' data = np.array(data) issymmetric = True is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() == 'similarity_flat': matrix_type = 'similarity' data = np.array(data) issymmetric = True is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() == 'directed_flat': matrix_type = 'directed' data = np.array(data).flatten() issymmetric = False is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() in ['distance', 'similarity', 'directed']: if data.shape[0] != data.shape[1]: raise ValueError('Data matrix must be square') data = np.array(data) matrix_type = matrix_type.lower() if matrix_type in ['distance', 'similarity']: issymmetric = True data = data[np.triu_indices(data.shape[0], k=1)] else: issymmetric = False if isinstance(data, pd.DataFrame): data = data.values.flatten() elif isinstance(data, np.ndarray): data = data.flatten() is_single_matrix = True else: if len(data.shape) == 1: # Single Vector try: data = squareform(data) except ValueError: print('Data is not flattened upper triangle from ' 'similarity/distance matrix or flattened directed ' 'matrix.') is_single_matrix = True elif data.shape[0] == data.shape[1]: # Square Matrix is_single_matrix = True else: # Rectangular Matrix data_all = deepcopy(data) try: data = squareform(data_all[0, :]) except ValueError: print('Data is not flattened upper triangle from multiple ' 'similarity/distance matrices or flattened directed ' 'matrices.') is_single_matrix = False # Test if matrix is symmetrical if np.all(data[np.triu_indices(data.shape[0], k=1)] == data.T[np.triu_indices(data.shape[0], k=1)]): issymmetric = True else: issymmetric = False # Determine matrix type if issymmetric: if np.sum(np.diag(data)) == 0: matrix_type = 'distance' elif np.sum(np.diag(data)) == data.shape[0]: matrix_type = 'similarity' data = data[np.triu_indices(data.shape[0], k=1)] else: matrix_type = 'directed' data = data.flatten() if not is_single_matrix: data = data_all return (data, issymmetric, matrix_type, is_single_matrix) def isempty(self): '''Check if Adjacency object is empty''' return bool(self.matrix_type is 'empty') def squareform(self): '''Convert adjacency back to squareform''' if self.issymmetric: if self.is_single_matrix: return squareform(self.data) else: return [squareform(x.data) for x in self] else: if self.is_single_matrix: return self.data.reshape(int(np.sqrt(self.data.shape[0])), int(np.sqrt(self.data.shape[0]))) else: return [x.data.reshape(int(np.sqrt(x.data.shape[0])), int(np.sqrt(x.data.shape[0]))) for x in self] def plot(self, limit=3, *args, **kwargs): ''' Create Heatmap of Adjacency Matrix''' if self.is_single_matrix: f, a = plt.subplots(nrows=1, figsize=(7, 5)) if self.labels is None: sns.heatmap(self.squareform(), square=True, ax=a, *args, **kwargs) else: sns.heatmap(self.squareform(), square=True, ax=a, xticklabels=self.labels, yticklabels=self.labels, *args, **kwargs) else: n_subs = np.minimum(len(self), limit) f, a = plt.subplots(nrows=n_subs, figsize=(7, len(self)*5)) if self.labels is None: for i in range(n_subs): sns.heatmap(self[i].squareform(), square=True, ax=a[i], *args, **kwargs) else: for i in range(n_subs): sns.heatmap(self[i].squareform(), square=True, xticklabels=self.labels[i], yticklabels=self.labels[i], ax=a[i], *args, **kwargs) return f def mean(self, axis=0): ''' Calculate mean of Adjacency Args: axis: calculate mean over features (0) or data (1). For data it will be on upper triangle. Returns: mean: float if single, adjacency if axis=0, np.array if axis=1 and multiple ''' if self.is_single_matrix: return np.mean(self.data) else: if axis == 0: return Adjacency(data=np.mean(self.data, axis=axis), matrix_type=self.matrix_type + '_flat') elif axis == 1: return np.mean(self.data, axis=axis) def std(self, axis=0): ''' Calculate standard deviation of Adjacency Args: axis: calculate std over features (0) or data (1). For data it will be on upper triangle. Returns: std: float if single, adjacency if axis=0, np.array if axis=1 and multiple ''' if self.is_single_matrix: return np.std(self.data) else: if axis == 0: return Adjacency(data=np.std(self.data, axis=axis), matrix_type=self.matrix_type + '_flat') elif axis == 1: return np.std(self.data, axis=axis) def shape(self): ''' Calculate shape of data. ''' return self.data.shape def square_shape(self): ''' Calculate shape of squareform data. ''' if self.matrix_type is 'empty': return np.array([]) else: if self.is_single_matrix: return self.squareform().shape else: return self[0].squareform().shape def copy(self): ''' Create a copy of Adjacency object.''' return deepcopy(self) def append(self, data): ''' Append data to Adjacency instance Args: data: Adjacency instance to append Returns: out: new appended Adjacency instance ''' if not isinstance(data, Adjacency): raise ValueError('Make sure data is a Adjacency instance.') if self.isempty(): out = data.copy() else: out = self.copy() if self.square_shape() != data.square_shape(): raise ValueError('Data is not the same shape as Adjacency ' 'instance.') out.data = np.vstack([self.data, data.data]) out.is_single_matrix = False if out.Y.size: out.Y = self.Y.append(data.Y) return out def write(self, file_name, method='long'): ''' Write out Adjacency object to csv file. Args: file_name (str): name of file name to write method (str): method to write out data ['long','square'] ''' if method not in ['long', 'square']: raise ValueError('Make sure method is ["long","square"].') if self.is_single_matrix: if method is 'long': out = pd.DataFrame(self.data).to_csv(file_name, index=None) elif method is 'square': out = pd.DataFrame(self.squareform()).to_csv(file_name, index=None) else: if method is 'long': out = pd.DataFrame(self.data).to_csv(file_name, index=None) elif method is 'square': raise NotImplementedError('Need to decide how we should write ' 'out multiple matrices. As separate ' 'files?') def similarity(self, data, plot=False, perm_type='2d', n_permute=5000, metric='spearman', **kwargs): ''' Calculate similarity between two Adjacency matrices. Default is to use spearman correlation and permutation test. Args: data: Adjacency data, or 1-d array same size as self.data perm_type: '1d','2d', or None metric: 'spearman','pearson','kendall' ''' if not isinstance(data, Adjacency): data2 = Adjacency(data) else: data2 = data.copy() if perm_type is None: n_permute=0 similarity_func = correlation_permutation elif perm_type == '1d': similarity_func = correlation_permutation elif perm_type == '2d': similarity_func = matrix_permutation if self.is_single_matrix: if plot: plot_stacked_adjacency(self, data) return similarity_func(self.data, data2.data, metric=metric, n_permute=n_permute, **kwargs) else: if plot: _, a = plt.subplots(len(self)) for i in a: plot_stacked_adjacency(self, data, ax=i) return [similarity_func(x.data, data2.data, metric=metric, n_permute=n_permute, **kwargs) for x in self] def distance(self, method='correlation', **kwargs): ''' Calculate distance between images within an Adjacency() instance. Args: method: type of distance metric (can use any scikit learn or sciypy metric) Returns: dist: Outputs a 2D distance matrix. ''' return Adjacency(pairwise_distances(self.data, metric=method, **kwargs), matrix_type='distance') def threshold(self, upper=None, lower=None, binarize=False): '''Threshold Adjacency instance. Provide upper and lower values or percentages to perform two-sided thresholding. Binarize will return a mask image respecting thresholds if provided, otherwise respecting every non-zero value. Args: upper: (float or str) Upper cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. lower: (float or str) Lower cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. binarize (bool): return binarized image respecting thresholds if provided, otherwise binarize on every non-zero value; default False Returns: Adjacency: thresholded Adjacency instance ''' b = self.copy() if isinstance(upper, six.string_types): if upper[-1] is '%': upper = np.percentile(b.data, float(upper[:-1])) if isinstance(lower, six.string_types): if lower[-1] is '%': lower = np.percentile(b.data, float(lower[:-1])) if upper and lower: b.data[(b.data < upper) & (b.data > lower)] = 0 elif upper and not lower: b.data[b.data < upper] = 0 elif lower and not upper: b.data[b.data > lower] = 0 if binarize: b.data[b.data != 0] = 1 return b def to_graph(self): ''' Convert Adjacency into networkx graph. only works on single_matrix for now.''' if self.is_single_matrix: if self.matrix_type == 'directed': G = nx.DiGraph(self.squareform()) else: G = nx.Graph(self.squareform()) if self.labels is not None: labels = {x:y for x,y in zip(G.nodes,self.labels)} nx.relabel_nodes(G, labels, copy=False) return G else: raise NotImplementedError('This function currently only works on ' 'single matrices.') def ttest(self, permutation=False, **kwargs): ''' Calculate ttest across samples. Args: permutation: (bool) Run ttest as permutation. Note this can be very slow. Returns: out: (dict) contains Adjacency instances of t values (or mean if running permutation) and Adjacency instance of p values. ''' if self.is_single_matrix: raise ValueError('t-test cannot be run on single matrices.') if permutation: t = []; p = [] for i in range(self.data.shape[1]): stats = one_sample_permutation(self.data[:, i], **kwargs) t.append(stats['mean']) p.append(stats['p']) t = Adjacency(np.array(t)) p = Adjacency(np.array(p)) else: t = self.mean().copy() p = deepcopy(t) t.data, p.data = ttest_1samp(self.data, 0, 0) return {'t': t, 'p':p} def plot_label_distance(self, labels=None, ax=None): ''' Create a violin plot indicating within and between label distance Args: labels (np.array): numpy array of labels to plot Returns: violin plot handles ''' if not self.is_single_matrix: raise ValueError('This function only works on single adjacency ' 'matrices.') distance = pd.DataFrame(self.squareform()) if labels is None: labels = np.array(deepcopy(self.labels)) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') out = pd.DataFrame(columns=['Distance', 'Group', 'Type'], index=None) for i in np.unique(labels): tmp_w = pd.DataFrame(columns=out.columns, index=None) tmp_w['Distance'] = distance.loc[labels == i, labels == i].values[np.triu_indices(sum(labels == i), k=1)] tmp_w['Type'] = 'Within' tmp_w['Group'] = i tmp_b = pd.DataFrame(columns=out.columns, index=None) tmp_b['Distance'] = distance.loc[labels != i, labels != i].values[np.triu_indices(sum(labels == i), k=1)] tmp_b['Type'] = 'Between' tmp_b['Group'] = i out = out.append(tmp_w).append(tmp_b) f = sns.violinplot(x="Group", y="Distance", hue="Type", data=out, split=True, inner='quartile', palette={"Within": "lightskyblue", "Between": "red"}, ax=ax) f.set_ylabel('Average Distance') f.set_title('Average Group Distance') return f def stats_label_distance(self, labels=None, n_permute=5000, n_jobs=-1): ''' Calculate permutation tests on within and between label distance. Args: labels (np.array): numpy array of labels to plot n_permute (int): number of permutations to run (default=5000) Returns: dict: dictionary of within and between group differences and p-values ''' if not self.is_single_matrix: raise ValueError('This function only works on single adjacency ' 'matrices.') distance = pd.DataFrame(self.squareform()) if labels is not None: labels = deepcopy(self.labels) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') out = pd.DataFrame(columns=['Distance', 'Group', 'Type'], index=None) for i in np.unique(labels): tmp_w = pd.DataFrame(columns=out.columns, index=None) tmp_w['Distance'] = distance.loc[labels == i, labels == i].values[np.triu_indices(sum(labels == i), k=1)] tmp_w['Type'] = 'Within' tmp_w['Group'] = i tmp_b = pd.DataFrame(columns=out.columns, index=None) tmp_b['Distance'] = distance.loc[labels == i, labels != i].values.flatten() tmp_b['Type'] = 'Between' tmp_b['Group'] = i out = out.append(tmp_w).append(tmp_b) stats = dict() for i in np.unique(labels): # Within group test tmp1 = out.loc[(out['Group'] == i) & (out['Type'] == 'Within'), 'Distance'] tmp2 = out.loc[(out['Group'] == i) & (out['Type'] == 'Between'), 'Distance'] stats[str(i)] = two_sample_permutation(tmp1, tmp2, n_permute=n_permute, n_jobs=n_jobs) return stats def plot_silhouette(self, labels=None, ax=None, permutation_test=True, n_permute=5000, **kwargs): '''Create a silhouette plot''' distance = pd.DataFrame(self.squareform()) if labels is None: labels = np.array(deepcopy(self.labels)) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') (f, outAll) = plot_silhouette(distance, labels, ax=None, permutation_test=True, n_permute=5000, **kwargs) return (f,outAll) def bootstrap(self, function, n_samples=5000, save_weights=False, n_jobs=-1, random_state=None, *args, **kwargs): '''Bootstrap an Adjacency method. Example Useage: b = dat.bootstrap('mean', n_samples=5000) b = dat.bootstrap('predict', n_samples=5000, algorithm='ridge') b = dat.bootstrap('predict', n_samples=5000, save_weights=True) Args: function: (str) method to apply to data for each bootstrap n_samples: (int) number of samples to bootstrap with replacement save_weights: (bool) Save each bootstrap iteration (useful for aggregating many bootstraps on a cluster) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs.Returns: output: summarized studentized bootstrap output ''' random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_samples) bootstrapped = Parallel(n_jobs=n_jobs)( delayed(_bootstrap_apply_func)(self, function, random_state=seeds[i], *args, **kwargs) for i in range(n_samples)) bootstrapped = Adjacency(bootstrapped) return summarize_bootstrap(bootstrapped, save_weights=save_weights) def plot_mds(self, n_components=2, metric=True, labels_color=None, cmap=plt.cm.hot_r, n_jobs=-1, view=(30, 20), figsize = [12,8], ax = None, *args, **kwargs): ''' Plot Multidimensional Scaling Args: n_components: (int) Number of dimensions to project (can be 2 or 3) metric: (bool) Perform metric or non-metric dimensional scaling; default labels_color: (str) list of colors for labels, if len(1) then make all same color n_jobs: (int) Number of parallel jobs view: (tuple) view for 3-Dimensional plot; default (30,20) Returns: fig: returns matplotlib figure ''' if self.matrix_type != 'distance': raise ValueError("MDS only works on distance matrices.") if not self.is_single_matrix: raise ValueError("MDS only works on single matrices.") if n_components not in [2,3]: raise ValueError('Cannot plot {0}-d image'.format(n_components)) if labels_color is not None: if self.labels is None: raise ValueError("Make sure that Adjacency object has labels specified.") if len(self.labels) != len(labels_color): raise ValueError("Length of labels_color must match self.labels.") # Run MDS mds = MDS(n_components=n_components, metric=metric, n_jobs=n_jobs, dissimilarity="precomputed", *args, **kwargs) proj = mds.fit_transform(self.squareform()) # Create Plot if ax == None: # Create axis returnFig = True fig = plt.figure(figsize=figsize) if n_components == 3: ax = fig.add_subplot(111, projection='3d') ax.view_init(*view) elif n_components == 2: ax = fig.add_subplot(111) # Plot dots if n_components == 3: ax.scatter(proj[:, 0], proj[:, 1], proj[:, 2], s=1, c='k') elif n_components == 2: ax.scatter(proj[:, 0], proj[:, 1], s=1, c='k') # Plot labels if labels_color is None: labels_color = ['black'] * len(self.labels) if n_components == 3: for ((x, y, z), label, color) in zip(proj, self.labels, labels_color): ax.text(x, y, z, label, color='white', #color, bbox=dict(facecolor=color, alpha=1, boxstyle="round,pad=0.3")) else: for ((x, y), label, color) in zip(proj, self.labels, labels_color): ax.text(x, y, label, color='white', #color, bbox=dict(facecolor=color, alpha=1, boxstyle="round,pad=0.3")) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if returnFig: return fig def distance_to_similarity(self, beta=1): '''Convert distance matrix to similarity matrix Args: beta: parameter to scale exponential function (default: 1) Returns: Adjacency object ''' if self.matrix_type == 'distance': return Adjacency(np.exp(-beta*self.squareform()/self.squareform().std()), labels=self.labels, matrix_type='similarity') else: raise ValueError('Matrix is not a distance matrix.') def similarity_to_distance(self): '''Convert similarity matrix to distance matrix''' if self.matrix_type == 'similarity': return Adjacency(1-self.squareform(), labels=self.labels, matrix_type='distance') else: raise ValueError('Matrix is not a similarity matrix.') def within_cluster_mean(self, clusters = None): ''' This function calculates mean within cluster labels Args: clusters: list of cluster labels Returns: dict: within cluster means ''' distance=pd.DataFrame(self.squareform()) clusters = np.array(clusters) if len(clusters) != distance.shape[0]: raise ValueError('Cluster labels must be same length as distance matrix') out = pd.DataFrame(columns=['Mean','Label'],index=None) out = {} for i in list(set(clusters)): out[i] = np.mean(distance.loc[clusters==i,clusters==i].values[np.triu_indices(sum(clusters==i),k=1)]) return out def regress(self, X, mode='ols', **kwargs): ''' Run a regression on an adjacency instance. You can decompose an adjacency instance with another adjacency instance. You can also decompose each pixel by passing a design_matrix instance. Args: X: Design matrix can be an Adjacency or Design_Matrix instance method: type of regression (default: ols) Returns: ''' stats = {} if isinstance(X, Adjacency): if X.square_shape()[0] != self.square_shape()[0]: raise ValueError('Adjacency instances must be the same size.') b,t,p,_,res = regression(X.data.T, self.data, mode=mode, **kwargs) stats['beta'],stats['t'],stats['p'],stats['residual'] = (b,t,p,res) elif isinstance(X, Design_Matrix): if X.shape[0] != len(self): raise ValueError('Design matrix must have same number of observations as Adjacency') b,t,p,df,res = regression(X, self.data, mode=mode, **kwargs) mode = 'ols' stats['beta'], stats['t'], stats['p'] = [x for x in self[:3]] stats['beta'].data, stats['t'].data, stats['p'].data = b.squeeze(), t.squeeze(), p.squeeze() stats['residual'] = self.copy() stats['residual'].data = res else: raise ValueError('X must be a Design_Matrix or Adjacency Instance.') return stats
mit
tmhm/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
siutanwong/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
BiaDarkia/scikit-learn
examples/tree/plot_iris.py
30
2062
""" ================================================================ Plot the decision surface of a decision tree on the iris dataset ================================================================ Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See :ref:`decision tree <tree>` for more information on the estimator. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show()
bsd-3-clause
erh3cq/hyperspy
hyperspy/_signals/signal1d.py
2
61717
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import os import logging import math import matplotlib.pyplot as plt import numpy as np import dask.array as da import scipy.interpolate import scipy as sp from scipy.signal import savgol_filter from scipy.ndimage.filters import gaussian_filter1d from hyperspy.signal import BaseSignal from hyperspy._signals.common_signal1d import CommonSignal1D from hyperspy.signal_tools import SpikesRemoval, SpikesRemovalInteractive from hyperspy.models.model1d import Model1D from hyperspy.misc.lowess_smooth import lowess from hyperspy.defaults_parser import preferences from hyperspy.signal_tools import ( Signal1DCalibration, SmoothingSavitzkyGolay, SmoothingLowess, SmoothingTV, ButterworthFilter) from hyperspy.ui_registry import DISPLAY_DT, TOOLKIT_DT from hyperspy.misc.tv_denoise import _tv_denoise_1d from hyperspy.signal_tools import BackgroundRemoval from hyperspy.decorators import interactive_range_selector from hyperspy.signal_tools import IntegrateArea, _get_background_estimator from hyperspy._signals.lazy import LazySignal from hyperspy.docstrings.signal1d import CROP_PARAMETER_DOC, SPIKES_REMOVAL_TOOL_DOCSTRING from hyperspy.docstrings.signal import (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG, SIGNAL_MASK_ARG, NAVIGATION_MASK_ARG) from hyperspy.docstrings.plot import ( BASE_PLOT_DOCSTRING, BASE_PLOT_DOCSTRING_PARAMETERS, PLOT1D_DOCSTRING) _logger = logging.getLogger(__name__) def find_peaks_ohaver(y, x=None, slope_thresh=0., amp_thresh=None, medfilt_radius=5, maxpeakn=30000, peakgroup=10, subchannel=True,): """Find peaks along a 1D line. Function to locate the positive peaks in a noisy x-y data set. Detects peaks by looking for downward zero-crossings in the first derivative that exceed 'slope_thresh'. Returns an array containing position, height, and width of each peak. Sorted by position. 'slope_thresh' and 'amp_thresh', control sensitivity: higher values will neglect wider peaks (slope) and smaller features (amp), respectively. Parameters ---------- y : array 1D input array, e.g. a spectrum x : array (optional) 1D array describing the calibration of y (must have same shape as y) slope_thresh : float (optional) 1st derivative threshold to count the peak; higher values will neglect broader features; default is set to 0. amp_thresh : float (optional) intensity threshold below which peaks are ignored; higher values will neglect smaller features; default is set to 10% of max(y). medfilt_radius : int (optional) median filter window to apply to smooth the data (see scipy.signal.medfilt); if 0, no filter will be applied; default is set to 5. peakgroup : int (optional) number of points around the "top part" of the peak that are taken to estimate the peak height; for spikes or very narrow peaks, keep PeakGroup=1 or 2; for broad or noisy peaks, make PeakGroup larger to reduce the effect of noise; default is set to 10. maxpeakn : int (optional) number of maximum detectable peaks; default is set to 30000. subchannel : bool (optional) default is set to True. Returns ------- P : structured array of shape (npeaks) contains fields: 'position', 'width', and 'height' for each peak. Examples -------- >>> x = np.arange(0,50,0.01) >>> y = np.cos(x) >>> peaks = find_peaks_ohaver(y, x, 0, 0) Notes ----- Original code from T. C. O'Haver, 1995. Version 2 Last revised Oct 27, 2006 Converted to Python by Michael Sarahan, Feb 2011. Revised to handle edges better. MCS, Mar 2011 """ if x is None: x = np.arange(len(y), dtype=np.int64) if not amp_thresh: amp_thresh = 0.1 * y.max() peakgroup = np.round(peakgroup) if medfilt_radius: d = np.gradient(scipy.signal.medfilt(y, medfilt_radius)) else: d = np.gradient(y) n = np.round(peakgroup / 2 + 1) peak_dt = np.dtype([('position', np.float), ('height', np.float), ('width', np.float)]) P = np.array([], dtype=peak_dt) peak = 0 for j in range(len(y) - 4): if np.sign(d[j]) > np.sign(d[j + 1]): # Detects zero-crossing if np.sign(d[j + 1]) == 0: continue # if slope of derivative is larger than slope_thresh if d[j] - d[j + 1] > slope_thresh: # if height of peak is larger than amp_thresh if y[j] > amp_thresh: # the next section is very slow, and actually messes # things up for images (discrete pixels), # so by default, don't do subchannel precision in the # 1D peakfind step. if subchannel: xx = np.zeros(peakgroup) yy = np.zeros(peakgroup) s = 0 for k in range(peakgroup): groupindex = int(j + k - n + 1) if groupindex < 1: xx = xx[1:] yy = yy[1:] s += 1 continue elif groupindex > y.shape[0] - 1: xx = xx[:groupindex - 1] yy = yy[:groupindex - 1] break xx[k - s] = x[groupindex] yy[k - s] = y[groupindex] avg = np.average(xx) stdev = np.std(xx) xxf = (xx - avg) / stdev # Fit parabola to log10 of sub-group with # centering and scaling yynz = yy != 0 coef = np.polyfit( xxf[yynz], np.log10(np.abs(yy[yynz])), 2) c1 = coef[2] c2 = coef[1] c3 = coef[0] with np.errstate(invalid='ignore'): width = np.linalg.norm(stdev * 2.35703 / (np.sqrt(2) * np.sqrt(-1 * c3))) # if the peak is too narrow for least-squares # technique to work well, just use the max value # of y in the sub-group of points near peak. if peakgroup < 7: height = np.max(yy) position = xx[np.argmin(np.abs(yy - height))] else: position = - ((stdev * c2 / (2 * c3)) - avg) height = np.exp(c1 - c3 * (c2 / (2 * c3)) ** 2) # Fill results array P. One row for each peak # detected, containing the # peak position (x-value) and peak height (y-value). else: position = x[j] height = y[j] # no way to know peak width without # the above measurements. width = 0 if (not np.isnan(position) and 0 < position < x[-1]): P = np.hstack((P, np.array([(position, height, width)], dtype=peak_dt))) peak += 1 # return only the part of the array that contains peaks # (not the whole maxpeakn x 3 array) if len(P) > maxpeakn: minh = np.sort(P['height'])[-maxpeakn] P = P[P['height'] >= minh] # Sorts the values as a function of position P.sort(0) return P def interpolate1D(number_of_interpolation_points, data): ip = number_of_interpolation_points ch = len(data) old_ax = np.linspace(0, 100, ch) new_ax = np.linspace(0, 100, ch * ip - (ip - 1)) interpolator = scipy.interpolate.interp1d(old_ax, data) return interpolator(new_ax) def _estimate_shift1D(data, **kwargs): mask = kwargs.get('mask', None) ref = kwargs.get('ref', None) interpolate = kwargs.get('interpolate', True) ip = kwargs.get('ip', 5) data_slice = kwargs.get('data_slice', slice(None)) if bool(mask): # asarray is required for consistensy as argmax # returns a numpy scalar array return np.asarray(np.nan) data = data[data_slice] if interpolate is True: data = interpolate1D(ip, data) return np.argmax(np.correlate(ref, data, 'full')) - len(ref) + 1 def _shift1D(data, **kwargs): shift = kwargs.get('shift', 0.) original_axis = kwargs.get('original_axis', None) fill_value = kwargs.get('fill_value', np.nan) kind = kwargs.get('kind', 'linear') offset = kwargs.get('offset', 0.) scale = kwargs.get('scale', 1.) size = kwargs.get('size', 2) if np.isnan(shift) or shift == 0: return data axis = np.linspace(offset, offset + scale * (size - 1), size) si = sp.interpolate.interp1d(original_axis, data, bounds_error=False, fill_value=fill_value, kind=kind) offset = float(offset - shift) axis = np.linspace(offset, offset + scale * (size - 1), size) return si(axis) class Signal1D(BaseSignal, CommonSignal1D): """ """ _signal_dimension = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.axes_manager.signal_dimension != 1: self.axes_manager.set_signal_dimension(1) def _get_spikes_diagnosis_histogram_data(self, signal_mask=None, navigation_mask=None, **kwargs): self._check_signal_dimension_equals_one() dc = self.data if signal_mask is not None: dc = dc[..., ~signal_mask] if navigation_mask is not None: dc = dc[~navigation_mask, :] der = np.abs(np.diff(dc, 1, -1)) n = ((~navigation_mask).sum() if navigation_mask else self.axes_manager.navigation_size) # arbitrary cutoff for number of spectra necessary before histogram # data is compressed by finding maxima of each spectrum tmp = BaseSignal(der) if n < 2000 else BaseSignal( np.ravel(der.max(-1))) # get histogram signal using smart binning and plot return tmp.get_histogram(**kwargs) def spikes_diagnosis(self, signal_mask=None, navigation_mask=None, **kwargs): """Plots a histogram to help in choosing the threshold for spikes removal. Parameters ---------- %s %s **kwargs : dict Keyword arguments pass to :py:meth:`~hyperspy.signal.signal.BaseSignal.get_histogram` See also -------- spikes_removal_tool """ tmph = self._get_spikes_diagnosis_histogram_data(signal_mask, navigation_mask, **kwargs) tmph.plot() # Customize plot appearance plt.gca().set_title('') plt.gca().fill_between(tmph.axes_manager[0].axis, tmph.data, facecolor='#fddbc7', interpolate=True, color='none') ax = tmph._plot.signal_plot.ax axl = tmph._plot.signal_plot.ax_lines[0] axl.set_line_properties(color='#b2182b') plt.xlabel('Derivative magnitude') plt.ylabel('Log(Counts)') ax.set_yscale('log') ax.set_ylim(10 ** -1, plt.ylim()[1]) ax.set_xlim(plt.xlim()[0], 1.1 * plt.xlim()[1]) plt.draw() spikes_diagnosis.__doc__ %= (SIGNAL_MASK_ARG, NAVIGATION_MASK_ARG) def spikes_removal_tool(self, signal_mask=None, navigation_mask=None, threshold='auto', interactive=True, display=True, toolkit=None): self._check_signal_dimension_equals_one() if interactive: sr = SpikesRemovalInteractive(self, signal_mask=signal_mask, navigation_mask=navigation_mask, threshold=threshold) return sr.gui(display=display, toolkit=toolkit) else: SpikesRemoval(self, signal_mask=signal_mask, navigation_mask=navigation_mask, threshold=threshold) spikes_removal_tool.__doc__ = SPIKES_REMOVAL_TOOL_DOCSTRING % ( SIGNAL_MASK_ARG, NAVIGATION_MASK_ARG, "", DISPLAY_DT, TOOLKIT_DT) def create_model(self, dictionary=None): """Create a model for the current data. Returns ------- model : `Model1D` instance. """ model = Model1D(self, dictionary=dictionary) return model def shift1D( self, shift_array, interpolation_method='linear', crop=True, expand=False, fill_value=np.nan, parallel=None, show_progressbar=None, max_workers=None, ): """Shift the data in place over the signal axis by the amount specified by an array. Parameters ---------- shift_array : numpy array An array containing the shifting amount. It must have `axes_manager._navigation_shape_in_array` shape. interpolation_method : str or int Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use. %s expand : bool If True, the data will be expanded to fit all data after alignment. Overrides `crop`. fill_value : float If crop is False fill the data outside of the original interval with the given value where needed. %s %s %s Raises ------ SignalDimensionError If the signal dimension is not 1. """ if not np.any(shift_array): # Nothing to do, the shift array if filled with zeros return if show_progressbar is None: show_progressbar = preferences.General.show_progressbar self._check_signal_dimension_equals_one() axis = self.axes_manager.signal_axes[0] # Figure out min/max shifts, and translate to shifts in index as well minimum, maximum = np.nanmin(shift_array), np.nanmax(shift_array) if minimum < 0: ihigh = 1 + axis.value2index( axis.high_value + minimum, rounding=math.floor) else: ihigh = axis.high_index + 1 if maximum > 0: ilow = axis.value2index(axis.offset + maximum, rounding=math.ceil) else: ilow = axis.low_index if expand: if self._lazy: ind = axis.index_in_array pre_shape = list(self.data.shape) post_shape = list(self.data.shape) pre_chunks = list(self.data.chunks) post_chunks = list(self.data.chunks) pre_shape[ind] = axis.high_index - ihigh + 1 post_shape[ind] = ilow - axis.low_index for chunks, shape in zip((pre_chunks, post_chunks), (pre_shape, post_shape)): maxsize = min(np.max(chunks[ind]), shape[ind]) num = np.ceil(shape[ind] / maxsize) chunks[ind] = tuple(len(ar) for ar in np.array_split(np.arange(shape[ind]), num)) pre_array = da.full(tuple(pre_shape), fill_value, chunks=tuple(pre_chunks)) post_array = da.full(tuple(post_shape), fill_value, chunks=tuple(post_chunks)) self.data = da.concatenate((pre_array, self.data, post_array), axis=ind) else: padding = [] for i in range(self.data.ndim): if i == axis.index_in_array: padding.append((axis.high_index - ihigh + 1, ilow - axis.low_index)) else: padding.append((0, 0)) self.data = np.pad(self.data, padding, mode='constant', constant_values=(fill_value,)) axis.offset += minimum axis.size += axis.high_index - ihigh + 1 + ilow - axis.low_index self._map_iterate(_shift1D, (('shift', shift_array.ravel()),), original_axis=axis.axis, fill_value=fill_value, kind=interpolation_method, offset=axis.offset, scale=axis.scale, size=axis.size, show_progressbar=show_progressbar, parallel=parallel, max_workers=max_workers, ragged=False) if crop and not expand: _logger.debug("Cropping %s from index %i to %i" % (self, ilow, ihigh)) self.crop(axis.index_in_axes_manager, ilow, ihigh) self.events.data_changed.trigger(obj=self) shift1D.__doc__ %= (CROP_PARAMETER_DOC, SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG) def interpolate_in_between( self, start, end, delta=3, show_progressbar=None, parallel=None, max_workers=None, **kwargs, ): """Replace the data in a given range by interpolation. The operation is performed in place. Parameters ---------- start, end : int or float The limits of the interval. If int they are taken as the axis index. If float they are taken as the axis value. delta : int or float The windows around the (start, end) to use for interpolation %s %s %s **kwargs : All extra keyword arguments are passed to :py:func:`scipy.interpolate.interp1d`. See the function documentation for details. Raises ------ SignalDimensionError If the signal dimension is not 1. """ if show_progressbar is None: show_progressbar = preferences.General.show_progressbar self._check_signal_dimension_equals_one() axis = self.axes_manager.signal_axes[0] i1 = axis._get_index(start) i2 = axis._get_index(end) if isinstance(delta, float): delta = int(delta / axis.scale) i0 = int(np.clip(i1 - delta, 0, np.inf)) i3 = int(np.clip(i2 + delta, 0, axis.size)) def interpolating_function(dat): dat_int = sp.interpolate.interp1d( list(range(i0, i1)) + list(range(i2, i3)), dat[i0:i1].tolist() + dat[i2:i3].tolist(), **kwargs) dat[i1:i2] = dat_int(list(range(i1, i2))) return dat self._map_iterate(interpolating_function, ragged=False, parallel=parallel, show_progressbar=show_progressbar, max_workers=max_workers) self.events.data_changed.trigger(obj=self) interpolate_in_between.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG) def estimate_shift1D( self, start=None, end=None, reference_indices=None, max_shift=None, interpolate=True, number_of_interpolation_points=5, mask=None, show_progressbar=None, parallel=None, max_workers=None, ): """Estimate the shifts in the current signal axis using cross-correlation. This method can only estimate the shift by comparing unidimensional features that should not change the position in the signal axis. To decrease the memory usage, the time of computation and the accuracy of the results it is convenient to select the feature of interest providing sensible values for `start` and `end`. By default interpolation is used to obtain subpixel precision. Parameters ---------- start, end : int, float or None The limits of the interval. If int they are taken as the axis index. If float they are taken as the axis value. reference_indices : tuple of ints or None Defines the coordinates of the spectrum that will be used as eference. If None the spectrum at the current coordinates is used for this purpose. max_shift : int "Saturation limit" for the shift. interpolate : bool If True, interpolation is used to provide sub-pixel accuracy. number_of_interpolation_points : int Number of interpolation points. Warning: making this number too big can saturate the memory mask : `BaseSignal` of bool. It must have signal_dimension = 0 and navigation_shape equal to the current signal. Where mask is True the shift is not computed and set to nan. %s %s %s Returns ------- An array with the result of the estimation in the axis units. Although the computation is performed in batches if the signal is lazy, the result is computed in memory because it depends on the current state of the axes that could change later on in the workflow. Raises ------ SignalDimensionError If the signal dimension is not 1. """ if show_progressbar is None: show_progressbar = preferences.General.show_progressbar self._check_signal_dimension_equals_one() ip = number_of_interpolation_points + 1 axis = self.axes_manager.signal_axes[0] self._check_navigation_mask(mask) # we compute for now if isinstance(start, da.Array): start = start.compute() if isinstance(end, da.Array): end = end.compute() i1, i2 = axis._get_index(start), axis._get_index(end) if reference_indices is None: reference_indices = self.axes_manager.indices ref = self.inav[reference_indices].data[i1:i2] if interpolate is True: ref = interpolate1D(ip, ref) iterating_kwargs = () if mask is not None: iterating_kwargs += (('mask', mask),) shift_signal = self._map_iterate( _estimate_shift1D, iterating_kwargs=iterating_kwargs, data_slice=slice(i1, i2), ref=ref, ip=ip, interpolate=interpolate, ragged=False, parallel=parallel, inplace=False, show_progressbar=show_progressbar, max_workers=max_workers, ) shift_array = shift_signal.data if max_shift is not None: if interpolate is True: max_shift *= ip shift_array.clip(-max_shift, max_shift) if interpolate is True: shift_array = shift_array / ip shift_array *= axis.scale if self._lazy: # We must compute right now because otherwise any changes to the # axes_manager of the signal later in the workflow may result in # a wrong shift_array shift_array = shift_array.compute() return shift_array estimate_shift1D.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG) def align1D(self, start=None, end=None, reference_indices=None, max_shift=None, interpolate=True, number_of_interpolation_points=5, interpolation_method='linear', crop=True, expand=False, fill_value=np.nan, also_align=None, mask=None, show_progressbar=None): """Estimate the shifts in the signal axis using cross-correlation and use the estimation to align the data in place. This method can only estimate the shift by comparing unidimensional features that should not change the position. To decrease memory usage, time of computation and improve accuracy it is convenient to select the feature of interest setting the `start` and `end` keywords. By default interpolation is used to obtain subpixel precision. Parameters ---------- start, end : int, float or None The limits of the interval. If int they are taken as the axis index. If float they are taken as the axis value. reference_indices : tuple of ints or None Defines the coordinates of the spectrum that will be used as eference. If None the spectrum at the current coordinates is used for this purpose. max_shift : int "Saturation limit" for the shift. interpolate : bool If True, interpolation is used to provide sub-pixel accuracy. number_of_interpolation_points : int Number of interpolation points. Warning: making this number too big can saturate the memory interpolation_method : str or int Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use. %s expand : bool If True, the data will be expanded to fit all data after alignment. Overrides `crop`. fill_value : float If crop is False fill the data outside of the original interval with the given value where needed. also_align : list of signals, None A list of BaseSignal instances that has exactly the same dimensions as this one and that will be aligned using the shift map estimated using the this signal. mask : `BaseSignal` or bool data type. It must have signal_dimension = 0 and navigation_shape equal to the current signal. Where mask is True the shift is not computed and set to nan. %s Returns ------- An array with the result of the estimation. Raises ------ SignalDimensionError If the signal dimension is not 1. See also -------- estimate_shift1D """ if also_align is None: also_align = [] self._check_signal_dimension_equals_one() if self._lazy: _logger.warning('In order to properly expand, the lazy ' 'reference signal will be read twice (once to ' 'estimate shifts, and second time to shift ' 'appropriatelly), which might take a long time. ' 'Use expand=False to only pass through the data ' 'once.') shift_array = self.estimate_shift1D( start=start, end=end, reference_indices=reference_indices, max_shift=max_shift, interpolate=interpolate, number_of_interpolation_points=number_of_interpolation_points, mask=mask, show_progressbar=show_progressbar) signals_to_shift = [self] + also_align for signal in signals_to_shift: signal.shift1D(shift_array=shift_array, interpolation_method=interpolation_method, crop=crop, fill_value=fill_value, expand=expand, show_progressbar=show_progressbar) align1D.__doc__ %= (CROP_PARAMETER_DOC, SHOW_PROGRESSBAR_ARG) def integrate_in_range(self, signal_range='interactive', display=True, toolkit=None): """Sums the spectrum over an energy range, giving the integrated area. The energy range can either be selected through a GUI or the command line. Parameters ---------- signal_range : a tuple of this form (l, r) or "interactive" l and r are the left and right limits of the range. They can be numbers or None, where None indicates the extremes of the interval. If l and r are floats the `signal_range` will be in axis units (for example eV). If l and r are integers the `signal_range` will be in index units. When `signal_range` is "interactive" (default) the range is selected using a GUI. Note that ROIs can be used in place of a tuple. Returns -------- integrated_spectrum : `BaseSignal` subclass See Also -------- integrate_simpson Examples -------- Using the GUI >>> s = hs.signals.Signal1D(range(1000)) >>> s.integrate_in_range() #doctest: +SKIP Using the CLI >>> s_int = s.integrate_in_range(signal_range=(560,None)) Selecting a range in the axis units, by specifying the signal range with floats. >>> s_int = s.integrate_in_range(signal_range=(560.,590.)) Selecting a range using the index, by specifying the signal range with integers. >>> s_int = s.integrate_in_range(signal_range=(100,120)) """ from hyperspy.misc.utils import deprecation_warning msg = ( "The `Signal1D.integrate_in_range` method is deprecated and will " "be removed in v2.0. Use a `roi.SpanRoi` followed by `integrate1D` " "instead.") deprecation_warning(msg) if signal_range == 'interactive': self_copy = self.deepcopy() ia = IntegrateArea(self_copy, signal_range) ia.gui(display=display, toolkit=toolkit) integrated_signal1D = self_copy else: integrated_signal1D = self._integrate_in_range_commandline( signal_range) return integrated_signal1D def _integrate_in_range_commandline(self, signal_range): e1 = signal_range[0] e2 = signal_range[1] integrated_signal1D = self.isig[e1:e2].integrate1D(-1) return integrated_signal1D def calibrate(self, display=True, toolkit=None): """ Calibrate the spectral dimension using a gui. It displays a window where the new calibration can be set by: * setting the values of offset, units and scale directly * or selecting a range by dragging the mouse on the spectrum figure and setting the new values for the given range limits Parameters ---------- %s %s Notes ----- For this method to work the output_dimension must be 1. Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() calibration = Signal1DCalibration(self) return calibration.gui(display=display, toolkit=toolkit) calibrate.__doc__ %= (DISPLAY_DT, TOOLKIT_DT) def smooth_savitzky_golay( self, polynomial_order=None, window_length=None, differential_order=0, parallel=None, max_workers=None, display=True, toolkit=None, ): """ Apply a Savitzky-Golay filter to the data in place. If `polynomial_order` or `window_length` or `differential_order` are None the method is run in interactive mode. Parameters ---------- polynomial_order : int, optional The order of the polynomial used to fit the samples. `polyorder` must be less than `window_length`. window_length : int, optional The length of the filter window (i.e. the number of coefficients). `window_length` must be a positive odd integer. differential_order: int, optional The order of the derivative to compute. This must be a nonnegative integer. The default is 0, which means to filter the data without differentiating. %s %s %s %s Notes ----- More information about the filter in `scipy.signal.savgol_filter`. """ self._check_signal_dimension_equals_one() if (polynomial_order is not None and window_length is not None): axis = self.axes_manager.signal_axes[0] self.map(savgol_filter, window_length=window_length, polyorder=polynomial_order, deriv=differential_order, delta=axis.scale, ragged=False, parallel=parallel, max_workers=max_workers) else: # Interactive mode smoother = SmoothingSavitzkyGolay(self) smoother.differential_order = differential_order if polynomial_order is not None: smoother.polynomial_order = polynomial_order if window_length is not None: smoother.window_length = window_length return smoother.gui(display=display, toolkit=toolkit) smooth_savitzky_golay.__doc__ %= (PARALLEL_ARG, MAX_WORKERS_ARG, DISPLAY_DT, TOOLKIT_DT) def smooth_lowess( self, smoothing_parameter=None, number_of_iterations=None, show_progressbar=None, parallel=None, max_workers=None, display=True, toolkit=None, ): """ Lowess data smoothing in place. If `smoothing_parameter` or `number_of_iterations` are None the method is run in interactive mode. Parameters ---------- smoothing_parameter: float or None Between 0 and 1. The fraction of the data used when estimating each y-value. number_of_iterations: int or None The number of residual-based reweightings to perform. %s %s %s %s %s Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() if smoothing_parameter is None or number_of_iterations is None: smoother = SmoothingLowess(self) if smoothing_parameter is not None: smoother.smoothing_parameter = smoothing_parameter if number_of_iterations is not None: smoother.number_of_iterations = number_of_iterations return smoother.gui(display=display, toolkit=toolkit) else: self.map(lowess, x=self.axes_manager[-1].axis, f=smoothing_parameter, n_iter=number_of_iterations, show_progressbar=show_progressbar, ragged=False, parallel=parallel, max_workers=max_workers) smooth_lowess.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG, DISPLAY_DT, TOOLKIT_DT) def smooth_tv( self, smoothing_parameter=None, show_progressbar=None, parallel=None, max_workers=None, display=True, toolkit=None, ): """ Total variation data smoothing in place. Parameters ---------- smoothing_parameter: float or None Denoising weight relative to L2 minimization. If None the method is run in interactive mode. %s %s %s %s %s Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() if smoothing_parameter is None: smoother = SmoothingTV(self) return smoother.gui(display=display, toolkit=toolkit) else: self.map(_tv_denoise_1d, weight=smoothing_parameter, ragged=False, show_progressbar=show_progressbar, parallel=parallel, max_workers=max_workers) smooth_tv.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG, DISPLAY_DT, TOOLKIT_DT) def filter_butterworth(self, cutoff_frequency_ratio=None, type='low', order=2, display=True, toolkit=None): """ Butterworth filter in place. Parameters ---------- %s %s Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() smoother = ButterworthFilter(self) if cutoff_frequency_ratio is not None: smoother.cutoff_frequency_ratio = cutoff_frequency_ratio smoother.type = type smoother.order = order smoother.apply() else: return smoother.gui(display=display, toolkit=toolkit) filter_butterworth.__doc__ %= (DISPLAY_DT, TOOLKIT_DT) def _remove_background_cli( self, signal_range, background_estimator, fast=True, zero_fill=False, show_progressbar=None, model=None, return_model=False): """ See :py:meth:`~hyperspy._signal1d.signal1D.remove_background`. """ if model is None: from hyperspy.models.model1d import Model1D model = Model1D(self) if background_estimator not in model: model.append(background_estimator) background_estimator.estimate_parameters( self, signal_range[0], signal_range[1], only_current=False) if not fast: model.set_signal_range(signal_range[0], signal_range[1]) model.multifit(show_progressbar=show_progressbar, iterpath='serpentine') model.reset_signal_range() if self._lazy: result = self - model.as_signal(show_progressbar=show_progressbar) else: try: axis = self.axes_manager.signal_axes[0] scale_factor = axis.scale if self.metadata.Signal.binned else 1 bkg = background_estimator.function_nd(axis.axis) * scale_factor result = self - bkg except MemoryError: result = self - model.as_signal( show_progressbar=show_progressbar) if zero_fill: if self._lazy: low_idx = result.axes_manager[-1].value2index(signal_range[0]) z = da.zeros(low_idx, chunks=(low_idx,)) cropped_da = result.data[low_idx:] result.data = da.concatenate([z, cropped_da]) else: result.isig[:signal_range[0]] = 0 if return_model: if fast: # Calculate the variance for each navigation position only when # using fast, otherwise the chisq is already calculated when # doing the multifit d = result.data[..., np.where(model.channel_switches)[0]] variance = model._get_variance(only_current=False) d *= d / (1. * variance) # d = difference^2 / variance. model.chisq.data = d.sum(-1) result = (result, model) return result def remove_background( self, signal_range='interactive', background_type='Power law', polynomial_order=2, fast=True, zero_fill=False, plot_remainder=True, show_progressbar=None, return_model=False, display=True, toolkit=None): """ Remove the background, either in place using a GUI or returned as a new spectrum using the command line. The fast option is not accurate for most background types - except Gaussian, Offset and Power law - but it is useful to estimate the initial fitting parameters before performing a full fit. Parameters ---------- signal_range : "interactive", tuple of ints or floats, optional If this argument is not specified, the signal range has to be selected using a GUI. And the original spectrum will be replaced. If tuple is given, the a spectrum will be returned. background_type : str The type of component which should be used to fit the background. Possible components: Doniach, Gaussian, Lorentzian, Offset, Polynomial, PowerLaw, Exponential, SkewNormal, SplitVoigt, Voigt. If Polynomial is used, the polynomial order can be specified polynomial_order : int, default 2 Specify the polynomial order if a Polynomial background is used. fast : bool If True, perform an approximative estimation of the parameters. If False, the signal is fitted using non-linear least squares afterwards. This is slower compared to the estimation but often more accurate. zero_fill : bool If True, all spectral channels lower than the lower bound of the fitting range will be set to zero (this is the default behavior of Gatan's DigitalMicrograph). Setting this value to False allows for inspection of the quality of background fit throughout the pre-fitting region. plot_remainder : bool If True, add a (green) line previewing the remainder signal after background removal. This preview is obtained from a Fast calculation so the result may be different if a NLLS calculation is finally performed. return_model : bool If True, the background model is returned. The chi² can be obtained from this model using :py:meth:`~hyperspy.models.model1d.Model1D.chisqd`. %s %s %s Returns ------- {None, signal, background_model or (signal, background_model)} If signal_range is not 'interactive', the signal with background substracted is returned. If return_model is True, returns the background model, otherwise, the GUI widget dictionary is returned if `display=False` - see the display parameter documentation. Examples -------- Using GUI, replaces spectrum s >>> s = hs.signals.Signal1D(range(1000)) >>> s.remove_background() #doctest: +SKIP Using command line, returns a Signal1D: >>> s.remove_background(signal_range=(400,450), background_type='PowerLaw') <Signal1D, title: , dimensions: (|1000)> Using a full model to fit the background: >>> s.remove_background(signal_range=(400,450), fast=False) <Signal1D, title: , dimensions: (|1000)> Returns background substracted and the model: >>> s.remove_background(signal_range=(400,450), fast=False, return_model=True) (<Signal1D, title: , dimensions: (|1000)>, <Model1D>) Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() # Create model here, so that we can return it from hyperspy.models.model1d import Model1D model = Model1D(self) if signal_range == 'interactive': br = BackgroundRemoval(self, background_type=background_type, polynomial_order=polynomial_order, fast=fast, plot_remainder=plot_remainder, show_progressbar=show_progressbar, zero_fill=zero_fill, model=model) gui_dict = br.gui(display=display, toolkit=toolkit) if return_model: return model else: # for testing purposes return gui_dict else: background_estimator = _get_background_estimator( background_type, polynomial_order)[0] result = self._remove_background_cli( signal_range=signal_range, background_estimator=background_estimator, fast=fast, zero_fill=zero_fill, show_progressbar=show_progressbar, model=model, return_model=return_model) return result remove_background.__doc__ %= (SHOW_PROGRESSBAR_ARG, DISPLAY_DT, TOOLKIT_DT) @interactive_range_selector def crop_signal1D(self, left_value=None, right_value=None,): """Crop in place the spectral dimension. Parameters ---------- left_value, righ_value : int, float or None If int the values are taken as indices. If float they are converted to indices using the spectral axis calibration. If left_value is None crops from the beginning of the axis. If right_value is None crops up to the end of the axis. If both are None the interactive cropping interface is activated enabling cropping the spectrum using a span selector in the signal plot. Raises ------ SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() try: left_value, right_value = left_value except TypeError: # It was not a ROI, we carry on pass self.crop(axis=self.axes_manager.signal_axes[0].index_in_axes_manager, start=left_value, end=right_value) def gaussian_filter(self, FWHM): """Applies a Gaussian filter in the spectral dimension in place. Parameters ---------- FWHM : float The Full Width at Half Maximum of the gaussian in the spectral axis units Raises ------ ValueError If FWHM is equal or less than zero. SignalDimensionError If the signal dimension is not 1. """ self._check_signal_dimension_equals_one() if FWHM <= 0: raise ValueError( "FWHM must be greater than zero") axis = self.axes_manager.signal_axes[0] FWHM *= 1 / axis.scale self.map(gaussian_filter1d, sigma=FWHM / 2.35482, ragged=False) def hanning_taper(self, side='both', channels=None, offset=0): """Apply a hanning taper to the data in place. Parameters ---------- side : 'left', 'right' or 'both' Specify which side to use. channels : None or int The number of channels to taper. If None 5% of the total number of channels are tapered. offset : int Returns ------- channels Raises ------ SignalDimensionError If the signal dimension is not 1. """ if not np.issubdtype(self.data.dtype, np.floating): raise TypeError("The data dtype should be `float`. It can be " "changed by using the `change_dtype('float')` " "method of the signal.") # TODO: generalize it self._check_signal_dimension_equals_one() if channels is None: channels = int(round(len(self()) * 0.02)) if channels < 20: channels = 20 dc = self._data_aligned_with_axes if self._lazy and offset != 0: shp = dc.shape if len(shp) == 1: nav_shape = () nav_chunks = () else: nav_shape = shp[:-1] nav_chunks = dc.chunks[:-1] zeros = da.zeros(nav_shape + (offset,), chunks=nav_chunks + ((offset,),)) if side == 'left' or side == 'both': if self._lazy: tapered = dc[..., offset:channels + offset] tapered *= np.hanning(2 * channels)[:channels] therest = dc[..., channels + offset:] thelist = [] if offset == 0 else [zeros] thelist.extend([tapered, therest]) dc = da.concatenate(thelist, axis=-1) else: dc[..., offset:channels + offset] *= ( np.hanning(2 * channels)[:channels]) dc[..., :offset] *= 0. if side == 'right' or side == 'both': rl = None if offset == 0 else -offset if self._lazy: therest = dc[..., :-channels - offset] tapered = dc[..., -channels - offset:rl] tapered *= np.hanning(2 * channels)[-channels:] thelist = [therest, tapered] if offset != 0: thelist.append(zeros) dc = da.concatenate(thelist, axis=-1) else: dc[..., -channels - offset:rl] *= ( np.hanning(2 * channels)[-channels:]) if offset != 0: dc[..., -offset:] *= 0. if self._lazy: self.data = dc self.events.data_changed.trigger(obj=self) return channels def find_peaks1D_ohaver(self, xdim=None, slope_thresh=0, amp_thresh=None, subchannel=True, medfilt_radius=5, maxpeakn=30000, peakgroup=10, parallel=None, max_workers=None): """Find positive peaks along a 1D Signal. It detects peaks by looking for downward zero-crossings in the first derivative that exceed 'slope_thresh'. 'slope_thresh' and 'amp_thresh', control sensitivity: higher values will neglect broad peaks (slope) and smaller features (amp), respectively. `peakgroup` is the number of points around the top of the peak that are taken to estimate the peak height. For spikes or very narrow peaks, set `peakgroup` to 1 or 2; for broad or noisy peaks, make `peakgroup` larger to reduce the effect of noise. Parameters ---------- slope_thresh : float, optional 1st derivative threshold to count the peak; higher values will neglect broader features; default is set to 0. amp_thresh : float, optional intensity threshold below which peaks are ignored; higher values will neglect smaller features; default is set to 10%% of max(y). medfilt_radius : int, optional median filter window to apply to smooth the data (see :py:func:`scipy.signal.medfilt`); if 0, no filter will be applied; default is set to 5. peakgroup : int, optional number of points around the "top part" of the peak that are taken to estimate the peak height; default is set to 10 maxpeakn : int, optional number of maximum detectable peaks; default is set to 5000. subchannel : bool, default True default is set to True. %s %s Returns ------- structured array of shape (npeaks) containing fields: 'position', 'width', and 'height' for each peak. Raises ------ SignalDimensionError If the signal dimension is not 1. """ # TODO: add scipy.signal.find_peaks_cwt self._check_signal_dimension_equals_one() axis = self.axes_manager.signal_axes[0].axis peaks = self.map(find_peaks_ohaver, x=axis, slope_thresh=slope_thresh, amp_thresh=amp_thresh, medfilt_radius=medfilt_radius, maxpeakn=maxpeakn, peakgroup=peakgroup, subchannel=subchannel, ragged=True, parallel=parallel, max_workers=max_workers, inplace=False) return peaks.data find_peaks1D_ohaver.__doc__ %= (PARALLEL_ARG, MAX_WORKERS_ARG) def estimate_peak_width( self, factor=0.5, window=None, return_interval=False, parallel=None, show_progressbar=None, max_workers=None, ): """Estimate the width of the highest intensity of peak of the spectra at a given fraction of its maximum. It can be used with asymmetric peaks. For accurate results any background must be previously substracted. The estimation is performed by interpolation using cubic splines. Parameters ---------- factor : 0 < float < 1 The default, 0.5, estimates the FWHM. window : None or float The size of the window centred at the peak maximum used to perform the estimation. The window size must be chosen with care: if it is narrower than the width of the peak at some positions or if it is so wide that it includes other more intense peaks this method cannot compute the width and a NaN is stored instead. return_interval: bool If True, returns 2 extra signals with the positions of the desired height fraction at the left and right of the peak. %s %s %s Returns ------- width or [width, left, right], depending on the value of `return_interval`. Notes ----- Parallel operation of this function is not supported on Windows platforms. """ if show_progressbar is None: show_progressbar = preferences.General.show_progressbar self._check_signal_dimension_equals_one() if not 0 < factor < 1: raise ValueError("factor must be between 0 and 1.") if parallel != False and os.name in ["nt", "dos"]: # pragma: no cover # Due to a scipy bug where scipy.interpolate.UnivariateSpline # appears to not be thread-safe on Windows, we raise a warning # here. See https://github.com/hyperspy/hyperspy/issues/2320 # Until/if the scipy bug is fixed, we should do this. _logger.warning( "Parallel operation is not supported on Windows. " "Setting `parallel=False`" ) parallel = False axis = self.axes_manager.signal_axes[0] # x = axis.axis maxval = self.axes_manager.navigation_size show_progressbar = show_progressbar and maxval > 0 def estimating_function(spectrum, window=None, factor=0.5, axis=None): x = axis.axis if window is not None: vmax = axis.index2value(spectrum.argmax()) slices = axis._get_array_slices( slice(vmax - window * 0.5, vmax + window * 0.5)) spectrum = spectrum[slices] x = x[slices] spline = scipy.interpolate.UnivariateSpline( x, spectrum - factor * spectrum.max(), s=0) roots = spline.roots() if len(roots) == 2: return np.array(roots) else: return np.full((2,), np.nan) both = self._map_iterate(estimating_function, window=window, factor=factor, axis=axis, ragged=False, inplace=False, parallel=parallel, show_progressbar=show_progressbar, max_workers=None) left, right = both.T.split() width = right - left if factor == 0.5: width.metadata.General.title = ( self.metadata.General.title + " FWHM") left.metadata.General.title = ( self.metadata.General.title + " FWHM left position") right.metadata.General.title = ( self.metadata.General.title + " FWHM right position") else: width.metadata.General.title = ( self.metadata.General.title + " full-width at %.1f maximum" % factor) left.metadata.General.title = ( self.metadata.General.title + " full-width at %.1f maximum left position" % factor) right.metadata.General.title = ( self.metadata.General.title + " full-width at %.1f maximum right position" % factor) for signal in (left, width, right): signal.axes_manager.set_signal_dimension(0) signal.set_signal_type("") if return_interval is True: return [width, left, right] else: return width estimate_peak_width.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG) def plot(self, navigator="auto", plot_markers=True, autoscale='v', norm="auto", axes_manager=None, navigator_kwds={}, **kwargs): """%s %s %s """ for c in autoscale: if c not in ['x', 'v']: raise ValueError("`autoscale` only accepts 'x', 'v' as " "valid characters.") super().plot(navigator=navigator, plot_markers=plot_markers, autoscale=autoscale, norm=norm, axes_manager=axes_manager, navigator_kwds=navigator_kwds, **kwargs) plot.__doc__ %= (BASE_PLOT_DOCSTRING, BASE_PLOT_DOCSTRING_PARAMETERS, PLOT1D_DOCSTRING) class LazySignal1D(LazySignal, Signal1D): """ """ _lazy = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.axes_manager.set_signal_dimension(1)
gpl-3.0
Obus/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
rexshihaoren/scikit-learn
doc/sphinxext/gen_rst.py
142
40026
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess import warnings from sklearn.externals import six # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename, encoding='utf-8') as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600), 'plot_outlier_detection_001.png': (3, 372), 'plot_gp_regression_001.png': (2, 250), 'plot_adaboost_twoclass_001.png': (1, 372), 'plot_compare_methods_001.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ if six.PY2: lines = open(filename).readlines() else: lines = open(filename, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery.\n" "Please check the layout of your" " example file:\n {}\n and make sure" " it's correct".format(filename)) else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ display: none; } </style> .. _examples-index: Examples ======== """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for directory in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, directory)): generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) if six.PY2: lines = open(example_file).readlines() else: lines = open(example_file, encoding='utf-8').readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif (tok_type == 'STRING') and check_docstring: erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer" tooltip="{}"> """.format(snippet)) out.append('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html </div> """ % (ref_name)) return ''.join(out) def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = \ identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" if exception is not None: return print('Embedding documentation hyperlinks in examples..') if app.builder.name == 'latex': # Don't embed hyperlinks when a latex builder is used. return # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) resolver_urls = { 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', } for this_module, url in resolver_urls.items(): try: doc_resolvers[this_module] = SphinxDocLinkResolver(url) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding `{0}` links due to a URL " "Error:\n".format(this_module)) print(e.args) example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue try: link = doc_resolvers[this_module].resolve(cobj, full_fname) except (HTTPError, URLError) as e: print("The following error has occurred:\n") print(repr(e)) continue if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
charanpald/wallhack
wallhack/viroscopy/ContactGrowthStatistics.py
1
49412
import logging import sys import gc import numpy import os.path import matplotlib.pyplot as plt from datetime import date from sandbox.util.PathDefaults import PathDefaults from sandbox.util.DateUtils import DateUtils from sandbox.util.Latex import Latex from sandbox.util.Util import Util from apgl.graph import * from apgl.viroscopy.HIVGraphReader import HIVGraphReader from apgl.viroscopy.HIVGraphStatistics import HIVGraphStatistics """ This script computes some basic statistics on the growing graph. We currently combine both infection and detection graphs and hence look at the contact graph. """ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) numpy.set_printoptions(suppress=True, linewidth=150) hivReader = HIVGraphReader() graph = hivReader.readHIVGraph() fInds = hivReader.getIndicatorFeatureIndices() #The set of edges indexed by zeros is the contact graph #The ones indexed by 1 is the infection graph edgeTypeIndex1 = 0 edgeTypeIndex2 = 1 sGraphContact = graph.getSparseGraph(edgeTypeIndex1) sGraphInfect = graph.getSparseGraph(edgeTypeIndex2) sGraphContact = sGraphContact.union(sGraphInfect) sGraph = sGraphContact #sGraph = sGraph.subgraph(range(0, 200)) figureDir = PathDefaults.getOutputDir() + "viroscopy/figures/contact/" resultsDir = PathDefaults.getOutputDir() + "viroscopy/" graphStats = GraphStatistics() statsArray = graphStats.scalarStatistics(sGraph, False) slowStats = True saveResults = False logging.info(sGraph) logging.info("Number of features: " + str(sGraph.getVertexList().getNumFeatures())) logging.info("Largest component is " + str(statsArray[graphStats.maxComponentSizeIndex])) logging.info("Number of components " + str(statsArray[graphStats.numComponentsIndex])) #sGraph = sGraph.subgraph(components[componentIndex]) vertexArray = sGraph.getVertexList().getVertices() logging.info("Size of graph we will use: " + str(sGraph.getNumVertices())) #Some indices dobIndex = fInds["birthDate"] detectionIndex = fInds["detectDate"] deathIndex = fInds["deathDate"] genderIndex = fInds["gender"] orientationIndex = fInds["orient"] ages = vertexArray[:, detectionIndex] - vertexArray[:, dobIndex] deaths = vertexArray[:, deathIndex] - vertexArray[:, detectionIndex] detections = vertexArray[:, detectionIndex] startYear = 1900 daysInYear = 365 daysInMonth = 30 monthStep = 3 #Effective diameter q q = 0.9 plotInd = 1 plotStyles = ['ko-', 'kx-', 'k+-', 'k.-', 'k*-'] plotStyles2 = ['k-', 'r-', 'g-', 'b-', 'c-', 'm-'] plotStyleBW = ['k-', 'k--', 'k-.', 'k:'] plotStyles4 = ['r-', 'r--', 'r-.', 'r:'] numConfigGraphs = 10 #Make sure we include all detections dayList = range(int(numpy.min(detections)), int(numpy.max(detections)), daysInMonth*monthStep) dayList.append(numpy.max(detections)) absDayList = [float(i-numpy.min(detections)) for i in dayList] subgraphIndicesList = [] for i in dayList: logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear))) subgraphIndices = numpy.nonzero(detections <= i)[0] subgraphIndicesList.append(subgraphIndices) #Compute the indices list for the vector statistics dayList2 = [DateUtils.getDayDelta(date(1989, 12, 31), startYear)] dayList2.append(DateUtils.getDayDelta(date(1993, 12, 31), startYear)) dayList2.append(DateUtils.getDayDelta(date(1997, 12, 31), startYear)) dayList2.append(DateUtils.getDayDelta(date(2001, 12, 31), startYear)) dayList2.append(int(numpy.max(detections))) subgraphIndicesList2 = [] for i in dayList2: logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear))) subgraphIndices = numpy.nonzero(detections <= i)[0] subgraphIndicesList2.append(subgraphIndices) #Locations and labels for years locs = list(range(0, int(absDayList[-1]), daysInYear*2)) labels = numpy.arange(1986, 2006, 2) #Some indices contactIndex = fInds["contactTrace"] donorIndex = fInds["donor"] randomTestIndex = fInds["randomTest"] stdIndex = fInds["STD"] prisonerIndex = fInds["prisoner"] doctorIndex = fInds["recommendVisit"] #The most popular provinces havanaIndex = fInds["CH"] villaClaraIndex = fInds["VC"] pinarIndex = fInds["PR"] holguinIndex = fInds["HO"] habanaIndex = fInds["LH"] sanctiIndex = fInds["SS"] santiagoIndex = fInds['SC'] camagueyIndex = fInds['CA'] def plotVertexStats(): #Calculate all vertex statistics logging.info("Computing vertex stats") #Indices numContactsIndex = fInds["numContacts"] numTestedIndex = fInds["numTested"] numPositiveIndex = fInds["numPositive"] #Properties of vertex values detectionAges = [] deathAfterInfectAges = [] deathAges = [] homoMeans = [] maleSums = [] femaleSums = [] heteroSums = [] biSums = [] contactMaleSums = [] contactFemaleSums = [] contactHeteroSums = [] contactBiSums = [] doctorMaleSums = [] doctorFemaleSums = [] doctorHeteroSums = [] doctorBiSums = [] contactSums = [] nonContactSums = [] donorSums = [] randomTestSums = [] stdSums = [] prisonerSums = [] recommendSums = [] #This is: all detections - contact, donor, randomTest, str, recommend otherSums = [] havanaSums = [] villaClaraSums = [] pinarSums = [] holguinSums = [] habanaSums = [] sanctiSums = [] numContactSums = [] numTestedSums = [] numPositiveSums = [] #Total number of sexual contacts numContactMaleSums = [] numContactFemaleSums = [] numContactHeteroSums = [] numContactBiSums = [] numTestedMaleSums = [] numTestedFemaleSums = [] numTestedHeteroSums = [] numTestedBiSums = [] numPositiveMaleSums = [] numPositiveFemaleSums = [] numPositiveHeteroSums = [] numPositiveBiSums = [] propPositiveMaleSums = [] propPositiveFemaleSums = [] propPositiveHeteroSums = [] propPositiveBiSums = [] numContactVertices = [] numContactEdges = [] numInfectEdges = [] #Mean proportion of degree at end of epidemic meanPropDegree = [] finalDegreeSequence = numpy.array(sGraph.outDegreeSequence(), numpy.float) degreeOneSums = [] degreeTwoSums = [] degreeThreePlusSums = [] numProvinces = 15 provinceArray = numpy.zeros((len(subgraphIndicesList), numProvinces)) m = 0 for subgraphIndices in subgraphIndicesList: subgraph = sGraph.subgraph(subgraphIndices) infectSubGraph = sGraphInfect.subgraph(subgraphIndices) subgraphVertexArray = subgraph.getVertexList().getVertices(range(subgraph.getNumVertices())) detectionAges.append(numpy.mean((subgraphVertexArray[:, detectionIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear) deathAfterInfectAges.append((numpy.mean(subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, detectionIndex]))/daysInYear) deathAges.append(numpy.mean((subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear) homoMeans.append(numpy.mean(subgraphVertexArray[:, orientationIndex])) nonContactSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, contactIndex])) contactSums.append(numpy.sum(subgraphVertexArray[:, contactIndex])) donorSums.append(numpy.sum(subgraphVertexArray[:, donorIndex])) randomTestSums.append(numpy.sum(subgraphVertexArray[:, randomTestIndex])) stdSums.append(numpy.sum(subgraphVertexArray[:, stdIndex])) prisonerSums.append(numpy.sum(subgraphVertexArray[:, prisonerIndex])) recommendSums.append(numpy.sum(subgraphVertexArray[:, doctorIndex])) otherSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, [contactIndex, donorIndex, randomTestIndex, stdIndex, doctorIndex]])) heteroSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==0)) biSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==1)) femaleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==1)) maleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==0)) contactHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, contactIndex]))) contactBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, contactIndex]))) contactFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, contactIndex]))) contactMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, contactIndex]))) doctorHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, doctorIndex]))) doctorBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, doctorIndex]))) doctorFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, doctorIndex]))) doctorMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, doctorIndex]))) havanaSums.append(numpy.sum(subgraphVertexArray[:, havanaIndex]==1)) villaClaraSums.append(numpy.sum(subgraphVertexArray[:, villaClaraIndex]==1)) pinarSums.append(numpy.sum(subgraphVertexArray[:, pinarIndex]==1)) holguinSums.append(numpy.sum(subgraphVertexArray[:, holguinIndex]==1)) habanaSums.append(numpy.sum(subgraphVertexArray[:, habanaIndex]==1)) sanctiSums.append(numpy.sum(subgraphVertexArray[:, sanctiIndex]==1)) numContactSums.append(numpy.mean(subgraphVertexArray[:, numContactsIndex])) numTestedSums.append(numpy.mean(subgraphVertexArray[:, numTestedIndex])) numPositiveSums.append(numpy.mean(subgraphVertexArray[:, numPositiveIndex])) numContactMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numContactsIndex])) numContactFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numContactsIndex])) numContactHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numContactsIndex])) numContactBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numContactsIndex])) numTestedMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numTestedIndex])) numTestedFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numTestedIndex])) numTestedHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numTestedIndex])) numTestedBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numTestedIndex])) numPositiveMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numPositiveIndex])) numPositiveFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numPositiveIndex])) numPositiveHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numPositiveIndex])) numPositiveBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numPositiveIndex])) propPositiveMaleSums.append(numPositiveMaleSums[m]/float(numTestedMaleSums[m])) propPositiveFemaleSums.append(numPositiveFemaleSums[m]/float(numTestedFemaleSums[m])) propPositiveHeteroSums.append(numPositiveHeteroSums[m]/float(numTestedHeteroSums[m])) propPositiveBiSums.append(numPositiveBiSums[m]/float(numTestedMaleSums[m])) numContactVertices.append(subgraph.getNumVertices()) numContactEdges.append(subgraph.getNumEdges()) numInfectEdges.append(infectSubGraph.getNumEdges()) nonZeroInds = finalDegreeSequence[subgraphIndices]!=0 propDegrees = numpy.mean(subgraph.outDegreeSequence()[nonZeroInds]/finalDegreeSequence[subgraphIndices][nonZeroInds]) meanPropDegree.append(numpy.mean(propDegrees)) degreeOneSums.append(numpy.sum(subgraph.outDegreeSequence()==1)) degreeTwoSums.append(numpy.sum(subgraph.outDegreeSequence()==2)) degreeThreePlusSums.append(numpy.sum(subgraph.outDegreeSequence()>=3)) provinceArray[m, :] = numpy.sum(subgraphVertexArray[:, fInds["CA"]:fInds['VC']+1], 0) m += 1 #Save some of the results for the ABC work numStats = 2 vertexStatsArray = numpy.zeros((len(subgraphIndicesList), numStats)) vertexStatsArray[:, 0] = numpy.array(biSums) vertexStatsArray[:, 1] = numpy.array(heteroSums) resultsFileName = resultsDir + "ContactGrowthVertexStats.pkl" Util.savePickle(vertexStatsArray, resultsFileName) global plotInd plt.figure(plotInd) plt.plot(absDayList, detectionAges) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detection Age (years)") plt.savefig(figureDir + "DetectionMeansGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, heteroSums, 'k-', absDayList, biSums, 'k--', absDayList, femaleSums, 'k-.', absDayList, maleSums, 'k:') plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detections") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left") plt.savefig(figureDir + "OrientationGenderGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, contactHeteroSums, 'k-', absDayList, contactBiSums, 'k--', absDayList, contactFemaleSums, 'k-.', absDayList, contactMaleSums, 'k:') plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Contact tracing detections") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left") plt.savefig(figureDir + "OrientationGenderContact.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, doctorHeteroSums, 'k-', absDayList, doctorBiSums, 'k--', absDayList, doctorFemaleSums, 'k-.', absDayList, doctorMaleSums, 'k:') plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Doctor recommendation detections") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left") plt.savefig(figureDir + "OrientationGenderDoctor.eps") plotInd += 1 #Plot all the provinces plt.figure(plotInd) plt.hold(True) for k in range(provinceArray.shape[1]): plt.plot(absDayList, provinceArray[:, k], label=str(k)) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detections") plt.legend(loc="upper left") plotInd += 1 #Plot of detection types plt.figure(plotInd) plt.plot(absDayList, contactSums, plotStyles2[0], absDayList, donorSums, plotStyles2[1], absDayList, randomTestSums, plotStyles2[2], absDayList, stdSums, plotStyles2[3], absDayList, otherSums, plotStyles2[4], absDayList, recommendSums, plotStyles2[5]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detections") plt.legend(("Contact tracing", "Blood donation", "Random test", "STD", "Other test", "Doctor recommendation"), loc="upper left") plt.savefig(figureDir + "DetectionGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, numContactSums, plotStyleBW[0], absDayList, numTestedSums, plotStyleBW[1], absDayList, numPositiveSums, plotStyleBW[2]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Contacts") plt.legend(("No. contacts", "No. tested", "No. positive"), loc="center left") plt.savefig(figureDir + "ContactsGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, numContactHeteroSums, plotStyleBW[0], absDayList, numContactBiSums, plotStyleBW[1], absDayList, numContactFemaleSums, plotStyleBW[2], absDayList, numContactMaleSums, plotStyleBW[3]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Total contacts") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right") plt.savefig(figureDir + "ContactsGrowthOrientGen.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, numTestedHeteroSums, plotStyleBW[0], absDayList, numTestedBiSums, plotStyleBW[1], absDayList, numTestedFemaleSums, plotStyleBW[2], absDayList, numTestedMaleSums, plotStyleBW[3]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Tested contacts") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right") plt.savefig(figureDir + "TestedGrowthOrientGen.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, numPositiveHeteroSums, plotStyleBW[0], absDayList, numPositiveBiSums, plotStyleBW[1], absDayList, numPositiveFemaleSums, plotStyleBW[2], absDayList, numPositiveMaleSums, plotStyleBW[3]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Positive contacts") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right") plt.savefig(figureDir + "PositiveGrowthOrientGen.eps") plotInd += 1 #Proportion positive versus tested plt.figure(plotInd) plt.plot(absDayList, propPositiveHeteroSums, plotStyleBW[0], absDayList, propPositiveBiSums, plotStyleBW[1], absDayList, propPositiveFemaleSums, plotStyleBW[2], absDayList, propPositiveMaleSums, plotStyleBW[3]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Proportion positive contacts") plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right") plt.savefig(figureDir + "PercentPositiveGrowthOrientGen.eps") plotInd += 1 plt.figure(plotInd) plt.hold(True) plt.plot(absDayList, havanaSums, plotStyles2[0]) plt.plot(absDayList, villaClaraSums, plotStyles2[1]) plt.plot(absDayList, pinarSums, plotStyles2[2]) plt.plot(absDayList, holguinSums, plotStyles2[3]) plt.plot(absDayList, habanaSums, plotStyles2[4]) plt.plot(absDayList, sanctiSums, plotStyles2[5]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detections") plt.legend(("Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"), loc="upper left") plt.savefig(figureDir + "ProvinceGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, numContactVertices, plotStyleBW[0], absDayList, numContactEdges, plotStyleBW[1], absDayList, numInfectEdges, plotStyleBW[2]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Vertices/edges") plt.legend(("Contact vertices", "Contact edges", "Infect edges"), loc="upper left") plt.savefig(figureDir + "VerticesEdges.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, meanPropDegree, plotStyleBW[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Proportion of final degree") plt.savefig(figureDir + "MeanPropDegree.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, degreeOneSums, plotStyleBW[0], absDayList, degreeTwoSums, plotStyleBW[1], absDayList, degreeThreePlusSums, plotStyleBW[2]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Detections") plt.legend(("Degree = 1", "Degree = 2", "Degree >= 3"), loc="upper left") plotInd += 1 #Print a table of interesting stats results = numpy.array([havanaSums]) results = numpy.r_[results, numpy.array([villaClaraSums])] results = numpy.r_[results, numpy.array([pinarSums])] results = numpy.r_[results, numpy.array([holguinSums])] results = numpy.r_[results, numpy.array([habanaSums])] results = numpy.r_[results, numpy.array([sanctiSums])] print(Latex.listToRow(["Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"])) print("\\hline") for i in range(0, len(dayList), 4): day = dayList[i] print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\") results = numpy.array([heteroSums]) results = numpy.r_[results, numpy.array([biSums])] results = numpy.r_[results, numpy.array([femaleSums])] results = numpy.r_[results, numpy.array([maleSums])] print("\n\n") print(Latex.listToRow(["Heterosexual", "MSM", "Female", "Male"])) print("\\hline") for i in range(0, len(dayList), 4): day = dayList[i] print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\") def computeConfigScalarStats(): logging.info("Computing configuration model scalar stats") graphFileNameBase = resultsDir + "ConfigGraph" resultsFileNameBase = resultsDir + "ConfigGraphScalarStats" #graphStats.useFloydWarshall = True for j in range(numConfigGraphs): resultsFileName = resultsFileNameBase + str(j) if not os.path.isfile(resultsFileName): configGraph = SparseGraph.load(graphFileNameBase + str(j)) statsArray = graphStats.sequenceScalarStats(configGraph, subgraphIndicesList, slowStats) Util.savePickle(statsArray, resultsFileName, True) gc.collect() logging.info("All done") def computeConfigVectorStats(): #Note: We can make this multithreaded logging.info("Computing configuration model vector stats") graphFileNameBase = resultsDir + "ConfigGraph" resultsFileNameBase = resultsDir + "ConfigGraphVectorStats" for j in range(numConfigGraphs): resultsFileName = resultsFileNameBase + str(j) if not os.path.isfile(resultsFileName): configGraph = SparseGraph.load(graphFileNameBase + str(j)) statsDictList = graphStats.sequenceVectorStats(configGraph, subgraphIndicesList2, eigenStats=False) Util.savePickle(statsDictList, resultsFileName, False) gc.collect() logging.info("All done") def plotScalarStats(): logging.info("Computing scalar stats") resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl" if saveResults: statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, slowStats) Util.savePickle(statsArray, resultsFileName, True) #Now compute statistics on the configuration graphs else: statsArray = Util.loadPickle(resultsFileName) #Take the mean of the results over the configuration model graphs resultsFileNameBase = resultsDir + "ConfigGraphScalarStats" numGraphs = len(subgraphIndicesList) #configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs)) configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats()-2, numConfigGraphs)) for j in range(numConfigGraphs): resultsFileName = resultsFileNameBase + str(j) configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName) configStatsArray = numpy.mean(configStatsArrays, 2) configStatsStd = numpy.std(configStatsArrays, 2) global plotInd def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel): plt.hold(True) plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel) #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel) plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=1, label="_nolegend_", ecolor="red") xmin, xmax = plt.xlim() plt.xlim((0, xmax)) ymin, ymax = plt.ylim() plt.ylim((0, ymax)) #Output all the results into plots plt.figure(plotInd) plt.hold(True) plotRealConfigError(graphStats.maxComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Max comp. vertices", "CM max comp. vertices") plotRealConfigError(graphStats.maxComponentEdgesIndex, plotStyleBW[1], plotStyles4[1], "Max comp. edges", "CM max comp. edges") plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("No. vertices/edges") plt.legend(loc="upper left") plt.savefig(figureDir + "MaxComponentSizeGrowth.eps") plotInd += 1 for k in range(len(dayList)): day = dayList[k] print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.maxComponentEdgesIndex])) #print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numComponentsIndex])) plt.figure(plotInd) plotRealConfigError(graphStats.numComponentsIndex, plotStyleBW[0], plotStyles4[0], "Size >= 1", "CM size >= 1") plotRealConfigError(graphStats.numNonSingletonComponentsIndex, plotStyleBW[1], plotStyles4[1], "Size >= 2", "CM size >= 2") plotRealConfigError(graphStats.numTriOrMoreComponentsIndex, plotStyleBW[2], plotStyles4[2], "Size >= 3", "CM size >= 3") plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("No. components") plt.legend(loc="upper left") plt.savefig(figureDir + "NumComponentsGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.meanComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM") plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Mean component size") plt.legend(loc="lower right") plt.savefig(figureDir + "MeanComponentSizeGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.diameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM") plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Max component diameter") plt.legend(loc="lower right") plt.savefig(figureDir + "MaxComponentDiameterGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.effectiveDiameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM") plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Effective diameter") plt.legend(loc="lower right") plt.savefig(figureDir + "MaxComponentEffDiameterGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.meanDegreeIndex, plotStyleBW[0], plotStyles4[0], "All vertices", "CM all vertices") plotRealConfigError(graphStats.maxCompMeanDegreeIndex, plotStyleBW[1], plotStyles4[1], "Max component", "CM max component") #plt.plot(absDayList, statsArray[:, graphStats.meanDegreeIndex], plotStyleBW[0], absDayList, statsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyleBW[1], absDayList, configStatsArray[:, graphStats.meanDegreeIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyles4[1]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Mean degree") plt.legend(loc="lower right") plt.savefig(figureDir + "MeanDegrees.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.densityIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model") #plt.plot(absDayList, statsArray[:, graphStats.densityIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.densityIndex], plotStyles4[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Density") plt.legend() plt.savefig(figureDir + "DensityGrowth.eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, statsArray[:, graphStats.powerLawIndex], plotStyleBW[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Alpha") plt.savefig(figureDir + "PowerLawGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.geodesicDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model") #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistanceIndex], plotStyles4[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Geodesic distance") plt.legend(loc="lower right") plt.savefig(figureDir + "GeodesicGrowth.eps") plotInd += 1 plt.figure(plotInd) plotRealConfigError(graphStats.harmonicGeoDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model") #plt.plot(absDayList, statsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyles4[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Mean harmonic geodesic distance") plt.legend(loc="upper right") plt.savefig(figureDir + "HarmonicGeodesicGrowth.eps") plotInd += 1 #print(statsArray[:, graphStats.harmonicGeoDistanceIndex]) plt.figure(plotInd) plotRealConfigError(graphStats.geodesicDistMaxCompIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "Config model") #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyles4[0]) plt.xticks(locs, labels) plt.xlabel("Year") plt.ylabel("Max component mean geodesic distance") plt.legend(loc="lower right") plt.savefig(figureDir + "MaxCompGeodesicGrowth.eps") plotInd += 1 #Find the number of edges in the infection graph resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl" infectStatsArray = Util.loadPickle(resultsFileName) #Make sure we don't include 0 in the array vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0) edgeIndex = numpy.argmax(infectStatsArray[:, graphStats.numEdgesIndex] > 0) minIndex = numpy.maximum(vertexIndex, edgeIndex) plt.figure(plotInd) plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[0]) plt.plot(numpy.log(infectStatsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(infectStatsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[1]) plt.plot(numpy.log(statsArray[minIndex:, graphStats.maxComponentSizeIndex]), numpy.log(statsArray[minIndex:, graphStats.maxComponentEdgesIndex]), plotStyleBW[2]) plt.xlabel("log(|V|)") plt.ylabel("log(|E|)/log(|D|)") plt.legend(("Contact graph", "Infection graph", "Max component"), loc="upper left") plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps") plotInd += 1 results = statsArray[:, graphStats.effectiveDiameterIndex] results = numpy.c_[results, configStatsArray[:, graphStats.effectiveDiameterIndex]] results = numpy.c_[results, statsArray[:, graphStats.geodesicDistMaxCompIndex]] results = numpy.c_[results, configStatsArray[:, graphStats.geodesicDistMaxCompIndex]] configStatsArray print("\n\n") print(Latex.listToRow(["Diameter", "CM Diameter", "Mean Geodesic", "CM Mean Geodesic"])) print("\\hline") for i in range(0, len(dayList), 4): day = dayList[i] print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[i, :]) + "\\\\") def plotVectorStats(): #Finally, compute some vector stats at various points in the graph logging.info("Computing vector stats") global plotInd resultsFileName = resultsDir + "ContactGrowthVectorStats.pkl" if saveResults: statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2) Util.savePickle(statsDictList, resultsFileName, False) else: statsDictList = Util.loadPickle(resultsFileName) #Load up configuration model results configStatsDictList = [] resultsFileNameBase = resultsDir + "ConfigGraphVectorStats" for j in range(numConfigGraphs): resultsFileName = resultsFileNameBase + str(j) configStatsDictList.append(Util.loadPickle(resultsFileName)) #Now need to take mean of 1st element of list meanConfigStatsDictList = configStatsDictList[0] for i in range(len(configStatsDictList[0])): for k in range(1, numConfigGraphs): for key in configStatsDictList[k][i].keys(): if configStatsDictList[k][i][key].shape[0] > meanConfigStatsDictList[i][key].shape[0]: meanConfigStatsDictList[i][key] = numpy.r_[meanConfigStatsDictList[i][key], numpy.zeros(configStatsDictList[k][i][key].shape[0] - meanConfigStatsDictList[i][key].shape[0])] elif configStatsDictList[k][i][key].shape[0] < meanConfigStatsDictList[i][key].shape[0]: configStatsDictList[k][i][key] = numpy.r_[configStatsDictList[k][i][key], numpy.zeros(meanConfigStatsDictList[i][key].shape[0] - configStatsDictList[k][i][key].shape[0])] meanConfigStatsDictList[i][key] += configStatsDictList[k][i][key] for key in configStatsDictList[0][i].keys(): meanConfigStatsDictList[i][key] = meanConfigStatsDictList[i][key]/numConfigGraphs triangleDistArray = numpy.zeros((len(dayList2), 100)) configTriangleDistArray = numpy.zeros((len(dayList2), 100)) hopPlotArray = numpy.zeros((len(dayList2), 27)) configHopPlotArray = numpy.zeros((len(dayList2), 30)) componentsDistArray = numpy.zeros((len(dayList2), 3000)) configComponentsDistArray = numpy.zeros((len(dayList2), 3000)) numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int) numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2] numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2] binWidths = numpy.arange(0, 0.50, 0.05) eigVectorDists = numpy.zeros((len(dayList2), binWidths.shape[0]-1), numpy.int) femaleSums = numpy.zeros(len(dayList2)) maleSums = numpy.zeros(len(dayList2)) heteroSums = numpy.zeros(len(dayList2)) biSums = numpy.zeros(len(dayList2)) contactSums = numpy.zeros(len(dayList2)) nonContactSums = numpy.zeros(len(dayList2)) donorSums = numpy.zeros(len(dayList2)) randomTestSums = numpy.zeros(len(dayList2)) stdSums = numpy.zeros(len(dayList2)) prisonerSums = numpy.zeros(len(dayList2)) recommendSums = numpy.zeros(len(dayList2)) meanAges = numpy.zeros(len(dayList2)) degrees = numpy.zeros((len(dayList2), 20)) provinces = numpy.zeros((len(dayList2), 15)) havanaSums = numpy.zeros(len(dayList2)) villaClaraSums = numpy.zeros(len(dayList2)) pinarSums = numpy.zeros(len(dayList2)) holguinSums = numpy.zeros(len(dayList2)) habanaSums = numpy.zeros(len(dayList2)) sanctiSums = numpy.zeros(len(dayList2)) meanDegrees = numpy.zeros(len(dayList2)) stdDegrees = numpy.zeros(len(dayList2)) #Note that death has a lot of missing values for j in range(len(dayList2)): dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear))) logging.info(dateStr) statsDict = statsDictList[j] configStatsDict = meanConfigStatsDictList[j] degreeDist = statsDict["outDegreeDist"] degreeDist = degreeDist/float(numpy.sum(degreeDist)) #Note that degree distribution for configuration graph will be identical eigenDist = statsDict["eigenDist"] eigenDist = numpy.log(eigenDist[eigenDist>=10**-1]) #configEigenDist = configStatsDict["eigenDist"] #configEigenDist = numpy.log(configEigenDist[configEigenDist>=10**-1]) hopCount = statsDict["hopCount"] hopCount = numpy.log10(hopCount) hopPlotArray[j, 0:hopCount.shape[0]] = hopCount configHopCount = configStatsDict["hopCount"] configHopCount = numpy.log10(configHopCount) #configHopPlotArray[j, 0:configHopCount.shape[0]] = configHopCount triangleDist = statsDict["triangleDist"] #triangleDist = numpy.array(triangleDist, numpy.float64)/numpy.sum(triangleDist) triangleDist = numpy.array(triangleDist, numpy.float64) triangleDistArray[j, 0:triangleDist.shape[0]] = triangleDist configTriangleDist = configStatsDict["triangleDist"] configTriangleDist = numpy.array(configTriangleDist, numpy.float64)/numpy.sum(configTriangleDist) configTriangleDistArray[j, 0:configTriangleDist.shape[0]] = configTriangleDist maxEigVector = statsDict["maxEigVector"] eigenvectorInds = numpy.flipud(numpy.argsort(numpy.abs(maxEigVector))) top10eigenvectorInds = eigenvectorInds[0:numpy.round(eigenvectorInds.shape[0]/10.0)] maxEigVector = numpy.abs(maxEigVector[eigenvectorInds]) #print(maxEigVector) eigVectorDists[j, :] = numpy.histogram(maxEigVector, binWidths)[0] componentsDist = statsDict["componentsDist"] componentsDist = numpy.array(componentsDist, numpy.float64)/numpy.sum(componentsDist) componentsDistArray[j, 0:componentsDist.shape[0]] = componentsDist configComponentsDist = configStatsDict["componentsDist"] configComponentsDist = numpy.array(configComponentsDist, numpy.float64)/numpy.sum(configComponentsDist) configComponentsDistArray[j, 0:configComponentsDist.shape[0]] = configComponentsDist plotInd2 = plotInd plt.figure(plotInd2) plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, plotStyles2[j], label=dateStr) plt.xlabel("Degree") plt.ylabel("Probability") plt.ylim((0, 0.5)) plt.savefig(figureDir + "DegreeDist" + ".eps") plt.legend() plotInd2 += 1 """ plt.figure(plotInd2) plt.plot(numpy.arange(eigenDist.shape[0]), eigenDist, label=dateStr) plt.xlabel("Eigenvalue rank") plt.ylabel("log(Eigenvalue)") plt.savefig(figureDir + "EigenDist" + ".eps") plt.legend() plotInd2 += 1 """ #How does kleinberg do the hop plots plt.figure(plotInd2) plt.plot(numpy.arange(hopCount.shape[0]), hopCount, plotStyles[j], label=dateStr) plt.xlabel("k") plt.ylabel("log10(pairs)") plt.ylim( (2.5, 7) ) plt.legend(loc="lower right") plt.savefig(figureDir + "HopCount" + ".eps") plotInd2 += 1 plt.figure(plotInd2) plt.plot(numpy.arange(maxEigVector.shape[0]), maxEigVector, plotStyles2[j], label=dateStr) plt.xlabel("Rank") plt.ylabel("log(eigenvector coefficient)") plt.savefig(figureDir + "MaxEigVector" + ".eps") plt.legend() plotInd2 += 1 #Compute some information the 10% most central vertices subgraphIndices = numpy.nonzero(detections <= dayList2[j])[0] subgraph = sGraph.subgraph(subgraphIndices) subgraphVertexArray = subgraph.getVertexList().getVertices() femaleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==1) maleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==0) heteroSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==0) biSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==1) contactSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, contactIndex]) donorSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, donorIndex]) randomTestSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, randomTestIndex]) stdSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, stdIndex]) prisonerSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, prisonerIndex]) recommendSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, doctorIndex]) meanAges[j] = numpy.mean(subgraphVertexArray[top10eigenvectorInds, detectionIndex] - subgraphVertexArray[top10eigenvectorInds, dobIndex])/daysInYear havanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, havanaIndex]) villaClaraSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, villaClaraIndex]) pinarSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, pinarIndex]) holguinSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, holguinIndex]) habanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, habanaIndex]) sanctiSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, sanctiIndex]) provinces[j, :] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, 22:37], 0) ddist = numpy.bincount(subgraph.outDegreeSequence()[top10eigenvectorInds]) degrees[j, 0:ddist.shape[0]] = numpy.array(ddist, numpy.float)/numpy.sum(ddist) meanDegrees[j] = numpy.mean(subgraph.outDegreeSequence()[top10eigenvectorInds]) stdDegrees[j] = numpy.std(subgraph.outDegreeSequence()[top10eigenvectorInds]) plt.figure(plotInd2) plt.plot(numpy.arange(degrees[j, :].shape[0]), degrees[j, :], plotStyles2[j], label=dateStr) plt.xlabel("Degree") plt.ylabel("Probability") #plt.ylim((0, 0.5)) plt.savefig(figureDir + "DegreeDistCentral" + ".eps") plt.legend() plotInd2 += 1 precision = 4 dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2] print("Hop counts") print(Latex.listToRow(dateStrList)) print(Latex.array2DToRows(hopPlotArray.T)) print("\nHop counts for configuration graphs") print(Latex.listToRow(dateStrList)) print(Latex.array2DToRows(configHopPlotArray.T)) print("\n\nEdges and vertices") print((Latex.listToRow(dateStrList))) print((Latex.array2DToRows(numVerticesEdgesArray.T, precision))) print("\n\nEigenvector distribution") print((Latex.array1DToRow(binWidths[1:]) + "\\\\")) print((Latex.array2DToRows(eigVectorDists))) print("\n\nDistribution of component sizes") componentsDistArray = componentsDistArray[:, 0:componentsDist.shape[0]] nonZeroCols = numpy.sum(componentsDistArray, 0)!=0 componentsDistArray = numpy.r_[numpy.array([numpy.arange(componentsDistArray.shape[1])[nonZeroCols]]), componentsDistArray[:, nonZeroCols]] print((Latex.listToRow(dateStrList))) print((Latex.array2DToRows(componentsDistArray.T, precision))) print("\n\nDistribution of component sizes in configuration graphs") configComponentsDistArray = configComponentsDistArray[:, 0:configComponentsDist.shape[0]] nonZeroCols = numpy.sum(configComponentsDistArray, 0)!=0 configComponentsDistArray = numpy.r_[numpy.array([numpy.arange(configComponentsDistArray.shape[1])[nonZeroCols]]), configComponentsDistArray[:, nonZeroCols]] print((Latex.listToRow(dateStrList))) print((Latex.array2DToRows(configComponentsDistArray.T, precision))) print("\n\nDistribution of triangle participations") triangleDistArray = triangleDistArray[:, 0:triangleDist.shape[0]] nonZeroCols = numpy.sum(triangleDistArray, 0)!=0 triangleDistArray = numpy.r_[numpy.array([numpy.arange(triangleDistArray.shape[1])[nonZeroCols]])/2, triangleDistArray[:, nonZeroCols]] print((Latex.listToRow(dateStrList))) print((Latex.array2DToRows(triangleDistArray.T, precision))) configTriangleDistArray = configTriangleDistArray[:, 0:configTriangleDist.shape[0]] nonZeroCols = numpy.sum(configTriangleDistArray, 0)!=0 configTriangleDistArray = numpy.r_[numpy.array([numpy.arange(configTriangleDistArray.shape[1])[nonZeroCols]])/2, configTriangleDistArray[:, nonZeroCols]] configTriangleDistArray = numpy.c_[configTriangleDistArray, numpy.zeros((configTriangleDistArray.shape[0], triangleDistArray.shape[1]-configTriangleDistArray.shape[1]))] print("\n\nDistribution of central vertices") print((Latex.listToRow(dateStrList))) subgraphSizes = numpy.array(maleSums + femaleSums, numpy.float) print("Female & " + Latex.array1DToRow(femaleSums*100/subgraphSizes, 1) + "\\\\") print("Male & " + Latex.array1DToRow(maleSums*100/subgraphSizes, 1) + "\\\\") print("\hline") print("Heterosexual & " + Latex.array1DToRow(heteroSums*100/subgraphSizes, 1) + "\\\\") print("Bisexual & " + Latex.array1DToRow(biSums*100/subgraphSizes, 1) + "\\\\") print("\hline") print("Contact traced & " + Latex.array1DToRow(contactSums*100/subgraphSizes, 1) + "\\\\") print("Blood donor & " + Latex.array1DToRow(donorSums*100/subgraphSizes, 1) + "\\\\") print("RandomTest & " + Latex.array1DToRow(randomTestSums*100/subgraphSizes, 1) + "\\\\") print("STD & " + Latex.array1DToRow(stdSums*100/subgraphSizes, 1) + "\\\\") print("Prisoner & " + Latex.array1DToRow(prisonerSums*100/subgraphSizes, 1) + "\\\\") print("Doctor recommendation & " + Latex.array1DToRow(recommendSums*100/subgraphSizes, 1) + "\\\\") print("\hline") print("Mean ages (years) & " + Latex.array1DToRow(meanAges, 2) + "\\\\") print("\hline") print("Holguin & " + Latex.array1DToRow(holguinSums*100/subgraphSizes, 1) + "\\\\") print("La Habana & " + Latex.array1DToRow(habanaSums*100/subgraphSizes, 1) + "\\\\") print("Havana City & " + Latex.array1DToRow(havanaSums*100/subgraphSizes, 1) + "\\\\") print("Pinar del Rio & " + Latex.array1DToRow(pinarSums*100/subgraphSizes, 1) + "\\\\") print("Sancti Spiritus & " + Latex.array1DToRow(sanctiSums*100/subgraphSizes, 1) + "\\\\") print("Villa Clara & " + Latex.array1DToRow(villaClaraSums*100/subgraphSizes, 1) + "\\\\") print("\hline") print("Mean degrees & " + Latex.array1DToRow(meanDegrees, 2) + "\\\\") print("Std degrees & " + Latex.array1DToRow(stdDegrees, 2) + "\\\\") print("\n\nProvinces") print(Latex.array2DToRows(provinces)) print("\n\nDegree distribution") print(Latex.array2DToRows(degrees)) def plotOtherStats(): #Let's look at geodesic distances in subgraphs and communities logging.info("Computing other stats") resultsFileName = resultsDir + "ContactGrowthOtherStats.pkl" hivGraphStats = HIVGraphStatistics(fInds) if saveResults: statsArray = hivGraphStats.sequenceScalarStats(sGraph, subgraphIndicesList) #statsArray["dayList"] = absDayList Util.savePickle(statsArray, resultsFileName, True) else: statsArray = Util.loadPickle(resultsFileName) #Just load the harmonic geodesic distances of the full graph resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl" statsArray2 = Util.loadPickle(resultsFileName) global plotInd msmGeodesic = statsArray[:, hivGraphStats.msmGeodesicIndex] msmGeodesic[msmGeodesic < 0] = 0 msmGeodesic[msmGeodesic == float('inf')] = 0 #Output all the results into plots plt.figure(plotInd) plt.plot(absDayList, msmGeodesic, 'k-', absDayList, statsArray[:, hivGraphStats.mostConnectedGeodesicIndex], 'k--') plt.xticks(locs, labels) #plt.ylim([0, 0.1]) plt.xlabel("Year") plt.ylabel("Mean harmonic geodesic distance") plt.legend(("MSM individuals", "Top 10% degree"), loc="upper right") plt.savefig(figureDir + "MSM10Geodesic" + ".eps") plotInd += 1 plt.figure(plotInd) plt.plot(absDayList, statsArray2[:, graphStats.harmonicGeoDistanceIndex], 'k-', absDayList, statsArray[:, hivGraphStats.menSubgraphGeodesicIndex], 'k--') plt.xticks(locs, labels) plt.ylim([0, 200.0]) plt.xlabel("Year") plt.ylabel("Mean harmonic geodesic distance") plt.legend(("All individuals", "Men subgraph"), loc="upper right") plt.savefig(figureDir + "MenSubgraphGeodesic" + ".eps") plotInd += 1 #plotVertexStats() plotScalarStats() #plotVectorStats() #plotOtherStats() plt.show() #computeConfigScalarStats() #computeConfigVectorStats() """ Probability of adding node based on degree - try to find how we can generate data. Mean Time between first and last infection for each person """
gpl-3.0
UNR-AERIAL/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
bigdataelephants/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
wilselby/diy_driverless_car_ROS
rover_cv/camera_cal/src/camera_cal/camera_cal.py
1
6503
#!/usr/bin/env python # -*- coding: utf-8 -*- #https://github.com/paramaggarwal/CarND-Advanced-Lane-Lines/blob/master/Notebook.ipynb from __future__ import print_function from __future__ import division import sys import traceback import rospy import numpy as np import cv2 import pickle import glob import time import matplotlib.pyplot as plt import matplotlib.image as mpimg from std_msgs.msg import String from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError class camera_calibarion(object): def __init__(self): """ROS Subscriptions """ self.image_pub = rospy.Publisher("/camera_calibation/image_corrected",Image, queue_size=10) self.image_sub = rospy.Subscriber("/cam/camera_/image_raw",Image,self.cvt_image) """ Variables """ self.bridge = CvBridge() self.latestImage = None self.outputImage = None self.process = False self.calibrated = False self.correctedImage = None self.mtx = None self.dist = None def cvt_image(self,data): try: self.latestImage = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) if self.process != True: self.process = True def camera_cal(self, image): # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) nx = 8 ny = 6 dst = np.copy(image) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((ny * nx, 3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Search for chessboard corners grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #ret_thresh, mask = cv2.threshold(grey, 30, 255, cv2.THRESH_BINARY) ret, corners = cv2.findChessboardCorners(image, (nx, ny), None) #flags=(cv2.cv.CV_CALIB_CB_ADAPTIVE_THRESH + cv2.cv.CV_CALIB_CB_FILTER_QUADS)) # If found, add object points, image points if ret == True: objpoints.append(objp) cv2.cornerSubPix(grey,corners, (11,11), (-1,-1), criteria) imgpoints.append(corners) self.calibrated = True print ("FOUND!") #Draw and display the corners cv2.drawChessboardCorners(image, (nx, ny), corners, ret) # Do camera calibration given object points and image points ret, self.mtx, self.dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, grey.shape[::-1], None, None) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = self.mtx dist_pickle["dist"] = self.dist dist_pickle['objpoints'] = objpoints dist_pickle['imgpoints'] = imgpoints pickle.dump( dist_pickle, open( "/home/wil/ros/catkin_ws/src/av_sim/computer_vision/camera_calibration/data/camera_cal_pickle.p", "wb" ) ) #else: #print("Searching...") return image def drawQuad(self, image, points, color=[255, 0, 0], thickness=4): p1, p2, p3, p4 = points cv2.line(image, tuple(p1), tuple(p2), color, thickness) cv2.line(image, tuple(p2), tuple(p3), color, thickness) cv2.line(image, tuple(p3), tuple(p4), color, thickness) cv2.line(image, tuple(p4), tuple(p1), color, thickness) def perspective_transform(self, image, debug=True, size_top=70, size_bottom=370): height, width = image.shape[0:2] output_size = height/2 #src = np.float32([[(width/2) - size_top, height*0.65], [(width/2) + size_top, height*0.65], [(width/2) + size_bottom, height-50], [(width/2) - size_bottom, height-50]]) src = np.float32([[512, 450], [675, 454], [707, 560], [347, 568]]) dst = np.float32([[347, height], [707, height], [707, 0], [347, 0]]) #dst = np.float32([[(width/2) - output_size, (height/2) - output_size], [(width/2) + output_size, (height/2) - output_size], [(width/2) + output_size, (height/2) + output_size], [(width/2) - output_size, (height/2) + output_size]]) M = cv2.getPerspectiveTransform(src, dst) print(M) warped = cv2.warpPerspective(image, M, (width, height), flags=cv2.INTER_LINEAR) if debug: self.drawQuad(image, src, [255, 0, 0]) self.drawQuad(image, dst, [255, 255, 0]) plt.imshow(image) plt.show() return warped def undistort_image(self, image): return cv2.undistort(image, self.mtx, self.dist, None, self.mtx) def run(self): while True: # Only run loop if we have an image if self.process: filename = "/home/wil/ros/catkin_ws/src/av_sim/computer_vision/camera_calibration/data/check_test.png" image = cv2.imread(filename, flags=cv2.IMREAD_COLOR) if self.calibrated is not True: #print("Calibrating...") cornersImage = self.camera_cal(image) cvImage = cornersImage else: correctedImage = self.undistort_image(self.latestImage) # Distortion Correction Function transformImage = self.perspective_transform(self.latestImage) cvImage = transformImage # Publish Undistorted Image try: imgmsg = self.bridge.cv2_to_imgmsg(cvImage, "bgr8") #"mono8" "bgr8" self.image_pub.publish(imgmsg) except CvBridgeError as e: print(e) def main(args): rospy.init_node('camera_calibarion', anonymous=True) cc = camera_calibarion() cc.run() try: rospy.spin() except KeyboardInterrupt: print("Shutting down") cv2.destroyAllWindows() if __name__ == '__main__': main(sys.argv)
bsd-2-clause
victorbergelin/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
CoolProp/CoolProp
wrappers/Python/CoolProp/Plots/PsychScript.py
2
2020
# This file was auto-generated by the PsychChart.py script in wrappers/Python/CoolProp/Plots if __name__ == '__main__': import numpy, matplotlib from CoolProp.HumidAirProp import HAPropsSI from CoolProp.Plots.Plots import InlineLabel p = 101325 Tdb = numpy.linspace(-10, 60, 100) + 273.15 # Make the figure and the axes fig = matplotlib.pyplot.figure(figsize=(10, 8)) ax = fig.add_axes((0.1, 0.1, 0.85, 0.85)) # Saturation line w = [HAPropsSI('W', 'T', T, 'P', p, 'R', 1.0) for T in Tdb] ax.plot(Tdb - 273.15, w, lw=2) # Humidity lines RHValues = [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for RH in RHValues: w = [HAPropsSI('W', 'T', T, 'P', p, 'R', RH) for T in Tdb] ax.plot(Tdb - 273.15, w, 'r', lw=1) # Humidity lines for H in [-20000, -10000, 0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000]: # Line goes from saturation to zero humidity ratio for this enthalpy T1 = HAPropsSI('T', 'H', H, 'P', p, 'R', 1.0) - 273.15 T0 = HAPropsSI('T', 'H', H, 'P', p, 'R', 0.0) - 273.15 w1 = HAPropsSI('W', 'H', H, 'P', p, 'R', 1.0) w0 = HAPropsSI('W', 'H', H, 'P', p, 'R', 0.0) ax.plot(numpy.r_[T1, T0], numpy.r_[w1, w0], 'r', lw=1) ax.set_xlim(Tdb[0] - 273.15, Tdb[-1] - 273.15) ax.set_ylim(0, 0.03) ax.set_xlabel(r"$T_{db}$ [$^{\circ}$C]") ax.set_ylabel(r"$W$ ($m_{w}/m_{da}$) [-]") xv = Tdb # [K] for RH in [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]: yv = [HAPropsSI('W', 'T', T, 'P', p, 'R', RH) for T in Tdb] y = HAPropsSI('W', 'P', p, 'H', 65000.000000, 'R', RH) T_K, w, rot = InlineLabel(xv, yv, y=y, axis=ax) string = r'$\phi$=' + '{s:0.0f}'.format(s=RH * 100) + '%' bbox_opts = dict(boxstyle='square,pad=0.0', fc='white', ec='None', alpha=0.5) ax.text(T_K - 273.15, w, string, rotation=rot, ha='center', va='center', bbox=bbox_opts) matplotlib.pyplot.show()
mit
convexopt/gpkit
gpkit/tests/t_examples.py
1
6270
"""Unit testing of tests in docs/source/examples""" import unittest import os import numpy as np from gpkit import settings from gpkit.tests.helpers import generate_example_tests from gpkit.small_scripts import mag from gpkit.small_classes import Quantity def assert_logtol(first, second, logtol=1e-6): "Asserts that the logs of two arrays have a given abstol" np.testing.assert_allclose(np.log(mag(first)), np.log(mag(second)), atol=logtol, rtol=0) # pylint: disable=too-many-public-methods class TestExamples(unittest.TestCase): """ To test a new example, add a function called `test_$EXAMPLENAME`, where $EXAMPLENAME is the name of your example in docs/source/examples without the file extension. This function should accept two arguments (e.g. 'self' and 'example'). The imported example script will be passed to the second: anything that was a global variable (e.g, "sol") in the original script is available as an attribute (e.g., "example.sol") If you don't want to perform any checks on the example besides making sure it runs, just put "pass" as the function's body, e.g.: def test_dummy_example(self, example): pass But it's good practice to ensure the example's solution as well, e.g.: def test_dummy_example(self, example): self.assertAlmostEqual(example.sol["cost"], 3.121) """ # TODO: allow enabling plotting examples, make plots in correct folder... # def test_plot_sweep1d(self, _): # import matplotlib.pyplot as plt # plt.close("all") def test_autosweep(self, example): from gpkit import ureg bst1, tol1 = example.bst1, example.tol1 bst2, tol2 = example.bst2, example.tol2 l_ = np.linspace(1, 10, 100) for bst in [bst1, example.bst1_loaded]: sol1 = bst.sample_at(l_) assert_logtol(sol1("l"), l_) assert_logtol(sol1("A"), l_**2 + 1, tol1) assert_logtol(sol1["cost"], (l_**2 + 1)**2, tol1) if hasattr(sol1["cost"], "units"): # loaded costs are unitless self.assertEqual(Quantity(1.0, sol1["cost"].units), Quantity(1.0, ureg.m)**4) self.assertEqual(Quantity(1.0, sol1("A").units), Quantity(1.0, ureg.m)**2) ndig = -int(np.log10(tol2)) self.assertAlmostEqual(bst2.cost_at("cost", 3), 1.0, ndig) # before corner A_bc = np.linspace(1, 3, 50) sol_bc = bst2.sample_at(A_bc) assert_logtol(sol_bc("A"), (A_bc/3)**0.5, tol2) assert_logtol(sol_bc["cost"], A_bc/3, tol2) # after corner A_ac = np.linspace(3, 10, 50) sol_ac = bst2.sample_at(A_ac) assert_logtol(sol_ac("A"), (A_ac/3)**2, tol2) assert_logtol(sol_ac["cost"], (A_ac/3)**4, tol2) def test_model_var_access(self, example): model = example.PS _ = model["E"] with self.assertRaises(ValueError): _ = model["m"] # multiple variables called m def test_performance_modeling(self, example): pass def test_sp_to_gp_sweep(self, example): pass def test_boundschecking(self, example): pass def test_vectorize(self, example): pass def test_primal_infeasible_ex1(self, example): with self.assertRaises(RuntimeWarning) as cm: example.m.solve(verbosity=0) err = cm.exception if "mosek" in err.message: self.assertIn("PRIM_INFEAS_CER", err.message) elif "cvxopt" in err.message: self.assertIn("unknown", err.message) def test_primal_infeasible_ex2(self, example): with self.assertRaises(RuntimeWarning): example.m.solve(verbosity=0) def test_docstringparsing(self, example): pass def test_debug(self, example): pass def test_simple_sp(self, example): pass def test_simple_box(self, example): pass def test_x_greaterthan_1(self, example): pass def test_beam(self, example): self.assertFalse(np.isnan(example.sol("w")).any()) def test_water_tank(self, example): pass def test_sin_approx_example(self, example): pass def test_external_sp(self, example): pass def test_external_sp2(self, example): pass def test_simpleflight(self, example): self.assertTrue(example.sol.almost_equal(example.sol_loaded)) for sol in [example.sol, example.sol_loaded]: freevarcheck = { "A": 8.46, "C_D": 0.0206, "C_f": 0.0036, "C_L": 0.499, "Re": 3.68e+06, "S": 16.4, "W": 7.34e+03, "V": 38.2, "W_w": 2.40e+03 } # sensitivity values from p. 34 of W. Hoburg's thesis senscheck = { r"(\frac{S}{S_{wet}})": 0.4300, "e": -0.4785, "V_{min}": -0.3691, "k": 0.4300, r"\mu": 0.0860, "(CDA0)": 0.0915, "C_{L,max}": -0.1845, r"\tau": -0.2903, "N_{ult}": 0.2903, "W_0": 1.0107, r"\rho": -0.2275 } for key in freevarcheck: sol_rat = mag(sol["variables"][key])/freevarcheck[key] self.assertTrue(abs(1-sol_rat) < 1e-2) for key in senscheck: sol_rat = sol["sensitivities"]["constants"][key]/senscheck[key] self.assertTrue(abs(1-sol_rat) < 1e-2) def test_relaxation(self, example): pass def test_unbounded(self, example): pass FILE_DIR = os.path.dirname(os.path.realpath(__file__)) EXAMPLE_DIR = os.path.abspath(FILE_DIR + '../../../docs/source/examples') SOLVERS = settings["installed_solvers"] if os.path.isdir(EXAMPLE_DIR): TESTS = generate_example_tests(EXAMPLE_DIR, [TestExamples], SOLVERS) else: TESTS = [] if __name__ == "__main__": # pylint:disable=wrong-import-position from gpkit.tests.helpers import run_tests run_tests(TESTS)
mit
liffiton/ATLeS
src/analysis/plot.py
1
11295
import math import re import matplotlib import matplotlib.pyplot as plt from matplotlib import collections, lines, patches from analysis import heatmaps import config # Source: https://gist.github.com/jasonmc/1160951 def _set_foregroundcolor(ax, color): '''For the specified axes, sets the color of the frame, major ticks, tick labels, axis labels, title and legend ''' for tl in ax.get_xticklines() + ax.get_yticklines(): tl.set_color(color) for spine in ax.spines: ax.spines[spine].set_edgecolor(color) for tick in ax.xaxis.get_major_ticks(): tick.label1.set_color(color) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_color(color) ax.axes.xaxis.label.set_color(color) ax.axes.yaxis.label.set_color(color) ax.axes.xaxis.get_offset_text().set_color(color) ax.axes.yaxis.get_offset_text().set_color(color) ax.axes.title.set_color(color) lh = ax.get_legend() if lh is not None: lh.get_title().set_color(color) lh.legendPatch.set_edgecolor('none') labels = lh.get_texts() for lab in labels: lab.set_color(color) for tl in ax.get_xticklabels(): tl.set_color(color) for tl in ax.get_yticklabels(): tl.set_color(color) # Source: https://gist.github.com/jasonmc/1160951 def _set_backgroundcolor(ax, color): '''Sets the background color of the current axes (and legend). Use 'None' (with quotes) for transparent. To get transparent background on saved figures, use: pp.savefig("fig1.svg", transparent=True) ''' ax.patch.set_facecolor(color) lh = ax.get_legend() if lh is not None: lh.legendPatch.set_facecolor(color) def format_axis(ax): _set_foregroundcolor(ax, '0.5') _set_backgroundcolor(ax, '0.08') # drop plot borders for spine in ax.spines: ax.spines[spine].set_visible(False) def _format_figure(fig): fig.patch.set_facecolor('0.12') plt.tight_layout() def show(): ''' Shows the current figure (on screen, if using a GUI backend). Create a plot first using a TrackPlotter object. ''' fig = plt.gcf() _format_figure(fig) plt.show() plt.close('all') def savefig(outfile, format=None): ''' Saves the current figure to the given filename or file-like object. Format is inferred from the file extension if a name is given, otherwise specify it manually with the format parameter. Large (tall) figures are broken into multiple images (vertical tiles) if outfile is a string (filename). Create a plot first using a TrackPlotter object or other code that creates a pyplot figure. ''' fig = plt.gcf() _format_figure(fig) # A bit of an ugly hack to split giant images into multiple parts # Only used if outfile is given as a string (filename) max_height = 100 if isinstance(outfile, str) else float('inf') # plot height in inches height = fig.get_window_extent().transformed(fig.dpi_scale_trans.inverted()).height if height > max_height: numparts = int(height / max_height) + 1 for i in range(numparts): filename = re.sub(r"(\.[^\.]+)$", r"%02d\1" % (numparts-i), outfile) bbox = matplotlib.transforms.Bbox.from_extents([0,i*max_height,12,min(height,(i+1)*max_height)]) plt.savefig(filename, facecolor=fig.get_facecolor(), edgecolor='none', bbox_inches=bbox, format=format) else: plt.savefig(outfile, facecolor=fig.get_facecolor(), edgecolor='none', format=format) plt.close('all') class TrackPlotter(object): def __init__(self, track_processor, dbgframes=None): self._track = track_processor self._dbgframes = dbgframes @staticmethod def _speed2color(speed): # setup ranges, where 0 maps to first number, 1.0 maps to second color_ranges = { 'r': (0.8, 1.0), 'g': (0.8, 0.0), 'b': (0.8, 0.0) } def scale(inval, color): range = color_ranges[color] scaled = range[0] + (range[1] - range[0]) * inval return min(1, max(0, scaled)) # constrain to 0-1 r = scale(speed, 'r') g = scale(speed, 'g') b = scale(speed, 'b') return (r,g,b, 0.5) def plot_trace(self): # one minute per subplot numplots = self._track.len_minutes fig = plt.figure(figsize=(12,2*(numplots+1))) # Draw the legend at the top self.draw_legend(plt.subplot(numplots+1, 1, 1)) for i in range(numplots): ax = plt.subplot(numplots+1, 1, i+2) self._plot_trace_portion(ax, start_min=i, end_min=i+1) return fig def draw_legend(self, legend_ax): # Make a legend with proxy artists xpos_artist = lines.Line2D([],[], color='orange') ypos_artist = lines.Line2D([],[], color='limegreen') numpts_artist = lines.Line2D([],[], color='purple', linewidth=1) frozen_artist = patches.Rectangle((0,0), 1, 1, fc='lightblue', ec='None') missing_artist = patches.Rectangle((0,0), 1, 1, fc='yellow', ec='None') lost_artist = patches.Rectangle((0,0), 1, 1, fc='red', ec='None') # Place it in center of top "subplot" area legend_ax.legend( [xpos_artist, ypos_artist, numpts_artist, frozen_artist, missing_artist, lost_artist], ['x-pos', 'y-pos', '# Detection pts', 'Frozen', 'Missing', 'Lost'], loc='center', fontsize=12, ncol=4, ) legend_ax.axis('off') format_axis(legend_ax) def plot_invalidheatmap(self): title = "Map of shame (loc of invalid data)" plt.figure(figsize=(4, 4)) ax = plt.gca() ax.set_title(title) format_axis(ax) nbins = 50 badpoints = (self._track.df.valid != True) # noqa: E712 heatmaps.plot_heatmap(ax, self._track.df.x[badpoints], self._track.df.y[badpoints], nbins=nbins) def plot_heatmap(self, plot_type='overall'): assert plot_type in ('per-minute', 'per-phase', 'overall') if plot_type == 'per-minute': numplots = self._track.len_minutes elif plot_type == 'per-phase': numplots = self._track.num_phases() phase_starts = self._track.phase_starts() phase_ends = phase_starts[1:] + [2**30] elif plot_type == 'overall': numplots = 1 numrows = int(math.ceil(numplots / 10.0)) if plot_type == 'overall': plt.figure(figsize=(4, 4)) else: plt.figure(figsize=(2*min(numplots, 10), 2*numrows)) for i in range(numplots): if plot_type == 'per-minute': start_min = i end_min = i+1 title = "{}:00-{}:00".format(start_min, end_min) elif plot_type == 'per-phase': start_min = phase_starts[i] end_min = phase_ends[i] title = "Phase {} ({}:00-{}:00)".format(i+1, start_min, end_min) elif plot_type == 'overall': start_min = 0 end_min = 2**30 title = "Overall heatmap" ax = plt.subplot(numrows, min(numplots, 10), i+1) if numplots > 1: ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) format_axis(ax) ax.set_title(title) nbins = 50 start_sec = start_min*60 end_sec = end_min*60 heatmaps.plot_heatmap(ax, self._track.df.x[start_sec:end_sec], self._track.df.y[start_sec:end_sec], nbins=nbins) def _plot_trace_portion(self, ax, start_min, end_min): ''' Parameters: start_min, end_min: Integer minutes. Plot should be from start:00 to end:00. ''' # shorthand df = self._track.df start = start_min * 60 end = end_min * 60 time = df.index.to_series()[start:end].values #theta = self._track.theta[start:end] #speed = self._track.speed[start:end] #valid = self._track.valid[start:end] lost = df.lost[start:end].values missing = df.missing[start:end].values frozen = df.frozen[start:end].values x = df.x[start:end].values y = df.y[start:end].values numpts = df.numpts[start:end].values # Format nicely format_axis(ax) ax.axes.get_yaxis().set_visible(False) # Get set axes (specifically, we don't want the y-axis to be autoscaled for us) ax.axis([start, end, -1.0, 1.0]) # Mark lost/missing sections lost_collection = collections.BrokenBarHCollection.span_where( time, -1.0, -0.9, lost, edgecolors='none', facecolors='red', ) ax.add_collection(lost_collection) missing_collection = collections.BrokenBarHCollection.span_where( time, -1.0, -0.9, missing, edgecolors='none', facecolors='yellow', ) ax.add_collection(missing_collection) # Mark frozen sections frozen_collection = collections.BrokenBarHCollection.span_where( time, -0.85, -0.8, frozen, edgecolors='none', facecolors='lightblue', ) ax.add_collection(frozen_collection) # Plot horizontal position ax.plot(time, x*2-1, color='orange', label='x position') # Plot height ax.plot(time, y*2-1, color='limegreen', label='y position') # Plot numpts (scaled so 0 = -1.0 (plot bottom), 20 = 1.0 (top)) ax.plot(time, -1.0+(numpts/10.0), color='purple', linewidth=1, label='# detected points') # Add stick plot of movement (where valid) # ax.quiver( # time, [0] * len(time), # speed*np.cos(theta), speed*np.sin(theta), # color=[self._speed2color(s) for s in speed], # scale=1, # scale all to a speed of 1, which should be close to max (tank is 1.0x1.0) # scale_units='y', # width=0.01, # units='inches', # headlength=0, headwidth=0, headaxislength=0 # no arrowheads # ) # Add markers/links to debugframes if given # Get [tracking]:start_frame for proper offset of debug frame numbers into track data here start_frame = int(self._track.config['tracking']['start_frame']) for dbgframe in self._dbgframes: nameparts = dbgframe.name.split('_') frameindex = max(0, int(nameparts[1]) - start_frame) # restrict to index 0 at minimum frametime = self._track.df.index[frameindex] if start <= frametime < end: marker = matplotlib.patches.Circle( (frametime, -1.1), radius=0.08, color='#337AB7', clip_on=False, url=str("/data" / dbgframe.relative_to(config.DATADIR)) ) ax.add_artist(marker)
mit
ambikeshwar1991/sandhi-2
module/gr36/gr-filter/examples/interpolate.py
13
8584
#!/usr/bin/env python # # Copyright 2009,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import filter import sys, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab from pylab import mlab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 100000 # number of samples to use self._fs = 2000 # initial sampling rate self._interp = 5 # Interpolation rate for PFB interpolator self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler # Frequencies of the signals we construct freq1 = 100 freq2 = 200 # Create a set of taps for the PFB interpolator # This is based on the post-interpolation sample rate self._taps = filter.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Create a set of taps for the PFB arbitrary resampler # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes, # and larger numbers will reduce these even farther # The taps in this filter are based on a sampling rate of the filter size since it acts # internally as an interpolator. flt_size = 32 self._taps2 = filter.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._interp)) print "Number of taps: ", len(self._taps) print "Number of filters: ", self._interp print "Taps per channel: ", tpc # Create a couple of signals at different frequencies self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5) self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5) self.signal = gr.add_cc() self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the PFB interpolator filter self.pfb = filter.pfb.interpolator_ccf(self._interp, self._taps) # Construct the PFB arbitrary resampler filter self.pfb_ar = filter.pfb.arb_resampler_ccf(self._ainterp, self._taps2, flt_size) self.snk_i = gr.vector_sink_c() #self.pfb_ar.pfb.print_taps() #self.pfb.pfb.print_taps() # Connect the blocks self.connect(self.signal1, self.head, (self.signal,0)) self.connect(self.signal2, (self.signal,1)) self.connect(self.signal, self.pfb) self.connect(self.signal, self.pfb_ar) self.connect(self.signal, self.snk_i) # Create the sink for the interpolated signals self.snk1 = gr.vector_sink_c() self.snk2 = gr.vector_sink_c() self.connect(self.pfb, self.snk1) self.connect(self.pfb_ar, self.snk2) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman # Plot input signal fs = tb._fs d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-2.5, 2.5]) sp1_t.set_title("Input Signal", weight="bold") sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot output of PFB interpolator fs_int = tb._fs*tb._interp sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_int = 1.0/fs_int Tmax = len(d)*Ts_int t_o = scipy.arange(0, Tmax, Ts_int) x_o1 = scipy.array(d) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o1.real, "b-o") #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") # Plot output of PFB arbitrary resampler fs_aint = tb._fs * tb._ainterp sp3_f = fig3.add_subplot(2, 1, 1) d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) p3_f = sp3_f.plot(f_o, X_o, "b") sp3_f.set_xlim([min(f_o), max(f_o)+1]) sp3_f.set_ylim([-200.0, 50.0]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Frequency (Hz)") sp3_f.set_ylabel("Power (dBW)") Ts_aint = 1.0/fs_aint Tmax = len(d)*Ts_aint t_o = scipy.arange(0, Tmax, Ts_aint) x_o2 = scipy.array(d) sp3_f = fig3.add_subplot(2, 1, 2) p3_f = sp3_f.plot(t_o, x_o2.real, "b-o") p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") sp3_f.set_ylim([-2.5, 2.5]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Time (s)") sp3_f.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
lgarren/spack
var/spack/repos/builtin/packages/py-iminuit/package.py
3
1800
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/llnl/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyIminuit(PythonPackage): """Interactive IPython-Friendly Minimizer based on SEAL Minuit2.""" homepage = "https://pypi.python.org/pypi/iminuit" url = "https://pypi.io/packages/source/i/iminuit/iminuit-1.2.tar.gz" version('1.2', '4701ec472cae42015e26251703e6e984') # Required dependencies depends_on('py-setuptools', type='build') # Optional dependencies depends_on('py-numpy', type=('build', 'run')) depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-cython', type='build')
lgpl-2.1
MarineLasbleis/GrowYourIC
notebooks/Yoshida.py
1
4212
# -*- coding: UTF-8 -*- import numpy as np import matplotlib.pyplot as plt #for figures #from mpl_toolkits.basemap import Basemap #to render maps import math from GrowYourIC import tracers, positions, geodyn, geodyn_trg, geodyn_static, plot_data, data, geodyn_analytical_flows #plt.rcParams['figure.figsize'] = (8.0, 3.0) #size of figures cm = plt.cm.get_cmap('viridis_r') #V = 0.2 # translation velocity #S2 = 1/5. #Yoshida = geodyn_analytical_flows.Yoshida96(V, S=S2) #file = "Fig/Yoshida_{}_S2_{}".format(V, S2) #print(file) V = [0.2, 0.4] S2 = [1/5., 4/5., 2.] for vitesse in V: for value_S in S2: Yoshida = geodyn_analytical_flows.Yoshida96(vitesse, S=value_S) file = "Fig/Yoshida_{}_S2_{}".format(vitesse, value_S) print(file) npoints = 50 #number of points in the x direction for the data set. data_set = data.PerfectSamplingCut(npoints, rICB = 1.) data_set.method = "bt_point" # Age plot with velocity field proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="age", verbose = False) data_set.plot_c_vec(Yoshida, proxy=proxy, nameproxy="age") plt.savefig(file+"_age.pdf") # accumulated deformation #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_acc", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_acc") #plt.savefig(file+"_vM_acc.pdf") #data_set.plot_c_vec(Yoshida, proxy=np.log10(proxy), cm=cm, nameproxy="log_vMises_acc") #plt.savefig(file+"_log_vM_acc.pdf") # tracers with age #tracers.Swarm(5, Yoshida, Yoshida.tau_ic/400, "ici", plane="meridional") #data_set = data.PerfectSamplingCut(20, rICB = 1.) #data_set.method = "bt_point" #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="age", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, nameproxy="age") #plt.show() #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_tau_ic", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_tau_ic") #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_acc", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_acc") #Karato = geodyn_analytical_flows.Model_LorentzForce() #proxy = geodyn.evaluate_proxy(data_set, Karato, proxy_type="vMises_tau_ic", verbose = False) #data_set.plot_c_vec(Karato, proxy=proxy, cm=cm, nameproxy="vMises_tau_ic") #Karato.P = 1e-4 #proxy = geodyn.evaluate_proxy(data_set, Karato, proxy_type="vMises_tau_ic", verbose = False) #data_set.plot_c_vec(Karato, proxy=proxy, cm=cm, nameproxy="vMises_tau_ic") #proxy = geodyn.evaluate_proxy(data_set, Karato, proxy_type="age", verbose = False) #data_set.plot_c_vec(Karato, proxy=proxy, cm=cm, nameproxy="age") #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="age", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="age") #plt.savefig(file+"_tage.pdf") #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_tau_ic", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_tau_ic") #plt.savefig(file+"_t_vM.pdf") #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_cart", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_cart") #plt.savefig("Yoshida_vM.pdf") #Karato.P = 1e4 #proxy_1 = geodyn.evaluate_proxy(data_set, Karato, proxy_type="vMises_tau_ic", verbose = False) #data_set.plot_c_vec(Karato, proxy=proxy_1, cm=cm, nameproxy="vMises_tau_ic") #npoints = 50 #number of points in the x direction for the data set. #data_set = data.PerfectSamplingCut(npoints, rICB = 1.) #data_set.method = "bt_point" #proxy_2 = geodyn.evaluate_proxy(data_set, Karato, proxy_type="age", verbose = False) #data_set.plot_c_vec(Karato, proxy=proxy_2, cm=cm, nameproxy="age") #npoints = 100 #number of points in the x direction for the data set. #data_set = data.PerfectSamplingCut(npoints, rICB = 1.) #data_set.method = "bt_point" #proxy = geodyn.evaluate_proxy(data_set, Yoshida, proxy_type="vMises_acc", verbose = False) #data_set.plot_c_vec(Yoshida, proxy=proxy, cm=cm, nameproxy="vMises_acc") plt.show()
mit
lsiemens/lsiemens.github.io
theory/fractional_calculus/code/old/FCC2.py
1
1663
""" Ideas about fractional calculus defined on C^2 J^b f(x, a) = f(x, a + b) """ import numpy from matplotlib import pyplot from scipy import special def monomial(x, a, x_0, a_0): return (x - x_0)**(a - a_0)/special.gamma(a - a_0 + 1) def exp(x, a, b): return b**(-a)*numpy.exp(b*x) def projx(f, x, a): n = numpy.searchsorted(numpy.real(a), 0.0) pyplot.plot(x, f[-n, :]) pyplot.show() def proja(f, x, a): n = numpy.searchsorted(numpy.real(x), 0.0) pyplot.plot(a, f[:, -n]) pyplot.show() def plotR(f, vmin=-10, vmax=10): _plot_C3(numpy.real(f), vmin=vmin, vmax=vmax) def plotI(f, vmin=-10, vmax=10): _plot_C3(numpy.imag(f), vmin=vmin, vmax=vmax) def plotM(f, vmax=10): _plot_C3(numpy.abs(f), vmax=vmax) def plotMl(f): _plot_C3(numpy.log(numpy.abs(f))) def _plot_C3(f, vmin=None, vmax=None): pyplot.imshow(f, extent = [x_0, x_1, a_0, a_1], vmin=vmin, vmax=vmax) pyplot.show() x_0, x_1, Nx = -5, 5, 1000 a_0, a_1, Na = -5, 5, 1000 X = numpy.linspace(x_0, x_1, Nx, dtype=numpy.complex) dx = (x_1 - x_0)/(Nx - 1) da = (a_1 - a_0)/(Na - 1) A = numpy.linspace(a_0, a_1, Na, dtype=numpy.complex) domain_x, domain_a = numpy.meshgrid(X, A[::-1]) F = monomial(domain_x, domain_a, 0, -1) G = monomial(domain_x, domain_a, 1, -1) + monomial(domain_x, domain_a, 1, 0) G = -monomial(domain_x, domain_a, 1, -1) + 0.5*monomial(domain_x, domain_a, 0, -3) G = (exp(domain_x, domain_a, 1.0j) + exp(domain_x, domain_a, -1.0j))/2.0 #G = (exp(domain_x, domain_a, 2.0j) - exp(domain_x, domain_a, -2.0j))/2.0 #G = F Gp = numpy.gradient(G) #G = Gp[1] projx(G, X, A) proja(G, X, A) plotR(G) plotI(G) plotM(G) plotMl(G)
mit
phoebe-project/phoebe2-docs
2.1/tutorials/saving_and_loading.py
1
2914
#!/usr/bin/env python # coding: utf-8 # Saving and Loading # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.1,<2.2"') # As always, let's do imports and initialize a logger and a new bundle. See [Building a System](building_a_system.ipynb) for more details. # In[1]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger(clevel='INFO') b = phoebe.default_binary() # Saving a Bundle # ----------------------- # # # In[2]: b['incl@orbit'] = 56.789 # To save the Bundle to a file, we can call the [save](../api/phoebe.parameters.ParameterSet.save.md) method of the Bundle and pass a filename. # In[3]: print b.save('test.phoebe') # We can now inspect the contents of the created file. # # This file is in the JSON-format and is simply a list of dictionaries - where each dictionary represents the attributes of a single Parameter. # # You could edit this file in a text-editor - but do be careful if changing any of the tags. For example: if you want to change the component tag of one of your stars, make sure to change ALL instances of the component tag to match (as well as the hierarchy Parameter). # In[4]: get_ipython().system('head -n 30 test.phoebe') # Loading a Bundle # ---------------------- # To open an existing Bundle from the file we just created, call [Bundle.open](../api/phoebe.frontend.bundle.Bundle.open.md) and pass the filename. # In[5]: b2 = phoebe.Bundle.open('test.phoebe') # Just to prove this worked, we can check to make sure we retained the changed value of inclination. # In[6]: print b2.get_value('incl@orbit') # Support for Other Codes # ------------------------------ # # ### Legacy # # Importing from a PHOEBE Legacy file is as simple as passing the filename to [from_legacy](../api/phoebe.frontend.bundle.Bundle.from_legacy.md): # In[7]: b = phoebe.Bundle.from_legacy('legacy.phoebe') # Exporting to a PHOEBE Legacy file is also possible (although note that some parameters don't translate exactly or are not supported in PHOEBE Legacy), via [b.export_legacy](../api/phoebe.frontend.bundle.Bundle.export_legacy.md). # In[8]: b.export_legacy('legacy_export.phoebe') # For the parameters that could not be directly translated, you should see a warning message (if you have warning messages enabled in your logger). # # We can now look at the beginning of the saved file and see that it matches the PHOEBE Legacy file-format. # In[9]: get_ipython().system('head -n 30 legacy_export.phoebe') # Next # --------- # # Next up: let's learn all about [constraints](constraints.ipynb)
gpl-3.0
idlead/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
b0noI/AIF2
src/test/integration/python/threshold_p_for_first_filter_separator_character.py
3
50964
# data collected by PropertyBasedSettingsTest.experimentWith_threshold_p_for_first_filter_separator_character data = [ {"value": 0.000000, "errors": 55}, {"value": 0.000500, "errors": 55}, {"value": 0.001000, "errors": 55}, {"value": 0.001500, "errors": 54}, {"value": 0.002000, "errors": 54}, {"value": 0.002500, "errors": 54}, {"value": 0.003000, "errors": 53}, {"value": 0.003500, "errors": 53}, {"value": 0.004000, "errors": 53}, {"value": 0.004500, "errors": 53}, {"value": 0.005000, "errors": 53}, {"value": 0.005500, "errors": 53}, {"value": 0.006000, "errors": 53}, {"value": 0.006500, "errors": 53}, {"value": 0.007000, "errors": 53}, {"value": 0.007500, "errors": 53}, {"value": 0.008000, "errors": 53}, {"value": 0.008500, "errors": 53}, {"value": 0.009000, "errors": 53}, {"value": 0.009500, "errors": 53}, {"value": 0.010000, "errors": 53}, {"value": 0.010500, "errors": 53}, {"value": 0.011000, "errors": 53}, {"value": 0.011500, "errors": 53}, {"value": 0.012000, "errors": 53}, {"value": 0.012500, "errors": 53}, {"value": 0.013000, "errors": 53}, {"value": 0.013500, "errors": 53}, {"value": 0.014000, "errors": 53}, {"value": 0.014500, "errors": 53}, {"value": 0.015000, "errors": 53}, {"value": 0.015500, "errors": 53}, {"value": 0.016000, "errors": 53}, {"value": 0.016500, "errors": 53}, {"value": 0.017000, "errors": 53}, {"value": 0.017500, "errors": 53}, {"value": 0.018000, "errors": 53}, {"value": 0.018500, "errors": 53}, {"value": 0.019000, "errors": 53}, {"value": 0.019500, "errors": 53}, {"value": 0.020000, "errors": 53}, {"value": 0.020500, "errors": 53}, {"value": 0.021000, "errors": 53}, {"value": 0.021500, "errors": 53}, {"value": 0.022000, "errors": 53}, {"value": 0.022500, "errors": 53}, {"value": 0.023000, "errors": 53}, {"value": 0.023500, "errors": 53}, {"value": 0.024000, "errors": 53}, {"value": 0.024500, "errors": 53}, {"value": 0.025000, "errors": 53}, {"value": 0.025500, "errors": 53}, {"value": 0.026000, "errors": 53}, {"value": 0.026500, "errors": 53}, {"value": 0.027000, "errors": 53}, {"value": 0.027500, "errors": 53}, {"value": 0.028000, "errors": 53}, {"value": 0.028500, "errors": 53}, {"value": 0.029000, "errors": 53}, {"value": 0.029500, "errors": 53}, {"value": 0.030000, "errors": 53}, {"value": 0.030500, "errors": 53}, {"value": 0.031000, "errors": 53}, {"value": 0.031500, "errors": 53}, {"value": 0.032000, "errors": 53}, {"value": 0.032500, "errors": 53}, {"value": 0.033000, "errors": 53}, {"value": 0.033500, "errors": 53}, {"value": 0.034000, "errors": 53}, {"value": 0.034500, "errors": 53}, {"value": 0.035000, "errors": 53}, {"value": 0.035500, "errors": 53}, {"value": 0.036000, "errors": 53}, {"value": 0.036500, "errors": 53}, {"value": 0.037000, "errors": 53}, {"value": 0.037500, "errors": 53}, {"value": 0.038000, "errors": 53}, {"value": 0.038500, "errors": 53}, {"value": 0.039000, "errors": 53}, {"value": 0.039500, "errors": 53}, {"value": 0.040000, "errors": 53}, {"value": 0.040500, "errors": 53}, {"value": 0.041000, "errors": 53}, {"value": 0.041500, "errors": 53}, {"value": 0.042000, "errors": 53}, {"value": 0.042500, "errors": 53}, {"value": 0.043000, "errors": 53}, {"value": 0.043500, "errors": 53}, {"value": 0.044000, "errors": 53}, {"value": 0.044500, "errors": 53}, {"value": 0.045000, "errors": 53}, {"value": 0.045500, "errors": 53}, {"value": 0.046000, "errors": 53}, {"value": 0.046500, "errors": 53}, {"value": 0.047000, "errors": 53}, {"value": 0.047500, "errors": 53}, {"value": 0.048000, "errors": 53}, {"value": 0.048500, "errors": 53}, {"value": 0.049000, "errors": 53}, {"value": 0.049500, "errors": 53}, {"value": 0.050000, "errors": 53}, {"value": 0.050500, "errors": 53}, {"value": 0.051000, "errors": 53}, {"value": 0.051500, "errors": 53}, {"value": 0.052000, "errors": 53}, {"value": 0.052500, "errors": 53}, {"value": 0.053000, "errors": 53}, {"value": 0.053500, "errors": 53}, {"value": 0.054000, "errors": 53}, {"value": 0.054500, "errors": 53}, {"value": 0.055000, "errors": 53}, {"value": 0.055500, "errors": 53}, {"value": 0.056000, "errors": 53}, {"value": 0.056500, "errors": 53}, {"value": 0.057000, "errors": 53}, {"value": 0.057500, "errors": 53}, {"value": 0.058000, "errors": 53}, {"value": 0.058500, "errors": 53}, {"value": 0.059000, "errors": 53}, {"value": 0.059500, "errors": 53}, {"value": 0.060000, "errors": 53}, {"value": 0.060500, "errors": 53}, {"value": 0.061000, "errors": 53}, {"value": 0.061500, "errors": 53}, {"value": 0.062000, "errors": 53}, {"value": 0.062500, "errors": 53}, {"value": 0.063000, "errors": 53}, {"value": 0.063500, "errors": 53}, {"value": 0.064000, "errors": 53}, {"value": 0.064500, "errors": 53}, {"value": 0.065000, "errors": 53}, {"value": 0.065500, "errors": 53}, {"value": 0.066000, "errors": 53}, {"value": 0.066500, "errors": 53}, {"value": 0.067000, "errors": 53}, {"value": 0.067500, "errors": 53}, {"value": 0.068000, "errors": 53}, {"value": 0.068500, "errors": 53}, {"value": 0.069000, "errors": 53}, {"value": 0.069500, "errors": 53}, {"value": 0.070000, "errors": 53}, {"value": 0.070500, "errors": 53}, {"value": 0.071000, "errors": 53}, {"value": 0.071500, "errors": 53}, {"value": 0.072000, "errors": 53}, {"value": 0.072500, "errors": 53}, {"value": 0.073000, "errors": 53}, {"value": 0.073500, "errors": 53}, {"value": 0.074000, "errors": 53}, {"value": 0.074500, "errors": 53}, {"value": 0.075000, "errors": 53}, {"value": 0.075500, "errors": 53}, {"value": 0.076000, "errors": 53}, {"value": 0.076500, "errors": 53}, {"value": 0.077000, "errors": 53}, {"value": 0.077500, "errors": 53}, {"value": 0.078000, "errors": 53}, {"value": 0.078500, "errors": 53}, {"value": 0.079000, "errors": 53}, {"value": 0.079500, "errors": 53}, {"value": 0.080000, "errors": 53}, {"value": 0.080500, "errors": 53}, {"value": 0.081000, "errors": 53}, {"value": 0.081500, "errors": 53}, {"value": 0.082000, "errors": 53}, {"value": 0.082500, "errors": 53}, {"value": 0.083000, "errors": 53}, {"value": 0.083500, "errors": 53}, {"value": 0.084000, "errors": 53}, {"value": 0.084500, "errors": 53}, {"value": 0.085000, "errors": 53}, {"value": 0.085500, "errors": 53}, {"value": 0.086000, "errors": 53}, {"value": 0.086500, "errors": 53}, {"value": 0.087000, "errors": 53}, {"value": 0.087500, "errors": 53}, {"value": 0.088000, "errors": 53}, {"value": 0.088500, "errors": 53}, {"value": 0.089000, "errors": 53}, {"value": 0.089500, "errors": 53}, {"value": 0.090000, "errors": 55}, {"value": 0.090500, "errors": 55}, {"value": 0.091000, "errors": 55}, {"value": 0.091500, "errors": 55}, {"value": 0.092000, "errors": 55}, {"value": 0.092500, "errors": 55}, {"value": 0.093000, "errors": 55}, {"value": 0.093500, "errors": 55}, {"value": 0.094000, "errors": 55}, {"value": 0.094500, "errors": 55}, {"value": 0.095000, "errors": 55}, {"value": 0.095500, "errors": 55}, {"value": 0.096000, "errors": 55}, {"value": 0.096500, "errors": 55}, {"value": 0.097000, "errors": 55}, {"value": 0.097500, "errors": 55}, {"value": 0.098000, "errors": 54}, {"value": 0.098500, "errors": 54}, {"value": 0.099000, "errors": 54}, {"value": 0.099500, "errors": 54}, {"value": 0.100000, "errors": 54}, {"value": 0.100500, "errors": 54}, {"value": 0.101000, "errors": 54}, {"value": 0.101500, "errors": 54}, {"value": 0.102000, "errors": 54}, {"value": 0.102500, "errors": 54}, {"value": 0.103000, "errors": 54}, {"value": 0.103500, "errors": 54}, {"value": 0.104000, "errors": 54}, {"value": 0.104500, "errors": 54}, {"value": 0.105000, "errors": 54}, {"value": 0.105500, "errors": 54}, {"value": 0.106000, "errors": 54}, {"value": 0.106500, "errors": 54}, {"value": 0.107000, "errors": 54}, {"value": 0.107500, "errors": 54}, {"value": 0.108000, "errors": 54}, {"value": 0.108500, "errors": 54}, {"value": 0.109000, "errors": 54}, {"value": 0.109500, "errors": 54}, {"value": 0.110000, "errors": 54}, {"value": 0.110500, "errors": 54}, {"value": 0.111000, "errors": 54}, {"value": 0.111500, "errors": 54}, {"value": 0.112000, "errors": 54}, {"value": 0.112500, "errors": 54}, {"value": 0.113000, "errors": 54}, {"value": 0.113500, "errors": 57}, {"value": 0.114000, "errors": 57}, {"value": 0.114500, "errors": 57}, {"value": 0.115000, "errors": 57}, {"value": 0.115500, "errors": 60}, {"value": 0.116000, "errors": 63}, {"value": 0.116500, "errors": 63}, {"value": 0.117000, "errors": 65}, {"value": 0.117500, "errors": 67}, {"value": 0.118000, "errors": 67}, {"value": 0.118500, "errors": 67}, {"value": 0.119000, "errors": 69}, {"value": 0.119500, "errors": 69}, {"value": 0.120000, "errors": 73}, {"value": 0.120500, "errors": 75}, {"value": 0.121000, "errors": 77}, {"value": 0.121500, "errors": 81}, {"value": 0.122000, "errors": 83}, {"value": 0.122500, "errors": 87}, {"value": 0.123000, "errors": 89}, {"value": 0.123500, "errors": 89}, {"value": 0.124000, "errors": 92}, {"value": 0.124500, "errors": 92}, {"value": 0.125000, "errors": 92}, {"value": 0.125500, "errors": 95}, {"value": 0.126000, "errors": 95}, {"value": 0.126500, "errors": 98}, {"value": 0.127000, "errors": 98}, {"value": 0.127500, "errors": 101}, {"value": 0.128000, "errors": 101}, {"value": 0.128500, "errors": 101}, {"value": 0.129000, "errors": 103}, {"value": 0.129500, "errors": 103}, {"value": 0.130000, "errors": 103}, {"value": 0.130500, "errors": 103}, {"value": 0.131000, "errors": 105}, {"value": 0.131500, "errors": 107}, {"value": 0.132000, "errors": 107}, {"value": 0.132500, "errors": 109}, {"value": 0.133000, "errors": 109}, {"value": 0.133500, "errors": 109}, {"value": 0.134000, "errors": 109}, {"value": 0.134500, "errors": 109}, {"value": 0.135000, "errors": 112}, {"value": 0.135500, "errors": 118}, {"value": 0.136000, "errors": 119}, {"value": 0.136500, "errors": 122}, {"value": 0.137000, "errors": 122}, {"value": 0.137500, "errors": 125}, {"value": 0.138000, "errors": 127}, {"value": 0.138500, "errors": 127}, {"value": 0.139000, "errors": 132}, {"value": 0.139500, "errors": 138}, {"value": 0.140000, "errors": 138}, {"value": 0.140500, "errors": 140}, {"value": 0.141000, "errors": 140}, {"value": 0.141500, "errors": 140}, {"value": 0.142000, "errors": 144}, {"value": 0.142500, "errors": 144}, {"value": 0.143000, "errors": 147}, {"value": 0.143500, "errors": 153}, {"value": 0.144000, "errors": 155}, {"value": 0.144500, "errors": 154}, {"value": 0.145000, "errors": 158}, {"value": 0.145500, "errors": 171}, {"value": 0.146000, "errors": 177}, {"value": 0.146500, "errors": 180}, {"value": 0.147000, "errors": 186}, {"value": 0.147500, "errors": 188}, {"value": 0.148000, "errors": 194}, {"value": 0.148500, "errors": 196}, {"value": 0.149000, "errors": 208}, {"value": 0.149500, "errors": 209}, {"value": 0.150000, "errors": 215}, {"value": 0.150500, "errors": 225}, {"value": 0.151000, "errors": 233}, {"value": 0.151500, "errors": 254}, {"value": 0.152000, "errors": 261}, {"value": 0.152500, "errors": 270}, {"value": 0.153000, "errors": 279}, {"value": 0.153500, "errors": 284}, {"value": 0.154000, "errors": 294}, {"value": 0.154500, "errors": 297}, {"value": 0.155000, "errors": 301}, {"value": 0.155500, "errors": 315}, {"value": 0.156000, "errors": 324}, {"value": 0.156500, "errors": 326}, {"value": 0.157000, "errors": 334}, {"value": 0.157500, "errors": 341}, {"value": 0.158000, "errors": 346}, {"value": 0.158500, "errors": 354}, {"value": 0.159000, "errors": 365}, {"value": 0.159500, "errors": 371}, {"value": 0.160000, "errors": 388}, {"value": 0.160500, "errors": 400}, {"value": 0.161000, "errors": 412}, {"value": 0.161500, "errors": 414}, {"value": 0.162000, "errors": 419}, {"value": 0.162500, "errors": 428}, {"value": 0.163000, "errors": 429}, {"value": 0.163500, "errors": 434}, {"value": 0.164000, "errors": 438}, {"value": 0.164500, "errors": 449}, {"value": 0.165000, "errors": 452}, {"value": 0.165500, "errors": 462}, {"value": 0.166000, "errors": 475}, {"value": 0.166500, "errors": 478}, {"value": 0.167000, "errors": 478}, {"value": 0.167500, "errors": 478}, {"value": 0.168000, "errors": 488}, {"value": 0.168500, "errors": 492}, {"value": 0.169000, "errors": 498}, {"value": 0.169500, "errors": 504}, {"value": 0.170000, "errors": 509}, {"value": 0.170500, "errors": 521}, {"value": 0.171000, "errors": 525}, {"value": 0.171500, "errors": 530}, {"value": 0.172000, "errors": 534}, {"value": 0.172500, "errors": 549}, {"value": 0.173000, "errors": 559}, {"value": 0.173500, "errors": 565}, {"value": 0.174000, "errors": 570}, {"value": 0.174500, "errors": 575}, {"value": 0.175000, "errors": 579}, {"value": 0.175500, "errors": 587}, {"value": 0.176000, "errors": 588}, {"value": 0.176500, "errors": 594}, {"value": 0.177000, "errors": 600}, {"value": 0.177500, "errors": 606}, {"value": 0.178000, "errors": 623}, {"value": 0.178500, "errors": 627}, {"value": 0.179000, "errors": 637}, {"value": 0.179500, "errors": 643}, {"value": 0.180000, "errors": 643}, {"value": 0.180500, "errors": 648}, {"value": 0.181000, "errors": 650}, {"value": 0.181500, "errors": 651}, {"value": 0.182000, "errors": 656}, {"value": 0.182500, "errors": 665}, {"value": 0.183000, "errors": 666}, {"value": 0.183500, "errors": 669}, {"value": 0.184000, "errors": 673}, {"value": 0.184500, "errors": 675}, {"value": 0.185000, "errors": 677}, {"value": 0.185500, "errors": 679}, {"value": 0.186000, "errors": 680}, {"value": 0.186500, "errors": 686}, {"value": 0.187000, "errors": 686}, {"value": 0.187500, "errors": 688}, {"value": 0.188000, "errors": 691}, {"value": 0.188500, "errors": 693}, {"value": 0.189000, "errors": 701}, {"value": 0.189500, "errors": 701}, {"value": 0.190000, "errors": 704}, {"value": 0.190500, "errors": 704}, {"value": 0.191000, "errors": 707}, {"value": 0.191500, "errors": 707}, {"value": 0.192000, "errors": 709}, {"value": 0.192500, "errors": 711}, {"value": 0.193000, "errors": 717}, {"value": 0.193500, "errors": 717}, {"value": 0.194000, "errors": 719}, {"value": 0.194500, "errors": 720}, {"value": 0.195000, "errors": 721}, {"value": 0.195500, "errors": 721}, {"value": 0.196000, "errors": 721}, {"value": 0.196500, "errors": 721}, {"value": 0.197000, "errors": 721}, {"value": 0.197500, "errors": 721}, {"value": 0.198000, "errors": 724}, {"value": 0.198500, "errors": 724}, {"value": 0.199000, "errors": 724}, {"value": 0.199500, "errors": 726}, {"value": 0.200000, "errors": 726}, {"value": 0.200500, "errors": 726}, {"value": 0.201000, "errors": 730}, {"value": 0.201500, "errors": 735}, {"value": 0.202000, "errors": 735}, {"value": 0.202500, "errors": 735}, {"value": 0.203000, "errors": 735}, {"value": 0.203500, "errors": 736}, {"value": 0.204000, "errors": 736}, {"value": 0.204500, "errors": 736}, {"value": 0.205000, "errors": 736}, {"value": 0.205500, "errors": 736}, {"value": 0.206000, "errors": 736}, {"value": 0.206500, "errors": 738}, {"value": 0.207000, "errors": 738}, {"value": 0.207500, "errors": 738}, {"value": 0.208000, "errors": 738}, {"value": 0.208500, "errors": 738}, {"value": 0.209000, "errors": 739}, {"value": 0.209500, "errors": 740}, {"value": 0.210000, "errors": 743}, {"value": 0.210500, "errors": 743}, {"value": 0.211000, "errors": 745}, {"value": 0.211500, "errors": 745}, {"value": 0.212000, "errors": 745}, {"value": 0.212500, "errors": 747}, {"value": 0.213000, "errors": 747}, {"value": 0.213500, "errors": 747}, {"value": 0.214000, "errors": 747}, {"value": 0.214500, "errors": 747}, {"value": 0.215000, "errors": 747}, {"value": 0.215500, "errors": 747}, {"value": 0.216000, "errors": 747}, {"value": 0.216500, "errors": 747}, {"value": 0.217000, "errors": 747}, {"value": 0.217500, "errors": 749}, {"value": 0.218000, "errors": 749}, {"value": 0.218500, "errors": 749}, {"value": 0.219000, "errors": 749}, {"value": 0.219500, "errors": 749}, {"value": 0.220000, "errors": 750}, {"value": 0.220500, "errors": 750}, {"value": 0.221000, "errors": 750}, {"value": 0.221500, "errors": 750}, {"value": 0.222000, "errors": 750}, {"value": 0.222500, "errors": 750}, {"value": 0.223000, "errors": 750}, {"value": 0.223500, "errors": 750}, {"value": 0.224000, "errors": 750}, {"value": 0.224500, "errors": 750}, {"value": 0.225000, "errors": 750}, {"value": 0.225500, "errors": 750}, {"value": 0.226000, "errors": 750}, {"value": 0.226500, "errors": 750}, {"value": 0.227000, "errors": 750}, {"value": 0.227500, "errors": 750}, {"value": 0.228000, "errors": 750}, {"value": 0.228500, "errors": 750}, {"value": 0.229000, "errors": 750}, {"value": 0.229500, "errors": 750}, {"value": 0.230000, "errors": 750}, {"value": 0.230500, "errors": 750}, {"value": 0.231000, "errors": 750}, {"value": 0.231500, "errors": 750}, {"value": 0.232000, "errors": 750}, {"value": 0.232500, "errors": 750}, {"value": 0.233000, "errors": 750}, {"value": 0.233500, "errors": 750}, {"value": 0.234000, "errors": 750}, {"value": 0.234500, "errors": 751}, {"value": 0.235000, "errors": 751}, {"value": 0.235500, "errors": 751}, {"value": 0.236000, "errors": 751}, {"value": 0.236500, "errors": 751}, {"value": 0.237000, "errors": 751}, {"value": 0.237500, "errors": 751}, {"value": 0.238000, "errors": 751}, {"value": 0.238500, "errors": 752}, {"value": 0.239000, "errors": 752}, {"value": 0.239500, "errors": 752}, {"value": 0.240000, "errors": 754}, {"value": 0.240500, "errors": 754}, {"value": 0.241000, "errors": 754}, {"value": 0.241500, "errors": 754}, {"value": 0.242000, "errors": 754}, {"value": 0.242500, "errors": 754}, {"value": 0.243000, "errors": 754}, {"value": 0.243500, "errors": 754}, {"value": 0.244000, "errors": 754}, {"value": 0.244500, "errors": 754}, {"value": 0.245000, "errors": 754}, {"value": 0.245500, "errors": 754}, {"value": 0.246000, "errors": 754}, {"value": 0.246500, "errors": 754}, {"value": 0.247000, "errors": 754}, {"value": 0.247500, "errors": 754}, {"value": 0.248000, "errors": 754}, {"value": 0.248500, "errors": 754}, {"value": 0.249000, "errors": 754}, {"value": 0.249500, "errors": 754}, {"value": 0.250000, "errors": 754}, {"value": 0.250500, "errors": 754}, {"value": 0.251000, "errors": 754}, {"value": 0.251500, "errors": 754}, {"value": 0.252000, "errors": 754}, {"value": 0.252500, "errors": 754}, {"value": 0.253000, "errors": 754}, {"value": 0.253500, "errors": 754}, {"value": 0.254000, "errors": 754}, {"value": 0.254500, "errors": 754}, {"value": 0.255000, "errors": 754}, {"value": 0.255500, "errors": 754}, {"value": 0.256000, "errors": 754}, {"value": 0.256500, "errors": 754}, {"value": 0.257000, "errors": 754}, {"value": 0.257500, "errors": 754}, {"value": 0.258000, "errors": 754}, {"value": 0.258500, "errors": 754}, {"value": 0.259000, "errors": 754}, {"value": 0.259500, "errors": 754}, {"value": 0.260000, "errors": 754}, {"value": 0.260500, "errors": 754}, {"value": 0.261000, "errors": 754}, {"value": 0.261500, "errors": 754}, {"value": 0.262000, "errors": 754}, {"value": 0.262500, "errors": 754}, {"value": 0.263000, "errors": 754}, {"value": 0.263500, "errors": 754}, {"value": 0.264000, "errors": 754}, {"value": 0.264500, "errors": 754}, {"value": 0.265000, "errors": 754}, {"value": 0.265500, "errors": 754}, {"value": 0.266000, "errors": 754}, {"value": 0.266500, "errors": 754}, {"value": 0.267000, "errors": 754}, {"value": 0.267500, "errors": 754}, {"value": 0.268000, "errors": 754}, {"value": 0.268500, "errors": 754}, {"value": 0.269000, "errors": 754}, {"value": 0.269500, "errors": 754}, {"value": 0.270000, "errors": 754}, {"value": 0.270500, "errors": 754}, {"value": 0.271000, "errors": 754}, {"value": 0.271500, "errors": 754}, {"value": 0.272000, "errors": 754}, {"value": 0.272500, "errors": 754}, {"value": 0.273000, "errors": 754}, {"value": 0.273500, "errors": 754}, {"value": 0.274000, "errors": 754}, {"value": 0.274500, "errors": 754}, {"value": 0.275000, "errors": 754}, {"value": 0.275500, "errors": 754}, {"value": 0.276000, "errors": 754}, {"value": 0.276500, "errors": 754}, {"value": 0.277000, "errors": 754}, {"value": 0.277500, "errors": 754}, {"value": 0.278000, "errors": 754}, {"value": 0.278500, "errors": 754}, {"value": 0.279000, "errors": 754}, {"value": 0.279500, "errors": 754}, {"value": 0.280000, "errors": 754}, {"value": 0.280500, "errors": 754}, {"value": 0.281000, "errors": 754}, {"value": 0.281500, "errors": 754}, {"value": 0.282000, "errors": 754}, {"value": 0.282500, "errors": 754}, {"value": 0.283000, "errors": 753}, {"value": 0.283500, "errors": 753}, {"value": 0.284000, "errors": 753}, {"value": 0.284500, "errors": 753}, {"value": 0.285000, "errors": 753}, {"value": 0.285500, "errors": 753}, {"value": 0.286000, "errors": 753}, {"value": 0.286500, "errors": 753}, {"value": 0.287000, "errors": 753}, {"value": 0.287500, "errors": 753}, {"value": 0.288000, "errors": 753}, {"value": 0.288500, "errors": 753}, {"value": 0.289000, "errors": 753}, {"value": 0.289500, "errors": 753}, {"value": 0.290000, "errors": 753}, {"value": 0.290500, "errors": 753}, {"value": 0.291000, "errors": 753}, {"value": 0.291500, "errors": 753}, {"value": 0.292000, "errors": 753}, {"value": 0.292500, "errors": 753}, {"value": 0.293000, "errors": 753}, {"value": 0.293500, "errors": 753}, {"value": 0.294000, "errors": 753}, {"value": 0.294500, "errors": 753}, {"value": 0.295000, "errors": 753}, {"value": 0.295500, "errors": 753}, {"value": 0.296000, "errors": 753}, {"value": 0.296500, "errors": 753}, {"value": 0.297000, "errors": 753}, {"value": 0.297500, "errors": 753}, {"value": 0.298000, "errors": 753}, {"value": 0.298500, "errors": 753}, {"value": 0.299000, "errors": 753}, {"value": 0.299500, "errors": 753}, {"value": 0.300000, "errors": 753}, {"value": 0.300500, "errors": 753}, {"value": 0.301000, "errors": 753}, {"value": 0.301500, "errors": 753}, {"value": 0.302000, "errors": 753}, {"value": 0.302500, "errors": 753}, {"value": 0.303000, "errors": 753}, {"value": 0.303500, "errors": 753}, {"value": 0.304000, "errors": 753}, {"value": 0.304500, "errors": 753}, {"value": 0.305000, "errors": 753}, {"value": 0.305500, "errors": 753}, {"value": 0.306000, "errors": 753}, {"value": 0.306500, "errors": 752}, {"value": 0.307000, "errors": 752}, {"value": 0.307500, "errors": 752}, {"value": 0.308000, "errors": 752}, {"value": 0.308500, "errors": 752}, {"value": 0.309000, "errors": 752}, {"value": 0.309500, "errors": 752}, {"value": 0.310000, "errors": 752}, {"value": 0.310500, "errors": 752}, {"value": 0.311000, "errors": 752}, {"value": 0.311500, "errors": 752}, {"value": 0.312000, "errors": 752}, {"value": 0.312500, "errors": 752}, {"value": 0.313000, "errors": 752}, {"value": 0.313500, "errors": 752}, {"value": 0.314000, "errors": 752}, {"value": 0.314500, "errors": 752}, {"value": 0.315000, "errors": 752}, {"value": 0.315500, "errors": 752}, {"value": 0.316000, "errors": 752}, {"value": 0.316500, "errors": 752}, {"value": 0.317000, "errors": 752}, {"value": 0.317500, "errors": 752}, {"value": 0.318000, "errors": 752}, {"value": 0.318500, "errors": 752}, {"value": 0.319000, "errors": 752}, {"value": 0.319500, "errors": 752}, {"value": 0.320000, "errors": 752}, {"value": 0.320500, "errors": 752}, {"value": 0.321000, "errors": 752}, {"value": 0.321500, "errors": 752}, {"value": 0.322000, "errors": 752}, {"value": 0.322500, "errors": 752}, {"value": 0.323000, "errors": 752}, {"value": 0.323500, "errors": 752}, {"value": 0.324000, "errors": 752}, {"value": 0.324500, "errors": 752}, {"value": 0.325000, "errors": 752}, {"value": 0.325500, "errors": 752}, {"value": 0.326000, "errors": 752}, {"value": 0.326500, "errors": 752}, {"value": 0.327000, "errors": 752}, {"value": 0.327500, "errors": 752}, {"value": 0.328000, "errors": 752}, {"value": 0.328500, "errors": 752}, {"value": 0.329000, "errors": 752}, {"value": 0.329500, "errors": 752}, {"value": 0.330000, "errors": 752}, {"value": 0.330500, "errors": 752}, {"value": 0.331000, "errors": 752}, {"value": 0.331500, "errors": 752}, {"value": 0.332000, "errors": 752}, {"value": 0.332500, "errors": 752}, {"value": 0.333000, "errors": 752}, {"value": 0.333500, "errors": 752}, {"value": 0.334000, "errors": 752}, {"value": 0.334500, "errors": 752}, {"value": 0.335000, "errors": 752}, {"value": 0.335500, "errors": 752}, {"value": 0.336000, "errors": 752}, {"value": 0.336500, "errors": 752}, {"value": 0.337000, "errors": 752}, {"value": 0.337500, "errors": 752}, {"value": 0.338000, "errors": 752}, {"value": 0.338500, "errors": 752}, {"value": 0.339000, "errors": 752}, {"value": 0.339500, "errors": 752}, {"value": 0.340000, "errors": 752}, {"value": 0.340500, "errors": 752}, {"value": 0.341000, "errors": 752}, {"value": 0.341500, "errors": 752}, {"value": 0.342000, "errors": 752}, {"value": 0.342500, "errors": 752}, {"value": 0.343000, "errors": 751}, {"value": 0.343500, "errors": 751}, {"value": 0.344000, "errors": 751}, {"value": 0.344500, "errors": 751}, {"value": 0.345000, "errors": 751}, {"value": 0.345500, "errors": 751}, {"value": 0.346000, "errors": 751}, {"value": 0.346500, "errors": 751}, {"value": 0.347000, "errors": 751}, {"value": 0.347500, "errors": 751}, {"value": 0.348000, "errors": 751}, {"value": 0.348500, "errors": 751}, {"value": 0.349000, "errors": 751}, {"value": 0.349500, "errors": 751}, {"value": 0.350000, "errors": 751}, {"value": 0.350500, "errors": 751}, {"value": 0.351000, "errors": 751}, {"value": 0.351500, "errors": 751}, {"value": 0.352000, "errors": 751}, {"value": 0.352500, "errors": 751}, {"value": 0.353000, "errors": 751}, {"value": 0.353500, "errors": 751}, {"value": 0.354000, "errors": 751}, {"value": 0.354500, "errors": 751}, {"value": 0.355000, "errors": 751}, {"value": 0.355500, "errors": 751}, {"value": 0.356000, "errors": 751}, {"value": 0.356500, "errors": 751}, {"value": 0.357000, "errors": 751}, {"value": 0.357500, "errors": 751}, {"value": 0.358000, "errors": 751}, {"value": 0.358500, "errors": 751}, {"value": 0.359000, "errors": 751}, {"value": 0.359500, "errors": 751}, {"value": 0.360000, "errors": 751}, {"value": 0.360500, "errors": 751}, {"value": 0.361000, "errors": 751}, {"value": 0.361500, "errors": 751}, {"value": 0.362000, "errors": 751}, {"value": 0.362500, "errors": 751}, {"value": 0.363000, "errors": 751}, {"value": 0.363500, "errors": 751}, {"value": 0.364000, "errors": 751}, {"value": 0.364500, "errors": 751}, {"value": 0.365000, "errors": 751}, {"value": 0.365500, "errors": 751}, {"value": 0.366000, "errors": 751}, {"value": 0.366500, "errors": 751}, {"value": 0.367000, "errors": 751}, {"value": 0.367500, "errors": 751}, {"value": 0.368000, "errors": 751}, {"value": 0.368500, "errors": 751}, {"value": 0.369000, "errors": 751}, {"value": 0.369500, "errors": 751}, {"value": 0.370000, "errors": 751}, {"value": 0.370500, "errors": 751}, {"value": 0.371000, "errors": 751}, {"value": 0.371500, "errors": 751}, {"value": 0.372000, "errors": 751}, {"value": 0.372500, "errors": 751}, {"value": 0.373000, "errors": 751}, {"value": 0.373500, "errors": 751}, {"value": 0.374000, "errors": 751}, {"value": 0.374500, "errors": 751}, {"value": 0.375000, "errors": 751}, {"value": 0.375500, "errors": 751}, {"value": 0.376000, "errors": 751}, {"value": 0.376500, "errors": 751}, {"value": 0.377000, "errors": 751}, {"value": 0.377500, "errors": 751}, {"value": 0.378000, "errors": 751}, {"value": 0.378500, "errors": 751}, {"value": 0.379000, "errors": 751}, {"value": 0.379500, "errors": 751}, {"value": 0.380000, "errors": 751}, {"value": 0.380500, "errors": 751}, {"value": 0.381000, "errors": 751}, {"value": 0.381500, "errors": 751}, {"value": 0.382000, "errors": 751}, {"value": 0.382500, "errors": 751}, {"value": 0.383000, "errors": 751}, {"value": 0.383500, "errors": 751}, {"value": 0.384000, "errors": 751}, {"value": 0.384500, "errors": 751}, {"value": 0.385000, "errors": 751}, {"value": 0.385500, "errors": 751}, {"value": 0.386000, "errors": 751}, {"value": 0.386500, "errors": 751}, {"value": 0.387000, "errors": 751}, {"value": 0.387500, "errors": 751}, {"value": 0.388000, "errors": 751}, {"value": 0.388500, "errors": 751}, {"value": 0.389000, "errors": 751}, {"value": 0.389500, "errors": 751}, {"value": 0.390000, "errors": 751}, {"value": 0.390500, "errors": 751}, {"value": 0.391000, "errors": 751}, {"value": 0.391500, "errors": 751}, {"value": 0.392000, "errors": 751}, {"value": 0.392500, "errors": 751}, {"value": 0.393000, "errors": 751}, {"value": 0.393500, "errors": 751}, {"value": 0.394000, "errors": 751}, {"value": 0.394500, "errors": 751}, {"value": 0.395000, "errors": 751}, {"value": 0.395500, "errors": 751}, {"value": 0.396000, "errors": 751}, {"value": 0.396500, "errors": 751}, {"value": 0.397000, "errors": 751}, {"value": 0.397500, "errors": 751}, {"value": 0.398000, "errors": 751}, {"value": 0.398500, "errors": 751}, {"value": 0.399000, "errors": 751}, {"value": 0.399500, "errors": 751}, {"value": 0.400000, "errors": 751}, {"value": 0.400500, "errors": 751}, {"value": 0.401000, "errors": 751}, {"value": 0.401500, "errors": 751}, {"value": 0.402000, "errors": 751}, {"value": 0.402500, "errors": 751}, {"value": 0.403000, "errors": 751}, {"value": 0.403500, "errors": 751}, {"value": 0.404000, "errors": 751}, {"value": 0.404500, "errors": 751}, {"value": 0.405000, "errors": 751}, {"value": 0.405500, "errors": 751}, {"value": 0.406000, "errors": 751}, {"value": 0.406500, "errors": 751}, {"value": 0.407000, "errors": 751}, {"value": 0.407500, "errors": 751}, {"value": 0.408000, "errors": 751}, {"value": 0.408500, "errors": 751}, {"value": 0.409000, "errors": 751}, {"value": 0.409500, "errors": 751}, {"value": 0.410000, "errors": 751}, {"value": 0.410500, "errors": 751}, {"value": 0.411000, "errors": 751}, {"value": 0.411500, "errors": 751}, {"value": 0.412000, "errors": 751}, {"value": 0.412500, "errors": 751}, {"value": 0.413000, "errors": 751}, {"value": 0.413500, "errors": 751}, {"value": 0.414000, "errors": 751}, {"value": 0.414500, "errors": 751}, {"value": 0.415000, "errors": 751}, {"value": 0.415500, "errors": 751}, {"value": 0.416000, "errors": 751}, {"value": 0.416500, "errors": 751}, {"value": 0.417000, "errors": 751}, {"value": 0.417500, "errors": 751}, {"value": 0.418000, "errors": 751}, {"value": 0.418500, "errors": 751}, {"value": 0.419000, "errors": 751}, {"value": 0.419500, "errors": 751}, {"value": 0.420000, "errors": 751}, {"value": 0.420500, "errors": 751}, {"value": 0.421000, "errors": 751}, {"value": 0.421500, "errors": 751}, {"value": 0.422000, "errors": 751}, {"value": 0.422500, "errors": 751}, {"value": 0.423000, "errors": 751}, {"value": 0.423500, "errors": 751}, {"value": 0.424000, "errors": 751}, {"value": 0.424500, "errors": 751}, {"value": 0.425000, "errors": 751}, {"value": 0.425500, "errors": 751}, {"value": 0.426000, "errors": 751}, {"value": 0.426500, "errors": 751}, {"value": 0.427000, "errors": 751}, {"value": 0.427500, "errors": 751}, {"value": 0.428000, "errors": 751}, {"value": 0.428500, "errors": 751}, {"value": 0.429000, "errors": 751}, {"value": 0.429500, "errors": 751}, {"value": 0.430000, "errors": 751}, {"value": 0.430500, "errors": 751}, {"value": 0.431000, "errors": 751}, {"value": 0.431500, "errors": 751}, {"value": 0.432000, "errors": 751}, {"value": 0.432500, "errors": 751}, {"value": 0.433000, "errors": 751}, {"value": 0.433500, "errors": 751}, {"value": 0.434000, "errors": 751}, {"value": 0.434500, "errors": 751}, {"value": 0.435000, "errors": 751}, {"value": 0.435500, "errors": 751}, {"value": 0.436000, "errors": 751}, {"value": 0.436500, "errors": 751}, {"value": 0.437000, "errors": 751}, {"value": 0.437500, "errors": 751}, {"value": 0.438000, "errors": 751}, {"value": 0.438500, "errors": 751}, {"value": 0.439000, "errors": 751}, {"value": 0.439500, "errors": 751}, {"value": 0.440000, "errors": 751}, {"value": 0.440500, "errors": 751}, {"value": 0.441000, "errors": 751}, {"value": 0.441500, "errors": 751}, {"value": 0.442000, "errors": 751}, {"value": 0.442500, "errors": 751}, {"value": 0.443000, "errors": 751}, {"value": 0.443500, "errors": 751}, {"value": 0.444000, "errors": 751}, {"value": 0.444500, "errors": 751}, {"value": 0.445000, "errors": 751}, {"value": 0.445500, "errors": 751}, {"value": 0.446000, "errors": 751}, {"value": 0.446500, "errors": 751}, {"value": 0.447000, "errors": 751}, {"value": 0.447500, "errors": 751}, {"value": 0.448000, "errors": 751}, {"value": 0.448500, "errors": 751}, {"value": 0.449000, "errors": 751}, {"value": 0.449500, "errors": 751}, {"value": 0.450000, "errors": 751}, {"value": 0.450500, "errors": 751}, {"value": 0.451000, "errors": 751}, {"value": 0.451500, "errors": 751}, {"value": 0.452000, "errors": 751}, {"value": 0.452500, "errors": 751}, {"value": 0.453000, "errors": 751}, {"value": 0.453500, "errors": 751}, {"value": 0.454000, "errors": 751}, {"value": 0.454500, "errors": 751}, {"value": 0.455000, "errors": 751}, {"value": 0.455500, "errors": 751}, {"value": 0.456000, "errors": 751}, {"value": 0.456500, "errors": 751}, {"value": 0.457000, "errors": 751}, {"value": 0.457500, "errors": 751}, {"value": 0.458000, "errors": 751}, {"value": 0.458500, "errors": 751}, {"value": 0.459000, "errors": 750}, {"value": 0.459500, "errors": 750}, {"value": 0.460000, "errors": 750}, {"value": 0.460500, "errors": 750}, {"value": 0.461000, "errors": 750}, {"value": 0.461500, "errors": 750}, {"value": 0.462000, "errors": 750}, {"value": 0.462500, "errors": 750}, {"value": 0.463000, "errors": 750}, {"value": 0.463500, "errors": 750}, {"value": 0.464000, "errors": 750}, {"value": 0.464500, "errors": 750}, {"value": 0.465000, "errors": 750}, {"value": 0.465500, "errors": 750}, {"value": 0.466000, "errors": 750}, {"value": 0.466500, "errors": 750}, {"value": 0.467000, "errors": 750}, {"value": 0.467500, "errors": 750}, {"value": 0.468000, "errors": 750}, {"value": 0.468500, "errors": 750}, {"value": 0.469000, "errors": 750}, {"value": 0.469500, "errors": 750}, {"value": 0.470000, "errors": 750}, {"value": 0.470500, "errors": 750}, {"value": 0.471000, "errors": 750}, {"value": 0.471500, "errors": 750}, {"value": 0.472000, "errors": 750}, {"value": 0.472500, "errors": 750}, {"value": 0.473000, "errors": 750}, {"value": 0.473500, "errors": 750}, {"value": 0.474000, "errors": 750}, {"value": 0.474500, "errors": 750}, {"value": 0.475000, "errors": 750}, {"value": 0.475500, "errors": 750}, {"value": 0.476000, "errors": 750}, {"value": 0.476500, "errors": 750}, {"value": 0.477000, "errors": 750}, {"value": 0.477500, "errors": 750}, {"value": 0.478000, "errors": 750}, {"value": 0.478500, "errors": 750}, {"value": 0.479000, "errors": 750}, {"value": 0.479500, "errors": 749}, {"value": 0.480000, "errors": 749}, {"value": 0.480500, "errors": 749}, {"value": 0.481000, "errors": 749}, {"value": 0.481500, "errors": 749}, {"value": 0.482000, "errors": 749}, {"value": 0.482500, "errors": 749}, {"value": 0.483000, "errors": 749}, {"value": 0.483500, "errors": 749}, {"value": 0.484000, "errors": 749}, {"value": 0.484500, "errors": 749}, {"value": 0.485000, "errors": 749}, {"value": 0.485500, "errors": 749}, {"value": 0.486000, "errors": 749}, {"value": 0.486500, "errors": 749}, {"value": 0.487000, "errors": 749}, {"value": 0.487500, "errors": 749}, {"value": 0.488000, "errors": 749}, {"value": 0.488500, "errors": 749}, {"value": 0.489000, "errors": 749}, {"value": 0.489500, "errors": 749}, {"value": 0.490000, "errors": 749}, {"value": 0.490500, "errors": 749}, {"value": 0.491000, "errors": 749}, {"value": 0.491500, "errors": 749}, {"value": 0.492000, "errors": 749}, {"value": 0.492500, "errors": 749}, {"value": 0.493000, "errors": 749}, {"value": 0.493500, "errors": 749}, {"value": 0.494000, "errors": 749}, {"value": 0.494500, "errors": 749}, {"value": 0.495000, "errors": 749}, {"value": 0.495500, "errors": 749}, {"value": 0.496000, "errors": 749}, {"value": 0.496500, "errors": 749}, {"value": 0.497000, "errors": 749}, {"value": 0.497500, "errors": 749}, {"value": 0.498000, "errors": 749}, {"value": 0.498500, "errors": 749}, {"value": 0.499000, "errors": 749}, {"value": 0.499500, "errors": 749}, {"value": 0.500000, "errors": 749}, {"value": 0.500500, "errors": 749}, {"value": 0.501000, "errors": 749}, {"value": 0.501500, "errors": 749}, {"value": 0.502000, "errors": 749}, {"value": 0.502500, "errors": 749}, {"value": 0.503000, "errors": 749}, {"value": 0.503500, "errors": 749}, {"value": 0.504000, "errors": 749}, {"value": 0.504500, "errors": 749}, {"value": 0.505000, "errors": 749}, {"value": 0.505500, "errors": 749}, {"value": 0.506000, "errors": 749}, {"value": 0.506500, "errors": 749}, {"value": 0.507000, "errors": 749}, {"value": 0.507500, "errors": 749}, {"value": 0.508000, "errors": 749}, {"value": 0.508500, "errors": 749}, {"value": 0.509000, "errors": 749}, {"value": 0.509500, "errors": 749}, {"value": 0.510000, "errors": 749}, {"value": 0.510500, "errors": 749}, {"value": 0.511000, "errors": 749}, {"value": 0.511500, "errors": 749}, {"value": 0.512000, "errors": 749}, {"value": 0.512500, "errors": 749}, {"value": 0.513000, "errors": 749}, {"value": 0.513500, "errors": 749}, {"value": 0.514000, "errors": 749}, {"value": 0.514500, "errors": 749}, {"value": 0.515000, "errors": 749}, {"value": 0.515500, "errors": 749}, {"value": 0.516000, "errors": 749}, {"value": 0.516500, "errors": 749}, {"value": 0.517000, "errors": 749}, {"value": 0.517500, "errors": 749}, {"value": 0.518000, "errors": 749}, {"value": 0.518500, "errors": 749}, {"value": 0.519000, "errors": 749}, {"value": 0.519500, "errors": 749}, {"value": 0.520000, "errors": 749}, {"value": 0.520500, "errors": 749}, {"value": 0.521000, "errors": 749}, {"value": 0.521500, "errors": 749}, {"value": 0.522000, "errors": 749}, {"value": 0.522500, "errors": 749}, {"value": 0.523000, "errors": 749}, {"value": 0.523500, "errors": 749}, {"value": 0.524000, "errors": 749}, {"value": 0.524500, "errors": 749}, {"value": 0.525000, "errors": 749}, {"value": 0.525500, "errors": 749}, {"value": 0.526000, "errors": 749}, {"value": 0.526500, "errors": 749}, {"value": 0.527000, "errors": 749}, {"value": 0.527500, "errors": 749}, {"value": 0.528000, "errors": 749}, {"value": 0.528500, "errors": 749}, {"value": 0.529000, "errors": 749}, {"value": 0.529500, "errors": 749}, {"value": 0.530000, "errors": 749}, {"value": 0.530500, "errors": 749}, {"value": 0.531000, "errors": 749}, {"value": 0.531500, "errors": 749}, {"value": 0.532000, "errors": 749}, {"value": 0.532500, "errors": 749}, {"value": 0.533000, "errors": 749}, {"value": 0.533500, "errors": 749}, {"value": 0.534000, "errors": 749}, {"value": 0.534500, "errors": 749}, {"value": 0.535000, "errors": 749}, {"value": 0.535500, "errors": 749}, {"value": 0.536000, "errors": 749}, {"value": 0.536500, "errors": 749}, {"value": 0.537000, "errors": 749}, {"value": 0.537500, "errors": 749}, {"value": 0.538000, "errors": 748}, {"value": 0.538500, "errors": 748}, {"value": 0.539000, "errors": 748}, {"value": 0.539500, "errors": 748}, {"value": 0.540000, "errors": 748}, {"value": 0.540500, "errors": 748}, {"value": 0.541000, "errors": 748}, {"value": 0.541500, "errors": 748}, {"value": 0.542000, "errors": 748}, {"value": 0.542500, "errors": 748}, {"value": 0.543000, "errors": 748}, {"value": 0.543500, "errors": 748}, {"value": 0.544000, "errors": 748}, {"value": 0.544500, "errors": 748}, {"value": 0.545000, "errors": 748}, {"value": 0.545500, "errors": 748}, {"value": 0.546000, "errors": 748}, {"value": 0.546500, "errors": 748}, {"value": 0.547000, "errors": 748}, {"value": 0.547500, "errors": 748}, {"value": 0.548000, "errors": 748}, {"value": 0.548500, "errors": 748}, {"value": 0.549000, "errors": 748}, {"value": 0.549500, "errors": 748}, {"value": 0.550000, "errors": 748}, {"value": 0.550500, "errors": 748}, {"value": 0.551000, "errors": 748}, {"value": 0.551500, "errors": 748}, {"value": 0.552000, "errors": 748}, {"value": 0.552500, "errors": 748}, {"value": 0.553000, "errors": 748}, {"value": 0.553500, "errors": 748}, {"value": 0.554000, "errors": 748}, {"value": 0.554500, "errors": 748}, {"value": 0.555000, "errors": 748}, {"value": 0.555500, "errors": 748}, {"value": 0.556000, "errors": 748}, {"value": 0.556500, "errors": 748}, {"value": 0.557000, "errors": 748}, {"value": 0.557500, "errors": 748}, {"value": 0.558000, "errors": 748}, {"value": 0.558500, "errors": 748}, {"value": 0.559000, "errors": 748}, {"value": 0.559500, "errors": 748}, {"value": 0.560000, "errors": 748}, {"value": 0.560500, "errors": 748}, {"value": 0.561000, "errors": 748}, {"value": 0.561500, "errors": 748}, {"value": 0.562000, "errors": 748}, {"value": 0.562500, "errors": 748}, {"value": 0.563000, "errors": 748}, {"value": 0.563500, "errors": 748}, {"value": 0.564000, "errors": 748}, {"value": 0.564500, "errors": 748}, {"value": 0.565000, "errors": 748}, {"value": 0.565500, "errors": 748}, {"value": 0.566000, "errors": 748}, {"value": 0.566500, "errors": 748}, {"value": 0.567000, "errors": 748}, {"value": 0.567500, "errors": 748}, {"value": 0.568000, "errors": 748}, {"value": 0.568500, "errors": 748}, {"value": 0.569000, "errors": 748}, {"value": 0.569500, "errors": 748}, {"value": 0.570000, "errors": 748}, {"value": 0.570500, "errors": 748}, {"value": 0.571000, "errors": 748}, {"value": 0.571500, "errors": 748}, {"value": 0.572000, "errors": 747}, {"value": 0.572500, "errors": 747}, {"value": 0.573000, "errors": 747}, {"value": 0.573500, "errors": 747}, {"value": 0.574000, "errors": 747}, {"value": 0.574500, "errors": 747}, {"value": 0.575000, "errors": 747}, {"value": 0.575500, "errors": 747}, {"value": 0.576000, "errors": 747}, {"value": 0.576500, "errors": 747}, {"value": 0.577000, "errors": 747}, {"value": 0.577500, "errors": 747}, {"value": 0.578000, "errors": 747}, {"value": 0.578500, "errors": 747}, {"value": 0.579000, "errors": 747}, {"value": 0.579500, "errors": 747}, {"value": 0.580000, "errors": 747}, {"value": 0.580500, "errors": 747}, {"value": 0.581000, "errors": 747}, {"value": 0.581500, "errors": 747}, {"value": 0.582000, "errors": 747}, {"value": 0.582500, "errors": 747}, {"value": 0.583000, "errors": 747}, {"value": 0.583500, "errors": 747}, {"value": 0.584000, "errors": 747}, {"value": 0.584500, "errors": 747}, {"value": 0.585000, "errors": 747}, {"value": 0.585500, "errors": 747}, {"value": 0.586000, "errors": 747}, {"value": 0.586500, "errors": 747}, {"value": 0.587000, "errors": 747}, {"value": 0.587500, "errors": 747}, {"value": 0.588000, "errors": 747}, {"value": 0.588500, "errors": 747}, {"value": 0.589000, "errors": 747}, {"value": 0.589500, "errors": 747}, {"value": 0.590000, "errors": 747}, {"value": 0.590500, "errors": 747}, {"value": 0.591000, "errors": 747}, {"value": 0.591500, "errors": 747}, {"value": 0.592000, "errors": 747}, {"value": 0.592500, "errors": 747}, {"value": 0.593000, "errors": 747}, {"value": 0.593500, "errors": 747}, {"value": 0.594000, "errors": 747}, {"value": 0.594500, "errors": 747}, {"value": 0.595000, "errors": 747}, {"value": 0.595500, "errors": 747}, {"value": 0.596000, "errors": 747}, {"value": 0.596500, "errors": 747}, {"value": 0.597000, "errors": 747}, {"value": 0.597500, "errors": 747}, {"value": 0.598000, "errors": 747}, {"value": 0.598500, "errors": 747}, {"value": 0.599000, "errors": 747}, {"value": 0.599500, "errors": 747}, {"value": 0.600000, "errors": 747}, {"value": 0.600500, "errors": 747}, {"value": 0.601000, "errors": 747}, {"value": 0.601500, "errors": 747}, {"value": 0.602000, "errors": 747}, {"value": 0.602500, "errors": 747}, {"value": 0.603000, "errors": 747}, {"value": 0.603500, "errors": 747}, {"value": 0.604000, "errors": 747}, {"value": 0.604500, "errors": 747}, {"value": 0.605000, "errors": 747}, {"value": 0.605500, "errors": 747}, {"value": 0.606000, "errors": 747}, {"value": 0.606500, "errors": 747}, {"value": 0.607000, "errors": 747}, {"value": 0.607500, "errors": 747}, {"value": 0.608000, "errors": 747}, {"value": 0.608500, "errors": 747}, {"value": 0.609000, "errors": 747}, {"value": 0.609500, "errors": 747}, {"value": 0.610000, "errors": 747}, {"value": 0.610500, "errors": 747}, {"value": 0.611000, "errors": 747}, {"value": 0.611500, "errors": 747}, {"value": 0.612000, "errors": 747}, {"value": 0.612500, "errors": 747}, {"value": 0.613000, "errors": 747}, {"value": 0.613500, "errors": 747}, {"value": 0.614000, "errors": 747}, {"value": 0.614500, "errors": 747}, {"value": 0.615000, "errors": 747}, {"value": 0.615500, "errors": 747}, {"value": 0.616000, "errors": 747}, {"value": 0.616500, "errors": 747}, {"value": 0.617000, "errors": 747}, {"value": 0.617500, "errors": 747}, {"value": 0.618000, "errors": 747}, {"value": 0.618500, "errors": 747}, {"value": 0.619000, "errors": 747}, {"value": 0.619500, "errors": 747}, {"value": 0.620000, "errors": 747}, {"value": 0.620500, "errors": 747}, {"value": 0.621000, "errors": 747}, {"value": 0.621500, "errors": 747}, {"value": 0.622000, "errors": 747}, {"value": 0.622500, "errors": 747}, {"value": 0.623000, "errors": 747}, {"value": 0.623500, "errors": 747}, {"value": 0.624000, "errors": 747}, {"value": 0.624500, "errors": 747}, {"value": 0.625000, "errors": 747}, {"value": 0.625500, "errors": 747}, {"value": 0.626000, "errors": 747}, {"value": 0.626500, "errors": 747}, {"value": 0.627000, "errors": 747}, {"value": 0.627500, "errors": 747}, {"value": 0.628000, "errors": 747}, {"value": 0.628500, "errors": 747}, {"value": 0.629000, "errors": 747}, {"value": 0.629500, "errors": 747}, {"value": 0.630000, "errors": 747}, {"value": 0.630500, "errors": 747}, {"value": 0.631000, "errors": 747}, {"value": 0.631500, "errors": 747}, {"value": 0.632000, "errors": 747}, {"value": 0.632500, "errors": 747}, {"value": 0.633000, "errors": 747}, {"value": 0.633500, "errors": 747}, {"value": 0.634000, "errors": 747}, {"value": 0.634500, "errors": 747}, {"value": 0.635000, "errors": 747}, {"value": 0.635500, "errors": 747}, {"value": 0.636000, "errors": 747}, {"value": 0.636500, "errors": 747}, {"value": 0.637000, "errors": 747}, {"value": 0.637500, "errors": 747}, {"value": 0.638000, "errors": 747}, {"value": 0.638500, "errors": 747}, {"value": 0.639000, "errors": 747}, {"value": 0.639500, "errors": 747}, {"value": 0.640000, "errors": 747}, {"value": 0.640500, "errors": 747}, {"value": 0.641000, "errors": 747}, {"value": 0.641500, "errors": 747}, {"value": 0.642000, "errors": 747}, {"value": 0.642500, "errors": 747}, {"value": 0.643000, "errors": 747}, {"value": 0.643500, "errors": 747}, {"value": 0.644000, "errors": 747}, {"value": 0.644500, "errors": 747}, {"value": 0.645000, "errors": 747}, {"value": 0.645500, "errors": 747}, {"value": 0.646000, "errors": 747}, {"value": 0.646500, "errors": 747}, {"value": 0.647000, "errors": 747}, {"value": 0.647500, "errors": 747}, {"value": 0.648000, "errors": 747}, {"value": 0.648500, "errors": 747}, {"value": 0.649000, "errors": 747}, {"value": 0.649500, "errors": 747}, {"value": 0.650000, "errors": 747}, {"value": 0.650500, "errors": 747}, {"value": 0.651000, "errors": 747}, {"value": 0.651500, "errors": 747}, {"value": 0.652000, "errors": 747}, {"value": 0.652500, "errors": 747}, {"value": 0.653000, "errors": 747}, {"value": 0.653500, "errors": 747}, {"value": 0.654000, "errors": 747}, {"value": 0.654500, "errors": 747}, {"value": 0.655000, "errors": 747}, {"value": 0.655500, "errors": 747}, {"value": 0.656000, "errors": 747}, {"value": 0.656500, "errors": 747}, {"value": 0.657000, "errors": 747}, {"value": 0.657500, "errors": 747}, {"value": 0.658000, "errors": 747}, {"value": 0.658500, "errors": 747}, {"value": 0.659000, "errors": 747}, {"value": 0.659500, "errors": 747}, {"value": 0.660000, "errors": 747}, {"value": 0.660500, "errors": 747}, {"value": 0.661000, "errors": 747}, {"value": 0.661500, "errors": 747}, {"value": 0.662000, "errors": 747}, {"value": 0.662500, "errors": 747}, {"value": 0.663000, "errors": 747}, {"value": 0.663500, "errors": 747}, {"value": 0.664000, "errors": 747}, {"value": 0.664500, "errors": 747}, {"value": 0.665000, "errors": 747}, {"value": 0.665500, "errors": 747}, {"value": 0.666000, "errors": 747}, {"value": 0.666500, "errors": 747}, {"value": 0.667000, "errors": 747}, {"value": 0.667500, "errors": 747}, {"value": 0.668000, "errors": 747}, {"value": 0.668500, "errors": 747}, {"value": 0.669000, "errors": 747}, {"value": 0.669500, "errors": 747}, {"value": 0.670000, "errors": 747}, {"value": 0.670500, "errors": 747}, {"value": 0.671000, "errors": 747}, {"value": 0.671500, "errors": 747}, {"value": 0.672000, "errors": 747}, {"value": 0.672500, "errors": 747}, {"value": 0.673000, "errors": 747}, {"value": 0.673500, "errors": 747}, {"value": 0.674000, "errors": 747}, {"value": 0.674500, "errors": 747}, {"value": 0.675000, "errors": 747}, {"value": 0.675500, "errors": 747}, {"value": 0.676000, "errors": 747}, {"value": 0.676500, "errors": 747}, {"value": 0.677000, "errors": 747}, {"value": 0.677500, "errors": 747}, {"value": 0.678000, "errors": 747}, {"value": 0.678500, "errors": 747}, {"value": 0.679000, "errors": 747}, {"value": 0.679500, "errors": 747}, {"value": 0.680000, "errors": 747}, {"value": 0.680500, "errors": 747}, {"value": 0.681000, "errors": 747}, {"value": 0.681500, "errors": 747}, {"value": 0.682000, "errors": 747}, {"value": 0.682500, "errors": 747}, {"value": 0.683000, "errors": 747}, {"value": 0.683500, "errors": 747}, {"value": 0.684000, "errors": 747}, {"value": 0.684500, "errors": 747}, {"value": 0.685000, "errors": 747}, {"value": 0.685500, "errors": 747}, {"value": 0.686000, "errors": 747}, {"value": 0.686500, "errors": 747}, {"value": 0.687000, "errors": 747}, {"value": 0.687500, "errors": 747}, {"value": 0.688000, "errors": 747}, {"value": 0.688500, "errors": 747}, {"value": 0.689000, "errors": 747}, {"value": 0.689500, "errors": 747}, {"value": 0.690000, "errors": 747}, {"value": 0.690500, "errors": 747}, {"value": 0.691000, "errors": 747}, {"value": 0.691500, "errors": 747}, {"value": 0.692000, "errors": 747}, {"value": 0.692500, "errors": 747}, {"value": 0.693000, "errors": 747}, {"value": 0.693500, "errors": 747}, {"value": 0.694000, "errors": 747}, {"value": 0.694500, "errors": 747}, {"value": 0.695000, "errors": 747}, {"value": 0.695500, "errors": 747}, {"value": 0.696000, "errors": 747}, {"value": 0.696500, "errors": 747}, {"value": 0.697000, "errors": 747}, {"value": 0.697500, "errors": 747}, {"value": 0.698000, "errors": 747}, {"value": 0.698500, "errors": 747}, {"value": 0.699000, "errors": 747}, {"value": 0.699500, "errors": 747}, {"value": 0.700000, "errors": 747}, ] x = [] y = [] for value in data: x.append(value["value"]) y.append(value["errors"]) from pandas import * d = {"x": x, "y": y} df = DataFrame(d) import matplotlib.pyplot as plt from pandas.tools.rplot import * plt.plot(x, y, 'ro') plt.ylabel('errors') plt.xlabel('threshold_p_for_first_filter_separator_character') plt.title('threshold_p_for_first_filter_separator_character vs errors count') polynomial = Polynomial(x, y, 4) new_x = [] new_y = [] current_x = 0. while current_x < 0.62: new_x.append(current_x) new_y.append(polynomial.getval(current_x)) current_x += 0.00005 plt.plot(new_x, new_y, 'ro') print (polynomial.getval(0.))
mit
Srisai85/scipy
scipy/stats/kde.py
27
17303
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to Scipy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- from __future__ import division, print_function, absolute_import # Standard library imports. import warnings # Scipy imports. from scipy._lib.six import callable, string_types from scipy import linalg, special from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \ ravel, power, atleast_1d, squeeze, sum, transpose import numpy as np from numpy.random import randint, multivariate_normal # Local imports. from . import mvn __all__ = ['gaussian_kde'] class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- evaluate __call__ integrate_gaussian integrate_box_1d integrate_box integrate_kde pdf logpdf resample set_bandwidth covariance_factor Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): ... "Measurement model, return two coupled measurements." ... m1 = np.random.normal(size=n) ... m2 = np.random.normal(scale=0.5, size=n) ... return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None): self.dataset = atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError : If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov diff = self.dataset - mean tdiff = dot(linalg.inv(sum_cov), diff) energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi * sum_cov)) / self.n return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.mean(special.ndtr(normalized_high) - special.ndtr(normalized_low)) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance sum_cov_chol = linalg.cho_factor(sum_cov) result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies), axis=0) result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n return result def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm def scotts_factor(self): return power(self.n, -1./(self.d+4)) def silverman_factor(self): return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`.""" def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> import scipy.stats as stats >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n def pdf(self, x): """ Evaluate the estimated pdf on a provided set of points. Notes ----- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` docstring for more details. """ return self.evaluate(x) def logpdf(self, x): """ Evaluate the log of the estimated pdf on a provided set of points. Notes ----- See `gaussian_kde.evaluate` for more details; this method simply returns ``np.log(gaussian_kde.evaluate(x))``. """ return np.log(self.evaluate(x))
bsd-3-clause
simvisage/oricreate
docs/howtos/ex08_rigid_facets/sim031miura_ori_psi_cntl.py
1
2750
r''' Fold the Miura ori crease pattern using psi control --------------------------------------------------- ''' import numpy as np from oricreate.api import \ SimulationTask, SimulationConfig, \ FTV, FTA from oricreate.gu import \ GuConstantLength, GuDofConstraints, GuPsiConstraints, fix def create_cp_factory(): # begin from oricreate.api import MiuraOriCPFactory cp_factory = MiuraOriCPFactory(L_x=30, L_y=21, n_x=2, n_y=2, d_0=3.0, d_1=-3.0) # end return cp_factory if __name__ == '__main__': cpf = create_cp_factory() cp = cpf.formed_object import matplotlib.pyplot as plt fig, ax = plt.subplots() cp.plot_mpl(ax, facets=True) plt.tight_layout() plt.show() # Link the crease factory it with the constraint client gu_constant_length = GuConstantLength() dof_constraints = fix(cpf.N_grid[0, 1], [1]) \ + fix(cpf.N_grid[1, 1], [0, 1, 2]) \ + fix(cpf.N_grid[1, (0, -1)], [2]) gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints) psi_max = np.pi / 4.0 diag_psi_constraints = [([(i, 1.0)], 0) for i in cpf.L_d_grid.flatten()] gu_psi_constraints = \ GuPsiConstraints(forming_task=cpf, psi_constraints=diag_psi_constraints + [([(cpf.L_h_grid[1, 1], 1.0)], lambda t: -psi_max * t), ]) sim_config = SimulationConfig(goal_function_type='none', gu={'cl': gu_constant_length, 'dofs': gu_dof_constraints, 'psi': gu_psi_constraints}, acc=1e-5, MAX_ITER=10) sim_task = SimulationTask(previous_task=cpf, config=sim_config, n_steps=5) cp = sim_task.formed_object cp.u[cpf.N_grid[(0, -1), 1], 2] = -1.0 sim_task.u_1 ftv = FTV() #ftv.add(sim_task.sim_history.viz3d['node_numbers'], order=5) ftv.add(sim_task.sim_history.viz3d['cp']) ftv.add(gu_dof_constraints.viz3d['default']) fta = FTA(ftv=ftv) fta.init_view(a=200, e=35, d=50, f=(0, 0, 0), r=0) fta.add_cam_move(a=200, e=34, n=5, d=50, r=0, duration=10, # vot_fn=lambda cmt: np.linspace(0, 1, 4), azimuth_move='damped', elevation_move='damped', distance_move='damped') fta.plot() fta.configure_traits()
gpl-3.0
wanggang3333/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
beni55/SimpleCV
SimpleCV/examples/util/ColorCube.py
13
1901
from SimpleCV import Image, Camera, Display, Color import pygame as pg import numpy as np from pylab import * from mpl_toolkits.mplot3d import axes3d from matplotlib.backends.backend_agg import FigureCanvasAgg import cv2 bins = 8 #precompute idxs = [] colors = [] offset = bins/2 skip = 255/bins for x in range(0,bins): for y in range(0,bins): for z in range(0,bins): b = ((x*skip)+offset)/255.0 g = ((y*skip)+offset)/255.0 r = ((z*skip)+offset)/255.0 idxs.append((x,y,z,(r,g,b))) # plot points in 3D cam = Camera() disp = Display((800,600)) fig = figure() fig.set_size_inches( (10,7) ) canvas = FigureCanvasAgg(fig) azim = 0 while disp.isNotDone(): ax = fig.gca(projection='3d') ax.set_xlabel('BLUE', color=(0,0,1) ) ax.set_ylabel('GREEN',color=(0,1,0)) ax.set_zlabel('RED',color=(1,0,0)) # Get the color histogram img = cam.getImage().scale(0.3) rgb = img.getNumpyCv2() hist = cv2.calcHist([rgb],[0,1,2],None,[bins,bins,bins],[0,256,0,256,0,256]) hist = hist/np.max(hist) # render everything [ ax.plot([x],[y],[z],'.',markersize=max(hist[x,y,z]*100,6),color=color) for x,y,z,color in idxs if(hist[x][y][z]>0) ] #[ ax.plot([x],[y],[z],'.',color=color) for x,y,z,color in idxs if(hist[x][y][z]>0) ] ax.set_xlim3d(0, bins-1) ax.set_ylim3d(0, bins-1) ax.set_zlim3d(0, bins-1) azim = (azim+0.5)%360 ax.view_init(elev=35, azim=azim) ########### convert matplotlib to SimpleCV image canvas.draw() renderer = canvas.get_renderer() raw_data = renderer.tostring_rgb() size = canvas.get_width_height() surf = pg.image.fromstring(raw_data, size, "RGB") figure = Image(surf) ############ All done figure = figure.floodFill((0,0), tolerance=5,color=Color.WHITE) result = figure.blit(img, pos=(20,20)) result.save(disp) fig.clf()
bsd-3-clause
barnabytprowe/great3-public
validation/plot_variable_submission.py
2
3710
#!/usr/bin/env python # Copyright (c) 2014, the GREAT3 executive committee (http://www.great3challenge.info/?q=contacts) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted # provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """@file plot_variable_submission.py Handy command line executable script for plotting up a GREAT3 variable shear submission. """ # Constants NFIELDS = 10 NBINS_THETA = 15 YLIM_EMODE = 2.e-5 YLIM_BMODE = 2.e-5 def plot(submission_filename, output_filename, nfields=NFIELDS, nbins_theta=NBINS_THETA, ylim_emode=YLIM_EMODE, ylim_bmode=YLIM_BMODE): """Plot a submission. """ import numpy as np import matplotlib.pyplot as plt # Load the data from the input submission data = np.loadtxt(submission_filename) field, theta, map_E, map_B, maperr = ( data[:, 0].astype(int), data[:, 1], data[:, 2], data[:, 3], data[:, 4]) # Then plot (largely borrowed from the code in server/great3/evaluate.py) plt.figure(figsize=(10, 8)) plt.subplot(211) for ifield in range(nfields): plt.semilogx( theta[ifield * nbins_theta: (ifield + 1) * nbins_theta], map_E[ifield * nbins_theta: (ifield + 1) * nbins_theta], label="Field "+str(ifield)) plt.ylim(-ylim_emode, ylim_emode) plt.title(submission_filename+" E-mode") plt.ylabel("Ap. Mass Dispersion") plt.axhline(ls="--", color="k") plt.legend() plt.subplot(212) for ifield in range(nfields): plt.semilogx( theta[ifield * nbins_theta: (ifield + 1) * nbins_theta], map_B[ifield * nbins_theta: (ifield + 1) * nbins_theta], label="Field "+str(ifield)) plt.ylim(-ylim_bmode, ylim_bmode) plt.title(submission_filename+" B-mode") plt.xlabel("Theta [degrees]") plt.ylabel("Ap. Mass Dispersion") plt.axhline(ls="--", color="k") plt.legend() plt.savefig(output_filename) return if __name__ == "__main__": import sys # Get the input and output filenames from the command line if len(sys.argv) != 3: print "plot_variable_submission.py" print "usage: ./plot_variable_submission.py input_submission output_filename" sys.exit(1) submission_filename = sys.argv[1] output_filename = sys.argv[2] plot(submission_filename, output_filename)
bsd-3-clause
skrzym/monday-morning-quarterback
Research/report.py
1
13031
from matplotlib import pyplot as plt import matplotlib.ticker as plticker import seaborn as sns import pandas as pd import numpy as np import math import warnings from collections import Counter import nfldatatools as nfltools rs_pbp = nfltools.gather_data(playoffs=False) po_pbp = nfltools.gather_data(playoffs=True) sns.set_style("whitegrid") #Set general plot properties sns.set_style("white", {"axes.grid": True}) sns.set_context({"figure.figsize": (10, 7)}) ################################################ # Figure 1 - HeatMap def fig1(): filters=[ ['Season', 2009, '>='] ] yard_grouping = 10 fig,(ax1, ax2) = plt.subplots(1,2,figsize=(15,10)) nfltools.plotPassingHeatMap(rs_pbp, filters=filters, ax=ax1, yard_grouping=yard_grouping) nfltools.plotPassingHeatMap(po_pbp, filters=filters, ax=ax2, yard_grouping=yard_grouping) return fig figure_1 = fig1() ############################################################### # Figure 1 - HeatMap def match(playtype): valid_play_types = [ 'Field Goal', 'Pass', 'Run', 'QB Kneel', 'Punt', 'Extra Point', 'Sack', 'Spike', 'Timeout' ] return playtype in valid_play_types def condense_pbp_data(df): new_df = df[['qtr', 'down', 'TimeUnder','TimeSecs', 'yrdline100', 'ScoreDiff', 'PlayType','Season']] new_df = new_df[new_df.PlayType.map(match)] new_df = new_df[new_df['down'].isnull()==False] return new_df playoffs = condense_pbp_data(po_pbp) regular = condense_pbp_data(rs_pbp) def makeDF(season=2009): rdf = regular#[regular.Season==season] rdf = rdf.groupby('PlayType').agg({'qtr':len}).reset_index() rdf.columns = ['PlayType', 'Count'] rdf['Percent Total'] = rdf.Count/rdf.Count.sum()*100 rdf['ID'] = 'Regular' pdf = playoffs[playoffs.Season==season] pdf = pdf.groupby('PlayType').agg({'qtr':len}).reset_index() pdf.columns = ['PlayType', 'Count'] pdf['Percent Total'] = pdf.Count/pdf.Count.sum()*100 pdf['ID'] = 'Playoffs' x = rdf.append(pdf, ignore_index=True) fig, ax1 = plt.subplots(1,1,figsize=(12,10)) sns.barplot(ax=ax1, data=x, y='PlayType', x='Percent Total',hue='ID', order=['Pass', 'Run', 'Punt', 'Field Goal', 'QB Kneel']) ax1.set_xlim(0,60) return fig figure_2 = makeDF() ############################################################### # Figure 1 - HeatMap def fig3(): sns.set_style('whitegrid') sns.set_palette(['blue', 'green','red']) fig, axes = plt.subplots(2, 1, figsize=(15,15)) shade = True bw = '2' sns.kdeplot(ax=axes[0],data=rs_pbp[rs_pbp.PlayType == 'Pass'].ScoreDiff.dropna(),label='Pass',shade=shade,bw=bw) sns.kdeplot(ax=axes[0],data=rs_pbp[rs_pbp.PlayType == 'Run'].ScoreDiff.dropna(),label='Run',shade=shade,bw=bw) sns.kdeplot(ax=axes[0],data=rs_pbp[rs_pbp.PlayType == 'Extra Point'].ScoreDiff.dropna(),label='Extra Point',shade=shade,bw=bw) axes[0].set_xlim(-40,40) axes[0].set_ylim(0,0.09) sns.kdeplot(ax=axes[1],data=po_pbp[po_pbp.PlayType == 'Pass'].ScoreDiff.dropna(),label='Pass',shade=shade,bw=bw) sns.kdeplot(ax=axes[1],data=po_pbp[po_pbp.PlayType == 'Run'].ScoreDiff.dropna(),label='Run',shade=shade,bw=bw) sns.kdeplot(ax=axes[1],data=po_pbp[po_pbp.PlayType == 'Extra Point'].ScoreDiff.dropna(),label='Extra Point',shade=shade,bw=bw) axes[1].set_xlim(-40,40) axes[1].set_ylim(0,0.09) #SMOOTH IT OUT! return fig figure_3 = fig3() ############################################################### # Figure 1 - HeatMap def plot_PlayType(df,stat,playtypelist=['Pass','Run','Field Goal','QB Kneel','Punt'],percent_total=False): g = df.groupby([stat,'PlayType']).count().reset_index() g = g[g.columns[0:3]] last_col_name = g.columns[-1] g1 = g.groupby([stat, 'PlayType']).agg({last_col_name: 'sum'}) if percent_total: g1 = g1.groupby(level=1).apply(lambda x: 100 * x / float(x.sum())) g1 = g1.reset_index() g1 = g1[g1.PlayType.apply(lambda x: x in playtypelist)] return sns.barplot(x=stat, y=last_col_name, hue="PlayType", data=g1) def fig4(): fig = plt.figure(figsize=(16,32)) ax3 = fig.add_subplot(513) ax3 = plot_PlayType(regular,'qtr',['Run','Pass'],False) ax4 = fig.add_subplot(514) ax4 = plot_PlayType(regular,'yrdline100',['Run','Pass'],False) ax4.xaxis.set_ticks(range(4, 99, 5)) ax4.xaxis.set_ticklabels(range(5,100,5)) ax4.grid(True,'major','both') return fig figure_4 = fig4() ############################################################### # Figure 1 - HeatMap def fig5(): fig, axes = plt.subplots(2,1,figsize=(14,7)) sns.kdeplot(ax=axes[0],data=regular[regular.PlayType == 'Pass'].TimeSecs,bw=20,label='Pass') sns.kdeplot(ax=axes[0],data=regular[regular.PlayType == 'Run'].TimeSecs,bw=20,label='Run') loc = plticker.MultipleLocator(base=120.0) # this locator puts ticks at regular intervals axes[0].xaxis.set_major_locator(loc) axes[0].set_xlim(0,3600) axes[0].set_ylim(0,0.00085) axes[0].vlines([x*60 for x in [15,30,45]],0,0.0009,colors='black') axes[0].grid(True,'major','y') axes[0].grid(False,'major','x') sns.kdeplot(ax=axes[1],data=playoffs[playoffs.PlayType == 'Pass'].TimeSecs,bw=20,label='Pass') sns.kdeplot(ax=axes[1],data=playoffs[playoffs.PlayType == 'Run'].TimeSecs,bw=20,label='Run') loc = plticker.MultipleLocator(base=120.0) # this locator puts ticks at regular intervals axes[1].xaxis.set_major_locator(loc) axes[1].set_xlim(0,3600) axes[1].set_ylim(0,0.00085) axes[1].vlines([x*60 for x in [15,30,45]],0,0.0009,colors='black') axes[1].grid(True,'major','y') axes[1].grid(False,'major','x') return fig figure_5 = fig5() ################################################################# # Figure 1 - HeatMap def fig6(): rs_fg = rs_pbp[rs_pbp.PlayType =='Field Goal'].groupby('FieldGoalResult').agg({'Date':len}).reset_index() rs_fg.columns=['FieldGoalResult', 'Count'] rs_fg['Percent Total'] = rs_fg.Count.apply(lambda x: 100 * x / float(rs_fg.Count.sum())) po_fg = po_pbp[po_pbp.PlayType =='Field Goal'].groupby('FieldGoalResult').agg({'Date':len}).reset_index() po_fg.columns=['FieldGoalResult', 'Count'] po_fg['Percent Total'] = po_fg.Count.apply(lambda x: 100 * x / float(po_fg.Count.sum())) sns.set_palette(['green', 'orange', 'red']) fig, axes = plt.subplots(2, 2,sharey=True,figsize=(14,7)) order = ['Good','Blocked','No Good'] sns.violinplot(ax=axes[0][0], data=rs_pbp[rs_pbp.PlayType=='Field Goal'], x='FieldGoalDistance', y='FieldGoalResult',order=order, scale='width', bw=0.05) sns.violinplot(ax=axes[1][0], data=po_pbp[po_pbp.PlayType=='Field Goal'], x='FieldGoalDistance', y='FieldGoalResult',order=order, scale='width', bw=0.05) axes[0][0].set_xlim(0,100) axes[1][0].set_xlim(0,100) sns.barplot(ax=axes[0][1], data=rs_fg,y='FieldGoalResult', x='Percent Total',order=order) sns.barplot(ax=axes[1][1], data=po_fg,y='FieldGoalResult', x='Percent Total',order=order) axes[0][1].set_xlim(0,100) axes[1][1].set_xlim(0,100) axes[0][1].set_xticklabels(['0%','20%','40%','60%','80%','100%']) axes[1][1].set_xticklabels(['0%','20%','40%','60%','80%','100%']) axes[0][0].set_title('Field Goal Results by Distance') axes[0][0].set_xlabel('') axes[0][0].set_ylabel('Regular Season') axes[0][1].set_title('Field Goal Results Distribution') axes[0][1].set_xlabel('') axes[0][1].set_ylabel('') axes[1][0].set_ylabel('Playoffs') axes[1][0].set_xlabel('Field Goal Distance (yds)') axes[1][0].figure axes[1][1].set_ylabel('') axes[1][1].set_xlabel('Percent Total') return fig figure_6 = fig6() ##################################################################### # Figure 1 - HeatMap teams = [['ARI', 'Arizona', 'Cardinals', 'Arizona Cardinals'], ['ATL', 'Atlanta', 'Falcons', 'Atlanta Falcons'], ['BAL', 'Baltimore', 'Ravens', 'Baltimore Ravens'], ['BUF', 'Buffalo', 'Bills', 'Buffalo Bills'], ['CAR', 'Carolina', 'Panthers', 'Carolina Panthers'], ['CHI', 'Chicago', 'Bears', 'Chicago Bears'], ['CIN', 'Cincinnati', 'Bengals', 'Cincinnati Bengals'], ['CLE', 'Cleveland', 'Browns', 'Cleveland Browns'], ['DAL', 'Dallas', 'Cowboys', 'Dallas Cowboys'], ['DEN', 'Denver', 'Broncos', 'Denver Broncos'], ['DET', 'Detroit', 'Lions', 'Detroit Lions'], ['GB', 'Green Bay', 'Packers', 'Green Bay Packers', 'G.B.', 'GNB'], ['HOU', 'Houston', 'Texans', 'Houston Texans'], ['IND', 'Indianapolis', 'Colts', 'Indianapolis Colts'], ['JAC', 'Jacksonville', 'Jaguars', 'Jacksonville Jaguars', 'JAX'], ['KC', 'Kansas City', 'Chiefs', 'Kansas City Chiefs', 'K.C.', 'KAN'], ['LA', 'Los Angeles', 'Rams', 'Los Angeles Rams', 'L.A.'], ['MIA', 'Miami', 'Dolphins', 'Miami Dolphins'], ['MIN', 'Minnesota', 'Vikings', 'Minnesota Vikings'], ['NE', 'New England', 'Patriots', 'New England Patriots', 'N.E.', 'NWE'], ['NO', 'New Orleans', 'Saints', 'New Orleans Saints', 'N.O.', 'NOR'], ['NYG', 'Giants', 'New York Giants', 'N.Y.G.'], ['NYJ', 'Jets', 'New York Jets', 'N.Y.J.'], ['OAK', 'Oakland', 'Raiders', 'Oakland Raiders'], ['PHI', 'Philadelphia', 'Eagles', 'Philadelphia Eagles'], ['PIT', 'Pittsburgh', 'Steelers', 'Pittsburgh Steelers'], ['SD', 'San Diego', 'Chargers', 'San Diego Chargers', 'S.D.', 'SDG'], ['SEA', 'Seattle', 'Seahawks', 'Seattle Seahawks'], ['SF', 'San Francisco', '49ers', 'San Francisco 49ers', 'S.F.', 'SFO'], ['STL', 'St. Louis', 'Rams', 'St. Louis Rams', 'S.T.L.'], ['TB', 'Tampa Bay', 'Buccaneers', 'Tampa Bay Buccaneers', 'T.B.', 'TAM'], ['TEN', 'Tennessee', 'Titans', 'Tennessee Titans'], ['WAS', 'Washington', 'Redskins', 'Washington Redskins', 'WSH']] teams_dict = {x[3]:x[0] for x in teams} # Jacksonville Data Fix rs_pbp.posteam = rs_pbp.posteam.replace('JAX', 'JAC') rs_pbp.HomeTeam = rs_pbp.HomeTeam.replace('JAX', 'JAC') rs_pbp.AwayTeam = rs_pbp.AwayTeam.replace('JAX', 'JAC') pass_rush_attempts_by_team = rs_pbp.groupby(['posteam','Season']).agg(sum)[['PassAttempt','RushAttempt']] pass_rush_attempts_by_team['PassRushRatio'] = pass_rush_attempts_by_team.apply(lambda x: (x.PassAttempt * 1.0) / x.RushAttempt, axis=1) sns.set_palette('muted') plot_df = pass_rush_attempts_by_team plot_teams = teams_dict def plotPassRushByTeam(team_focus_1, team_focus_2): fig,ax = plt.subplots(1,1,figsize=(15,8)) for team in plot_teams: if (plot_teams[team] != team_focus_1) or (plot_teams[team] != team_focus_1): plt.plot(plot_df.loc[plot_teams[team]]['PassRushRatio'], color='0.91') plt.plot(plot_df.loc[team_focus_1]['PassRushRatio'], color='Blue', axes=ax) plt.plot(plot_df.loc[team_focus_2]['PassRushRatio'], color='Red', axes=ax) return fig def fig7(): sns.set_style('white') return plotPassRushByTeam(team_focus_1 = 'NYG', team_focus_2 = 'NYJ') figure_7 = fig7() ########################################################## # Figure 1 - HeatMap playoff_teams = {year:po_pbp.mask('Season',year).posteam.dropna().unique().tolist() for year in np.arange(2009,2017,1)} def madeit(row): team, season = row.name return int(team in playoff_teams[season]) next_df = pass_rush_attempts_by_team.copy() next_df['PO'] = next_df.apply(madeit, axis=1) next_df.reset_index().groupby(['posteam','PO']).agg({'PassRushRatio':np.mean}).reset_index().pivot('posteam','PO','PassRushRatio') def fig8(): sns.set_context('talk') #sns.heatmap(data = pass_rush_attempts_by_team.reset_index().pivot('posteam','PO','PassRushRatio'), # vmin=0,vmax=1,square=False,cmap='rainbow', annot=False) fig,ax = plt.subplots(1,1) new_df = next_df.reset_index().groupby(['posteam','PO']).agg({'PassRushRatio':np.mean}).reset_index().pivot('posteam','PO','PassRushRatio') sns.heatmap(data = new_df, square=False, annot=False, cmap='Greens') return fig figure_8 = fig8() ############################################################ def fig9(): fig,ax = plt.subplots(1,1) pass_rush_attempts_by_team.loc['DEN']['PassRushRatio'].plot() return fig figure_9 = fig9() ############################################################# def fig10(): fig, ax = plt.subplots(1,1,figsize=(3,5)) sns.boxplot(data=next_df.reset_index(),x='PO', y='PassRushRatio', ax=ax) return fig figure_10 = fig10() ############################################################# avg_prr_by_team = pass_rush_attempts_by_team.reset_index().groupby('posteam').agg({'PassRushRatio':np.mean}).sort_values('PassRushRatio') avg_prr_by_season = pass_rush_attempts_by_team.reset_index().groupby('Season').agg({'PassRushRatio':np.mean}).sort_values('PassRushRatio') def fig11(): with sns.axes_style('ticks'): fig,ax = plt.subplots(1,1,figsize=(20,7)) sns.boxplot(data=next_df.reset_index(),x='posteam', y='PassRushRatio', ax=ax, order=avg_prr_by_team.index.tolist(),hue='PO') return fig figure_11 = fig11()
mit
mikeireland/pynrm
go.py
1
3044
# -*- coding: utf-8 -*- """ Created on Fri May 2 13:49:11 2014 @author: mireland A script for testing... Change this to try out your own analysis. """ import astropy.io.fits as pyfits import numpy as np import matplotlib.pyplot as plt from azimuthalAverage import * # This includes an AO Instrument called "aoinst" import pypoise import nirc2 import glob import pdb #Create a pypoise instance with a nirc2 AO instrument pp = pypoise.PYPOISE(nirc2.NIRC2()) plt.ion() #Reduction Directory - Lp full pupil pp.aoinst.rdir = '/Users/mireland/tel/nirc2/redux/generic2015/' pp.aoinst.cdir = '/Users/mireland/tel/nirc2/redux/TauPAH15/' #Data directory pp.aoinst.ddir = '/Users/mireland/data/nirc2/151128/' pp.aoinst.read_summary_csv() if(False): pp.process_block(fstart='n1251.fits',fend='n1293.fits', dither=True) if(False): pp.process_block(fstart='n1493.fits',fend='n1517.fits', dither=True) targname = 'AB Aur' targname = 'SU Aur' targname = 'RY Tau' if(True): #The argument "target_file" is just there to determine which object is the target. summary_files = pp.poise_process(target=targname, use_powerspect=False) print(summary_files) if(True): # summary_files = glob.glob('*LkCa*poise_cube*.fits') implane_file = pp.aoinst.cdir + targname + '_implane.fits' pxscale = 5.0 #pdb.set_trace() if (True): kp_implane = pp.kp_to_implane(summary_files=summary_files, out_file=implane_file, sz=141, pxscale=pxscale, use_powerspect=False) if (True): #Automatic from here... pgrid, crat, crat_sig, chi2, best_rchi2 = pp.implane_fit_binary(implane_file, maxrad=250) print "Grid Fit: ", pgrid pgrid = np.array(pgrid) if (pgrid[2] > 0.5): print "Contrast too high to use kerphase for fitting (i.e. near-equal binary)." else: p,errs,cov = pp.kp_binary_fit(summary_files,pgrid) fitfile = open(targname + '_binaryfit.txt','w') fitfile.write('Separation (mas) & Position angle (degs) & Contrast \\\\\n') fitfile.write('{0:5.2f} $\pm$ {1:5.2f} & {2:5.2f} $\pm$ {3:5.2f} & {4:6.4f} $\pm$ {5:6.4f} \\\\ \n'.format(\ p[0],errs[0], p[1],errs[1], p[2],errs[2])) fitfile.write('Contrast (mags) & Separation (mas) & Position angle (degs) \\\\\n') fit_crat = -2.5*np.log10(p[2]) fit_crat_sig = 2.5/np.log(10)*errs[2]/p[2] fitfile.write('{0:5.2f} $\pm$ {1:5.2f} & {2:5.2f} $\pm$ {3:5.2f} & {4:5.3f} $\pm$ {5:5.3f} \\\\ \n'.format(\ fit_crat, fit_crat_sig, p[0],errs[0], p[1],errs[1] )) fitfile.close() a = azimuthalAverage(crat_sig*np.sqrt(best_rchi2), returnradii=True,binsize=1) sep_null = a[0]*pxscale contrast_null = -2.5*np.log10(5*a[1]) plt.clf() plt.plot(sep_null, contrast_null) plt.title(targname) plt.xlabel("Separation (milli-arcsec)") plt.ylabel("5-sigma contrast (mags)") sep_out = np.arange(20,301,10) contrast_out = np.interp(sep_out, sep_null, contrast_null) for i in range(len(sep_out)): print '{0:4d} {1:5.1f}'.format(int(sep_out[i]),contrast_out[i]) plt.axis((0,300,2,7)) plt.savefig(pp.aoinst.cdir + targname + '_contrast_curve.png')
mit
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/mpl_toolkits/axisartist/axis_artist.py
7
52735
""" axis_artist.py module provides axis-related artists. They are * axis line * tick lines * tick labels * axis label * grid lines The main artist class is a AxisArtist and a GridlinesCollection. The GridlinesCollection is responsible for drawing grid lines and the AxisArtist is responsible for all other artists. The AxisArtist class has attributes that are associated with each type of artists. * line : axis line * major_ticks : major tick lines * major_ticklabels : major tick labels * minor_ticks : minor tick lines * minor_ticklabels : minor tick labels * label : axis label Typically, the AxisArtist associated with a axes will be accessed with the *axis* dictionary of the axes, i.e., the AxisArtist for the bottom axis is ax.axis["bottom"] where *ax* is an instance of axes (mpl_toolkits.axislines.Axes). Thus, ax.axis["bottom"].line is an artist associated with the axis line, and ax.axis["bottom"].major_ticks is an artist associated with the major tick lines. You can change the colors, fonts, line widths, etc. of these artists by calling suitable set method. For example, to change the color of the major ticks of the bottom axis to red, ax.axis["bottom"].major_ticks.set_color("r") However, things like the locations of ticks, and their ticklabels need to be changed from the side of the grid_helper. axis_direction -------------- AxisArtist, AxisLabel, TickLabels have *axis_direction* attribute, which adjusts the location, angle, etc.,. The *axis_direction* must be one of [left, right, bottom, top] and they follow the matplotlib convention for the rectangle axis. For example, for the *bottom* axis (the left and right is relative to the direction of the increasing coordinate), * ticklabels and axislabel are on the right * ticklabels and axislabel have text angle of 0 * ticklabels are baseline, center-aligned * axislabel is top, center-aligned The text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. left bottom right top ticklabels location left right right left axislabel location left right right left ticklabels angle 90 0 -90 180 axislabel angle 180 0 0 180 ticklabel va center baseline center baseline axislabel va center top center bottom ticklabel ha right center right center axislabel ha right center right center Ticks are by default direct opposite side of the ticklabels. To make ticks to the same side of the ticklabels, ax.axis["bottom"].major_ticks.set_ticks_out(True) Following attributes can be customized (use set_xxx method) * Ticks : ticksize, tick_out * TickLabels : pad * AxisLabel : pad """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six # FIXME : # * : angles are given in data coordinate - need to convert it to canvas coordinate import matplotlib.axes as maxes import matplotlib.artist as martist import matplotlib.text as mtext import matplotlib.font_manager as font_manager from matplotlib.path import Path from matplotlib.transforms import Affine2D, ScaledTranslation, \ IdentityTransform, TransformedPath, Bbox from matplotlib.collections import LineCollection from matplotlib import rcParams from matplotlib.artist import allow_rasterization import warnings import numpy as np import matplotlib.lines as mlines from .axisline_style import AxislineStyle class BezierPath(mlines.Line2D): def __init__(self, path, *kl, **kw): mlines.Line2D.__init__(self, [], [], *kl, **kw) self._path = path self._invalid = False def recache(self): self._transformed_path = TransformedPath(self._path, self.get_transform()) self._invalid = False def set_path(self, path): self._path = path self._invalid = True def draw(self, renderer): if self._invalid: self.recache() if not self._visible: return renderer.open_group('line2d') gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self._color) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) gc.set_alpha(self._alpha) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) funcname = self._lineStyles.get(self._linestyle, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_path_and_affine() lineFunc = getattr(self, funcname) lineFunc(renderer, gc, tpath, affine.frozen()) gc.restore() renderer.close_group('line2d') class UnimplementedException(Exception): pass from matplotlib.artist import Artist class AttributeCopier(object): def __init__(self, ref_artist, klass=Artist): self._klass = klass self._ref_artist = ref_artist super(AttributeCopier, self).__init__() def set_ref_artist(self, artist): self._ref_artist = artist def get_ref_artist(self): raise RuntimeError("get_ref_artist must overridden") #return self._ref_artist def get_attribute_from_ref_artist(self, attr_name, default_value): get_attr_method_name = "get_"+attr_name c = getattr(self._klass, get_attr_method_name)(self) if c == 'auto': ref_artist = self.get_ref_artist() if ref_artist: attr = getattr(ref_artist, get_attr_method_name)() return attr else: return default_value return c from matplotlib.lines import Line2D class Ticks(Line2D, AttributeCopier): """ Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use set_mec, set_mew, etc. To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks (ticks are in opposite direction of ticklabels by default), use set_tick_out(False). """ def __init__(self, ticksize, tick_out=False, **kwargs): self._ticksize = ticksize self.locs_angles_labels = [] self.set_tick_out(tick_out) self._axis = kwargs.pop("axis", None) if self._axis is not None: if "color" not in kwargs: kwargs["color"] = "auto" if ("mew" not in kwargs) and ("markeredgewidth" not in kwargs): kwargs["markeredgewidth"] = "auto" Line2D.__init__(self, [0.], [0.], **kwargs) AttributeCopier.__init__(self, self._axis, klass=Line2D) self.set_snap(True) def get_ref_artist(self): #return self._ref_artist.get_ticklines()[0] return self._ref_artist.majorTicks[0].tick1line def get_color(self): return self.get_attribute_from_ref_artist("color", "k") def get_markeredgecolor(self): if self._markeredgecolor == 'auto': return self.get_color() else: return self._markeredgecolor def get_markeredgewidth(self): return self.get_attribute_from_ref_artist("markeredgewidth", .5) def set_tick_out(self, b): """ set True if tick need to be rotated by 180 degree. """ self._tick_out = b def get_tick_out(self): """ Return True if the tick will be rotated by 180 degree. """ return self._tick_out def set_ticksize(self, ticksize): """ set length of the ticks in points. """ self._ticksize = ticksize def get_ticksize(self): """ Return length of the ticks in points. """ return self._ticksize def set_locs_angles(self, locs_angles): self.locs_angles = locs_angles def _update(self, renderer): pass _tickvert_path = Path([[0., 0.], [1., 0.]]) def draw(self, renderer): if not self.get_visible(): return self._update(renderer) # update the tick size = self._ticksize path_trans = self.get_transform() # set gc : copied from lines.py # gc = renderer.new_gc() # self._set_gc_clip(gc) # gc.set_foreground(self.get_color()) # gc.set_antialiased(self._antialiased) # gc.set_linewidth(self._linewidth) # gc.set_alpha(self._alpha) # if self.is_dashed(): # cap = self._dashcapstyle # join = self._dashjoinstyle # else: # cap = self._solidcapstyle # join = self._solidjoinstyle # gc.set_joinstyle(join) # gc.set_capstyle(cap) # gc.set_snap(self.get_snap()) gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self.get_markeredgecolor()) gc.set_linewidth(self.get_markeredgewidth()) gc.set_alpha(self._alpha) offset = renderer.points_to_pixels(size) marker_scale = Affine2D().scale(offset, offset) if self.get_tick_out(): add_angle = 180 else: add_angle = 0 marker_rotation = Affine2D() marker_transform = marker_scale + marker_rotation for loc, angle in self.locs_angles: marker_rotation.rotate_deg(angle+add_angle) locs = path_trans.transform_non_affine(np.array([loc, loc])) renderer.draw_markers(gc, self._tickvert_path, marker_transform, Path(locs), path_trans.get_affine()) marker_rotation.clear() gc.restore() def test_ticks(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ticks = Ticks(ticksize=10, axis=ax.xaxis) ax.add_artist(ticks) locs_angles = [((0.2, 0.), 90), ((0.4, 0.), 120)] ticks.set_locs_angles(locs_angles) plt.draw() class LabelBase(mtext.Text): """ A base class for AxisLabel and TickLabels. The position and angle of the text are calculated by to offset_ref_angle, text_ref_angle, and offset_radius attributes. """ def __init__(self, *kl, **kwargs): self.locs_angles_labels = [] self._ref_angle = 0 self._offset_radius = 0. super(LabelBase, self).__init__(*kl, **kwargs) self.set_rotation_mode("anchor") self._text_follow_ref_angle = True #self._offset_ref_angle = 0 def _set_ref_angle(self, a): self._ref_angle = a def _get_ref_angle(self): return self._ref_angle def _get_text_ref_angle(self): if self._text_follow_ref_angle: return self._get_ref_angle()+90 else: return 0 #self.get_ref_angle() def _get_offset_ref_angle(self): return self._get_ref_angle() def _set_offset_radius(self, offset_radius): self._offset_radius = offset_radius def _get_offset_radius(self): return self._offset_radius _get_opposite_direction = {"left":"right", "right":"left", "top":"bottom", "bottom":"top"}.__getitem__ def _update(self, renderer): pass def draw(self, renderer): if not self.get_visible(): return self._update(renderer) # save original and adjust some properties tr = self.get_transform() angle_orig = self.get_rotation() offset_tr = Affine2D() self.set_transform(tr+offset_tr) text_ref_angle = self._get_text_ref_angle() offset_ref_angle = self._get_offset_ref_angle() theta = (offset_ref_angle)/180.*np.pi dd = self._get_offset_radius() dx, dy = dd * np.cos(theta), dd * np.sin(theta) offset_tr.translate(dx, dy) self.set_rotation(text_ref_angle+angle_orig) super(LabelBase, self).draw(renderer) offset_tr.clear() # restore original properties self.set_transform(tr) self.set_rotation(angle_orig) def get_window_extent(self, renderer): self._update(renderer) # save original and adjust some properties tr = self.get_transform() angle_orig = self.get_rotation() offset_tr = Affine2D() self.set_transform(tr+offset_tr) text_ref_angle = self._get_text_ref_angle() offset_ref_angle = self._get_offset_ref_angle() theta = (offset_ref_angle)/180.*np.pi dd = self._get_offset_radius() dx, dy = dd * np.cos(theta), dd * np.sin(theta) offset_tr.translate(dx, dy) self.set_rotation(text_ref_angle+angle_orig) bbox = super(LabelBase, self).get_window_extent(renderer).frozen() offset_tr.clear() # restore original properties self.set_transform(tr) self.set_rotation(angle_orig) return bbox def test_labelbase(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.plot([0.5], [0.5], "o") label = LabelBase(0.5, 0.5, "Test") a = -90 label._set_ref_angle(a) label._set_offset_radius(offset_radius=50) label.set_rotation(-90) label.set(ha="center", va="top") ax.add_artist(label) plt.draw() class AxisLabel(LabelBase, AttributeCopier): """ Axis Label. Derived from Text. The position of the text is updated in the fly, so changing text position has no effect. Otherwise, the properties can be changed as a normal Text. To change the pad between ticklabels and axis label, use set_pad. """ def __init__(self, *kl, **kwargs): axis_direction = kwargs.pop("axis_direction", "bottom") self._axis = kwargs.pop("axis", None) #super(AxisLabel, self).__init__(*kl, **kwargs) LabelBase.__init__(self, *kl, **kwargs) AttributeCopier.__init__(self, self._axis, klass=LabelBase) self.set_axis_direction(axis_direction) self._pad = 5 self._extra_pad = 0 def set_pad(self, pad): """ Set the pad in points. Note that the actual pad will be the sum of the internal pad and the external pad (that are set automatically by the AxisArtist), and it only set the internal pad """ self._pad = pad def get_pad(self): """ return pad in points. See set_pad for more details. """ return self._pad def _set_external_pad(self, p): """ Set external pad IN PIXELS. This is intended to be set by the AxisArtist, bot by user.. """ self._extra_pad = p def _get_external_pad(self): """ Get external pad. """ return self._extra_pad def get_ref_artist(self): return self._axis.get_label() def get_text(self): t = super(AxisLabel, self).get_text() if t == "__from_axes__": return self._axis.get_label().get_text() return self._text _default_alignments = dict(left=("bottom", "center"), right=("top", "center"), bottom=("top", "center"), top=("bottom", "center")) def set_default_alignment(self, d): if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') va, ha = self._default_alignments[d] self.set_va(va) self.set_ha(ha) _default_angles = dict(left=180, right=0, bottom=0, top=180) def set_default_angle(self, d): if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self.set_rotation(self._default_angles[d]) def set_axis_direction(self, d): """ Adjust the text angle and text alignment of axis label according to the matplotlib convention. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== axislabel angle 180 0 0 180 axislabel va center top center bottom axislabel ha right center right center ===================== ========== ========= ========== ========== Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self.set_default_alignment(d) self.set_default_angle(d) def get_color(self): return self.get_attribute_from_ref_artist("color", "k") def draw(self, renderer): if not self.get_visible(): return pad = renderer.points_to_pixels(self.get_pad()) r = self._get_external_pad() + pad self._set_offset_radius(r) super(AxisLabel, self).draw(renderer) def get_window_extent(self, renderer): if not self.get_visible(): return pad = renderer.points_to_pixels(self.get_pad()) r = self._get_external_pad() + pad self._set_offset_radius(r) bb = super(AxisLabel, self).get_window_extent(renderer) return bb class TickLabels(AxisLabel, AttributeCopier): # mtext.Text """ Tick Labels. While derived from Text, this single artist draws all ticklabels. As in AxisLabel, the position of the text is updated in the fly, so changing text position has no effect. Otherwise, the properties can be changed as a normal Text. Unlike the ticklabels of the mainline matplotlib, properties of single ticklabel alone cannot modified. To change the pad between ticks and ticklabels, use set_pad. """ def __init__(self, **kwargs): axis_direction = kwargs.pop("axis_direction", "bottom") AxisLabel.__init__(self, **kwargs) self.set_axis_direction(axis_direction) #self._axis_direction = axis_direction self._axislabel_pad = 0 #self._extra_pad = 0 # attribute copier def get_ref_artist(self): return self._axis.get_ticklabels()[0] def set_axis_direction(self, label_direction): """ Adjust the text angle and text alignment of ticklabels according to the matplotlib convention. The *label_direction* must be one of [left, right, bottom, top]. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== ticklabels angle 90 0 -90 180 ticklabel va center baseline center baseline ticklabel ha right center right center ===================== ========== ========= ========== ========== Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if label_direction not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be one of "left", "right", "top", "bottom"') self._axis_direction = label_direction self.set_default_alignment(label_direction) self.set_default_angle(label_direction) def invert_axis_direction(self): label_direction = self._get_opposite_direction(self._axis_direction) self.set_axis_direction(label_direction) def _get_ticklabels_offsets(self, renderer, label_direction): """ Calculates the offsets of the ticklabels from the tick and their total heights. The offset only takes account the offset due to the vertical alignment of the ticklabels, i.e.,if axis direction is bottom and va is ;top', it will return 0. if va is 'baseline', it will return (height-descent). """ whd_list = self.get_texts_widths_heights_descents(renderer) if not whd_list: return 0, 0 r = 0 va, ha = self.get_va(), self.get_ha() if label_direction == "left": pad = max([w for (w, h, d) in whd_list]) if ha == "left": r = pad elif ha == "center": r = .5 * pad elif label_direction == "right": pad = max([w for (w, h, d) in whd_list]) if ha == "right": r = pad elif ha == "center": r = .5 * pad elif label_direction == "bottom": pad = max([h for (w, h, d) in whd_list]) if va == "bottom": r = pad elif va == "center": r =.5 * pad elif va == "baseline": max_ascent = max([(h-d) for (w, h, d) in whd_list]) max_descent = max([d for (w, h, d) in whd_list]) r = max_ascent pad = max_ascent + max_descent elif label_direction == "top": pad = max([h for (w, h, d) in whd_list]) if va == "top": r = pad elif va == "center": r =.5 * pad elif va == "baseline": max_ascent = max([(h-d) for (w, h, d) in whd_list]) max_descent = max([d for (w, h, d) in whd_list]) r = max_descent pad = max_ascent + max_descent #tick_pad = renderer.points_to_pixels(self.get_pad()) # r : offset # pad : total height of the ticklabels. This will be used to # calculate the pad for the axislabel. return r, pad _default_alignments = dict(left=("center", "right"), right=("center", "left"), bottom=("baseline", "center"), top=("baseline", "center")) # set_default_alignments(self, d) _default_angles = dict(left=90, right=-90, bottom=0, top=180) def draw(self, renderer): if not self.get_visible(): self._axislabel_pad = self._get_external_pad() return r, total_width = self._get_ticklabels_offsets(renderer, self._axis_direction) #self._set_external_pad(r+self._get_external_pad()) pad = self._get_external_pad() + \ renderer.points_to_pixels(self.get_pad()) self._set_offset_radius(r+pad) #self._set_offset_radius(r) for (x, y), a, l in self._locs_angles_labels: if not l.strip(): continue self._set_ref_angle(a) #+ add_angle self.set_x(x) self.set_y(y) self.set_text(l) LabelBase.draw(self, renderer) self._axislabel_pad = total_width \ + pad # the value saved will be used to draw axislabel. def set_locs_angles_labels(self, locs_angles_labels): self._locs_angles_labels = locs_angles_labels def get_window_extents(self, renderer): if not self.get_visible(): self._axislabel_pad = self._get_external_pad() return [] bboxes = [] r, total_width = self._get_ticklabels_offsets(renderer, self._axis_direction) pad = self._get_external_pad() + \ renderer.points_to_pixels(self.get_pad()) self._set_offset_radius(r+pad) for (x, y), a, l in self._locs_angles_labels: self._set_ref_angle(a) #+ add_angle self.set_x(x) self.set_y(y) self.set_text(l) bb = LabelBase.get_window_extent(self, renderer) bboxes.append(bb) self._axislabel_pad = total_width \ + pad # the value saved will be used to draw axislabel. return bboxes def get_texts_widths_heights_descents(self, renderer): """ return a list of width, height, descent for ticklabels. """ whd_list = [] for (x, y), a, l in self._locs_angles_labels: if not l.strip(): continue clean_line, ismath = self.is_math_text(l) whd = renderer.get_text_width_height_descent( clean_line, self._fontproperties, ismath=ismath) whd_list.append(whd) return whd_list def test_ticklabels(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.plot([0.2, 0.4], [0.5, 0.5], "o") ticks = Ticks(ticksize=10, axis=ax.xaxis) ax.add_artist(ticks) locs_angles_labels = [((0.2, 0.5), -90, "0.2"), ((0.4, 0.5), -120, "0.4")] tick_locs_angles = [(xy, a+180) for xy, a, l in locs_angles_labels] ticks.set_locs_angles(tick_locs_angles) ax.plot([0.5], [0.5], ",") axislabel = AxisLabel(0.5, 0.5, "Test") axislabel._set_offset_radius(20) axislabel._set_ref_angle(0) axislabel.set_axis_direction("bottom") #axislabel._text_follow_ref_angle = True #axislabel.set(va="center", ha="right") ax.add_artist(axislabel) if 1: ticklabels = TickLabels(axis_direction="left") ticklabels._locs_angles_labels = locs_angles_labels #ticklabels.set_rotation(90) ticklabels.set_pad(10) ax.add_artist(ticklabels) ax.set_xlim(0, 1); ax.set_ylim(0, 1) plt.draw() class GridlinesCollection(LineCollection): def __init__(self, *kl, **kwargs): """ *which* : "major" or "minor" *axis* : "both", "x" or "y" """ self._which = kwargs.pop("which", "major") self._axis = kwargs.pop("axis", "both") super(GridlinesCollection, self).__init__(*kl, **kwargs) self.set_grid_helper(None) def set_which(self, which): self._which = which def set_axis(self, axis): self._axis = axis def set_grid_helper(self, grid_helper): self._grid_helper = grid_helper def draw(self, renderer): if self._grid_helper is not None: self._grid_helper.update_lim(self.axes) gl = self._grid_helper.get_gridlines(self._which, self._axis) if gl: self.set_segments([np.transpose(l) for l in gl]) else: self.set_segments([]) super(GridlinesCollection, self).draw(renderer) class AxisArtist(martist.Artist): """ An artist which draws axis (a line along which the n-th axes coord is constant) line, ticks, ticklabels, and axis label. """ ZORDER=2.5 # LABELPAD : as property def _set_labelpad(self, v): return self.label.set_pad(v) def _get_labelpad(self): return self.label.get_pad() LABELPAD = property(_get_labelpad, _set_labelpad) def __init__(self, axes, helper, offset=None, axis_direction="bottom", **kw): """ *axes* : axes *helper* : an AxisArtistHelper instance. """ #axes is also used to follow the axis attribute (tick color, etc). super(AxisArtist, self).__init__(**kw) self.axes = axes self._axis_artist_helper = helper if offset is None: offset = (0, 0) self.dpi_transform = Affine2D() self.offset_transform = ScaledTranslation(offset[0], offset[1], self.dpi_transform) self._label_visible = True self._majortick_visible = True self._majorticklabel_visible = True self._minortick_visible = True self._minorticklabel_visible = True #if self._axis_artist_helper._loc in ["left", "right"]: if axis_direction in ["left", "right"]: axis_name = "ytick" self.axis = axes.yaxis else: axis_name = "xtick" self.axis = axes.xaxis self._axisline_style = None self._axis_direction = axis_direction self._init_line() self._init_ticks(axis_name, **kw) self._init_offsetText(axis_direction) self._init_label() self.set_zorder(self.ZORDER) self._rotate_label_along_line = False # axis direction self._tick_add_angle = 180. self._ticklabel_add_angle = 0. self._axislabel_add_angle = 0. self.set_axis_direction(axis_direction) # axis direction def set_axis_direction(self, axis_direction): """ Adjust the direction, text angle, text alignment of ticklabels, labels following the matplotlib convention for the rectangle axes. The *axis_direction* must be one of [left, right, bottom, top]. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== ticklabels location "-" "+" "+" "-" axislabel location "-" "+" "+" "-" ticklabels angle 90 0 -90 180 ticklabel va center baseline center baseline ticklabel ha right center right center axislabel angle 180 0 0 180 axislabel va center top center bottom axislabel ha right center right center ===================== ========== ========= ========== ========== Note that the direction "+" and "-" are relative to the direction of the increasing coordinate. Also, the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if axis_direction not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self._axis_direction = axis_direction if axis_direction in ["left", "top"]: #self._set_tick_direction("+") self.set_ticklabel_direction("-") self.set_axislabel_direction("-") else: #self._set_tick_direction("-") self.set_ticklabel_direction("+") self.set_axislabel_direction("+") self.major_ticklabels.set_axis_direction(axis_direction) self.label.set_axis_direction(axis_direction) # def _set_tick_direction(self, d): # if d not in ["+", "-"]: # raise ValueError('direction must be on of "in", "out"') # if d == "+": # self._tick_add_angle = 0 #get_helper()._extremes=0, 10 # else: # self._tick_add_angle = 180 #get_helper()._extremes=0, 10 def set_ticklabel_direction(self, tick_direction): """ Adjust the direction of the ticklabel. ACCEPTS: [ "+" | "-" ] Note that the label_direction '+' and '-' are relative to the direction of the increasing coordinate. """ if tick_direction not in ["+", "-"]: raise ValueError('direction must be one of "+", "-"') if tick_direction == "-": self._ticklabel_add_angle = 180 else: self._ticklabel_add_angle = 0 def invert_ticklabel_direction(self): self._ticklabel_add_angle = (self._ticklabel_add_angle + 180) % 360 self.major_ticklabels.invert_axis_direction() self.minor_ticklabels.invert_axis_direction() # def invert_ticks_direction(self): # self.major_ticks.set_tick_out(not self.major_ticks.get_tick_out()) # self.minor_ticks.set_tick_out(not self.minor_ticks.get_tick_out()) def set_axislabel_direction(self, label_direction): """ Adjust the direction of the axislabel. ACCEPTS: [ "+" | "-" ] Note that the label_direction '+' and '-' are relative to the direction of the increasing coordinate. """ if label_direction not in ["+", "-"]: raise ValueError('direction must be one of "+", "-"') if label_direction == "-": self._axislabel_add_angle = 180 else: self._axislabel_add_angle = 0 def get_transform(self): return self.axes.transAxes + self.offset_transform def get_helper(self): """ Return axis artist helper instance. """ return self._axis_artist_helper def set_axisline_style(self, axisline_style=None, **kw): """ Set the axisline style. *axisline_style* can be a string with axisline style name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords. set_arrowstyle("->,size=1.5") set_arrowstyle("->", size=1.5) Old attrs simply are forgotten. Without argument (or with arrowstyle=None), return available styles as a list of strings. """ if axisline_style==None: return AxislineStyle.pprint_styles() if isinstance(axisline_style, AxislineStyle._Base): self._axisline_style = axisline_style else: self._axisline_style = AxislineStyle(axisline_style, **kw) self._init_line() def get_axisline_style(self): """ return the current axisline style. """ return self._axisline_style def _init_line(self): """ Initialize the *line* artist that is responsible to draw the axis line. """ tran = self._axis_artist_helper.get_line_transform(self.axes) \ + self.offset_transform axisline_style = self.get_axisline_style() if axisline_style is None: self.line = BezierPath(self._axis_artist_helper.get_line(self.axes), color=rcParams['axes.edgecolor'], linewidth=rcParams['axes.linewidth'], transform=tran) else: self.line = axisline_style(self, transform=tran) def _draw_line(self, renderer): self.line.set_path(self._axis_artist_helper.get_line(self.axes)) if self.get_axisline_style() is not None: self.line.set_line_mutation_scale(self.major_ticklabels.get_size()) self.line.draw(renderer) def _init_ticks(self, axis_name, **kw): trans=self._axis_artist_helper.get_tick_transform(self.axes) \ + self.offset_transform major_tick_size = kw.get("major_tick_size", rcParams['%s.major.size'%axis_name]) major_tick_pad = kw.get("major_tick_pad", rcParams['%s.major.pad'%axis_name]) minor_tick_size = kw.get("minor_tick_size", rcParams['%s.minor.size'%axis_name]) minor_tick_pad = kw.get("minor_tick_pad", rcParams['%s.minor.pad'%axis_name]) self.major_ticks = Ticks(major_tick_size, axis=self.axis, transform=trans) self.minor_ticks = Ticks(minor_tick_size, axis=self.axis, transform=trans) if axis_name == "xaxis": size = rcParams['xtick.labelsize'] else: size = rcParams['ytick.labelsize'] fontprops = font_manager.FontProperties(size=size) self.major_ticklabels = TickLabels(size=size, axis=self.axis, axis_direction=self._axis_direction) self.minor_ticklabels = TickLabels(size=size, axis=self.axis, axis_direction=self._axis_direction) self.major_ticklabels.set(figure = self.axes.figure, transform=trans, fontproperties=fontprops) self.major_ticklabels.set_pad(major_tick_pad) self.minor_ticklabels.set(figure = self.axes.figure, transform=trans, fontproperties=fontprops) self.minor_ticklabels.set_pad(minor_tick_pad) def _get_tick_info(self, tick_iter): """ return ticks_loc_angle, ticklabels_loc_angle_label ticks_loc_angle : list of locs and angles for ticks ticklabels_loc_angle_label : list of locs, angles and labels for tickslabels """ ticks_loc_angle = [] ticklabels_loc_angle_label = [] tick_add_angle = self._tick_add_angle ticklabel_add_angle = self._ticklabel_add_angle for loc, angle_normal, angle_tangent, label in tick_iter: angle_label = angle_tangent - 90 angle_label += ticklabel_add_angle if np.cos((angle_label - angle_normal)/180.*np.pi) < 0.: angle_tick = angle_normal else: angle_tick = angle_normal + 180 ticks_loc_angle.append([loc, angle_tick]) ticklabels_loc_angle_label.append([loc, angle_label, label]) return ticks_loc_angle, ticklabels_loc_angle_label def _update_ticks(self, renderer): # set extra pad for major and minor ticklabels: # use ticksize of majorticks even for minor ticks. not clear what is best. dpi_cor = renderer.points_to_pixels(1.) if self.major_ticks.get_visible() and self.major_ticks.get_tick_out(): self.major_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) self.minor_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) else: self.major_ticklabels._set_external_pad(0) self.minor_ticklabels._set_external_pad(0) majortick_iter, minortick_iter = \ self._axis_artist_helper.get_tick_iterators(self.axes) tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(majortick_iter) self.major_ticks.set_locs_angles(tick_loc_angle) self.major_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) #self.major_ticks.draw(renderer) #self.major_ticklabels.draw(renderer) # minor ticks tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(minortick_iter) self.minor_ticks.set_locs_angles(tick_loc_angle) self.minor_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) #self.minor_ticks.draw(renderer) #self.minor_ticklabels.draw(renderer) #if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): # self._draw_offsetText(renderer) return self.major_ticklabels.get_window_extents(renderer) def _draw_ticks(self, renderer): extents = self._update_ticks(renderer) self.major_ticks.draw(renderer) self.major_ticklabels.draw(renderer) self.minor_ticks.draw(renderer) self.minor_ticklabels.draw(renderer) if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): self._draw_offsetText(renderer) return extents def _draw_ticks2(self, renderer): # set extra pad for major and minor ticklabels: # use ticksize of majorticks even for minor ticks. not clear what is best. dpi_cor = renderer.points_to_pixels(1.) if self.major_ticks.get_visible() and self.major_ticks.get_tick_out(): self.major_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) self.minor_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) else: self.major_ticklabels._set_external_pad(0) self.minor_ticklabels._set_external_pad(0) majortick_iter, minortick_iter = \ self._axis_artist_helper.get_tick_iterators(self.axes) tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(majortick_iter) self.major_ticks.set_locs_angles(tick_loc_angle) self.major_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) self.major_ticks.draw(renderer) self.major_ticklabels.draw(renderer) # minor ticks tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(minortick_iter) self.minor_ticks.set_locs_angles(tick_loc_angle) self.minor_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) self.minor_ticks.draw(renderer) self.minor_ticklabels.draw(renderer) if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): self._draw_offsetText(renderer) return self.major_ticklabels.get_window_extents(renderer) _offsetText_pos = dict(left=(0, 1, "bottom", "right"), right=(1, 1, "bottom", "left"), bottom=(1, 0, "top", "right"), top=(1, 1, "bottom", "right")) def _init_offsetText(self, direction): x,y,va,ha = self._offsetText_pos[direction] self.offsetText = mtext.Annotation("", xy=(x,y), xycoords="axes fraction", xytext=(0,0), textcoords="offset points", #fontproperties = fp, color = rcParams['xtick.color'], verticalalignment=va, horizontalalignment=ha, ) self.offsetText.set_transform(IdentityTransform()) self.axes._set_artist_props(self.offsetText) def _update_offsetText(self): self.offsetText.set_text( self.axis.major.formatter.get_offset() ) self.offsetText.set_size(self.major_ticklabels.get_size()) offset = self.major_ticklabels.get_pad() + self.major_ticklabels.get_size() + 2. self.offsetText.xyann= (0, offset) def _draw_offsetText(self, renderer): self._update_offsetText() self.offsetText.draw(renderer) def _init_label(self, **kw): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) labelsize = kw.get("labelsize", rcParams['axes.labelsize']) #labelcolor = kw.get("labelcolor", # rcParams['axes.labelcolor']) fontprops = font_manager.FontProperties( size=labelsize, weight=rcParams['axes.labelweight']) textprops = dict(fontproperties = fontprops) #color = labelcolor) tr = self._axis_artist_helper.get_axislabel_transform(self.axes) \ + self.offset_transform self.label = AxisLabel(0, 0, "__from_axes__", color = "auto", #rcParams['axes.labelcolor'], fontproperties=fontprops, axis=self.axis, transform=tr, axis_direction=self._axis_direction, ) self.label.set_figure(self.axes.figure) labelpad = kw.get("labelpad", 5) self.label.set_pad(labelpad) def _update_label(self, renderer): if not self.label.get_visible(): return fontprops = font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']) #pad_points = self.major_tick_pad #print self._ticklabel_add_angle - self._axislabel_add_angle #if abs(self._ticklabel_add_angle - self._axislabel_add_angle)%360 > 90: if self._ticklabel_add_angle != self._axislabel_add_angle: if (self.major_ticks.get_visible() and not self.major_ticks.get_tick_out()) \ or \ (self.minor_ticks.get_visible() and not self.major_ticks.get_tick_out()): axislabel_pad = self.major_ticks._ticksize else: axislabel_pad = 0 else: axislabel_pad = max([self.major_ticklabels._axislabel_pad, self.minor_ticklabels._axislabel_pad]) #label_offset = axislabel_pad + self.LABELPAD #self.label._set_offset_radius(label_offset) self.label._set_external_pad(axislabel_pad) xy, angle_tangent = self._axis_artist_helper.get_axislabel_pos_angle(self.axes) if xy is None: return angle_label = angle_tangent - 90 x, y = xy self.label._set_ref_angle(angle_label+self._axislabel_add_angle) self.label.set(x=x, y=y) def _draw_label(self, renderer): self._update_label(renderer) self.label.draw(renderer) def _draw_label2(self, renderer): if not self.label.get_visible(): return fontprops = font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']) #pad_points = self.major_tick_pad #print self._ticklabel_add_angle - self._axislabel_add_angle #if abs(self._ticklabel_add_angle - self._axislabel_add_angle)%360 > 90: if self._ticklabel_add_angle != self._axislabel_add_angle: if (self.major_ticks.get_visible() and not self.major_ticks.get_tick_out()) \ or \ (self.minor_ticks.get_visible() and not self.major_ticks.get_tick_out()): axislabel_pad = self.major_ticks._ticksize else: axislabel_pad = 0 else: axislabel_pad = max([self.major_ticklabels._axislabel_pad, self.minor_ticklabels._axislabel_pad]) #label_offset = axislabel_pad + self.LABELPAD #self.label._set_offset_radius(label_offset) self.label._set_external_pad(axislabel_pad) xy, angle_tangent = self._axis_artist_helper.get_axislabel_pos_angle(self.axes) if xy is None: return angle_label = angle_tangent - 90 x, y = xy self.label._set_ref_angle(angle_label+self._axislabel_add_angle) self.label.set(x=x, y=y) self.label.draw(renderer) def set_label(self, s): self.label.set_text(s) def get_tightbbox(self, renderer): if not self.get_visible(): return self._axis_artist_helper.update_lim(self.axes) dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear().scale(dpi_cor, dpi_cor) bb = [] self._update_ticks(renderer) #if self.major_ticklabels.get_visible(): bb.extend(self.major_ticklabels.get_window_extents(renderer)) #if self.minor_ticklabels.get_visible(): bb.extend(self.minor_ticklabels.get_window_extents(renderer)) self._update_label(renderer) #if self.label.get_visible(): bb.append(self.label.get_window_extent(renderer)) bb.append(self.offsetText.get_window_extent(renderer)) bb = [b for b in bb if b and (b.width!=0 or b.height!=0)] if bb: _bbox = Bbox.union(bb) return _bbox else: return None #self._draw_line(renderer) #self._draw_ticks(renderer) #self._draw_offsetText(renderer) #self._draw_label(renderer) @allow_rasterization def draw(self, renderer): 'Draw the axis lines, tick lines and labels' if not self.get_visible(): return renderer.open_group(__name__) self._axis_artist_helper.update_lim(self.axes) dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear().scale(dpi_cor, dpi_cor) self._draw_ticks(renderer) self._draw_line(renderer) #self._draw_offsetText(renderer) self._draw_label(renderer) renderer.close_group(__name__) #def get_ticklabel_extents(self, renderer): # pass def toggle(self, all=None, ticks=None, ticklabels=None, label=None): """ Toggle visibility of ticks, ticklabels, and (axis) label. To turn all off, :: axis.toggle(all=False) To turn all off but ticks on :: axis.toggle(all=False, ticks=True) To turn all on but (axis) label off :: axis.toggle(all=True, label=False)) """ if all: _ticks, _ticklabels, _label = True, True, True elif all is not None: _ticks, _ticklabels, _label = False, False, False else: _ticks, _ticklabels, _label = None, None, None if ticks is not None: _ticks = ticks if ticklabels is not None: _ticklabels = ticklabels if label is not None: _label = label if _ticks is not None: self.major_ticks.set_visible(_ticks) self.minor_ticks.set_visible(_ticks) if _ticklabels is not None: self.major_ticklabels.set_visible(_ticklabels) self.minor_ticklabels.set_visible(_ticklabels) if _label is not None: self.label.set_visible(_label) def test_axis_artist(): global axisline #self._axislines[loc] = new_fixed_axis(loc=loc, axes=axes) from mpl_toolkits.axisartist import AxisArtistHelperRectlinear fig = plt.figure(1) fig.clf() ax=fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if 1: _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="left") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="left") ax.add_artist(axisline) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="right") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="right") ax.add_artist(axisline) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="bottom") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="bottom") axisline.set_label("TTT") #axisline.label.set_visible(False) ax.add_artist(axisline) #axisline.major_ticklabels.set_axis_direction("bottom") axisline.major_ticks.set_tick_out(False) ax.set_ylabel("Test") axisline.label.set_pad(5) plt.draw() def test_axis_artist2(): global axisline #self._axislines[loc] = new_fixed_axis(loc=loc, axes=axes) from mpl_toolkits.axislines import AxisArtistHelperRectlinear fig = plt.figure(1) fig.clf() ax=fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="bottom") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="bottom") axisline.set_label("TTT") ax.add_artist(axisline) #axisline.major_ticklabels.set_axis_direction("bottom") axisline.major_ticks.set_tick_out(False) ax.set_ylabel("Test") plt.draw() if __name__ == "__main__": #test_labelbase() #test_ticklabels() test_axis_artist() #test_axis_artist2() # DONE # *. ticks, ticklabels, axislabels # *. workon axisartist # TODO
mit
cwu2011/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
cxmo/project-beta
code/dataprep_script.py
4
1758
""" The following script will apply a 3mm Gaussian filter on all the data spatially and will save each smoothed run into the data folder as 'smoothed_run_i', where 0 <= i <= 7 is the index of the run. """ #Import libraries import numpy as np import scipy import scipy.ndimage from scipy.ndimage.filters import gaussian_filter import nibabel as nb import matplotlib.pyplot as plt import utils.data_loading as dl #All file strings corresponding to BOLD data for subject 4 files = ['../data/task001_run001.bold_dico.nii.gz', '../data/task001_run002.bold_dico.nii.gz', '../data/task001_run003.bold_dico.nii.gz', '../data/task001_run004.bold_dico.nii.gz', '../data/task001_run005.bold_dico.nii.gz', '../data/task001_run006.bold_dico.nii.gz', '../data/task001_run007.bold_dico.nii.gz', '../data/task001_run008.bold_dico.nii.gz'] all_data = [] for index, filename in enumerate(files): new_data = dl.load_data(filename) #load_data function drops first 4 for us num_vols = new_data.shape[-1] if index != 0 and index != 7: new_num_vols = num_vols - 4 new_data = new_data[:,:,:,:new_num_vols] #Drop last 4 volumes for middle runs all_data.append(new_data) #Create an array of all smoothed data for index, run in enumerate(all_data): num_vols = np.shape(run)[-1] run_i_smoothed = [] for time in range(num_vols): smoothed = dl.smooth_gauss(run, 3, time) smoothed.shape = (132, 175, 48, 1) run_i_smoothed.append(smoothed) run_i_smoothed = np.concatenate(run_i_smoothed, axis = 3) np.save('../data/smoothed_run_' + str(index), run_i_smoothed) #save in data folder print('finished run' + str(index)) run_i_smoothed = None #Save memory space
bsd-3-clause
waynenilsen/statsmodels
statsmodels/sandbox/examples/try_quantile_regression1.py
33
1188
'''Example to illustrate Quantile Regression Author: Josef Perktold polynomial regression with systematic deviations above ''' import numpy as np from statsmodels.compat.python import zip from scipy import stats import statsmodels.api as sm from statsmodels.regression.quantile_regression import QuantReg sige = 0.1 nobs, k_vars = 500, 3 x = np.random.uniform(-1, 1, size=nobs) x.sort() exog = np.vander(x, k_vars+1)[:,::-1] mix = 0.1 * stats.norm.pdf(x[:,None], loc=np.linspace(-0.5, 0.75, 4), scale=0.01).sum(1) y = exog.sum(1) + mix + sige * (np.random.randn(nobs)/2 + 1)**3 p = 0.5 res_qr = QuantReg(y, exog).fit(p) res_qr2 = QuantReg(y, exog).fit(0.1) res_qr3 = QuantReg(y, exog).fit(0.75) res_ols = sm.OLS(y, exog).fit() params = [res_ols.params, res_qr2.params, res_qr.params, res_qr3.params] labels = ['ols', 'qr 0.1', 'qr 0.5', 'qr 0.75'] import matplotlib.pyplot as plt plt.figure() plt.plot(x, y, '.', alpha=0.5) for lab, beta in zip(['ols', 'qr 0.1', 'qr 0.5', 'qr 0.75'], params): print('%-8s'%lab, np.round(beta, 4)) fitted = np.dot(exog, beta) lw = 2 plt.plot(x, fitted, lw=lw, label=lab) plt.legend() plt.title('Quantile Regression') plt.show()
bsd-3-clause
hsiaoyi0504/scikit-learn
examples/classification/plot_lda.py
164
2224
""" ==================================================================== Normal and Shrinkage Linear Discriminant Analysis for classification ==================================================================== Shows how shrinkage improves classification. """ from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.lda import LDA n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation def generate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack([X, np.random.randn(n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2 = [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2 = 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LDA(solver='lsqr', shrinkage='auto').fit(X, y) clf2 = LDA(solver='lsqr', shrinkage=None).fit(X, y) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) features_samples_ratio = np.array(n_features_range) / n_train plt.plot(features_samples_ratio, acc_clf1, linewidth=2, label="LDA with shrinkage", color='r') plt.plot(features_samples_ratio, acc_clf2, linewidth=2, label="LDA", color='g') plt.xlabel('n_features / n_samples') plt.ylabel('Classification accuracy') plt.legend(loc=1, prop={'size': 12}) plt.suptitle('LDA vs. shrinkage LDA (1 discriminative feature)') plt.show()
bsd-3-clause
bjackman/lisa
libs/utils/perf_analysis.py
3
6952
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pylab as pl import re import sys import trappy import logging # Regexp to match an rt-app generated logfile TASK_NAME_RE = re.compile('.*\/rt-app-(.+)-[0-9]+.log') class PerfAnalysis(object): def __init__(self, datadir, tasks=None): # Dataframe of all tasks performance data self.perf_data = {} # Folder containing all rt-app data self.datadir = None # Setup logging self._log = logging.getLogger('PerfAnalysis') # Load performance data generated by rt-app workloads self.__loadRTAData(datadir, tasks) # Keep track of the datadir from where data have been loaded if len(self.perf_data) == 0: raise ValueError('No performance data found on folder [{0:s}]'\ .format(datadir)) self.datadir = datadir def __taskNameFromLog(self, logfile): tname_match = re.search(TASK_NAME_RE, logfile) if tname_match is None: raise ValueError('The logfile [{0:s}] is not from rt-app'\ .format(logfile)) return tname_match.group(1) def __logfileFromTaskName(self, taskname): for logfile in glob.glob( '{0:s}/rt-app-{1:s}.log'.format(self.datadir, taskname)): return logfile raise ValueError('No rt-app logfile found for task [{0:s}]'\ .format(taskname)) def tasks(self): """ Return the list of tasks for which performance data have been loaded """ if self.datadir is None: raise ValueError("rt-app performance data not (yet) loaded") return self.perf_data.keys() def logfile(self, task): """ Return the logfile for the specified task """ if task not in self.perf_data: raise ValueError('No logfile loaded for task [{0:s}]'\ .format(task)) return self.perf_data[task]['logfile'] def df(self, task): """ Return the PANDAS dataframe with the performance data for the specified task """ if self.datadir is None: raise ValueError("rt-app performance data not (yet) loaded") if task not in self.perf_data: raise ValueError('No dataframe loaded for task [{0:s}]'\ .format(task)) return self.perf_data[task]['df'] def __loadRTAData(self, datadir, tasks): """ Load peformance data of an rt-app workload """ if tasks is None: # Lookup for all rt-app logfile into the specified datadir for logfile in glob.glob('{0:s}/rt-app-*.log'.format(datadir)): task_name = self.__taskNameFromLog(logfile) self.perf_data[task_name] = {} self.perf_data[task_name]['logfile'] = logfile self._log.debug('Found rt-app logfile for task [%s]', task_name) else: # Lookup for specified rt-app task logfile into specified datadir for task in tasks: logfile = self.__logfileFromTaskName(task) self.perf_data[task_name] = {} self.perf_data[task_name]['logfile'] = logfile self._log.debug('Found rt-app logfile for task [%s]', task_name) # Load all the found logfile into a dataset for task in self.perf_data.keys(): self._log.debug('Loading dataframe for task [%s]...', task) df = pd.read_table(self.logfile(task), sep='\s+', skiprows=1, header=0, usecols=[1,2,3,4,7,8,9,10], names=[ 'Cycles', 'Run' ,'Period', 'Timestamp', 'Slack', 'CRun', 'CPeriod', 'WKPLatency' ]) # Normalize time to [s] with origin on the first event start_time = df['Timestamp'][0]/1e6 df['Time'] = df['Timestamp']/1e6 - start_time df.set_index(['Time'], inplace=True) # Add performance metrics column, performance is defined as: # slack # perf = ------------- # period - run df['PerfIndex'] = df['Slack'] / (df['CPeriod'] - df['CRun']) # Keep track of the loaded dataframe self.perf_data[task]['df'] = df def plotPerf(self, task, title=None): """ Plot the Latency/Slack and Performance data for the specified task """ # Grid gs = gridspec.GridSpec(2, 2, height_ratios=[4,1], width_ratios=[3,1]); gs.update(wspace=0.1, hspace=0.1); # Figure plt.figure(figsize=(16, 2*6)); if title: plt.suptitle(title, y=.97, fontsize=16, horizontalalignment='center'); # Plot: Slack and Latency axes = plt.subplot(gs[0,0]); axes.set_title('Task [{0:s}] (start) Latency and (completion) Slack'\ .format(task)); data = self.df(task)[['Slack', 'WKPLatency']] data.plot(ax=axes, drawstyle='steps-post', style=['b', 'g']); # axes.set_xlim(x_min, x_max); axes.xaxis.set_visible(False); # Plot: Performance axes = plt.subplot(gs[1,0]); axes.set_title('Task [{0:s}] Performance Index'.format(task)); data = self.df(task)[['PerfIndex',]] data.plot(ax=axes, drawstyle='steps-post'); axes.set_ylim(0, 2); # axes.set_xlim(x_min, x_max); # Plot: Slack Histogram axes = plt.subplot(gs[0:2,1]); data = self.df(task)[['PerfIndex',]] data.hist(bins=30, ax=axes, alpha=0.4); # axes.set_xlim(x_min, x_max); pindex_avg = data.mean()[0]; pindex_std = data.std()[0]; self._log.info('PerfIndex, Task [%s] avg: %.2f, std: %.2f', task, pindex_avg, pindex_std) axes.axvline(pindex_avg, color='b', linestyle='--', linewidth=2); # Save generated plots into datadir figname = '{}/task_perf_{}.png'.format(self.datadir, task) pl.savefig(figname, bbox_inches='tight')
apache-2.0
jpmpentwater/cvxpy
examples/expr_trees/1D_convolution.py
12
1453
#!/usr/bin/env python from cvxpy import * import numpy as np import random from math import pi, sqrt, exp def gauss(n=11,sigma=1): r = range(-int(n/2),int(n/2)+1) return [1 / (sigma * sqrt(2*pi)) * exp(-float(x)**2/(2*sigma**2)) for x in r] np.random.seed(5) random.seed(5) DENSITY = 0.008 n = 1000 x = Variable(n) # Create sparse signal. signal = np.zeros(n) nnz = 0 for i in range(n): if random.random() < DENSITY: signal[i] = random.uniform(0, 100) nnz += 1 # Gaussian kernel. m = 1001 kernel = gauss(m, m/10) # Noisy signal. std = 1 noise = np.random.normal(scale=std, size=n+m-1) noisy_signal = conv(kernel, signal) #+ noise gamma = Parameter(sign="positive") fit = norm(conv(kernel, x) - noisy_signal, 2) regularization = norm(x, 1) constraints = [x >= 0] gamma.value = 0.06 prob = Problem(Minimize(fit), constraints) solver_options = {"NORMALIZE": True, "MAX_ITERS": 2500, "EPS":1e-3} result = prob.solve(solver=SCS, verbose=True, NORMALIZE=True, MAX_ITERS=2500) # Get problem matrix. data, dims = prob.get_problem_data(solver=SCS) # Plot result and fit. import matplotlib.pyplot as plt plt.plot(range(n), signal, label="true signal") plt.plot(range(n), np.asarray(noisy_signal.value[:n, 0]), label="noisy convolution") plt.plot(range(n), np.asarray(x.value[:,0]), label="recovered signal") plt.legend(loc='upper right') plt.show()
gpl-3.0
shyamalschandra/scikit-learn
examples/decomposition/plot_image_denoising.py
181
5819
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of the Lena image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np from scipy.misc import lena from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### # Load Lena image and extract patches lena = lena() / 256.0 # downsample for higher speed lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena /= 4.0 height, width = lena.shape # Distort the right half of the image print('Distorting image...') distorted = lena.copy() distorted[:, height // 2:] += 0.075 * np.random.randn(width, height // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :height // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from Lena patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, lena, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, height // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = lena.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, height // 2:] = reconstruct_from_patches_2d( patches, (width, height // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], lena, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
shangwuhencc/scikit-learn
examples/applications/face_recognition.py
191
5513
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ Expected results for the top 5 most represented people in the dataset:: precision recall f1-score support Ariel Sharon 0.67 0.92 0.77 13 Colin Powell 0.75 0.78 0.76 60 Donald Rumsfeld 0.78 0.67 0.72 27 George W Bush 0.86 0.86 0.86 146 Gerhard Schroeder 0.76 0.76 0.76 25 Hugo Chavez 0.67 0.67 0.67 15 Tony Blair 0.81 0.69 0.75 36 avg / total 0.80 0.80 0.80 322 """ from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
bsd-3-clause
latticelabs/Mitty
setup.py
1
2920
from setuptools import setup, find_packages __version__ = eval(open('mitty/version.py').read().split('=')[1]) setup( name='mitty', version=__version__, description='Simulator for genomic data', author='Seven Bridges Genomics', author_email='kaushik.ghose@sbgenomics.com', packages=find_packages(include=['mitty*']), include_package_data=True, entry_points={ # Register the built in plugins 'mitty.plugins.sfs': ['double_exp = mitty.plugins.site_frequency.double_exp'], 'mitty.plugins.variants': ['snp = mitty.plugins.variants.snp_plugin', 'delete = mitty.plugins.variants.delete_plugin', 'uniformdel = mitty.plugins.variants.uniform_deletions', 'uniformins = mitty.plugins.variants.uniform_insertions', 'insert = mitty.plugins.variants.insert_plugin', #'inversion = mitty.plugins.variants.inversion_plugin', #'low_entropy_insert = mitty.plugins.variants.low_entropy_insert_plugin' ], 'mitty.plugins.population': ['standard = mitty.plugins.population.standard', 'vn = mitty.plugins.population.vn'], 'mitty.plugins.reads': ['simple_sequential = mitty.plugins.reads.simple_sequential_plugin', 'simple_illumina = mitty.plugins.reads.simple_illumina_plugin'], # Command line scripts 'console_scripts': ['genomes = mitty.genomes:cli', 'reads = mitty.reads:cli', 'perfectbam = mitty.benchmarking.perfectbam:cli', 'badbams = mitty.benchmarking.badbams:cli', 'alindel = mitty.benchmarking.indel_alignment_accuracy:cli', 'benchsummary = mitty.benchmarking.benchmark_summary:cli', 'vcf2pop = mitty.lib.vcf2pop:cli', 'bam2tfq = mitty.benchmarking.convert_bam_to_truth_fastq:cli', 'alindel_plot = mitty.benchmarking.indel_alignment_accuracy_plot:cli', 'misplot = mitty.benchmarking.misalignment_plot:cli', 'acubam = mitty.benchmarking.bam_accuracy:cli', 'migratedb = mitty.util.db_migrate:cli', 'plot_gc_bias = mitty.util.plot_gc_bias:cli', 'splitta = mitty.util.splitta:cli', 'kmers = mitty.util.kmers:cli', 'pybwa = mitty.util.pybwa:cli'] }, install_requires=[ 'cython', 'setuptools>=11.0.0', 'numpy>=1.9.0', 'docopt>=0.6.2', 'click>=3.3', 'pysam>=0.8.1', 'h5py>=2.5.0', 'matplotlib>=1.3.0', 'scipy' ], )
gpl-2.0
matthewwardrop/formulaic
benchmarks/plot.py
1
1418
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv(os.path.join(os.path.dirname(__file__), 'benchmarks.csv')).sort_values('mean') def grouped_barplot(df, cat, subcat, val, err, subcats=None, **kwargs): # based on https://stackoverflow.com/a/42033734 categories = df[cat].unique() x = np.arange(len(categories)) subcats = subcats or df[subcat].unique() offsets = (np.arange(len(subcats)) - np.arange(len(subcats)).mean()) / (len(subcats) + 1.) width = np.diff(offsets).mean() for i, gr in enumerate(subcats): dfg = df[df[subcat] == gr] plt.bar(x + offsets[i], dfg[val].values, width=width, label="{}".format(gr), yerr=dfg[err].values, capsize=6, **kwargs) plt.xlabel(cat) plt.ylabel(val) plt.xticks(x, categories) plt.legend(title=subcat, loc='center left', bbox_to_anchor=(1, 0.5)) def plot_benchmarks(toolings=None): plt.figure(dpi=120, figsize=(10, 5)) grouped_barplot(data, cat='formula', subcat='tooling', val='mean', err='stderr', subcats=toolings, log=True) plt.ylim(1e-2, None) plt.grid() plt.gca().set_axisbelow(True) plt.ylabel("Mean Time (s)") plt.xlabel("Formula") plt.tight_layout() plot_benchmarks(toolings=['formulaic', 'R', 'patsy', 'formulaic_sparse', 'R_sparse']) plt.savefig(os.path.join(os.path.dirname(__file__), 'benchmarks.png'))
mit
meduz/NeuroTools
examples/matlab_vs_python/smallnet_acml.py
3
4164
# Created by Eugene M. Izhikevich, 2003 Modified by S. Fusi 2007 # Ported to Python by Eilif Muller, 2008. # # Notes: # # Requires matplotlib,ipython,numpy>=1.0.3 # On a debian/ubuntu based system: # $ apt-get install python-matplotlib python-numpy ipython # # Start ipython with threaded plotting support: # $ ipython -pylab # # At the resulting prompt, run the file by: # In [1]: execfile('smallnet.py') # Modules required import numpy import numpy.random as random import acml_rng # Bug fix for numpy version 1.0.4 numpy.lib.function_base.any = numpy.any # For measuring performance import time t1 = time.time() # Excitatory and inhibitory neuron counts Ne = 1000 Ni = 4 N = Ne+Ni # Synaptic couplings Je = 250.0/Ne Ji = 0.0 # reset depolarization (mV) reset = 0.0 # refractory period (ms) refr = 2.5 # Synaptic couplings (mV) S = numpy.zeros((N,N)) S[:,:Ne] = Je*random.uniform(size=(N,Ne)) S[:,:Ni] = -Ji*random.uniform(size=(N,Ni)) # Connectivity S[:,:Ne][random.uniform(size=(N,Ne))-0.9<=0.0]=0.0 S[:,Ne:][random.uniform(size=(N,Ni))-0.9<=0.0]=0.0 # (mV/ms) (lambda is a python keyword) leak = 5.0 dt = 0.05 sdt = numpy.sqrt(dt) # Statistics of the background external current mb = 3.0; sb = 4.0 mue = mb; sigmae=sb sigmai = 0.0 # State variable v, initial value of 0 v = numpy.zeros(N) # Refractory period state variable r = numpy.zeros(N) # Spike timings in a list firings = [] spikes = [[]]*N print 'mu(nu=5Hz)=%f' % (mb+Ne*Je*.015-leak,) print 'mu(nu=100Hz)=%f' % (mb+Ne*Je*.1-leak,) # total duration of the simulation (ms) duration = 400.0 t = numpy.arange(0.0,400.0,dt) vt = numpy.zeros_like(t) t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' t1 = time.time() for i,ti in enumerate(t): # time for a strong external input if ti>150.0: mue = 6.5 sigmae = 7.5 # time to restore the initial statistics of the external current if ti>300.0: mue = mb sigmae = sb Iext = acml_rng.normal(1.0,N) Iext[:Ne]*=sigmae Iext[Ne:]*=sigmai # Which neurons fired? fired = numpy.nonzero(v>=20.0)[0] if len(fired)>0: # Save mean firing rate of the excitatory neurons v[fired] = reset r[fired] = refr # Append spikes to the spike list for n in fired: # Spikes are stored by a (neuron, time) pair # For easy plotting later firings.append((n,ti)) # and as a list for each neuron spikes[n].append(ti) aux = v-dt*(leak-mue)+numpy.sum(S[:,fired],1)+sdt*Iext else: aux = v-dt*(leak-mue)+sdt*Iext; # Neurons not in the refractory period nr = numpy.nonzero(r<=0)[0] # Bound voltages above 0.0 v[nr] = numpy.where(aux[nr]>=0.0,aux[nr],0.0) # Progress refractory variable nr = numpy.nonzero(r>0)[0] r[nr]-=dt # record the voltage trace of the zeroeth neuron vt[i] = v[0] t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' # ------------------------------------------------------------------------- # Plot everything # ------------------------------------------------------------------------- def myplot(): global firings t1 = time.time() figure() # Membrane potential trace of the zeroeth neuron subplot(3,1,1) vt[vt>=20.0]=65.0 plot(t,vt) ylabel(r'$V-V_{rest}\ \left[\rm{mV}\right]$') # Raster plot of the spikes of the network subplot(3,1,2) myfirings = array(firings) myfirings_100 = myfirings[myfirings[:,0]<min(100,Ne)] plot(myfirings_100[:,1],myfirings_100[:,0],'.') axis([0, duration, 0, min(100,Ne)]) ylabel('Neuron index') # Mean firing rate of the excitatory population as a function of time subplot(3,1,3) # 1 ms resultion of rate histogram dx = 1.0 x = arange(0,duration,dx) myfirings_Ne = myfirings[myfirings[:,0]<Ne] mean_fe,x = numpy.histogram(myfirings_Ne[:,1],x) plot(x,mean_fe/dx/Ne*1000.0,ls='steps') ylabel('Hz') xlabel('time [ms]') t2 = time.time() print 'Finished. Elapsed', str(t2-t1), ' seconds.' #myplot()
gpl-2.0
mmechelke/bayesian_xfel
bxfel/core/structure_factor.py
1
18608
import numpy as np import scipy import re import os import hashlib import csb from csb.bio.io.wwpdb import StructureParser def chunks(l, n): """ Yield successive n-sized chunks from l. """ for i in xrange(0, len(l), n): yield l[i:i+n] class ScatteringFactor(object): """ Cacluates the density in reciprocal space as F(s) = sum_m f_m(s) exp(-B_m s**2 / 4) exp(i*2pi*s*r) where f_m(s) is approximated by four Gaussian distributions and exp(-B_m s**2 / 4) are the thermal fluctuations g_m(s) = f_m(s) * exp(-B_m s**2 / 4) are precomputed """ def __init__(self, structure=None): if structure is None: self._atoms = list() self._bfactor = list() self._seq = list() self._elements = list() else: self._structure = structure # For now only non hydrogen atoms # TODO use hydrogens as well self._atoms = [] for chain in structure: for residue in structure[chain]: for atom in residue: a = residue[atom] if not a.name.startswith("H"): self._atoms.append(residue[atom]) self._seq = [] self._bfactor = [] self._elements = [] for atom in self._atoms: self._seq.append(atom.element.name) self._elements.append(atom.element.name) if atom._bfactor is None: self._bfactor.append(1.) else: self._bfactor.append(atom._bfactor) self._seq = np.array(self._seq) self._elements = set(self._elements) self._bfactor = np.clip(self._bfactor, 1., 100.) self._atom_type_params = {} self._read_sf(fn=os.path.expanduser("~/projects/xfel/py/xfel/core/atomsf.lib")) @classmethod def from_isd(cls, universe): obj = cls() atoms = universe.atoms for atom in atoms: element = str(atom.properties['element'].name) obj._elements.append(element) obj._atoms.append(atom) obj._seq.append(element) try: obj._bfactor.append(max(1.,atom.properties['bfactor'])) except KeyError: obj._bfactor.append(1.) obj._seq = np.array(obj._seq) obj._bfactor = np.array(obj._bfactor) obj._elements = set(obj._elements) obj._bfactor = np.clip(obj._bfactor, 1., 100.) return obj def _read_sf(self, fn): """ Reads the coefficients for the analystical approximation to scattering factors from ccp4 database """ float_pattern = '[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?' atom_pattern = '[A-Za-z]' atom_pattern = '[A-Za-z0-9-+]+' line_pattern = ("({0})\s+({1})" "\s+({1})\s+({1})" "\s+({1})\s+({1})" "\s+({1})\s+({1})" "\s+({1})\s+({1})").format(atom_pattern,float_pattern) regex = re.compile(line_pattern) with open(fn) as file_handle: for line in file_handle: if line.startswith("#"): continue m = regex.match(line) atom_name = m.groups()[0] a1, a2, a3, a4 = m.groups()[1], m.groups()[3], m.groups()[5], m.groups()[7] b1, b2, b3, b4 = m.groups()[2], m.groups()[4], m.groups()[6], m.groups()[8] c = m.groups()[9] a = np.array([a1,a2,a3,a4],np.double) b = np.array([b1,b2,b3,b4],np.double) self._atom_type_params[atom_name] = (a,b,float(c)) def _calculate_gm(self, hkl): """ calculates the the product of scattering factor and debye-waller factors """ f = np.zeros((len(self._atoms), hkl.shape[0])) seq = self._seq bfactor = self._bfactor s_tols = 0.25 * (hkl**2).sum(-1) for atom_type in self._elements: a,b,c = self._atom_type_params[atom_type] indices = np.where(seq==atom_type)[0] fx = c + np.dot(np.exp(np.outer(-s_tols,b)),a) f[indices,:] = fx[:] f *= np.exp(np.outer(-bfactor,s_tols)) return f def _calculate_gm_grad(self, hkl): """ calculate the gradien of the scattering factor and debye-waller factor """ seq = np.array([a.element.name for a in self._atoms]) f = np.zeros((len(self._atoms), hkl.shape[0])) dfg = np.zeros((len(self._atoms), hkl.shape[0], 3)) bfactors = np.array([a.bfactor for a in self._atoms]) bfactors = np.clip(bfactors, 1., 100.) s_tols = 0.25 * (hkl**2).sum(-1) for atom_type in self._elements: a,b,c = self._atom_type_params[atom_type] indices = np.where(seq==atom_type)[0] bfactor = bfactors[indices] g = np.exp(np.outer(-s_tols,b)) sf = np.dot(g, a) + c gsf = np.sum(g * a[np.newaxis,:] * b[np.newaxis,:] * -0.5, -1) dwf = np.exp(-np.outer(bfactor, s_tols)) gdwf = dwf * (bfactor * - 0.5)[:,np.newaxis] grad = sf * gdwf + gsf * dwf f[indices,:] = dwf * sf dfg[indices,:,:] = grad[:,:,np.newaxis] * hkl return dfg, f def _calculate_scattering_factors(self, hkl): """ creates an approximation of the density in reciprocal space by four gaussians returns the scattering vectors """ seq = self._seq bfactor = self._bfactor f = np.zeros((len(self._atoms), hkl.shape[0])) s_tols = 0.25 * (hkl**2).sum(-1) for atom_type in self._elements: a,b,c = self._atom_type_params[atom_type] indices = np.where(seq==atom_type)[0] fx = c + np.dot(np.exp(np.outer(-s_tols,b)),a) f[indices,:] = fx[:] return f def _calculate_debyewaller_factors(self, hkl): """ """ b = np.array(self._bfactor) s_tols = 0.25 * (hkl**2).sum(-1) t = np.exp(np.outer(-b,s_tols)) return t def grad_s(self, X, hkl): """ Gradient with respect to the reciprocal space coordinates @param X: atomic positions @param hkl: reciprocal space positions """ seq = np.array([atom.element.name for atom in self._atoms]) bfactor = np.array([atom.bfactor for atom in self._atoms]) bfactor = np.clip(bfactor, 1., 100.) s_tols = 0.25 * (hkl**2).sum(-1) dw_factors = np.exp(np.outer(-bfactor, s_tols)) def grad_hkl(self, X, hkl): seq = self._seq bfactor = self._bfactor bfactor = np.clip(bfactor, 1., 100.) dg = np.zeros((len(self._atoms), hkl.shape[0], hkl.shape[1])) g = np.zeros((len(self._atoms), hkl.shape[0])) s_tols = 0.25 * (hkl**2).sum(-1) dw_factors = np.exp(np.outer(-bfactor, s_tols)) ddw_factors = bfactor[:,np.newaxis] * dw_factors for atom_type in self._elements: a,b,c = self._atom_type_params[atom_type] indices = np.where(seq==atom_type)[0] inner_exp = np.exp(np.outer(-s_tols,b)) sf = np.dot(inner_exp, a) + c dsf = np.dot(inner_exp, a*b) gx = dsf * dw_factors[indices] + sf * ddw_factors[indices] g[indices,:] = sf[:] * dw_factors[indices] a = np.einsum('ab,bc->abc',gx, -0.5*hkl) dg[indices,:,:] = a phase = np.dot((2 * np.pi * X),hkl.T) fx= np.sum(g * np.exp(1j * phase),0) g2 = np.einsum('ba,bc->bac',g , 2 * np.pi * 1j *X) dfx = np.einsum("abc,ab->bc",dg + g2,np.exp(1j * phase)) return dfx, fx def calculate_structure_factors(self, X, hkl): """ TODO do this calculation in chunks to save space """ F = np.zeros(hkl.shape[0], dtype=np.complex128) lim = hkl.shape[0] step = 512 for i in range(0,lim,step): _hkl = hkl[i:i+step] f = self._calculate_scattering_factors(_hkl) f *= self._calculate_debyewaller_factors(_hkl) phase = np.dot((2 * np.pi * X),_hkl.T) F[i:i+step] = np.sum(f * np.exp(1j * phase),0) return F def calculate_structure_factor_gradient(self, X, hkl): """ calculates the gradient of the fourier density with respect to the atomic coordinates """ G = np.zeros(hkl.shape, dtype=np.complex128) lim = hkl.shape[0] F = np.zeros(hkl.shape[0], dtype=np.complex128) step = 512 for i in range(0, lim, step): _hkl = hkl[i:i+step] dfg, f = self._calculate_gm_grad(_hkl) phase = np.exp(1j * np.dot((2 * np.pi * X), _hkl.T)) gphase = phase[:, :, np.newaxis] *\ 1j * 2 * np.pi * X[:, np.newaxis, :] grad = dfg * phase[:, :, np.newaxis] grad += f[:, :, np.newaxis] * gphase F[i: i+step] = np.sum(f * phase, 0) G[i: i+step, :] = np.sum(grad, 0) return G, F def calculate_structure_factor_gradient2(self, X): """ calculates the gradient of the fourier density with respect to the atomic coordinates """ g_m = self._calculate_scattering_factors(hkl) g_m *= self._calculate_debyewaller_factors(hkl) phase = np.dot((2 * np.pi * X),self._hkl.T) fx = (g_m *1j * 2 * np.pi * np.exp(1j * phase)) dF_dx = np.array([np.multiply.outer(s,fx_s) for s,fx_s in zip(fx.T,self._hkl)]) return dF_dx def calculate_intensity_gradient(self, X): """ calculates the gradient of the intensity with respect to the atomic coordinates dI/dx """ g_m = self._calculate_scattering_factors(self._hkl) g_m *= self._calculate_debyewaller_factors(self._hkl) phase = np.dot((2 * np.pi * X),self._hkl.T) F = np.sum(g_m * np.exp(1j * phase),0) fx = (g_m *1j * 2 * np.pi * np.exp(1j * phase)) dF_dx = np.array([np.multiply.outer(s,fx_s) for s,fx_s in zip(fx.T,self._hkl)]) dI_dx = np.conj(F[:,np.newaxis,np.newaxis]) * dF_dx + F[:,np.newaxis,np.newaxis] * np.conj(dF_dx) return dI_dx class Correlations(object): def __init__(self, angles, nbins): self._bin_angles(angles, nbins) def _bin_angles(self, angles, nbins): pass def calculate_from_density(self, rho): pass class OnePhotonCorrelations(Correlations): def _bin_angles(self, angles, nbins): d = np.sqrt(np.sum(angles**2,-1)) lower = d.min() upper = d.max() axes = np.linspace(lower, upper, nbins) indices = np.argsort(d) bins = [[] for x in xrange(nbins)] j = 0 for i in range(0,axes.shape[0]): right_edge = axes[i] print right_edge, i while d[indices[j]] < right_edge: bins[i-1].append(indices[j]) j += 1 bins[-1] = indices[j:].tolist() self._axes = axes self._bins = bins def calculate_from_density(self, rho): I = np.asarray([np.sum(rho.take(bin)) for bin in self._bins]) return I class CachedScatteringFactor(ScatteringFactor): def __init__(self, structure): super(CachedScatteringFactor,self).__init__(structure) self._f = None def calculate_structure_factors(self, X, hkl): if self._f is None: print "calc f" self._f = self._calculate_scattering_factors(hkl) self._f *= self._calculate_debyewaller_factors(hkl) else: print "using cached f" phase = np.dot((-2 * np.pi * X),hkl.T) F = np.sum(self._f * np.exp(1j * phase),0) return F class SphericalSection(object): def get(self, n_points=20, radius=1.0, polar_min=0., polar_max=np.pi, azimut_min=0., azimut_max=2*np.pi): theta = np.linspace(polar_min,polar_max, n_points) phi = np.linspace(azimut_min, azimut_max, n_points) x = np.outer(radius*np.sin(theta), np.cos(phi)) y = np.outer(radius*np.sin(theta), np.sin(phi)) z = np.outer(radius*np.cos(theta), np.ones(n_points)) return [x,y,z] class EwaldSphereProjection(object): def get_indices(self, wavelength, x,y,z): """ projects dectector points onto an Ewald Sphere x, y, z are the pixel coordinates x, y, z are all M x N matrices, where M x N is the detector size. It is assumed that the detector is perpendicular to the Z-axis """ d = np.sqrt(x**2 + y**2 + z**2) h = 1/wavelength * (x/d) k = 1/wavelength * (y/d) l = 1/wavelength * (z/d) return h,k,l def project(self, structure_factor, angle): pass if __name__ == "__main__": import matplotlib matplotlib.interactive(True) import time import os import seaborn as sns from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import pylab from pylab import * from csb.bio.io.wwpdb import StructureParser from csb.bio.io.wwpdb import get from xfel.core.density import Density #structure = get("1L2Y") #structure = StructureParser(os.path.expanduser("~/data/pdb/caffeine2.pdb")).parse() #fn = os.path.expanduser("~/gsh.pdb") structure = StructureParser(os.path.expanduser("~/projects/xfel/data/GTT_short.pdb")).parse() x = np.linspace(-1.,1.,11) h, k, l = np.meshgrid(x,x,x) hkl = np.vstack([item.ravel() for item in [h,k,l]]).T hkl = np.ascontiguousarray(hkl) bf = np.random.random() def bfactors(hkl, bf): return np.exp(-0.25 * bf * (hkl**2).sum(-1)) def bfactor_grad(hkl): return np.exp(-0.25 * bf * (hkl**2).sum(-1))[:,np.newaxis] * -0.5 * hkl * bf a = np.random.random(4,) b = np.random.random(4,) c = 0.3 def sf(hkl,a,b,c): s_tols = -0.25 * (hkl**2).sum(-1) inner_exp = np.exp(np.outer(-s_tols,b)) sf = np.dot(inner_exp, a) + c return sf def sf_grad(hkl, a, b, c): s_tols = -0.25 * (hkl**2).sum(-1) sf = np.exp(np.outer(-s_tols,b)) * a[np.newaxis,:] * b[np.newaxis,:] * 0.5 return sf.sum(-1)[:,np.newaxis] * hkl def gm(hkl, a, b, c, bf): s_tols = -0.25 * (hkl**2).sum(-1) inner_exp = np.exp(np.outer(-s_tols,b)) sf = np.dot(inner_exp, a) + c bf = np.exp(bf * s_tols) return sf * bf def gm_grad(hkl, a, b, c, bf): s_tols = -0.25 * (hkl**2).sum(-1) g = np.exp(np.outer(-s_tols,b)) sf = np.dot(g, a) + c gsf = np.sum(g * a[np.newaxis,:] * b[np.newaxis,:] * 0.5, -1) bb = np.exp(bf * s_tols) gb = bb * bf * - 0.5 grad = sf * gb + gsf * bb return grad[:,np.newaxis] * hkl sf = ScatteringFactor(structure) X = np.array([a.vector for a in sf._atoms]) X -= X.mean(0) if False: n = 10 X = X[:n] sf._seq = sf._seq[:n] sf._elements = ['N', 'C'] sf._atoms = sf._atoms[:n] sf._bfactor = sf._bfactor[:n] dgm, f1 = sf._calculate_gm_grad(hkl) f = sf._calculate_scattering_factors(hkl) f *= sf._calculate_debyewaller_factors(hkl) scatter(f.real.ravel(), f1.real.ravel()) dgm2 = dgm * 0.0 eps = 1e-7 for i in range(3): hkl[:, i] += eps fprime = sf._calculate_scattering_factors(hkl) fprime *= sf._calculate_debyewaller_factors(hkl) dgm2[:, :, i] = (fprime - f)/eps hkl[:, i] -= eps figure() scatter(dgm.real.ravel(), dgm2.real.ravel()) G, FF = sf.calculate_structure_factor_gradient(X, hkl) G2 = G * 0.0 F = sf.calculate_structure_factors(X, hkl) eps = 1e-7 for i in range(3): hkl[:,i] += eps G2[:,i] = (sf.calculate_structure_factors(X, hkl) - F)/eps hkl[:,i] -= eps figure() scatter(G.real.ravel(), G2.real.ravel()) scatter(G.imag.ravel(), G2.imag.ravel()) figure() scatter(F.real.ravel(), FF.real.ravel()) show() t0 = time.time() G, FF = sf.calculate_structure_factor_gradient(X, hkl) print "hkl gradient: {} \n".format(time.time() - t0) t0 = time.time() g = sf.grad_hkl(X, hkl) print "X gradient: {} \n".format(time.time() - t0) raise sf = ScatteringFactor(structure) sf._hkl = hkl X = np.array([a.vector for a in sf._atoms]) X -= X.mean(0) g,g2 = sf.grad_hkl(X, hkl) F = sf.calculate_structure_factors(X,hkl) gi= sf.calculate_intensity_gradient(X) raise F = F.reshape(h.shape) rho = np.fft.fftshift(np.abs(np.fft.ifftn(F,[250,250,250]))) grid = Density.from_voxels(np.abs(F)**2,1.) grid.write_gaussian(os.path.expanduser("~/mr.cube")) raise grid = Density.from_voxels(rho,1.) grid.write_gaussian(os.path.expanduser("~/mr2.cube")) raise if True: fig = pylab.figure() ax = fig.add_subplot(131) xi, yi= np.mgrid[0:500:1,0:500:1] ax.contour(xi,yi, rho.sum(0), 30) pylab.show() ax = fig.add_subplot(132) xi, yi= np.mgrid[0:500:1,0:500:1] ax.contour(xi,yi, rho.sum(1), 30) pylab.show() ax = fig.add_subplot(133) xi, yi= np.mgrid[0:500:1,0:500:1] ax.contour(xi,yi, rho.sum(2), 30) pylab.show() raise from mayavi import mlab xi, yi, zi = np.mgrid[0:500:1,0:500:1,0:500:1] obj = mlab.contour3d(rho, contours=10, transparent=True) mlab.show() from mayavi import mlab obj = mlab.contour3d(np.abs(F), contours=10, transparent=True) mlab.show() raise for ii in range(0,F.shape[0],25): fig = pylab.figure() ax = fig.add_subplot(111) xi, yi= np.mgrid[0:500:1,0:500:1] ax.contour(xi,yi,rho[ii,:,:], 30) pylab.show() I = np.abs(F)**2 fig = pylab.figure() ax = fig.add_subplot(111) nx, ny, nz = I.shape xi, yi= np.mgrid[0:nx:1,0:ny:1] ax.contour(xi,yi, I.sum(2), 15)
mit
bioinformatics-centre/AsmVar
src/AsmvarVarScore/FeatureToScore2.py
2
12476
""" ======================================================== Statistic the SV Stat after AGE Process ======================================================== Author: Shujia Huang & Siyang Liu Date : 2014-03-07 0idx:54:15 """ import sys import re import os import string import numpy as np import matplotlib.pyplot as plt def DrawFig(figureFile, distance, properDepth, imProperDepth, nr, aa, bb, mscore, misprob, aveIden, inbCoe): fig = plt.figure(num=None, figsize=(16, 30), facecolor='w', edgecolor='k') title = ['Distance distribution', 'NRatio', 'Perfect Depth', 'Imperfect depth', '', '', ''] ylabel = ['The position of breakpoint', 'N Ratio of varints', \ 'Perfect Depth', 'Both ImPerfect Depth', 'InbreedCoefficient', \ 'Map score', 'Mismapping Probability' , 'Average Identity', \ 'ProperReadDepth', 'ImProperReadDepth'] al = 0.5 for i, data in enumerate ([distance, nr, aa, bb, inbCoe, mscore, misprob, aveIden, properDepth, imProperDepth ]): plt.subplot(10,2,2 * i + 1) #plt.title(title[i], fontsize=16) P = data[:,0] == 1; N = data[:,0] == 2; X = data[:,0] == 3 plt.scatter(data[:,1][N], data[:,2][N], marker='o', c = 'r', alpha=al, linewidths = 0.1, label = 'Negative(%d)'%len(data[:,1][N])) # Negative plt.scatter(data[:,1][P], data[:,2][P], marker='o', c = 'g', alpha=al, linewidths = 0.1, label = 'Positive(%d)'%len(data[:,1][P])) # Positive plt.scatter(data[:,1][X], data[:,2][X], marker='*', c = 'Y', alpha=al, linewidths = 0.1, label = 'Positive->Negative(%d)' % len(data[:,1][X])) # Positive->Negative plt.legend(loc='upper right') plt.xlim(-10, 50) if i == 9: plt.xlabel('Score', fontsize=16) plt.ylabel(ylabel[i], fontsize=16) plt.subplot(10, 2, 2*i + 2) NEW = data[:,0] == 0 good = data[:,1][NEW] >= VQ_CUTOFF bad = data[:,1][NEW] < VQ_CUTOFF plt.scatter(data[:,1][NEW][bad], data[:,2][NEW][bad], marker='o', c = 'm', alpha=al, linewidths = 0.1, label = 'bad(%d)' % len(data[:,1][NEW][bad])) # bad plt.scatter(data[:,1][NEW][good], data[:,2][NEW][good], marker='o', c = 'b', alpha=al, linewidths = 0.1, label = 'good(%d)' % len(data[:,1][NEW][good])) # good plt.xlim(-3, 30) plt.legend(loc='upper right') if i == 9: plt.xlabel('Score', fontsize=16) fig.savefig(figureFile + '.png') #fig.savefig(figureFile + '.pdf') def DrawPhredScale (figureFile, phredScal): fig = plt.figure() ylabel = ['Phred Scale'] for i, data in enumerate ([phredScal ]): plt.subplot(2, 1, 2 * i + 1) P = data[:,0] == 1; N = data[:,0] == 2; X = data[:,0] == 3 plt.scatter(data[:,1][N], data[:,2][N], marker='o', c = 'r', alpha=0.5, linewidths = 0, label = 'Negative(%d)'%len(data[:,1][N])) # Negative plt.scatter(data[:,1][P], data[:,2][P], marker='o', c = 'g', alpha=0.5, linewidths = 0, label = 'Positive(%d)'%len(data[:,1][P])) # Positive plt.scatter(data[:,1][X], data[:,2][X], marker='o', c = 'Y', alpha=0.5, linewidths = 0, label = 'Positive->Negative(%d)' % len(data[:,1][X])) # Positive->Negative plt.legend(loc='upper left') plt.ylabel(ylabel[i], fontsize=16) plt.subplot(2, 1, 2*i + 2) NEW = data[:,0] == 0 good = data[:,1][NEW] >= VQ_CUTOFF bad = data[:,1][NEW] < VQ_CUTOFF plt.scatter(data[:,1][NEW][bad] , data[:,2][NEW][bad] , marker='o', c = 'm', alpha=0.5, linewidths = 0, label = 'bad(%d)' % len(data[:,1][NEW][bad])) # bad plt.scatter(data[:,1][NEW][good], data[:,2][NEW][good], marker='o', c = 'b', alpha=0.5, linewidths = 0, label = 'good(%d)' % len(data[:,1][NEW][good])) # good plt.legend(loc='upper left') plt.xlabel('Score' , fontsize=16) plt.ylabel(ylabel[i], fontsize=16) fig.savefig(figureFile + '.png') #fig.savefig(figureFile + '.pdf') def Accum (data, isBig = False): tmpD= data k = sorted(tmpD.keys(), key = lambda d: float(d)) dat = [] for i in range(len(k)): if isBig: for j in range(i,len(k)): tmpD[k[i]][1] += tmpD[k[j]][0] else: for j in range(i+1): tmpD[k[i]][1] += tmpD[k[j]][0] dat.append([float(k[i]), float(tmpD[k[i]][0]), float(tmpD[k[i]][1]) ]) return dat def SampleFaLen (faLenFile): if faLenFile[-3:] == '.gz': I = os.popen('gzip -dc %s' % faLenFile) else : I = open(faLenFile) data = {} while 1: lines = I.readlines (100000) if not lines: break for line in lines: col = line.strip('\n').split() data[col[0]] = string.atoi(col[1]) I.close() return data def LoadFaLen (faLenLstFile): data = {} I = open (faLenLstFile) for line in I.readlines(): if len(line.strip('\n').split()) != 2: raise ValueError('[ERROR] The format of Fa length list maybe not right. It could just be: "sample FalenghtFile", but found',line) sampleId, fileName = line.strip('\n').split() if sampleId not in data: data[sampleId] = {} data[sampleId] = SampleFaLen(fileName) I.close() return data def main (argv): qFaLen = LoadFaLen(argv[1]) figPrefix = 'test' if len(argv) > 2: figPrefix = argv[2] if argv[0][-3:] == '.gz': I = os.popen('gzip -dc %s' % argv[0]) else: I = open (argv[0]) s, annotations, mark = set(), [], [] print '#Chr\tPosition\tDistance\tLeftIden\tRightIden\tAveIden\tN-Ratio\tAA' while 1: # VCF format lines = I.readlines(100000) if not lines: break for line in lines: col = line.strip('\n').split() if re.search(r'^#CHROM', line): col2sam = { i+9:sam for i,sam in enumerate(col[9:]) } if re.search(r'^#', line): continue key = col[0] + ':' + col[1] if key in s: continue s.add(key) #if re.search(r'^PASS', col[6]): continue #if not re.search(r'_TRAIN_SITE', col[7]): continue #if not re.search(r'^PASS', col[6]): continue isbad = False for i, sample in enumerate (col[9:]): if re.search(r'NULL', sample): isbad = True if isbad: continue fmat = { k:i for i,k in enumerate(col[8].split(':')) } if 'VS' not in fmat or 'QR' not in fmat: continue if 'AGE' not in fmat: continue if len(annotations) == 0: annotations = [[] for _ in col[9:] ] vcfinfo = { d.split('=')[0]: d.split('=')[1] for d in col[7].split(';') if len(d.split('=')) == 2 } vq = string.atof(vcfinfo['VQ']) inb = string.atof(vcfinfo['InbCoeff']) if ('POSITIVE_TRAIN_SITE' in col[7]) and ('NEGATIVE_TRAIN_SITE' in col[7]): mark.append([3, vq, inb]) elif 'POSITIVE_TRAIN_SITE' in col[7]: mark.append([1, vq, inb]) elif 'NEGATIVE_TRAIN_SITE' in col[7]: mark.append([2, vq, inb]) else: mark.append([0, vq, inb]) # GT:AA:AE:FN:MIP:MS:QR:RR:VS:VT for i, sample in enumerate (col[9:]): sampleId = col2sam[9+i] field = sample.split(':') if sample == './.' or len(field) < fmat['QR'] + 1 or field[fmat['QR']].split(',')[-1] == '.' or field[fmat['AS']] == '.': annotations[i].append([0, 0, 0, 0, 0, 0, 0, 0, 0]) continue qr = field[fmat['QR']].split(',')[-1] qregion = np.array(qr.split('-')) if len(qregion) > 3: qId = qregion[0] + '-' + qregion[1] else : qId = qregion[0] qSta = string.atoi(qregion[-2]) qEnd = string.atoi(qregion[-1]) if sampleId not in qFaLen: raise ValueError ('[ERROR] The sample name $s(in vcf) is not in the name of Fa list.' % sampleId) if qId not in qFaLen[sampleId]: raise ValueError ('[ERROR]', qId, 'is not been found in file', opt.qFalen, '\n') qSta= int(qSta * 100 / qFaLen[sampleId][qId] + 0.5) qEnd= int(qEnd * 100 / qFaLen[sampleId][qId] + 0.5) if qSta > 100 or qEnd > 100: raise ValueError ('[ERROR] Query size Overflow! sample: %s; scaffold: %s' % (sampleId, qId)) leg = qSta if 100 - qEnd < qSta: leg = qEnd nn = string.atof(sample.split(':')[fmat['NR']]) n = round(1000 * nn) / 10.0 # N ratio alt = string.atoi(sample.split(':')[fmat['AA']].split(',')[1]) # Alternate perfect bot = string.atoi(sample.split(':')[fmat['AA']].split(',')[3]) # Both imperfect pro, ipr = [0,0] ms = string.atoi(sample.split(':')[fmat['AS']]) # Mapping score mip = string.atof(sample.split(':')[fmat['MS']]) # Mismapping probability if sample.split(':')[fmat['AGE']] != '.': aveI = string.atoi(sample.split(':')[fmat['AGE']].split(',')[3]) # ave_iden in AGE else: aveI = 0 annotations[i].append([leg, n, alt, bot, pro, ipr, ms, mip, aveI]) I.close() print >> sys.stderr, '# Number of Positions: %d' % len(mark) if len(mark) != len(annotations[0]): raise ValueError ('[ERROR] The size is not match mark=%d, annotations=%d!' % (len(mark), len(annotations))) annotations = np.array(annotations); sampleNum = len(annotations) data, distance, properDepth, imProperDepth, nr, aa, bb, mscore, misprob, aveIden = [],[],[],[],[],[],[],[],[],[] inbreedCoe, phredScal = [], [] for i in range(len(annotations[0])): anno = np.array([annotations[s][i] for s in range(sampleNum) if len(annotations[s][i][annotations[s][i]!=0]) > 0 ]) # each person in the same position score = np.array([annotations[s][i][-3] for s in range(sampleNum) if annotations[s][i][-3] > 0 ]) msprob = np.array([annotations[s][i][-2] for s in range(sampleNum) if annotations[s][i][-3] > 0 ]) phred = -10 * np.log10(1.0 - score.sum() / np.sum(score/(1.0 - msprob))) # Phred scale if len(anno) == 0: continue leg, n, alt, bot, pro,ipr, ms, mip, aveI = np.median(anno, axis=0) distance.append ([mark[i][0], mark[i][1], leg ]) properDepth.append ([mark[i][0], mark[i][1], pro ]) imProperDepth.append ([mark[i][0], mark[i][1], ipr ]) nr.append ([mark[i][0], mark[i][1], n ]) aa.append ([mark[i][0], mark[i][1], alt ]) bb.append ([mark[i][0], mark[i][1], bot ]) mscore.append ([mark[i][0], mark[i][1], ms ]) misprob.append ([mark[i][0], mark[i][1], mip ]) aveIden.append ([mark[i][0], mark[i][1], aveI]) phredScal.append ([mark[i][0], mark[i][1], phred]) inbreedCoe.append ([mark[i][0], mark[i][1], mark[i][2]]) data.append([leg, alt, pro, ipr, n, bot]) print mark[i][0], mark[i][1], mark[i][2], '\t', leg, '\t', pro, '\t', ipr,'\t', n, '\t', alt, '\t', bot data = np.array(data) print >> sys.stderr, '\nPosition\tALTernatePerfect\tLeftIdentity\tRightIdentity\tAveIden\tNRatio\tBothImperfect' print >> sys.stderr, 'Means: ', data.mean(axis=0), '\nstd : ', data.std(axis=0), '\nMedian: ', np.median(data, axis=0) print >> sys.stderr, '25 Percentile:', np.percentile(data, 25,axis=0), '\n50 Percentile:', np.percentile(data, 50,axis=0), '\n75 Percentile:', np.percentile(data, 75,axis=0) DrawFig(figPrefix, \ np.array (distance ), \ np.array (properDepth ), \ np.array (imProperDepth), \ np.array (nr ), \ np.array (aa ), \ np.array (bb ), \ np.array (mscore ), \ np.array (misprob ), \ np.array (aveIden ), \ np.array (inbreedCoe ) ) DrawPhredScale (figPrefix + '.phred', np.array(phredScal)) if __name__ == '__main__': VQ_CUTOFF = 3.0 main(sys.argv[1:])
mit
camallen/aggregation
experimental/condor/animal_EM.py
2
7334
#!/usr/bin/env python __author__ = 'greghines' import numpy as np import os import pymongo import sys import cPickle as pickle import bisect import csv import matplotlib.pyplot as plt import random import math import urllib import matplotlib.cbook as cbook def index(a, x): 'Locate the leftmost value exactly equal to x' i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError if os.path.exists("/home/ggdhines"): sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/clusteringAlg") sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/classifier") else: sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg") sys.path.append("/home/greg/github/reduction/experimental/classifier") #from divisiveDBSCAN import DivisiveDBSCAN from divisiveDBSCAN_multi import DivisiveDBSCAN from divisiveKmeans import DivisiveKmeans from iterativeEM import IterativeEM if os.path.exists("/home/ggdhines"): base_directory = "/home/ggdhines" else: base_directory = "/home/greg" client = pymongo.MongoClient() db = client['condor_2014-11-23'] classification_collection = db["condor_classifications"] subject_collection = db["condor_subjects"] big_userList = [] big_subjectList = [] animal_count = 0 f = open(base_directory+"/Databases/condor_ibcc.csv","wb") f.write("a,b,c\n") alreadyDone = [] animals_in_image = {} animal_index = -1 global_user_list = [] animal_to_image = [] zooniverse_list = [] condor_votes = {} animal_votes = {} #subject_vote = {} results = [] to_sample_from = list(subject_collection.find({"state":"complete"})) to_sample_from2 = list(subject_collection.find({"classification_count":1,"state":"active"})) votes = [] sample = random.sample(to_sample_from,100) #sample.extend(random.sample(to_sample_from2,1000)) # for subject_index,subject in enumerate(sample): # print "== " + str(subject_index) # zooniverse_id = subject["zooniverse_id"] # for user_index,classification in enumerate(classification_collection.find({"subjects.zooniverse_id":zooniverse_id})): # if "user_name" in classification: # user = classification["user_name"] # else: # user = classification["user_ip"] # # try: # tt = index(big_userList,user) # except ValueError: # bisect.insort(big_userList,user) for subject_index,subject in enumerate(sample): print subject_index zooniverse_id = subject["zooniverse_id"] annotation_list = [] user_list = [] animal_list = [] #local_users = [] for user_index,classification in enumerate(classification_collection.find({"subjects.zooniverse_id":zooniverse_id})): try: mark_index = [ann.keys() for ann in classification["annotations"]].index(["marks",]) markings = classification["annotations"][mark_index].values()[0] if "user_name" in classification: user = classification["user_name"] else: user = classification["user_ip"] found_condor = False for animal in markings.values(): scale = 1.875 x = scale*float(animal["x"]) y = scale*float(animal["y"]) animal_type = animal["animal"] if not(animal_type in ["carcassOrScale","carcass"]): annotation_list.append((x,y)) #print annotation_list user_list.append(user) animal_list.append(animal_type) if not(user in global_user_list): global_user_list.append(user) #local_users.append(user) if animal_type == "condor": found_condor = True except (ValueError,KeyError): pass #if there were any markings on the image, use divisive kmeans to cluster the points so that each #cluster represents an image if annotation_list != []: user_identified,clusters = DivisiveKmeans(3).fit2(annotation_list,user_list,debug=True) #fix split clusters if necessary if user_identified != []: user_identified,clusters = DivisiveKmeans(3).__fix__(user_identified,clusters,annotation_list,user_list,200) for center,c in zip(user_identified,clusters): animal_index += 1 #animal_votes.append([]) animal_to_image.append(zooniverse_id) if not(zooniverse_id in animals_in_image): animals_in_image[zooniverse_id] = [animal_index] else: animals_in_image[zooniverse_id].append(animal_index) results.append((zooniverse_id,center)) for pt in c: pt_index = annotation_list.index(pt) user_index = global_user_list.index(user_list[pt_index]) animal_type = animal_list[annotation_list.index(pt)] if animal_type == "condor": votes.append((user_index,animal_index,1)) if not(animal_index in animal_votes): animal_votes[animal_index] = [1] else: animal_votes[animal_index].append(1) else: votes.append((user_index,animal_index,0)) if not(animal_index in animal_votes): animal_votes[animal_index] = [0] else: animal_votes[animal_index].append(0) print "=====---" #print votes classify = IterativeEM() classify.__classify__(votes) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii in range(animal_index): x = np.mean(animal_votes[ii]) y = estimates[ii][1] X.append(x) Y.append(y) if math.fabs(x-y) > 0.3: zooniverse_id,(centerX,centerY) = results[ii] print x,y subject = subject_collection.find_one({"zooniverse_id":zooniverse_id}) url = subject["location"]["standard"] slash_index = url.rfind("/") object_id = url[slash_index+1:] if not(os.path.isfile(base_directory+"/Databases/condors/images/"+object_id)): urllib.urlretrieve (url, base_directory+"/Databases/condors/images/"+object_id) image_file = cbook.get_sample_data(base_directory+"/Databases/condors/images/"+object_id) image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) plt.plot([centerX,],[centerY,],'o') plt.show() # #if ((x < 0.5) and (y > 0.5)) or ((x > 0.5) and (y < 0.5)): # subject = subject_collection.find_one({"zooniverse_id":zooniverse_id}) # print x,y # print subject["location"]["standard"] # #print most_likely[subject_index],estimates[subject_index],np.mean(subject_vote[zooniverse_id]) #else: # print estimates[subject_index],0 plt.plot(X,Y,'.',color="blue") plt.plot(X2,Y2,'.',color="red") plt.xlim((-0.05,1.05)) plt.ylim((-0.05,1.05)) plt.show()
apache-2.0
Titan-C/scikit-learn
examples/linear_model/plot_ols.py
74
2047
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
sillvan/hyperspy
doc/user_guide/conf.py
2
9753
# -*- coding: utf-8 -*- # # HyperSpy User Guide documentation build configuration file, created by # sphinx-quickstart on Wed Feb 29 15:14:48 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os sys.path.append('../../') sys.path.append(os.path.abspath('../sphinxext')) from hyperspy import Release # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'gen_rst', 'numpydoc', 'matplotlib.sphinxext.only_directives', 'sphinx.ext.intersphinx', 'sphinx.ext.pngmath', 'sphinx.ext.autosummary', 'ipython_console_highlighting'] # , 'rst2pdf.pdfbuilder'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'HyperSpy User Guide [Draft]' copyright = u'2011-2013, The HyperSpy Developers' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = Release.version # The full version, including alpha/beta/rc tags. release = Release.version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "HyperSpy User Guide v%s" % Release.version # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'HyperSpyUserGuidedoc' # -- Options for LaTeX output -------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'HyperSpyUserGuide.tex', u'HyperSpy User Guide', u'The HyperSpy Developers', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = '_static/hyperspy_logo.png' # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'hyperspyuserguide', u'HyperSpy User Guide Documentation', [u'The HyperSpy Developers'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'HyperSpyUserGuide', u'HyperSpy User Guide Documentation', u'The HyperSpy Developers', 'HyperSpyUserGuide', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'HyperSpy User Guide' epub_author = u'The HyperSpy Developers' epub_publisher = u'he HyperSpy Developers' epub_copyright = u'2011-2013, he HyperSpy Developers' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'hyperspyweb': ('http://hyperspy.org/', None)}
gpl-3.0
wkfwkf/statsmodels
statsmodels/distributions/mixture_rvs.py
27
9592
from statsmodels.compat.python import range import numpy as np def _make_index(prob,size): """ Returns a boolean index for given probabilities. Notes --------- prob = [.75,.25] means that there is a 75% chance of the first column being True and a 25% chance of the second column being True. The columns are mutually exclusive. """ rv = np.random.uniform(size=(size,1)) cumprob = np.cumsum(prob) return np.logical_and(np.r_[0,cumprob[:-1]] <= rv, rv < cumprob) def mixture_rvs(prob, size, dist, kwargs=None): """ Sample from a mixture of distributions. Parameters ---------- prob : array-like Probability of sampling from each distribution in dist size : int The length of the returned sample. dist : array-like An iterable of distributions objects from scipy.stats. kwargs : tuple of dicts, optional A tuple of dicts. Each dict in kwargs can have keys loc, scale, and args to be passed to the respective distribution in dist. If not provided, the distribution defaults are used. Examples -------- Say we want 5000 random variables from mixture of normals with two distributions norm(-1,.5) and norm(1,.5) and we want to sample from the first with probability .75 and the second with probability .25. >>> from scipy import stats >>> prob = [.75,.25] >>> Y = mixture_rvs(prob, 5000, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5))) """ if len(prob) != len(dist): raise ValueError("You must provide as many probabilities as distributions") if not np.allclose(np.sum(prob), 1): raise ValueError("prob does not sum to 1") if kwargs is None: kwargs = ({},)*len(prob) idx = _make_index(prob,size) sample = np.empty(size) for i in range(len(prob)): sample_idx = idx[...,i] sample_size = sample_idx.sum() loc = kwargs[i].get('loc',0) scale = kwargs[i].get('scale',1) args = kwargs[i].get('args',()) sample[sample_idx] = dist[i].rvs(*args, **dict(loc=loc,scale=scale, size=sample_size)) return sample class MixtureDistribution(object): '''univariate mixture distribution for simple case for now (unbound support) does not yet inherit from scipy.stats.distributions adding pdf to mixture_rvs, some restrictions on broadcasting Currently it does not hold any state, all arguments included in each method. ''' #def __init__(self, prob, size, dist, kwargs=None): def rvs(self, prob, size, dist, kwargs=None): return mixture_rvs(prob, size, dist, kwargs=kwargs) def pdf(self, x, prob, dist, kwargs=None): """ pdf a mixture of distributions. Parameters ---------- prob : array-like Probability of sampling from each distribution in dist dist : array-like An iterable of distributions objects from scipy.stats. kwargs : tuple of dicts, optional A tuple of dicts. Each dict in kwargs can have keys loc, scale, and args to be passed to the respective distribution in dist. If not provided, the distribution defaults are used. Examples -------- Say we want 5000 random variables from mixture of normals with two distributions norm(-1,.5) and norm(1,.5) and we want to sample from the first with probability .75 and the second with probability .25. >>> from scipy import stats >>> prob = [.75,.25] >>> Y = mixture.pdf(x, prob, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5))) """ if len(prob) != len(dist): raise ValueError("You must provide as many probabilities as distributions") if not np.allclose(np.sum(prob), 1): raise ValueError("prob does not sum to 1") if kwargs is None: kwargs = ({},)*len(prob) for i in range(len(prob)): loc = kwargs[i].get('loc',0) scale = kwargs[i].get('scale',1) args = kwargs[i].get('args',()) if i == 0: #assume all broadcast the same as the first dist pdf_ = prob[i] * dist[i].pdf(x, *args, loc=loc, scale=scale) else: pdf_ += prob[i] * dist[i].pdf(x, *args, loc=loc, scale=scale) return pdf_ def cdf(self, x, prob, dist, kwargs=None): """ cdf of a mixture of distributions. Parameters ---------- prob : array-like Probability of sampling from each distribution in dist size : int The length of the returned sample. dist : array-like An iterable of distributions objects from scipy.stats. kwargs : tuple of dicts, optional A tuple of dicts. Each dict in kwargs can have keys loc, scale, and args to be passed to the respective distribution in dist. If not provided, the distribution defaults are used. Examples -------- Say we want 5000 random variables from mixture of normals with two distributions norm(-1,.5) and norm(1,.5) and we want to sample from the first with probability .75 and the second with probability .25. >>> from scipy import stats >>> prob = [.75,.25] >>> Y = mixture.pdf(x, prob, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5))) """ if len(prob) != len(dist): raise ValueError("You must provide as many probabilities as distributions") if not np.allclose(np.sum(prob), 1): raise ValueError("prob does not sum to 1") if kwargs is None: kwargs = ({},)*len(prob) for i in range(len(prob)): loc = kwargs[i].get('loc',0) scale = kwargs[i].get('scale',1) args = kwargs[i].get('args',()) if i == 0: #assume all broadcast the same as the first dist cdf_ = prob[i] * dist[i].cdf(x, *args, loc=loc, scale=scale) else: cdf_ += prob[i] * dist[i].cdf(x, *args, loc=loc, scale=scale) return cdf_ def mv_mixture_rvs(prob, size, dist, nvars, **kwargs): """ Sample from a mixture of multivariate distributions. Parameters ---------- prob : array-like Probability of sampling from each distribution in dist size : int The length of the returned sample. dist : array-like An iterable of distributions instances with callable method rvs. nvargs : int dimension of the multivariate distribution, could be inferred instead kwargs : tuple of dicts, optional ignored Examples -------- Say we want 2000 random variables from mixture of normals with two multivariate normal distributions, and we want to sample from the first with probability .4 and the second with probability .6. import statsmodels.sandbox.distributions.mv_normal as mvd cov3 = np.array([[ 1. , 0.5 , 0.75], [ 0.5 , 1.5 , 0.6 ], [ 0.75, 0.6 , 2. ]]) mu = np.array([-1, 0.0, 2.0]) mu2 = np.array([4, 2.0, 2.0]) mvn3 = mvd.MVNormal(mu, cov3) mvn32 = mvd.MVNormal(mu2, cov3/2., 4) rvs = mix.mv_mixture_rvs([0.4, 0.6], 2000, [mvn3, mvn32], 3) """ if len(prob) != len(dist): raise ValueError("You must provide as many probabilities as distributions") if not np.allclose(np.sum(prob), 1): raise ValueError("prob does not sum to 1") if kwargs is None: kwargs = ({},)*len(prob) idx = _make_index(prob,size) sample = np.empty((size, nvars)) for i in range(len(prob)): sample_idx = idx[...,i] sample_size = sample_idx.sum() #loc = kwargs[i].get('loc',0) #scale = kwargs[i].get('scale',1) #args = kwargs[i].get('args',()) # use int to avoid numpy bug with np.random.multivariate_normal sample[sample_idx] = dist[i].rvs(size=int(sample_size)) return sample if __name__ == '__main__': from scipy import stats obs_dist = mixture_rvs([.25,.75], size=10000, dist=[stats.norm, stats.beta], kwargs=(dict(loc=-1,scale=.5),dict(loc=1,scale=1,args=(1,.5)))) nobs = 10000 mix = MixtureDistribution() ## mrvs = mixture_rvs([1/3.,2/3.], size=nobs, dist=[stats.norm, stats.norm], ## kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.75))) mix_kwds = (dict(loc=-1,scale=.25),dict(loc=1,scale=.75)) mrvs = mix.rvs([1/3.,2/3.], size=nobs, dist=[stats.norm, stats.norm], kwargs=mix_kwds) grid = np.linspace(-4,4, 100) mpdf = mix.pdf(grid, [1/3.,2/3.], dist=[stats.norm, stats.norm], kwargs=mix_kwds) mcdf = mix.cdf(grid, [1/3.,2/3.], dist=[stats.norm, stats.norm], kwargs=mix_kwds) doplot = 1 if doplot: import matplotlib.pyplot as plt plt.figure() plt.hist(mrvs, bins=50, normed=True, color='red') plt.title('histogram of sample and pdf') plt.plot(grid, mpdf, lw=2, color='black') plt.figure() plt.hist(mrvs, bins=50, normed=True, cumulative=True, color='red') plt.title('histogram of sample and pdf') plt.plot(grid, mcdf, lw=2, color='black') plt.show()
bsd-3-clause
btabibian/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
102
2319
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() lw = 2 plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw, label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw, label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw, label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
prheenan/prhUtil
python/IgorUtil.py
2
8803
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt # import the patrick-specific utilities import GenUtilities as pGenUtil import PlotUtilities as pPlotUtil import CheckpointUtilities as pCheckUtil from scipy.signal import savgol_filter DEF_FILTER_CONST = 0.005 # 0.5% BASE_GROUP = "/Volumes/group/4Patrick/" SUBDIR_BINARIES = "PRH_AFM_Databases/BinaryFilesTimeSeparationForce/" def getDatabaseFolder(): """ Returns the location of the database binary folder location Args: None Returns: Where the database is, as a string. """ # XXX TODO: right now assumes mac-style mounting... return BASE_GROUP + SUBDIR_BINARIES def getDatabaseFile(fileName,extension=".hdf"): """ Returns the absolute path to a previously-saved file with the given filename Path is *not* guaranteed to exist, if the file hasn't been saved already. Args: fileName: the name of the file (usually according to the "TraceData" table, field "FileTimSepFor") extension: the recquired extension Returns: Where the file is located, an absolute path. Doesn't guarantee the file *does* exist, just that *if* it does, it would be there. """ fileWithExt = pGenUtil.ensureEnds(fileName,extension) return getDatabaseFolder() + fileWithExt def DemoDir(): ''' :return: the absolute path to the demo directory ''' return BASE_GROUP + "DemoData/IgorDemos/" # all demo directories should have an input and output directory def GetDemoInOut(demoName,baseDir=DemoDir(),raiseOnError=True): """ Returns the demo input and output directories, given a path baseDir and name demoName. Recquires files to exist at "<baseDir><demoName>". If encountering an error (e.g. permissions, something isn't mounted), raises an error. Args: demoName: The name of the demo. Assumed to be the subdir under "basedir" we want to use baseDir: the base directory. Input and output directories are "<baseDir><demoName>Input/" and "<baseDir><demoName>Output/", resp. raiseOnError : if true, raises an error on an OS. otherwise, just prints a warning that something went wrong. Returns: tuple of <inputDir>,<outputDir> """ fullBase = baseDir + demoName inputV = pGenUtil.getSanitaryPath(fullBase + "/Input/") outputV = pGenUtil.getSanitaryPath(fullBase + "/Output/") try: pGenUtil.ensureDirExists(inputV) pGenUtil.ensureDirExists(outputV) except OSError as e: if (raiseOnError): raise(e) print("Warning, couldn't open demo directories based in " + fullBase + ". Most likely, not connected to JILA network") return inputV,outputV def DemoJilaOrLocal(demoName,localPath): """ Looks for the demo dir in the default (jila-hosted) space. If nothing is found, looks in the paths specified by localpath (where it puts input and output directories according to its name) Args: demoName: see GetDemoInOut localPath: equivalent of baseDir in GetDemoInOut. Where we put the input and Output directories for the unit test if JILA can't be found. Returns: tuple of <inputDir>,<outputDir> """ inDir,outDir = GetDemoInOut(demoName,raiseOnError=False) if (not pGenUtil.dirExists(inDir)): print("Warning: Couldn't connect to JILA's Network. Using local data.") # get "sanitary paths" which as OS-indepdent (in theory..) localPath = pGenUtil.ensureEnds(localPath,"/") inDir = pGenUtil.getSanitaryPath(localPath) outDir = pGenUtil.getSanitaryPath(localPath + "Output" + demoName +"/") pGenUtil.ensureDirExists(outDir) if (not pGenUtil.dirExists(inDir)): # whoops... raise IOError("Demo Directory {:s} not found anywhere.".\ format(inDir)) return inDir,outDir # read a txt or similarly formatted file def readIgorWave(mFile,skip_header=3,skip_footer=1,comments="X "): data = np.genfromtxt(mFile,comments=comments,skip_header=skip_header, skip_footer=skip_footer) return data def savitskyFilter(inData,nSmooth = None,degree=2): if (nSmooth is None): nSmooth = int(len(inData)/200) # POST: have an nSmooth if (nSmooth % 2 == 0): # must be odd nSmooth += 1 # get the filtered version of the data return savgol_filter(inData,nSmooth,degree) def SplitIntoApproachAndRetract(sep,force,sepToSplit=None): ''' Given a full force/sep curve, returns the approach/retract according to before/after sepToSplit, cutting out the surface (assumed at minimm separation ) :param sep: the separation, units not important. minimum is surface :param force: the force, units not important :param sepToSplot: the separation where we think the surface is. same units as sep ''' # find where sep is closest to sepToSplit before/after minIdx (surface) if (sepToSplit is None): sepToSplit = np.min(sep) surfIdx = np.argmin(sep) sepAppr = sep[:surfIdx] sepRetr = sep[surfIdx:] apprIdx = np.argmin(np.abs(sepAppr-sepToSplit)) retrIdx = surfIdx + np.argmin(np.abs(sepRetr-sepToSplit)) forceAppr = force[:apprIdx] forceRetr = force[retrIdx:] sepAppr = sep[:apprIdx] sepRetr = sep[retrIdx:] return sepAppr,sepRetr,forceAppr,forceRetr def NormalizeSepForce(sep,force,surfIdx=None,normalizeSep=True, normalizeFor=True,sensibleUnits=True): if (sensibleUnits): sepUnits = sep * 1e9 forceUnits = force * 1e12 else: sepUnits = sep forceUnits= force if (surfIdx is None): surfIdx = np.argmin(sep) if (normalizeSep): sepUnits -= sepUnits[surfIdx] if (normalizeFor): # reverse: sort low to high sortIdx = np.argsort(sep)[::-1] # get the percentage of points we want percent = 0.05 nPoints = int(percent*sortIdx.size) idxForMedian = sortIdx[:nPoints] # get the median force at these indices forceMedUnits = np.median(forceUnits[idxForMedian]) # correct the force forceUnits -= forceMedUnits # multiply it by -1 (flip) forceUnits *= -1 return sepUnits,forceUnits # plot a force extension curve with approach and retract def PlotFec(sep,force,surfIdx = None,normalizeSep=True,normalizeFor=True, filterN=None,sensibleUnits=True): """ Plot a force extension curve :param sep: The separation in meters :param force: The force in meters :param surfIdx: The index between approach and retract. if not present, intuits approximate index from minmmum Sep :param normalizeSep: If true, then zeros sep to its minimum :paran normalizeFor: If true, then zeros force to the median-filtered last 5% of data, by separation (presummably, already detached) :param filterT: Plots the raw data in grey, and filters the force to the Number of points given. If none, assumes default % of curve :param sensibleUnits: Plots in nm and pN, defaults to true """ if (surfIdx is None): surfIdx = np.argmin(sep) sepUnits,forceUnits = NormalizeSepForce(sep,force,surfIdx,normalizeSep, normalizeFor,sensibleUnits) if (filterN is None): filterN = int(np.ceil(DEF_FILTER_CONST*sepUnits.size)) # POST: go ahead and normalize/color sepAppr = sepUnits[:surfIdx] sepRetr = sepUnits[surfIdx:] forceAppr = forceUnits[:surfIdx] forceRetr = forceUnits[surfIdx:] PlotFilteredSepForce(sepAppr,forceAppr,filterN=filterN,color='r', label="Approach") PlotFilteredSepForce(sepRetr,forceRetr,filterN=filterN,color='b', label="Retract") plt.xlim([min(sepUnits),max(sepUnits)]) pPlotUtil.lazyLabel("Separation [nm]","Force [pN]","Force Extension Curve") return sepUnits,forceUnits def filterForce(force,filterN=None): if (filterN is None): filterN = int(np.ceil(DEF_FILTER_CONST*force.size)) return savitskyFilter(force,filterN) def PlotFilteredSepForce(sep,force,filterN=None,labelRaw=None, linewidthFilt=2.0,color='r',**kwargs): forceFilt =filterForce(force,filterN) plt.plot(sep,forceFilt,color=color,lw=linewidthFilt,**kwargs) # plot the raw data as grey plt.plot(sep,force,color='k',label=labelRaw,alpha=0.3) return forceFilt
gpl-2.0
mathhun/scipy_2015_sklearn_tutorial
notebooks/figures/plot_rbf_svm_parameters.py
19
2018
import matplotlib.pyplot as plt import numpy as np from sklearn.svm import SVC from sklearn.datasets import make_blobs from .plot_2d_separator import plot_2d_separator def make_handcrafted_dataset(): # a carefully hand-designed dataset lol X, y = make_blobs(centers=2, random_state=4, n_samples=30) y[np.array([7, 27])] = 0 mask = np.ones(len(X), dtype=np.bool) mask[np.array([0, 1, 5, 26])] = 0 X, y = X[mask], y[mask] return X, y def plot_rbf_svm_parameters(): X, y = make_handcrafted_dataset() fig, axes = plt.subplots(1, 3, figsize=(12, 4)) for ax, C in zip(axes, [1e0, 5, 10, 100]): ax.scatter(X[:, 0], X[:, 1], s=150, c=np.array(['red', 'blue'])[y]) svm = SVC(kernel='rbf', C=C).fit(X, y) plot_2d_separator(svm, X, ax=ax, eps=.5) ax.set_title("C = %f" % C) fig, axes = plt.subplots(1, 4, figsize=(15, 3)) for ax, gamma in zip(axes, [0.1, .5, 1, 10]): ax.scatter(X[:, 0], X[:, 1], s=150, c=np.array(['red', 'blue'])[y]) svm = SVC(gamma=gamma, kernel='rbf', C=1).fit(X, y) plot_2d_separator(svm, X, ax=ax, eps=.5) ax.set_title("gamma = %f" % gamma) def plot_svm(log_C, log_gamma): X, y = make_handcrafted_dataset() C = 10. ** log_C gamma = 10. ** log_gamma svm = SVC(kernel='rbf', C=C, gamma=gamma).fit(X, y) ax = plt.gca() plot_2d_separator(svm, X, ax=ax, eps=.5) # plot data ax.scatter(X[:, 0], X[:, 1], s=150, c=np.array(['red', 'blue'])[y]) # plot support vectors sv = svm.support_vectors_ ax.scatter(sv[:, 0], sv[:, 1], s=230, facecolors='none', zorder=10, linewidth=3) ax.set_title("C = %.4f gamma = %.4f" % (C, gamma)) def plot_svm_interactive(): from IPython.html.widgets import interactive, FloatSlider C_slider = FloatSlider(min=-3, max=3, step=.1, value=0, readout=False) gamma_slider = FloatSlider(min=-2, max=2, step=.1, value=0, readout=False) return interactive(plot_svm, log_C=C_slider, log_gamma=gamma_slider)
cc0-1.0
bcaine/maddux
maddux/environment.py
1
6599
""" Our experiment environment. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.animation as animation GRAVITY = -9.81 class Environment: def __init__(self, dimensions=None, dynamic_objects=None, static_objects=None, robot=None): """An environment to run experiments in :param dimensions: (Optional) The dimensions of env :type dimensions: 1x3 numpy.array or None :param dynamic_objects: (Optional) A list of objects that can move :type dynamic_objects: list of maddux.objects.DynamicObject or None :param static_objects: (Optional) A list of stationary objects :type static_objects: list of maddux.objects.StaticObject or None :param robot: (Optional) A robot to simulate :type robot: maddux.robot.Arm or None :rtype: None """ if dimensions is not None: self.dimensions = np.array(dimensions) else: self.dimensions = np.array([10.0, 10.0, 100.0]) self.dynamic_objects = dynamic_objects if dynamic_objects else [] self.static_objects = static_objects if static_objects else [] self.robot = robot def run(self, duration): """Run for a certain duration :param duration: duration to run environment in seconds :type duration: integer :rtype: None """ duration_ms = int(duration * 1000) for _ in xrange(duration_ms): map(lambda obj: obj.step(), self.dynamic_objects) if self.collision(): break def animate(self, duration=None, save_path=None): """Animates the running of the program :param duration: (Optional) Duration of animation in seconds :type duration: int or None :param save_path: (Optional) Path to save mp4 in instead of displaying :type save_path: String or None :rtype: None """ fps = 15 dynamic_iter_per_frame = 10 * fps if duration is None: if self.robot is None: # Sensible Default frames = fps * 5 else: frames = len(self.robot.qs) else: frames = int(fps * duration) def update(i): ax.clear() for _ in xrange(dynamic_iter_per_frame): map(lambda obj: obj.step(), self.dynamic_objects) # Check for collisions self.collision() if self.robot is not None: next_q = self.robot.qs[i] self.robot.update_angles(next_q) self.plot(ax=ax, show=False) fig = plt.figure(figsize=(8, 8)) ax = Axes3D(fig) self.plot(ax=ax, show=False) # If we don't assign its return to something, it doesn't run. # Seems like really weird behavior.. ani = animation.FuncAnimation(fig, update, frames=frames, blit=False) if save_path is None: plt.show() else: Writer = animation.writers['ffmpeg'] writer = Writer( fps=fps, metadata=dict( artist='Maddux'), bitrate=1800) ani.save(save_path, writer=writer) def hypothetical_landing_position(self): """Find the position that the ball would land (or hit a wall) :returns: Position (x, y, z) of hypothetical landing position of a thrown object based on end effector velocity. :rtype: numpy.ndarray or None """ pos = self.robot.end_effector_position().copy() # Only need linear velocity v = self.robot.end_effector_velocity()[0:3] for t in np.linspace(0, 15, 5000): # Check if it hit a target for static in self.static_objects: if static.is_hit(pos): return pos.copy() # Or a wall for i in range(len(pos)): in_negative_space = pos[i] <= 0 past_boundary = pos[i] >= self.dimensions[i] if in_negative_space or past_boundary: return pos.copy() # Otherwise step forward v[2] += t * GRAVITY pos += t * v # If we never hit anything (which is completely impossible (TM)) # return None return None def collision(self): """Check if any dynamic objects collide with any static objects or walls. :return: Whether there was a collision :rtype: bool """ for dynamic in self.dynamic_objects: if dynamic.attached: continue for static in self.static_objects: if static.is_hit(dynamic.position): dynamic.attach() return True for i in range(len(dynamic.position)): in_negative_space = dynamic.position[i] <= 0 past_boundary = (dynamic.position[i] >= self.dimensions[i]) if in_negative_space or past_boundary: dynamic.attach() return True return False def plot(self, ax=None, show=True): """Plot throw trajectory and ball :param ax: Current axis if a figure already exists :type ax: matplotlib.axes :param show: (Default: True) Whether to show the figure :type show: bool :rtype: None """ if ax is None: fig = plt.figure(figsize=(12, 12)) ax = Axes3D(fig) # Set the limits to be environment ranges ax.set_xlim([0, self.dimensions[0]]) ax.set_ylim([0, self.dimensions[1]]) if self.dynamic_objects: zmax = max([o.positions[:, 2].max() for o in self.dynamic_objects]) else: zmax = 10 ax.set_zlim([0, max(10, zmax)]) # And set our labels ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') for dynamic in self.dynamic_objects: # Plot Trajectory ax.plot(dynamic.positions[:, 0], dynamic.positions[:, 1], dynamic.positions[:, 2], 'r--', label='Trajectory') # Plot objects map(lambda obj: obj.plot(ax), self.dynamic_objects) map(lambda obj: obj.plot(ax), self.static_objects) if self.robot: self.robot.plot(ax) if show: plt.show()
mit
matpalm/malmomo
viz_advantage_surface.py
1
3160
#!/usr/bin/env python # hacktasic viz of the quadratic surface of advantage around the max output # for a couple of clear block on right / left / center cases import agents import argparse import base_network import Image import numpy as np import models import sys import tensorflow as tf import replay_memory import util from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm np.set_printoptions(precision=5, threshold=10000, suppress=True, linewidth=10000) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--width', type=int, default=160, help="render width") parser.add_argument('--height', type=int, default=120, help="render height") agents.add_opts(parser) models.add_opts(parser) replay_memory.add_opts(parser) util.add_opts(parser) opts = parser.parse_args() #opts.ckpt_dir = "runs/14/d/ckpts" # last known good print >>sys.stderr, "OPTS", opts # init our rl_agent agent_cstr = eval("agents.NafAgent") agent = agent_cstr(opts) an = agent.network # prepare three plots; one for each of block on left, in center, or on right fig = plt.figure(figsize=plt.figaspect(0.3)) plt.title(opts.ckpt_dir) R = np.arange(-1, 1.25, 0.25) X, Y = np.meshgrid(R, R) for plot_idx, (img_file, desc) in enumerate([("runs/14/d/imgs/ep_00007/e0000.png", "on left"), ("runs/14/d/imgs/ep_00007/e0019.png", "center"), ("runs/14/d/imgs/ep_00007/e0034.png", "on right")]): print "calculating for", desc, "..." # slurp in bitmap img = Image.open(img_file) img = np.array(img)[:,:,:3] # collect q-value for all x, y values in one hit all_x_y_pairs = np.stack(zip(np.ravel(X), np.ravel(Y))) img_repeated = [img] * all_x_y_pairs.shape[0] q_values = agent.sess.run(an.q_value, feed_dict={an.input_state: img_repeated, an.input_action: all_x_y_pairs, base_network.FLIP_HORIZONTALLY: False}) Z = q_values.reshape(X.shape) # plot as surface ax = fig.add_subplot(1,3,plot_idx+1, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='b', cmap=cm.coolwarm, linewidth=1) ax.set_title(desc) ax.set_xlabel("turn") ax.set_ylabel("move") ax.set_zlabel("q") # include single vertical line where q was maximised (according to output_action) output = agent.sess.run(an.output_action, feed_dict={an.input_state: [img], base_network.FLIP_HORIZONTALLY: False}) turn, move = np.squeeze(output) q_value = agent.sess.run(an.q_value, feed_dict={an.input_state: [img], an.input_action: [[turn, move]], base_network.FLIP_HORIZONTALLY: False}) print "turn", turn, "move", move, "=> q", np.squeeze(q_value), "Zmin=", np.min(Z), "Zmax=", np.max(Z) ax.plot([turn, turn], [move, move], [np.min(Z), np.max(Z)], linewidth=5) # render plt.savefig("/tmp/test.png") plt.show()
mit
AVGInnovationLabs/DoNotSnap
train.py
1
4886
import cv2 import sys import pickle import numpy as np import matplotlib.pyplot as plt from AffineInvariantFeatures import AffineInvariant from TemplateMatcher import TemplateMatch, Templates from PIL import Image from itertools import izip_longest from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report, roc_curve, auc, confusion_matrix, accuracy_score from sklearn.pipeline import Pipeline from sklearn.tree import export_graphviz, DecisionTreeClassifier def line_count(filename): with open(filename) as data: return sum(1 for line in data) def read_image(filename): return np.array(Image.open(filename.strip('\n')).convert('L'), np.uint8) def read_file(filename, limit=0): n = 0 lines = line_count(filename) with open(filename) as data: while True: line = next(data, None) if not line or (limit and n >= limit): break n += 1 print '\r%s %d/%d' % (filename, n, limit or lines), try: yield read_image(line) except: continue def get_templates(): return np.array(list(read_file('templates.txt'))) def get_images(limit=0): positive = read_file('positive.txt', limit / 2 if limit else 0) negative = read_file('negative.txt', limit / 2 if limit else 0) for p, n in izip_longest(positive, negative): if p is not None: yield (1, p) if n is not None: yield (0, n) def get_dataset(limit): return map(np.asarray, zip(*get_images(limit))) def plot_roc(fpr, tpr, roc_auc): # Plot all ROC curves plt.figure() plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Affine Invariant SURF + Decision Tree Classifier') plt.legend(loc='lower right') plt.show() def plot_importance(feature_count, importances, indices): plt.figure() plt.title('Feature importances') plt.bar(range(feature_count), importances[indices], color='r', align='center') plt.xticks(range(feature_count), indices) plt.xlim([-1, feature_count]) plt.show() def main(name, dataset_size): templates = get_templates() print 'templates: %d' % len(templates) labels, samples = get_dataset(dataset_size) print 'samples: %d' % len(samples) extractor = cv2.FeatureDetector_create('SURF') detector = cv2.DescriptorExtractor_create('SURF') print 'applying affine invariant transform' affine = AffineInvariant(extractor, detector) templates = affine.transform(templates) samples = affine.transform(samples) model = Pipeline([ ('match', TemplateMatch(Templates(templates))), # XXX: hack to bypass cloning error # ('reduce_dim', PCA(n_components = 12 * 6)) ]) samples = model.fit_transform(samples) rng = np.random.RandomState() X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size=0.5, random_state=rng) print 'train: %d, test: %d' % (len(X_train), len(X_test)) params = dict( min_samples_split = [5, 6, 7, 8, 9, 10], min_samples_leaf = [3, 4, 5, 6, 7], max_leaf_nodes = [10, 9, 8, 7, 6], class_weight = [{1: w} for w in [10, 8, 4, 2, 1]] ) tree = DecisionTreeClassifier(max_depth=4, random_state=rng) cvmodel = GridSearchCV(tree, params, cv=10, n_jobs=cv2.getNumberOfCPUs()) cvmodel.fit(X_train, y_train) print 'grid scores' for params, mean_score, scores in cvmodel.grid_scores_: print '%0.3f (+/-%0.03f) for %r' % (mean_score, scores.std() * 2, params) print 'best parameters' print cvmodel.best_params_ importances = cvmodel.best_estimator_.feature_importances_ indices = np.argsort(importances)[::-1] plot_importance(6, importances, indices) y_pred = cvmodel.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print 'accuracy: %f' % accuracy print classification_report(y_test, y_pred) print confusion_matrix(y_test, y_pred) y_score = cvmodel.predict_proba(X_test)[:, 1] fpr, tpr, _ = roc_curve(y_test, y_score) roc_auc = auc(fpr, tpr) plot_roc(fpr, tpr, roc_auc) export_graphviz(cvmodel.best_estimator_, out_file=name + '.dot', class_names=['background', 'badge'], filled=True, rounded=True, special_characters=True) pickle.dump(dict(params=params, pipe=model, model=cvmodel.best_estimator_), open(name + '.pkl', 'wb')) if __name__ == '__main__': name = sys.argv[1] if len(sys.argv) >= 2 else 'classifier' dataset_size = int(sys.argv[2]) if len(sys.argv) >= 3 else 0 main(name, dataset_size)
gpl-3.0
hstau/covar-cryo
covariance/rotatefill.py
1
1524
'''function [out] = imrotateFill(inp, angle) % function [out] = imrotateFill(inp) % Rotates an 2D image couterclockwise by angle in degrees % Output image has the same dimension as input. % Undefined regions are filled in by repeating the original image % Note: input images must be square % % Copyright (c) UWM, Peter Schwander Mar. 20, 2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% version = 'imrotateFill, V0.9'; Ported to python. Hstau Liao Oct. 2016 ''' import numpy as np import logging,sys import math from scipy.ndimage.interpolation import rotate import matplotlib.pyplot as plt def op(input, angle, visual=False): nPix = input.shape[0] inpRep = np.tile(input, (3, 3)) outRep = rotate(inpRep, angle, reshape=False) out = outRep[nPix:2 * nPix, nPix:2 * nPix] if visual: plt.subplot(2, 2, 1) plt.imshow(input,cmap = plt.get_cmap('gray')) plt.title('Input') plt.subplot(2, 2, 2) plt.imshow(out, cmap=plt.get_cmap('gray')) plt.title('Output') plt.subplot(2, 2, 3) plt.imshow(inpRep, cmap=plt.get_cmap('gray')) plt.title('Input 3x3') plt.subplot(2, 2, 4) plt.imshow(outRep, cmap=plt.get_cmap('gray')) plt.title('Output 3x3') plt.show() return out if __name__ == '__main__': # tested using a 6x6 image img = np.loadtxt(sys.argv[1]) ang = float(sys.argv[2]) # in degrees visual = bool(sys.argv[3]) result = op(img,ang,visual)
gpl-2.0
mne-tools/mne-tools.github.io
0.13/_downloads/plot_compute_raw_data_spectrum.py
8
3431
""" ================================================== Compute the power spectral density of raw data ================================================== This script shows how to compute the power spectral density (PSD) of measurements on a raw dataset. It also show the effect of applying SSP to the data to reduce ECG and EOG artifacts. """ # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Martin Luessi <mluessi@nmr.mgh.harvard.edu> # Eric Larson <larson.eric.d@gmail.com> # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io, read_proj, read_selection from mne.datasets import sample from mne.time_frequency import psd_multitaper print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' proj_fname = data_path + '/MEG/sample/sample_audvis_eog-proj.fif' tmin, tmax = 0, 60 # use the first 60s of data # Setup for reading the raw data (to save memory, crop before loading) raw = io.read_raw_fif(raw_fname).crop(tmin, tmax).load_data() raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Add SSP projection vectors to reduce EOG and ECG artifacts projs = read_proj(proj_fname) raw.add_proj(projs, remove_existing=True) fmin, fmax = 2, 300 # look at frequencies between 2 and 300Hz n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2 # Let's first check out all channel types raw.plot_psd(area_mode='range', tmax=10.0, show=False) # Now let's focus on a smaller subset: # Pick MEG magnetometers in the Left-temporal region selection = read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False, stim=False, exclude='bads', selection=selection) # Let's just look at the first few channels for demonstration purposes picks = picks[:4] plt.figure() ax = plt.axes() raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=False, ax=ax, color=(0, 0, 1), picks=picks, show=False) # And now do the same with SSP applied raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=True, ax=ax, color=(0, 1, 0), picks=picks, show=False) # And now do the same with SSP + notch filtering # Pick all channels for notch since the SSP projection mixes channels together raw.notch_filter(np.arange(60, 241, 60), n_jobs=1) raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=True, ax=ax, color=(1, 0, 0), picks=picks, show=False) ax.set_title('Four left-temporal magnetometers') plt.legend(['Without SSP', 'With SSP', 'SSP + Notch']) # Alternatively, you may also create PSDs from Raw objects with ``psd_*`` f, ax = plt.subplots() psds, freqs = psd_multitaper(raw, low_bias=True, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, proj=True, picks=picks, n_jobs=1) psds = 10 * np.log10(psds) psds_mean = psds.mean(0) psds_std = psds.std(0) ax.plot(freqs, psds_mean, color='k') ax.fill_between(freqs, psds_mean - psds_std, psds_mean + psds_std, color='k', alpha=.5) ax.set(title='Multitaper PSD', xlabel='Frequency', ylabel='Power Spectral Density (dB)') plt.show()
bsd-3-clause
ashhher3/seaborn
seaborn/tests/test_utils.py
11
11338
"""Tests for plotting utilities.""" import warnings import tempfile import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt import nose import nose.tools as nt from nose.tools import assert_equal, raises import numpy.testing as npt import pandas.util.testing as pdt from distutils.version import LooseVersion pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" from pandas.util.testing import network try: from bs4 import BeautifulSoup except ImportError: BeautifulSoup = None from . import PlotTestCase from .. import utils, rcmod from ..utils import get_dataset_names, load_dataset a_norm = np.random.randn(100) def test_pmf_hist_basics(): """Test the function to return barplot args for pmf hist.""" out = utils.pmf_hist(a_norm) assert_equal(len(out), 3) x, h, w = out assert_equal(len(x), len(h)) # Test simple case a = np.arange(10) x, h, w = utils.pmf_hist(a, 10) nose.tools.assert_true(np.all(h == h[0])) def test_pmf_hist_widths(): """Test histogram width is correct.""" x, h, w = utils.pmf_hist(a_norm) assert_equal(x[1] - x[0], w) def test_pmf_hist_normalization(): """Test that output data behaves like a PMF.""" x, h, w = utils.pmf_hist(a_norm) nose.tools.assert_almost_equal(sum(h), 1) nose.tools.assert_less_equal(h.max(), 1) def test_pmf_hist_bins(): """Test bin specification.""" x, h, w = utils.pmf_hist(a_norm, 20) assert_equal(len(x), 20) def test_ci_to_errsize(): """Test behavior of ci_to_errsize.""" cis = [[.5, .5], [1.25, 1.5]] heights = [1, 1.5] actual_errsize = np.array([[.5, 1], [.25, 0]]) test_errsize = utils.ci_to_errsize(cis, heights) npt.assert_array_equal(actual_errsize, test_errsize) def test_desaturate(): """Test color desaturation.""" out1 = utils.desaturate("red", .5) assert_equal(out1, (.75, .25, .25)) out2 = utils.desaturate("#00FF00", .5) assert_equal(out2, (.25, .75, .25)) out3 = utils.desaturate((0, 0, 1), .5) assert_equal(out3, (.25, .25, .75)) out4 = utils.desaturate("red", .5) assert_equal(out4, (.75, .25, .25)) @raises(ValueError) def test_desaturation_prop(): """Test that pct outside of [0, 1] raises exception.""" utils.desaturate("blue", 50) def test_saturate(): """Test performance of saturation function.""" out = utils.saturate((.75, .25, .25)) assert_equal(out, (1, 0, 0)) def test_iqr(): """Test the IQR function.""" a = np.arange(5) iqr = utils.iqr(a) assert_equal(iqr, 2) class TestSpineUtils(PlotTestCase): sides = ["left", "right", "bottom", "top"] outer_sides = ["top", "right"] inner_sides = ["left", "bottom"] offset = 10 original_position = ("outward", 0) offset_position = ("outward", offset) def test_despine(self): f, ax = plt.subplots() for side in self.sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine() for side in self.outer_sides: nt.assert_true(~ax.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine(**dict(zip(self.sides, [True] * 4))) for side in self.sides: nt.assert_true(~ax.spines[side].get_visible()) def test_despine_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(ax=ax2) for side in self.sides: nt.assert_true(ax1.spines[side].get_visible()) for side in self.outer_sides: nt.assert_true(~ax2.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax2.spines[side].get_visible()) def test_despine_with_offset(self): f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.despine(ax=ax, offset=self.offset) for side in self.sides: is_visible = ax.spines[side].get_visible() new_position = ax.spines[side].get_position() if is_visible: nt.assert_equal(new_position, self.offset_position) else: nt.assert_equal(new_position, self.original_position) def test_despine_with_offset_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) if ax2.spines[side].get_visible(): nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) else: nt.assert_equal(ax2.spines[side].get_position(), self.original_position) def test_despine_trim_spines(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_xlim(.75, 3.25) utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_inverted(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_ylim(.85, 3.15) ax.invert_yaxis() utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_noticks(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_yticks([]) utils.despine(trim=True) nt.assert_equal(ax.get_yticks().size, 0) def test_offset_spines_warns(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() utils.offset_spines(offset=self.offset) nt.assert_true('deprecated' in str(w[0].message)) nt.assert_true(issubclass(w[0].category, UserWarning)) def test_offset_spines(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.offset_spines(offset=self.offset) for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.offset_position) def test_offset_spines_specific_axes(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, (ax1, ax2) = plt.subplots(2, 1) utils.offset_spines(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) def test_ticklabels_overlap(): rcmod.set() f, ax = plt.subplots(figsize=(2, 2)) f.tight_layout() # This gets the Agg renderer working assert not utils.axis_ticklabels_overlap(ax.get_xticklabels()) big_strings = "abcdefgh", "ijklmnop" ax.set_xlim(-.5, 1.5) ax.set_xticks([0, 1]) ax.set_xticklabels(big_strings) assert utils.axis_ticklabels_overlap(ax.get_xticklabels()) x, y = utils.axes_ticklabels_overlap(ax) assert x assert not y def test_categorical_order(): x = ["a", "c", "c", "b", "a", "d"] y = [3, 2, 5, 1, 4] order = ["a", "b", "c", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(x, order) nt.assert_equal(out, order) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) out = utils.categorical_order(np.array(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(pd.Series(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(y) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(np.array(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(pd.Series(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) if pandas_has_categoricals: x = pd.Categorical(x, order) out = utils.categorical_order(x) nt.assert_equal(out, list(x.categories)) x = pd.Series(x) out = utils.categorical_order(x) nt.assert_equal(out, list(x.cat.categories)) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) x = ["a", np.nan, "c", "c", "b", "a", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) if LooseVersion(pd.__version__) >= "0.15": def check_load_dataset(name): ds = load_dataset(name, cache=False) assert(isinstance(ds, pd.DataFrame)) def check_load_cached_dataset(name): # Test the cacheing using a temporary file. # With Python 3.2+, we could use the tempfile.TemporaryDirectory() # context manager instead of this try...finally statement tmpdir = tempfile.mkdtemp() try: # download and cache ds = load_dataset(name, cache=True, data_home=tmpdir) # use cached version ds2 = load_dataset(name, cache=True, data_home=tmpdir) pdt.assert_frame_equal(ds, ds2) finally: shutil.rmtree(tmpdir) @network(url="https://github.com/mwaskom/seaborn-data") def test_get_dataset_names(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") names = get_dataset_names() assert(len(names) > 0) assert(u"titanic" in names) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_dataset(name) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_cached_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_cached_dataset(name)
bsd-3-clause
parekhmitchell/Machine-Learning
Machine Learning A-Z Template Folder/Part 2 - Regression/Section 8 - Decision Tree Regression/regression_template.py
22
1424
# Regression Template # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into the Training set and Test set """from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" # Fitting the Regression Model to the dataset # Create your regressor here # Predicting a new result y_pred = regressor.predict(6.5) # Visualising the Regression results plt.scatter(X, y, color = 'red') plt.plot(X, regressor.predict(X), color = 'blue') plt.title('Truth or Bluff (Regression Model)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Visualising the Regression results (for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') plt.title('Truth or Bluff (Regression Model)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
mit
jhuapl-boss/intern
examples/dvid/general_test.py
1
3757
import intern from intern.remote.dvid import DVIDRemote from intern.resource.dvid.resource import DataInstanceResource from intern.resource.dvid.resource import RepositoryResource import numpy as np from PIL import Image import matplotlib.pyplot as plt ########### NOTE ########### # This test requires an accessible DVID instance # DVID Data fetch: dvid = DVIDRemote({"protocol": "http", "host": "localhost:8001",}) DATA_INSTANCE = "ex_EM" ALIAS = "Test_alias" ########### Test Project API ########### ## Create DataInstanceResource and force the creation of a RepositoryResource instance_setup_em = DataInstanceResource( DATA_INSTANCE, None, "uint8blk", ALIAS, "Example channel.", datatype="uint8" ) # Get the channel and create a project instance_actual_repo = dvid.create_project(instance_setup_em) print("Repo UUID:" + instance_actual_repo) # Create an instance within given repo(UUID) instance_setup_anno = DataInstanceResource( DATA_INSTANCE + "_the_second", instance_actual_repo, "uint8blk", ALIAS, "Example channel.", datatype="uint8", ) instance_actual_anno_uuid = dvid.create_project(instance_setup_anno) print("Data Instance UUID: {}".format(instance_actual_anno_uuid)) # Create a dummy repo with the Repository Resource for deletion instance_setup_em_delete = RepositoryResource(None, "Test_for_deletion") instance_actual_em_delete_uuid = dvid.create_project(instance_setup_em_delete) instance_actual_em_delete = dvid.delete_project(instance_setup_em_delete) print("Successfully deleted Repo project: {}".format(instance_actual_em_delete_uuid)) # Delete the data instance of a repo instance_setup_em_delete = DataInstanceResource( DATA_INSTANCE, None, "uint8blk", ALIAS, "Example channel.", datatype="uint8" ) instance_actual_em_delete_uuid = dvid.create_project(instance_setup_em_delete) dvid.delete_project(dvid.get_instance(instance_actual_em_delete_uuid, DATA_INSTANCE)) print( "Successfully deleted data instance project: {}".format( instance_actual_em_delete_uuid ) ) ########### Test Versioning API ########### # Set up a new project with a channel instance_setup_merge = DataInstanceResource( DATA_INSTANCE + "_the_second", None, "uint8blk", "Mege_repo", "Example channel.", datatype="uint8", ) chan_actual_parent1 = dvid.create_project(instance_setup_merge) print("\nParent1 UUID: " + chan_actual_parent1) commit_1 = dvid.commit(chan_actual_parent1, note="Test the commit") branch_1 = dvid.branch(chan_actual_parent1, note="Test the versioning system once") branch_2 = dvid.branch(chan_actual_parent1, note="Test the versioning system twice") print("Created branches {} and {} from Parent1".format(branch_1, branch_2)) ########### Test Metadat API ########### # Set up a new project with a channel print(dvid.get_info(instance_setup_merge)) print(dvid.get_server_info()) print(dvid.get_server_compiled_types()) dvid.server_reload_metadata() ########### Test Voluming API ########### # # Prepare the data img = Image.open("<somedir>/*.png") data_tile = np.asarray(img) print(data_tile.shape) data_tile = np.expand_dims(data_tile, axis=0) data_tile = data_tile.copy(order="C") # Create the project instance_setup_up = DataInstanceResource( DATA_INSTANCE + "_the_second", None, "imagetile", "Upload Test", "Example channel.", datatype="uint8", ) chan_actual_up = dvid.create_project(instance_setup_up) # Create the cutout dvid.create_cutout(instance_setup_up, 0, [0, 454], [0, 480], [0, 1], data_tile) print("Create cutout successful") # Get the cutout got_cutout = dvid.get_cutout(instance_setup_up, 0, [0, 454], [0, 480], [0, 1]) # Check for equality if (got_cutout == data_tile).all(): print("Both tiles equate")
apache-2.0
Og192/Python
machine-learning-algorithms/memoryNN/memNN_ExactTest.py
2
7973
import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt corpusSize = 1977#2358 testDataSize = 49 testMaxLength = 82 batchSize = 1 vectorLength = 50 sentMaxLength = 82 hopNumber = 3 classNumber = 4 num_epoches = 2000 weightDecay = 0.001 trainDatasetPath = "/home/laboratory/memoryCorpus/train/" testDatasetPath = "/home/laboratory/memoryCorpus/test/" resultOutput = '/home/laboratory/memoryCorpus/result/' if not os.path.exists(resultOutput): os.makedirs(resultOutput) def loadData(datasetPath, shape, sentMaxLength): print("load " + datasetPath) datasets = np.loadtxt(datasetPath, np.float) datasets = np.reshape(datasets, shape) return datasets atten = np.loadtxt("atten", np.float,delimiter= ',').reshape((1, 2 * vectorLength)) atten_b = -0.002059555053710938 flinearLayer_W = np.loadtxt("linearLayer_W", np.float,delimiter= ',').reshape((vectorLength, vectorLength)) flinearLayer_b = np.loadtxt("linearLayer_b", np.float,delimiter= ',').reshape((vectorLength, 1)) fsoftmaxLayer_W = np.loadtxt("softmaxLayer_W", np.float,delimiter= ',').reshape((classNumber, vectorLength)) fsoftmaxLayer_b = np.loadtxt("softmaxLayer_b", np.float,delimiter= ',').reshape((classNumber, 1)) def shuffleDatasets(datasets, orders): shuffleDatasets = np.zeros(datasets.shape) index = 0 for i in orders: shuffleDatasets[index] = datasets[i] index += 1 del datasets return shuffleDatasets def generateData(datasetPath,corpusSize, sentMaxLength): contxtWordsDir = datasetPath + 'contxtWords' aspectWordsDir = datasetPath + 'aspectWords' labelsDir = datasetPath + 'labels' positionsDir = datasetPath + 'positions' sentLengthsDir = datasetPath + 'sentLengths' maskDir = datasetPath + 'mask' contxtWords = loadData(contxtWordsDir, (corpusSize, vectorLength, sentMaxLength), sentMaxLength) aspectWords = loadData(aspectWordsDir, (corpusSize, vectorLength, 1), sentMaxLength) labels = loadData(labelsDir, (corpusSize, classNumber, 1), sentMaxLength) position = loadData(positionsDir, (corpusSize, 1, sentMaxLength), sentMaxLength) sentLength = loadData(sentLengthsDir, (corpusSize, 1, 1), sentMaxLength) mask = loadData(maskDir, (corpusSize, 1, sentMaxLength), sentMaxLength) return (contxtWords, aspectWords, labels, position, sentLength, mask) def plot(loss_list): plt.cla() plt.plot(loss_list) plt.draw() plt.pause(0.0001) contxtWords_placeholder = tf.placeholder(tf.float32, [vectorLength, None], name="contxtWords")# aspectWords_placeholder = tf.placeholder(tf.float32, [vectorLength, 1], name="aspectWords") labels_placeholder = tf.placeholder(tf.float32, [classNumber, 1], name="labels") position_placeholder = tf.placeholder(tf.float32, [1, None], name="position")# sentLength_placeholder = tf.placeholder(tf.float32, [1, 1], name="sentLength") mask_placeholder = tf.placeholder(tf.float32, [1, None], name="mask") attention_W = tf.Variable(atten, dtype = tf.float32, name="attention_W") attention_b = tf.Variable(atten_b, dtype = tf.float32, name="attention_b") linearLayer_W = tf.Variable(flinearLayer_W , dtype=tf.float32, name="linearLayer_W") linearLayer_b = tf.Variable(flinearLayer_b , dtype = tf.float32, name="linearLayer_b") softmaxLayer_W = tf.Variable(fsoftmaxLayer_W, dtype= tf.float32, name="softmaxLayer_W") softmaxLayer_b = tf.Variable(fsoftmaxLayer_b, dtype= tf.float32, name="softmaxLayer_b") vaspect = aspectWords_placeholder for i in range(hopNumber): Vi = 1.0 - position_placeholder / sentLength_placeholder - (hopNumber / vectorLength) * (1.0 - 2.0 * (position_placeholder / sentLength_placeholder)) Mi = Vi * contxtWords_placeholder expanded_vaspect = vaspect for j in range(sentMaxLength - 1): expanded_vaspect = tf.concat(1, [expanded_vaspect, vaspect]) attentionInputs = tf.concat(0, [Mi, expanded_vaspect]) gi = tf.tanh(tf.matmul(attention_W, attentionInputs) + attention_b) + mask_placeholder alpha = tf.nn.softmax(gi) linearLayerOut = tf.matmul(linearLayer_W, vaspect) + linearLayer_b vaspect = tf.reduce_sum(alpha * Mi, 1, True) + linearLayerOut linearLayerOut = tf.matmul(softmaxLayer_W, vaspect) + softmaxLayer_b # regu = tf.reduce_sum(attention_W * attention_W) # regu += tf.reduce_sum(attention_b * attention_b) # regu += tf.reduce_sum(linearLayer_W * linearLayer_W) # regu += tf.reduce_sum(linearLayer_b * linearLayer_b) # regu += tf.reduce_sum(softmaxLayer_W * softmaxLayer_W) # regu += tf.reduce_sum(softmaxLayer_b * softmaxLayer_b) # regu = weightDecay * regu calssification = tf.nn.softmax(linearLayerOut - tf.reduce_max(linearLayerOut), dim=0) total_loss = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(linearLayerOut - tf.reduce_max(linearLayerOut), labels_placeholder, dim=0)) ada = tf.train.AdagradOptimizer(0.01)# 0.3 for hopNumber = 1 train_step = ada.minimize(total_loss) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) loss_list = [] contxtWords, aspectWords, labels, position, sentLength, mask = generateData(trainDatasetPath, corpusSize, sentMaxLength) contxtWordsT,aspectWordsT,labelsT,positionT,sentLengthT, maskT = generateData(testDatasetPath, testDataSize, testMaxLength) for epoch_idx in range(num_epoches): results = [] sum_loss= 0.0 print("New data, epoch", epoch_idx) orders = np.arange(corpusSize) np.random.shuffle(orders) contxtWords = shuffleDatasets(contxtWords, orders) aspectWords = shuffleDatasets(aspectWords, orders) labels = shuffleDatasets(labels, orders) position = shuffleDatasets(position, orders) sentLength = shuffleDatasets(sentLength, orders) mask = shuffleDatasets(mask, orders) count = 0 correct = 0 for i in range(corpusSize): _calssification, _total_loss, _train_step, _attention_W = sess.run( [calssification, total_loss, train_step, attention_W], feed_dict= { contxtWords_placeholder:contxtWords[i], aspectWords_placeholder:aspectWords[i], labels_placeholder :labels[i], position_placeholder :position[i], sentLength_placeholder :sentLength[i], mask_placeholder :mask[i] } ) sum_loss += _total_loss if np.argmax(_calssification.reshape(4)) == np.argmax(labels[i]): correct += 1.0 count += 1 # print(_attention_W) # print(sentLength[i]) print("Iteration", epoch_idx, "Loss", sum_loss / (corpusSize * 2), "train_step", _train_step, "Accuracy: ", float(correct / count)) loss_list.append(sum_loss / (corpusSize * 2)) plot(loss_list) count = 0 correct = 0 for i in range(testDataSize): _calssification = sess.run( calssification, feed_dict= { contxtWords_placeholder:contxtWordsT[i], aspectWords_placeholder:aspectWordsT[i], labels_placeholder :labelsT[i], position_placeholder :positionT[i], sentLength_placeholder :sentLengthT[i], mask_placeholder :maskT[i] } ) results.append(_calssification.reshape(4)) if np.argmax(_calssification.reshape(4)) == np.argmax(labelsT[i]): correct += 1.0 count += 1 print("test Accuracy: ", float(correct / count)) np.savetxt(resultOutput + "predict_" + str(epoch_idx) + ".txt", np.asarray(results, dtype=np.float32), fmt='%.5f',delimiter=' ')
gpl-2.0
moreati/numpy
numpy/lib/npyio.py
35
71412
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Mote that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-3-clause
leesavide/pythonista-docs
Documentation/matplotlib/examples/old_animation/histogram_tkagg.py
3
1847
""" This example shows how to use a path patch to draw a bunch of rectangles for an animated histogram """ import numpy as np import matplotlib matplotlib.use('TkAgg') # do this before importing pylab import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path fig, ax = plt.subplots() # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 100) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n nrects = len(left) # here comes the tricky part -- we have to set up the vertex and path # codes arrays using moveto, lineto and closepoly # for each rect: 1 for the MOVETO, 3 for the LINETO, 1 for the # CLOSEPOLY; the vert for the closepoly is ignored but we still need # it to keep the codes aligned with the vertices nverts = nrects*(1+3+1) verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * path.Path.LINETO codes[0::5] = path.Path.MOVETO codes[4::5] = path.Path.CLOSEPOLY verts[0::5,0] = left verts[0::5,1] = bottom verts[1::5,0] = left verts[1::5,1] = top verts[2::5,0] = right verts[2::5,1] = top verts[3::5,0] = right verts[3::5,1] = bottom barpath = path.Path(verts, codes) patch = patches.PathPatch(barpath, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) def animate(): if animate.cnt>=100: return animate.cnt += 1 # simulate new data coming in data = np.random.randn(1000) n, bins = np.histogram(data, 100) top = bottom + n verts[1::5,1] = top verts[2::5,1] = top fig.canvas.draw() fig.canvas.manager.window.after(100, animate) animate.cnt = 0 fig.canvas.manager.window.after(100, animate) plt.show()
apache-2.0
lin-credible/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
zhuangjun1981/retinotopic_mapping
retinotopic_mapping/tools/PlottingTools.py
1
15373
# -*- coding: utf-8 -*- """ Created on Fri Oct 31 11:07:20 2014 @author: junz """ import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import matplotlib.colors as col import scipy.ndimage as ni import ImageAnalysis as ia try: import skimage.external.tifffile as tf except ImportError: import tifffile as tf try: import cv2 except ImportError as e: print e def get_rgb(colorStr): """ get R,G,B int value from a hex color string """ return int(colorStr[1:3], 16), int(colorStr[3:5], 16), int(colorStr[5:7], 16) def get_color_str(R, G, B): """ get hex color string from R,G,B value (integer with uint8 format) """ if not (isinstance(R, (int, long)) and isinstance(G, (int, long)) and isinstance(G, (int, long))): raise TypeError, 'Input R, G and B should be integer!' if not ((0 <= R <= 255) and (0 <= G <= 255) and ( 0 <= B <= 255)): raise ValueError, 'Input R, G and B should between 0 and 255!' return '#' + ''.join(map(chr, (R, G, B))).encode('hex') def binary_2_rgba(img, foregroundColor='#ff0000', backgroundColor='#000000', foregroundAlpha=255, backgroundAlpha=0): """ generate display image in (RGBA).(np.uint8) format which can be displayed by imshow :param img: input image, should be a binary array (np.bool, or np.(u)int :param foregroundColor: color for 1 in the array, RGB str, i.e. '#ff0000' :param backgroundColor: color for 0 in the array, RGB str, i.e. '#ff00ff' :param foregroundAlpha: alpha for 1 in the array, int, 0-255 :param backgroundAlpha: alpha for 1 in the array, int, 0-255 :return: displayImg, (RGBA).(np.uint8) format, ready for imshow """ if img.dtype == np.bool: pass elif issubclass(img.dtype.type, np.integer): if np.amin(img) < 0 or np.amax(img) > 1: raise ValueError, 'Values of input image should be either 0 or 1.' else: raise TypeError, 'Data type of input image should be either np.bool or integer.' if type(foregroundAlpha) is int: if foregroundAlpha < 0 or foregroundAlpha > 255: raise ValueError, 'Value of foreGroundAlpha should be between 0 and 255.' else: raise TypeError, 'Data type of foreGroundAlpha should be integer.' if type(backgroundAlpha) is int: if backgroundAlpha < 0 or backgroundAlpha > 255: raise ValueError, 'Value of backGroundAlpha should be between 0 and 255.' else: raise TypeError, 'Data type of backGroundAlpha should be integer.' fR, fG, fB = get_rgb(foregroundColor) bR, bG, bB = get_rgb(backgroundColor) displayImg = np.zeros((img.shape[0], img.shape[1], 4)).astype(np.uint8) displayImg[img == 1] = np.array([fR, fG, fB, foregroundAlpha]).astype(np.uint8) displayImg[img == 0] = np.array([bR, bG, bB, backgroundAlpha]).astype(np.uint8) return displayImg def scalar_2_rgba(img, color='#ff0000'): """ generate display a image in (RGBA).(np.uint8) format which can be displayed by imshow alpha is defined by values in the img :param img: input image :param alphaMatrix: matrix of alpha :param foreGroundColor: color for 1 in the array, RGB str, i.e. '#ff0000' :return: displayImg, (RGBA).(np.uint8) format, ready for imshow """ R, G, B = get_rgb(color) RMatrix = (R * ia.array_nor(img.astype(np.float32))).astype(np.uint8) GMatrix = (G * ia.array_nor(img.astype(np.float32))).astype(np.uint8) BMatrix = (B * ia.array_nor(img.astype(np.float32))).astype(np.uint8) alphaMatrix = (ia.array_nor(img.astype(np.float32)) * 255).astype(np.uint8) displayImg = np.zeros((img.shape[0], img.shape[1], 4)).astype(np.uint8) displayImg[:, :, 0] = RMatrix; displayImg[:, :, 1] = GMatrix; displayImg[:, :, 2] = BMatrix; displayImg[:, :, 3] = alphaMatrix return displayImg def bar_graph(left, height, error, errorDir='both', # 'both', 'positive' or 'negative' width=0.1, plotAxis=None, lw=3, faceColor='#000000', edgeColor='none', capSize=10, label=None ): """ plot a single bar with error bar """ if not plotAxis: f = plt.figure() plotAxis = f.add_subplot(111) if errorDir == 'both': yerr = error elif errorDir == 'positive': yerr = [[0], [error]] elif errorDir == 'negative': yerr = [[error], [0]] plotAxis.errorbar(left + width / 2, height, yerr=yerr, lw=lw, capsize=capSize, capthick=lw, color=edgeColor) plotAxis.bar(left, height, width=width, color=faceColor, edgecolor=edgeColor, lw=lw, label=label) return plotAxis def random_color(numOfColor=10): """ generate as list of random colors """ numOfColor = int(numOfColor) colors = [] Cmatrix = (np.random.rand(numOfColor, 3) * 255).astype(np.uint8) for i in range(numOfColor): r = hex(Cmatrix[i][0]).split('x')[1] if len(r) == 1: r = '0' + r g = hex(Cmatrix[i][1]).split('x')[1] if len(g) == 1: g = '0' + g b = hex(Cmatrix[i][2]).split('x')[1] if len(b) == 1: b = '0' + b colors.append('#' + r + g + b) return colors def show_movie(path, # tif file path or numpy arrary of the movie mode='raw', # 'raw', 'dF' or 'dFoverF' baselinePic=None, # picuture of baseline baselineType='mean', # way to calculate baseline cmap='gray'): """ plot tf movie in the way defined by mode """ if isinstance(path, str): rawMov = tf.imread(path) elif isinstance(path, np.ndarray): rawMov = path if mode == 'raw': mov = rawMov else: _, dFMov, dFoverFMov = ia.normalize_movie(rawMov, baselinePic=baselinePic, baselineType=baselineType) if mode == 'dF': mov = dFMov elif mode == 'dFoverF': mov = dFoverFMov else: raise LookupError, 'The "mode" should be "raw", "dF" or "dFoverF"!' if isinstance(path, str): tf.imshow(mov, cmap=cmap, vmax=np.amax(mov), vmin=np.amin(mov), title=mode + ' movie of ' + path) elif isinstance(path, np.ndarray): tf.imshow(mov, cmap=cmap, vmax=np.amax(mov), vmin=np.amin(mov), title=mode + ' Movie') return mov def standalone_color_bar(vmin, vmax, cmap, sectionNum=10): """ plot a stand alone color bar. """ a = np.array([[vmin, vmax]]) plt.figure(figsize=(0.1, 9)) img = plt.imshow(a, cmap=cmap, vmin=vmin, vmax=vmax) plt.gca().set_visible(False) cbar = plt.colorbar() cbar.set_ticks(np.linspace(vmin, vmax, num=sectionNum + 1)) def alpha_blending(image, alphaData, vmin, vmax, cmap='Paired', sectionNum=10, background=-1, interpolation='nearest', isSave=False, savePath=None): """ Generate image with transparency weighted by another matrix. Plot numpy array 'image' with colormap 'cmap'. And define the tranparency of each pixel by the value in another numpy array alphaData. All the elements in alphaData should be non-negative. """ if image.shape != alphaData.shape: raise LookupError, '"image" and "alphaData" should have same shape!!' if np.amin(alphaData) < 0: raise ValueError, 'All the elements in alphaData should be bigger than zero.' # normalize image image[image > vmax] = vmax image[image < vmin] = vmin image = (image - vmin) / (vmax - vmin) # get colored image of image exec ('colorImage = cm.' + cmap + '(image)') # normalize alphadata alphaDataNor = alphaData / np.amax(alphaData) alphaDataNor = np.sqrt(alphaDataNor) colorImage[:, :, 3] = alphaDataNor # plt.figure() # plot dummy figure for colorbar a = np.array([[vmin, vmax]]) plt.imshow(a, cmap=cmap, vmin=vmin, vmax=vmax, alpha=0) # plt.gca().set_visible(False) cbar = plt.colorbar() cbar.set_ticks(np.linspace(vmin, vmax, num=sectionNum + 1)) cbar.set_alpha(1) cbar.draw_all() # generate black background b = np.array(colorImage) b[:] = background b[:, :, 3] = 1 plt.imshow(b, cmap='gray') # plot map plt.imshow(colorImage, interpolation=interpolation) return colorImage def plot_mask(mask, plotAxis=None, color='#ff0000', zoom=1, borderWidth=None, closingIteration=None): """ plot mask borders in a given color """ if not plotAxis: f = plt.figure() plotAxis = f.add_subplot(111) cmap1 = col.ListedColormap(color, 'temp') cm.register_cmap(cmap=cmap1) if zoom != 1: mask = ni.interpolation.zoom(mask, zoom, order=0) mask2 = mask.astype(np.float32) mask2[np.invert(np.isnan(mask2))] = 1. mask2[np.isnan(mask2)] = 0. struc = ni.generate_binary_structure(2, 2) if borderWidth: border = mask2 - ni.binary_erosion(mask2, struc, iterations=borderWidth).astype(np.float32) else: border = mask2 - ni.binary_erosion(mask2, struc).astype(np.float32) if closingIteration: border = ni.binary_closing(border, iterations=closingIteration).astype(np.float32) border[border == 0] = np.nan currfig = plotAxis.imshow(border, cmap='temp', interpolation='nearest') return currfig def plot_mask_borders(mask, plotAxis=None, color='#ff0000', zoom=1, borderWidth=2, closingIteration=None, **kwargs): """ plot mask (ROI) borders by using pyplot.contour function. all the 0s and Nans in the input mask will be considered as background, and non-zero, non-nan pixel will be considered in ROI. """ if not plotAxis: f = plt.figure() plotAxis = f.add_subplot(111) plotingMask = np.ones(mask.shape, dtype=np.uint8) plotingMask[np.logical_or(np.isnan(mask), mask == 0)] = 0 if zoom != 1: plotingMask = cv2.resize(plotingMask.astype(np.float), dsize=(int(plotingMask.shape[1] * zoom), int(plotingMask.shape[0] * zoom))) plotingMask[plotingMask < 0.5] = 0 plotingMask[plotingMask >= 0.5] = 1 plotingMask = plotingMask.astype(np.uint8) if closingIteration is not None: plotingMask = ni.binary_closing(plotingMask, iterations=closingIteration).astype(np.uint8) plotingMask = ni.binary_erosion(plotingMask, iterations=borderWidth) currfig = plotAxis.contour(plotingMask, levels=[0.5], colors=color, linewidths=borderWidth, **kwargs) # put y axis in decreasing order y_lim = list(plotAxis.get_ylim()) y_lim.sort() plotAxis.set_ylim(y_lim[::-1]) plotAxis.set_aspect('equal') return currfig def grid_axis(rowNum, columnNum, totalPlotNum, **kwarg): """ return figure handles and axis handels for multiple subplots and figures """ figureNum = totalPlotNum // (rowNum * columnNum) + 1 figureHandles = [] for i in range(figureNum): f = plt.figure(**kwarg) figureHandles.append(f) axisHandles = [] for i in range(totalPlotNum): currFig = figureHandles[i // (rowNum * columnNum)] currIndex = i % (rowNum * columnNum) currAxis = currFig.add_subplot(rowNum, columnNum, currIndex + 1) axisHandles.append(currAxis) return figureHandles, axisHandles def tile_axis(f, rowNum, columnNum, topDownMargin=0.05, leftRightMargin=0.05, rowSpacing=0.05, columnSpacing=0.05): if 2 * topDownMargin + ( (rowNum - 1) * rowSpacing) >= 1: raise ValueError, 'Top down margin or row spacing are too big!' if 2 * leftRightMargin + ( (columnNum - 1) * columnSpacing) >= 1: raise ValueError, 'Left right margin or column spacing are too big!' height = (1 - (2 * topDownMargin) - (rowNum - 1) * rowSpacing) / rowNum width = (1 - (2 * leftRightMargin) - (columnNum - 1) * columnSpacing) / columnNum xStarts = np.arange(leftRightMargin, 1 - leftRightMargin, (width + columnSpacing)) yStarts = np.arange(topDownMargin, 1 - topDownMargin, (height + rowSpacing))[::-1] axisList = [[f.add_axes([xStart, yStart, width, height]) for xStart in xStarts] for yStart in yStarts] return axisList def save_figure_without_borders(f, savePath, removeSuperTitle=True, **kwargs): """ remove borders of a figure """ f.gca().get_xaxis().set_visible(False) f.gca().get_yaxis().set_visible(False) f.gca().set_title('') if removeSuperTitle: f.suptitle('') f.savefig(savePath, pad_inches=0, bbox_inches='tight', **kwargs) def merge_normalized_images(imgList, isFilter=True, sigma=50, mergeMethod='mean', dtype=np.float32): """ merge images in a list in to one, for each image, local intensity variability will be removed by subtraction of gaussian filtered image. Then all images will be collapsed by the mergeMethod in to single image """ imgList2 = [] for currImg in imgList: imgList2.append(ia.array_nor(currImg.astype(dtype))) if mergeMethod == 'mean': mergedImg = np.mean(np.array(imgList2), axis=0) elif mergeMethod == 'min': mergedImg = np.min(np.array(imgList2), axis=0) elif mergeMethod == 'max': mergedImg = np.max(np.array(imgList2), axis=0) elif mergeMethod == 'median': mergedImg = np.median(np.array(imgList2), axis=0) if isFilter: mergedImgf = ni.filters.gaussian_filter(mergedImg.astype(np.float), sigma=sigma) return ia.array_nor(mergedImg - mergedImgf).astype(dtype) else: return ia.array_nor(mergedImg).astype(dtype) # def hue2RGB(hue): # """ # get the RGB value as format as hex string from the decimal ratio of hue (from 0 to 1) # color model as described in: # https://en.wikipedia.org/wiki/Hue # """ # if hue < 0: hue = 0 # if hue > 1: hue = 1 # color = colorsys.hsv_to_rgb(hue,1,1) # color = [int(x*255) for x in color] # return get_color_str(*color) # # def hot_2_rgb(hot): """ get the RGB value as format as hex string from the decimal ratio of hot colormap (from 0 to 1) """ if hot < 0: hot = 0 if hot > 1: hot = 1 cmap_hot = plt.get_cmap('hot') color = cmap_hot(hot)[0:3]; color = [int(x * 255) for x in color] return get_color_str(*color) def value_2_rgb(value, cmap): """ get the RGB value as format as hex string from the decimal ratio of a given colormap (from 0 to 1) """ if value < 0: value = 0 if value > 1: value = 1 cmap = plt.get_cmap(cmap) color = cmap(value)[0:3]; color = [int(x * 255) for x in color] return get_color_str(*color) if __name__ == '__main__': plt.ioff() print 'for debug'
gpl-3.0
hugobowne/scikit-learn
examples/svm/plot_oneclass.py
80
2338
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred') s = 40 b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s) b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s) c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s) plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
PredictiveScienceLab/py-mcmc
demos/demo4.py
2
4183
""" This demo demonstrates how to use a mean function in a GP and allow the model to discover the most important basis functions. This model is equivalent to a Relevance Vector Machine. Author: Ilias Bilionis Date: 3/20/2014 """ import numpy as np import GPy import pymcmc as pm import matplotlib.pyplot as plt # Write a class that represents the mean you wish to use: class PolynomialBasis(object): """ A simple set of polynomials. :param degree: The degree of the polynomials. :type degree: int """ def __init__(self, degree): """ The constructor can do anything you want. The object should be constructed before doing anything with pymcmc in any case. Just make sure that inside the constructor you define the ``num_output`` attribute whose value should be equal to the number of basis functions. """ self.degree = degree self.num_output = degree + 1 # YOU HAVE TO DEFINE THIS ATTRIBUTE! def __call__(self, X): """ Evaluate the basis functions at ``X``. Now, you should assume that ``X`` is a 2D numpy array of size ``num_points x input_dim``. If ``input_dim`` is 1, then you still need to consider it as a 2D array because this is the kind of data that GPy requires. If you want to make the function work also with 1D arrays if ``input_dim`` is one the use the trick below. The output of this function should be the design matrix. That is, it should be the matrix ``phi`` of dimensions ``num_points x num_output``. In otherwors, ``phi[i, j]`` should be the value of basis function ``phi_j`` at ``X[i, :]``. """ if X.ndim == 1: X = X[:, None] # Trick for 1D arrays return np.hstack([X ** i for i in range(self.degree + 1)]) # Pick your degree degree = 5 # Construct your basis poly_basis = PolynomialBasis(degree) # Let us generate some random data to play with # The number of input dimensions input_dim = 1 # The number of observations num_points = 50 # The noise level we are going to add to the observations noise = 0.1 # Observed inputs X = 20. * np.random.rand(num_points, 1) - 10. # The observations we make Y = np.sin(X) / X + noise * np.random.randn(num_points, 1) - 0.1 * X + 0.1 * X ** 3 # Let's construct a GP model with just a mean and a diagonal covariance # This is the mean (and at the same time the kernel) mean = pm.MeanFunction(input_dim, poly_basis, ARD=True) # Add an RBF kernel kernel = GPy.kern.RBF(input_dim) # Now, let's construct the model model = GPy.models.GPRegression(X, Y, kernel=mean + kernel) print 'Model before training:' print str(model) # You may just train the model by maximizing the likelihood: model.optimize_restarts(messages=True) print 'Trained model:' print str(model) print model.add.mean.variance # And just plot the predictions model.plot(plot_limits=(-10, 15)) # Let us also plot the full function x = np.linspace(-10, 15, 100)[:, None] y = np.sin(x) / x - 0.1 * x + 0.1 * x ** 3 plt.plot(x, y, 'r', linewidth=2) plt.legend(['Mean of GP', '5% percentile of GP', '95% percentile of GP', 'Observations', 'Real Underlying Function'], loc='best') plt.title('Model trained by maximizing the likelihood') plt.show() a = raw_input('press enter to continue...') # Or you might want to do it using MCMC: new_mean = pm.MeanFunction(input_dim, poly_basis, ARD=True) new_kernel = GPy.kern.RBF(input_dim) new_model = GPy.models.GPRegression(X, Y, kernel=mean + new_kernel) proposal = pm.MALAProposal(dt=0.1) mcmc = pm.MetropolisHastings(new_model, proposal=proposal) mcmc.sample(50000, num_thin=100, num_burn=1000, verbose=True) print 'Model trained with MCMC:' print str(new_model) print new_model.add.mean.variance # Plot everything for this too: new_model.plot(plot_limits=(-10., 15.)) # Let us also plot the full function plt.plot(x, y, 'r', linewidth=2) plt.legend(['Mean of GP', '5% percentile of GP', '95% percentile of GP', 'Observations', 'Real Underlying Function'], loc='best') plt.title('Model trained by MCMC') plt.show() a = raw_input('press enter to continue...')
lgpl-3.0
pangwong11/jumpball
bd_analyze/nba_season_stats_analyzer.py
1
5069
#!/usr/bin/python import numpy as np import matplotlib.pyplot as pyplot from datetime import datetime import os import glob import sys import re import argparse import cv2 import random import ast # Argument parsing #parser = argparse.ArgumentParser(description='Jumpball analyze') #parser.add_argument('-s', '--season', action='store', help='Season in year', dest="year_season", required=True) #parser.add_argument('-n', '--next-season', action='store', help='Season in year', dest="next_year_season", required=True) #args = parser.parse_args() # #season = args.year_season #next_season = args.next_year_season #data_directory = "./nba_data" team_stat_path = './nba_data/*.csv' team_stat_files = glob.glob(team_stat_path) data_types = ['Height', 'Weight', 'WL_PERC'] num_data_types = len(data_types) def readTeamStats(file_name): dtypes = np.dtype({ 'names' : ('team', 'Height', 'Weight', 'WL_PERC'), 'formats' : ['S10', np.float, np.float, np.float] }) data = np.loadtxt(file_name, delimiter=',', skiprows=1, usecols=(0,2,3,4), dtype=dtypes) #data_list = list(data) return data def readTeamRecord(file_name): dtypes = np.dtype({ 'names' : ('team', 'WL_PERC'), 'formats' : ['S10', np.float] }) data = np.loadtxt(file_name, delimiter=',', skiprows=1, usecols=(0,3), dtype=dtypes) return data # Iterate through each NBA team stats file and output find the mean for each teams weight and height def analyzeTeamStats(season): data_set=[] team_labels_set = [] data_directory = ("/Users/aidan.wong/Documents/mystuff/cs454/jumpball/bd_collect/nba_data/%s/" % season) for root, dirs, files in os.walk(data_directory): for f in files: if f.endswith("agg_data.csv"): teamStats = readTeamStats(data_directory + f) teamStats_list = zip(*teamStats) team = teamStats_list[0][0] ht_mean = np.array(teamStats_list[1], dtype=float).mean() wt_mean = np.array(teamStats_list[2], dtype=float).mean() wl_perc = teamStats_list[3][0] data = [ht_mean, wt_mean,wl_perc] data_set.append(data) team_labels_set.append(team) #print data_set #print "--------------" return data_set,team_labels_set season = "2011" next_year_season = "2012" trainData_1, teamData_1 = analyzeTeamStats(season) trainData_2, teamData_2 = analyzeTeamStats(next_year_season) #print trainData_2 #print trainData_2[3] print "------------------------" print teamData_1 print teamData_2 #print teamData_2[3] # This variable is to defined the new sample team to run K-NN with and the number should range from 0 to 30 new_team_index = 3 trainData_array = np.array(trainData_1).astype(np.float32) newData_array = np.array(trainData_2) #print trainData_array #print newData_array #print newData_array[0] #print trainData_array labels = np.array(np.arange(30)) #print labels #labels = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]) for label, x, y in zip(teamData_1,trainData_array[:,0],trainData_array[:,1]): pyplot.annotate(label,xy =(x,y), xytext=(-20,20),textcoords = 'offset points', ha ='right', va = 'bottom',bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')) for i in range(0,30): r = lambda: random.randint(0,255) color = '#%02X%02X%02X' % (r(),r(),r()) team_data = trainData_array[labels.ravel()==i] pyplot.scatter(team_data[:,0],team_data[:,1],marker = 'o',s = team_data[:,2]*4500,c = color,cmap = pyplot.get_cmap('Spectral')) #print newData_array[labels.ravel()==1] #for i in range(1,2): new_team_data = newData_array[labels.ravel()==new_team_index] print "new_team_data =", new_team_data pyplot.scatter(new_team_data[:,0],new_team_data[:,1],marker = '^',s = new_team_data[:,2]*4500,c = color,cmap = pyplot.get_cmap('Spectral')) i = 0 for label, x, y in zip(teamData_2[:new_team_index+1],newData_array[:,0],newData_array[:,1]): if i < new_team_index: print i i += 1 continue print zip(teamData_2[:new_team_index+1],newData_array[:,0],newData_array[:,1]) print (label,x,y) # print type(label) pyplot.annotate(label,xy =(x,y), xytext=(-20,20),textcoords = 'offset points', ha ='right', va = 'bottom',bbox = dict(boxstyle = 'round,pad=0.5', fc = 'blue', alpha = 0.5),arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')) knn = cv2.KNearest() #print trainData_array # # #knn.train(trainData_array,labels) knn.train(trainData_array,np.array(labels).astype(np.float32)) ret, results, neighbours ,dist = knn.find_nearest((new_team_data).astype(np.float32), 1) print (ret, results, neighbours, dist) # print "result: ", results,"\n" print "neighbours: ", neighbours,"\n" print "distance: ", dist pyplot.show()
apache-2.0
mozman/ezdxf
examples/text_layout_engine_usage.py
1
12087
# Copyright (c) 2021, Manfred Moitzi # License: MIT License import sys from typing import Iterable import pathlib import random import ezdxf from ezdxf import zoom, print_config from ezdxf.math import Matrix44 from ezdxf.tools import fonts from ezdxf.tools import text_layout as tl """ This example shows the usage of the internal text_layout module to render complex text layouts. The module is designed to render MText like entities, but could be used for other tasks too. The layout engine supports a multi column setup, each column contains paragraphs, and these paragraphs can automatically flow across the columns. All locations are relative to each other, absolute locations are not supported - tabulators are not supported. The layout engine knows nothing about the content itself, it just manages content boxes of a fixed given width and height and "glue" spaces in between. The engine does not alter the size of the content boxes, but resizes the glue if necessary. The actual rendering is done by a rendering object associated to each content box. The only text styling manged by the layout engine is underline, overline and strike through multiple content boxes. Features: - layout alignment like MText: top-middle-bottom combined with left-center-right - paragraph alignments: left, right, center, justified - paragraph indentation: left, right, special first line - cell alignments: top, center, bottom - fraction cells: over, slanted, tolerance style - columns have a fixed height or grows automatically, paragraphs which do not fit "flow" into the following column. - pass through of transformation matrix to the rendering object TODO: - bullet- and numbered lists - refinements to replicate MText features as good as possible Used for: - drawing add-on to render MTEXT with columns - explode MTEXT into DXF primitives (TEXT, LINE) """ if not ezdxf.options.use_matplotlib: print("The Matplotlib package is required.") sys.exit(1) # Type alias: Content = Iterable[tl.Cell] DIR = pathlib.Path("~/Desktop/Outbox").expanduser() STYLE = "Style0" FONT = "OpenSans-Regular.ttf" COLUMN_HEIGHT: float = 12 print_config() doc = ezdxf.new() msp = doc.modelspace() style = doc.styles.new(STYLE, dxfattribs={"font": FONT}) def measure_space(font): return font.text_width(" X") - font.text_width("X") class SizedFont: def __init__(self, height: float): self.height = float(height) self.font = fonts.make_font(FONT, self.height) self.space = measure_space(self.font) def text_width(self, text: str): return self.font.text_width(text) fix_sized_fonts = [ SizedFont(0.18), SizedFont(0.35), SizedFont(0.50), SizedFont(0.70), SizedFont(1.00), ] class FrameRenderer(tl.ContentRenderer): """Render object to render a frame around a content collection. This renderer can be used by collections which just manages content but do not represent a content by itself (Layout, Column, Paragraph). """ def __init__(self, color): self.color = color def render( self, left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ) -> None: """Render a frame as LWPOLYLINE.""" pline = msp.add_lwpolyline( [(left, top), (right, top), (right, bottom), (left, bottom)], close=True, dxfattribs={"color": self.color}, ) if m: pline.transform(m) def line( self, x1: float, y1: float, x2: float, y2: float, m: Matrix44 = None ) -> None: """Line renderer used to create underline, overline, strike through and fraction dividers. """ line = msp.add_line( (x1, y1), (x2, y2), dxfattribs={"color": self.color} ) if m: line.transform(m) class TextRenderer(tl.ContentRenderer): """Text content renderer.""" def __init__(self, text, attribs): self.text = text self.attribs = attribs self.line_attribs = {"color": attribs["color"]} def render( self, left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ): """Create/render the text content""" text = msp.add_text(self.text, dxfattribs=self.attribs) text.set_pos((left, bottom), align="LEFT") if m: text.transform(m) def line( self, x1: float, y1: float, x2: float, y2: float, m: Matrix44 = None ) -> None: """Line renderer used to create underline, overline, strike through and fraction dividers. """ line = msp.add_line((x1, y1), (x2, y2), dxfattribs=self.line_attribs) if m: line.transform(m) class Word(tl.Text): """Represent a word as content box for the layout engine.""" def __init__(self, text: str, font: SizedFont, stroke: int = 0): # Each content box can have individual properties: attribs = { "color": random.choice((1, 2, 3, 4, 6, 7, 7)), "height": font.height, "style": STYLE, } super().__init__( # Width and height of the content are fixed given values and will # not be changed by the layout engine: width=font.text_width(text), height=font.height, stroke=stroke, # Each content box can have it's own rendering object: renderer=TextRenderer(text, attribs), ) def uniform_content(count: int, size: int = 1) -> Content: """Create content with one text size.""" font = fix_sized_fonts[size] for word in tl.lorem_ipsum(count): yield Word(word, font) yield tl.Space(font.space) def random_sized_content(count: int) -> Content: """Create content with randomized text size.""" def size(): return random.choice([0, 1, 1, 1, 1, 1, 2, 3]) for word in tl.lorem_ipsum(count): font = fix_sized_fonts[size()] yield Word(word, font) yield tl.Space(font.space) def stroke_groups(words: Iterable[str]): group = [] count = 0 stroke = 0 for word in words: if count == 0: if group: yield group, stroke count = random.randint(1, 4) group = [word] stroke = random.choice([0, 0, 0, 0, 1, 1, 1, 2, 2, 4]) else: count -= 1 group.append(word) if group: yield group, stroke def stroked_content(count: int, size: int = 1) -> Content: """Create content with one text size and groups of words with or without strokes. """ font = fix_sized_fonts[size] groups = stroke_groups(tl.lorem_ipsum(count)) for group, stroke in groups: # strokes should span across spaces in between words: # Spaces between words are bound to the preceding content box renderer, # MText is more flexible, but this implementation is easy and good # enough, otherwise spaces would need a distinct height and a rendering # object, both are not implemented for glue objects. continue_stroke = stroke + 8 if stroke else 0 for word in group[:-1]: yield Word(word, font=font, stroke=continue_stroke) yield tl.Space(font.space) # strokes end at the last word, without continue stroke: yield Word(group[-1], font=font, stroke=stroke) yield tl.Space(font.space) class Fraction(tl.Fraction): """Represents a fraction for the layout engine, which consist of a top- and bottom content box, divided by horizontal or slanted line. The "tolerance style" has no line between the stacked content boxes. This implementation is more flexible than MText, the content boxes can be words but also fractions or cell groups. """ def __init__( self, t1: str, t2: str, stacking: tl.Stacking, font: SizedFont ): top = Word(t1, font) bottom = Word(t2, font) super().__init__( top=top, bottom=bottom, stacking=stacking, # Uses only the generic line renderer to render the divider line, # the top- and bottom content boxes use their own render objects. renderer=FrameRenderer(color=7), ) def fraction_content() -> Content: """Create content with one text size and place random fractions between words. """ words = list(uniform_content(120)) for word in words: word.valign = tl.CellAlignment.BOTTOM stacking_options = list(tl.Stacking) font = SizedFont(0.25) # fraction font for _ in range(10): stacking = random.choice(stacking_options) top = str(random.randint(1, 1000)) bottom = str(random.randint(1, 1000)) pos = random.randint(0, len(words) - 1) if isinstance(words[pos], tl.Space): pos += 1 words.insert(pos, Fraction(top, bottom, stacking, font)) words.insert(pos + 1, tl.Space(font.space)) return words def create_layout(align: tl.ParagraphAlignment, content: Content) -> tl.Layout: # Create a flow text paragraph for the content: paragraph = tl.Paragraph(align=align) paragraph.append_content(content) # Start the layout engine and set default column width: layout = tl.Layout( width=8, # default column width for columns without define width margins=(0.5,), # space around the layout # The render object of collections like Layout, Column or Paragraph is # called before the render objects of the content managed by the # collection. # This could be used to render a frame or a background: renderer=FrameRenderer(color=2), ) # Append the first column with default width and a content height of 12 drawing # units. At least the first column has to be created by the client. layout.append_column(height=COLUMN_HEIGHT, gutter=1) # Append the content. The content will be distributed across the available # columns and automatically overflow into adjacent columns if necessary. # The layout engine creates new columns automatically if required by # cloning the last column. layout.append_paragraphs([paragraph]) # Content- and total size is always up to date, only the final location # has to be updated by calling Layout.place(). print() print(f"Layout has {len(layout)} columns.") print(f"Layout total width: {layout.total_width}") print(f"Layout total height: {layout.total_height}") for n, column in enumerate(layout, start=1): print() print(f" {n}. column has {len(column)} paragraph(s)") print(f" Column total width: {column.total_width}") print(f" Column total height: {column.total_height}") # It is recommended to place the layout at origin (0, 0) and use a # transformation matrix to move the layout to the final location in # the DXF target layout - the model space in this example. # Set final layout location in the xy-plane with alignment: layout.place(align=tl.LayoutAlignment.BOTTOM_LEFT) # It is possible to add content after calling place(), but place has to be # called again before calling the render() method of the layout. return layout def create(content: Content, y: float) -> None: x: float = 0 for align in list(tl.ParagraphAlignment): # Build and place the layout at (0, 0): layout = create_layout(align, content) # Render and move the layout to the final location: m = Matrix44.translate(x, y, 0) layout.render(m) x += layout.total_width + 2 dy: float = COLUMN_HEIGHT + 3 create(list(uniform_content(200)), 0) create(list(random_sized_content(200)), dy) create(list(stroked_content(200)), 2 * dy) create(fraction_content(), 3 * dy) # zooming needs the longest time: zoom.extents(msp, factor=1.1) doc.saveas(str(DIR / "text_layout.dxf"))
mit
vybstat/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/lines_bars_and_markers/simple_plot.py
1
1292
""" =========== Simple Plot =========== Create a simple plot. """ import matplotlib.pyplot as plt import numpy as np # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end # Data for plotting t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2 * np.pi * t) # Note that using plt.subplots below is equivalent to using # fig = plt.figure and then ax = fig.add_subplot(111) fig, ax = plt.subplots() ax.plot(t, s) ax.set(xlabel='time (s)', ylabel='voltage (mV)', title='About as simple as it gets, folks') ax.grid() fig.savefig("test.png") pltshow(plt)
mit
adelomana/cassandra
conditionedFitness/figurePatterns/script.sustained.py
2
1771
import pickle import statsmodels,statsmodels.api import matplotlib,matplotlib.pyplot matplotlib.rcParams.update({'font.size':36,'font.family':'Arial','xtick.labelsize':28,'ytick.labelsize':28}) thePointSize=12 # 0. user defined variables jarDir='/Users/adriandelomana/scratch/' # sustained trajectories selected=['clonal.2.1','engineered.1.1','engineered.2.2','mutagenized.2.2'] # should be n = 6 # 1. iterate over selected trajectories allx=[]; ally=[] for replicate in selected: print(replicate) # read jar file jarFile=jarDir+replicate+'.pickle' f=open(jarFile,'rb') trajectory=pickle.load(f) f.close() # recover data into a format amenable to plotting x=trajectory[0] y=trajectory[1] z=trajectory[2] for a,b in zip(x,y): allx.append(a) ally.append(b) # run lowess over each replicate. if lowess does not work, do correlation. if not pchip # plot matplotlib.pyplot.errorbar(x,y,yerr=z,fmt='o',color='black',ecolor='black',markeredgecolor='black',capsize=0,ms=thePointSize,mew=0,alpha=0.33) # run lowess over all data lowess = statsmodels.api.nonparametric.lowess(ally,allx,it=10) matplotlib.pyplot.plot(lowess[:, 0], lowess[:, 1],color='red',lw=4,zorder=100) # close figure matplotlib.pyplot.plot([0,300],[0,0],'--',color='black') matplotlib.pyplot.xlim([-25,325]) matplotlib.pyplot.ylim([-0.44,0.44]) matplotlib.pyplot.xticks([0,100,200,300]) matplotlib.pyplot.yticks([-0.4,-0.2,0,0.2,0.4]) matplotlib.pyplot.xlabel('Generation') matplotlib.pyplot.ylabel('Conditioned\nFitness') #matplotlib.pyplot.text(-20,0.3,'Sustained') matplotlib.pyplot.text(120,-0.38,'Sustained',color='red') matplotlib.pyplot.tight_layout(pad=0.5) matplotlib.pyplot.savefig('figure.sustained.pdf')
gpl-3.0
gnychis/grforwarder
gnuradio-examples/python/pfb/resampler.py
7
4207
#!/usr/bin/env python # # Copyright 2009 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blks2 import sys try: import scipy except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class mytb(gr.top_block): def __init__(self, fs_in, fs_out, fc, N=10000): gr.top_block.__init__(self) rerate = float(fs_out) / float(fs_in) print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate) # Creating our own taps taps = gr.firdes.low_pass_2(32, 32, 0.25, 0.1, 80) self.src = gr.sig_source_c(fs_in, gr.GR_SIN_WAVE, fc, 1) #self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1) self.head = gr.head(gr.sizeof_gr_complex, N) # A resampler with our taps self.resamp_0 = blks2.pfb_arb_resampler_ccf(rerate, taps, flt_size=32) # A resampler that just needs a resampling rate. # Filter is created for us and designed to cover # entire bandwidth of the input signal. # An optional atten=XX rate can be used here to # specify the out-of-band rejection (default=80). self.resamp_1 = blks2.pfb_arb_resampler_ccf(rerate) self.snk_in = gr.vector_sink_c() self.snk_0 = gr.vector_sink_c() self.snk_1 = gr.vector_sink_c() self.connect(self.src, self.head, self.snk_in) self.connect(self.head, self.resamp_0, self.snk_0) self.connect(self.head, self.resamp_1, self.snk_1) def main(): fs_in = 8000 fs_out = 20000 fc = 1000 N = 10000 tb = mytb(fs_in, fs_out, fc, N) tb.run() # Plot PSD of signals nfftsize = 2048 fig1 = pylab.figure(1, figsize=(10,10), facecolor="w") sp1 = fig1.add_subplot(2,1,1) sp1.psd(tb.snk_in.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_in) sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0))) sp1.set_xlim([-fs_in/2, fs_in/2]) sp2 = fig1.add_subplot(2,1,2) sp2.psd(tb.snk_0.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_out, label="With our filter") sp2.psd(tb.snk_1.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_out, label="With auto-generated filter") sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0))) sp2.set_xlim([-fs_out/2, fs_out/2]) sp2.legend() # Plot signals in time Ts_in = 1.0/fs_in Ts_out = 1.0/fs_out t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in) t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out) fig2 = pylab.figure(2, figsize=(10,10), facecolor="w") sp21 = fig2.add_subplot(2,1,1) sp21.plot(t_in, tb.snk_in.data()) sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0))) sp21.set_xlim([t_in[100], t_in[200]]) sp22 = fig2.add_subplot(2,1,2) sp22.plot(t_out, tb.snk_0.data(), label="With our filter") sp22.plot(t_out, tb.snk_1.data(), label="With auto-generated filter") sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0))) r = float(fs_out)/float(fs_in) sp22.set_xlim([t_out[r * 100], t_out[r * 200]]) sp22.legend() pylab.show() if __name__ == "__main__": main()
gpl-3.0
xubenben/data-science-from-scratch
code/clustering.py
60
6438
from __future__ import division from linear_algebra import squared_distance, vector_mean, distance import math, random import matplotlib.image as mpimg import matplotlib.pyplot as plt class KMeans: """performs k-means clustering""" def __init__(self, k): self.k = k # number of clusters self.means = None # means of clusters def classify(self, input): """return the index of the cluster closest to the input""" return min(range(self.k), key=lambda i: squared_distance(input, self.means[i])) def train(self, inputs): self.means = random.sample(inputs, self.k) assignments = None while True: # Find new assignments new_assignments = map(self.classify, inputs) # If no assignments have changed, we're done. if assignments == new_assignments: return # Otherwise keep the new assignments, assignments = new_assignments for i in range(self.k): i_points = [p for p, a in zip(inputs, assignments) if a == i] # avoid divide-by-zero if i_points is empty if i_points: self.means[i] = vector_mean(i_points) def squared_clustering_errors(inputs, k): """finds the total squared error from k-means clustering the inputs""" clusterer = KMeans(k) clusterer.train(inputs) means = clusterer.means assignments = map(clusterer.classify, inputs) return sum(squared_distance(input,means[cluster]) for input, cluster in zip(inputs, assignments)) def plot_squared_clustering_errors(plt): ks = range(1, len(inputs) + 1) errors = [squared_clustering_errors(inputs, k) for k in ks] plt.plot(ks, errors) plt.xticks(ks) plt.xlabel("k") plt.ylabel("total squared error") plt.show() # # using clustering to recolor an image # def recolor_image(input_file, k=5): img = mpimg.imread(path_to_png_file) pixels = [pixel for row in img for pixel in row] clusterer = KMeans(k) clusterer.train(pixels) # this might take a while def recolor(pixel): cluster = clusterer.classify(pixel) # index of the closest cluster return clusterer.means[cluster] # mean of the closest cluster new_img = [[recolor(pixel) for pixel in row] for row in img] plt.imshow(new_img) plt.axis('off') plt.show() # # hierarchical clustering # def is_leaf(cluster): """a cluster is a leaf if it has length 1""" return len(cluster) == 1 def get_children(cluster): """returns the two children of this cluster if it's a merged cluster; raises an exception if this is a leaf cluster""" if is_leaf(cluster): raise TypeError("a leaf cluster has no children") else: return cluster[1] def get_values(cluster): """returns the value in this cluster (if it's a leaf cluster) or all the values in the leaf clusters below it (if it's not)""" if is_leaf(cluster): return cluster # is already a 1-tuple containing value else: return [value for child in get_children(cluster) for value in get_values(child)] def cluster_distance(cluster1, cluster2, distance_agg=min): """finds the aggregate distance between elements of cluster1 and elements of cluster2""" return distance_agg([distance(input1, input2) for input1 in get_values(cluster1) for input2 in get_values(cluster2)]) def get_merge_order(cluster): if is_leaf(cluster): return float('inf') else: return cluster[0] # merge_order is first element of 2-tuple def bottom_up_cluster(inputs, distance_agg=min): # start with every input a leaf cluster / 1-tuple clusters = [(input,) for input in inputs] # as long as we have more than one cluster left... while len(clusters) > 1: # find the two closest clusters c1, c2 = min([(cluster1, cluster2) for i, cluster1 in enumerate(clusters) for cluster2 in clusters[:i]], key=lambda (x, y): cluster_distance(x, y, distance_agg)) # remove them from the list of clusters clusters = [c for c in clusters if c != c1 and c != c2] # merge them, using merge_order = # of clusters left merged_cluster = (len(clusters), [c1, c2]) # and add their merge clusters.append(merged_cluster) # when there's only one cluster left, return it return clusters[0] def generate_clusters(base_cluster, num_clusters): # start with a list with just the base cluster clusters = [base_cluster] # as long as we don't have enough clusters yet... while len(clusters) < num_clusters: # choose the last-merged of our clusters next_cluster = min(clusters, key=get_merge_order) # remove it from the list clusters = [c for c in clusters if c != next_cluster] # and add its children to the list (i.e., unmerge it) clusters.extend(get_children(next_cluster)) # once we have enough clusters... return clusters if __name__ == "__main__": inputs = [[-14,-5],[13,13],[20,23],[-19,-11],[-9,-16],[21,27],[-49,15],[26,13],[-46,5],[-34,-1],[11,15],[-49,0],[-22,-16],[19,28],[-12,-8],[-13,-19],[-41,8],[-11,-6],[-25,-9],[-18,-3]] random.seed(0) # so you get the same results as me clusterer = KMeans(3) clusterer.train(inputs) print "3-means:" print clusterer.means print random.seed(0) clusterer = KMeans(2) clusterer.train(inputs) print "2-means:" print clusterer.means print print "errors as a function of k" for k in range(1, len(inputs) + 1): print k, squared_clustering_errors(inputs, k) print print "bottom up hierarchical clustering" base_cluster = bottom_up_cluster(inputs) print base_cluster print print "three clusters, min:" for cluster in generate_clusters(base_cluster, 3): print get_values(cluster) print print "three clusters, max:" base_cluster = bottom_up_cluster(inputs, max) for cluster in generate_clusters(base_cluster, 3): print get_values(cluster)
unlicense
wei-Z/Python-Machine-Learning
self_practice/CH2A.py
1
4506
import numpy as np class Perceptron(object): """Perceptron classifier. Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. Attributes ----------- w_ : 1d-array Weights after fitting. errors_ : list Number of misclassifications in every epoch. """ def __init__(self, eta=0.01, n_iter=10): self.eta = eta self.n_iter = n_iter def fit(self, X, y): """Fit training data. Parameters ---------- X : {array-like}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ----------- self : object """ self.w_ = np.zeros(1 + X.shape[1]) # return zero array, X.shape[1] =2L, return array([0., 0., 0.]) self.errors_ = [] for _ in range(self.n_iter): errors = 0 for xi, target in zip(X, y): update = self.eta * (target - self.predict(xi)) self.w_[1:] += update * xi self.w_[0] += update errors += int(update != 0.0) # if update = 0.0, errors = 0; if update unequal 0.0, errors =1. self.errors_.append(errors) return self def net_input(self, X): #"""Calculate net input""" return np.dot(X, self.w_[1:]) + self.w_[0] # matrix multiplication def predict(self, X): #"""Return class label after unit step""" return np.where(self.net_input(X) >= 0.0, 1, -1) # numpy.where(condition[, x, y]) # Return elements, either from x or y, depending on condition. # Training a perceptron model on the Iris dataset import pandas as pd df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) df.tail() import matplotlib.pyplot as plt y = df.iloc[0:100, 4].values y = np.where(y == 'Iris-setosa', -1, 1)# if y == 'Iris-setosa', y = -1, otherwise if y == 'Iris-versicolor', y =1. X = df.iloc[0:100, [0,2]].values plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa') plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor') plt.xlabel('petal length') plt.ylabel('sepal length') plt.legend(loc='upper left') plt.show() ppn = Perceptron() ppn.fit(X,y) plt.plot(range(1, len(ppn.errors_)+1), ppn.errors_, marker='o', color="green") plt.xlabel('Epochs') plt.ylabel('Number of misclassifications') plt.show() # Implement a small convenience function to visualize the decision boundaries for 2D datasets: from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) print "xx1: ", xx1 print "xx2: ", xx2 print "Z: ", Z print "xx1.ravel(): ", xx1.ravel() print "xx2.ravel(): ", xx2.ravel() Z = Z.reshape(xx1.shape) print "Z: ", Z plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) plot_decision_regions(X, y, classifier=ppn) plt.xlabel('sepal length [cm]') plt.ylabel('petal length [cm]') plt.legend(loc = 'upper left') plt.show() # meshgrid, ravel, reshape, contourf, xlim, ylim # how to use contourf and meshgrid: x = np.arange(-5, 5, 0.1) y = np.arange(-5, 5, 0.1) xx, yy = np.meshgrid(x, y, sparse=True) z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) h = plt.contourf(x,y,z)
mit
mganeva/mantid
qt/python/mantidqt/project/projectsaver.py
1
5274
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantidqt package # from __future__ import (absolute_import, division, print_function, unicode_literals) from json import dump import os from mantid.api import AnalysisDataService as ADS from mantidqt.project.workspacesaver import WorkspaceSaver from mantidqt.project.plotssaver import PlotsSaver from mantid import logger class ProjectSaver(object): def __init__(self, project_file_ext): self.project_file_ext = project_file_ext def save_project(self, file_name, workspace_to_save=None, plots_to_save=None, interfaces_to_save=None, project_recovery=True): """ The method that will actually save the project and call relevant savers for workspaces, plots, interfaces etc. :param file_name: String; The file_name of the :param workspace_to_save: List; of Strings that will have workspace names in it, if None will save all :param plots_to_save: List; of matplotlib.figure objects to save to the project file. :param interfaces_to_save: List of Lists of Window and Encoder; the interfaces to save and the encoders to use :param project_recovery: Bool; If the behaviour of Project Save should be altered to function correctly inside of project recovery :return: None; If the method cannot be completed. """ # Check if the file_name doesn't exist if file_name is None: logger.warning("Please select a valid file name") return # Check this isn't saving a blank project file if (workspace_to_save is None and plots_to_save is None and interfaces_to_save is None) and project_recovery: logger.warning("Can not save an empty project") return directory = os.path.dirname(file_name) # Save workspaces to that location if project_recovery: workspace_saver = WorkspaceSaver(directory=directory) workspace_saver.save_workspaces(workspaces_to_save=workspace_to_save) saved_workspaces = workspace_saver.get_output_list() else: # Assume that this is project recovery so pass a list of workspace names saved_workspaces = ADS.getObjectNames() # Generate plots plots_to_save_list = PlotsSaver().save_plots(plots_to_save) # Save interfaces if interfaces_to_save is None: interfaces_to_save = [] interfaces = self._return_interfaces_dicts(directory=directory, interfaces_to_save=interfaces_to_save) # Pass dicts to Project Writer writer = ProjectWriter(workspace_names=saved_workspaces, plots_to_save=plots_to_save_list, interfaces_to_save=interfaces, save_location=file_name, project_file_ext=self.project_file_ext) writer.write_out() @staticmethod def _return_interfaces_dicts(directory, interfaces_to_save): interfaces = [] for interface, encoder in interfaces_to_save: # Add to the dictionary encoded data with the key as the first tag in the list on the encoder attributes try: tag = encoder.tags[0] encoded_dict = encoder.encode(interface, directory) encoded_dict["tag"] = tag interfaces.append(encoded_dict) except Exception as e: # Catch any exception and log it if isinstance(e, KeyboardInterrupt): raise logger.warning("Project Saver: An interface could not be saver error: " + str(e)) return interfaces class ProjectWriter(object): def __init__(self, save_location, workspace_names, project_file_ext, plots_to_save, interfaces_to_save): self.workspace_names = workspace_names self.file_name = save_location self.project_file_ext = project_file_ext self.plots_to_save = plots_to_save self.interfaces_to_save = interfaces_to_save def write_out(self): """ Write out the project file that contains workspace names, interfaces information, plot preferences etc. """ # Get the JSON string versions to_save_dict = {"workspaces": self.workspace_names, "plots": self.plots_to_save, "interfaces": self.interfaces_to_save} # Open file and save the string to it alongside the workspace_names if self.project_file_ext not in os.path.basename(self.file_name): self.file_name = self.file_name + self.project_file_ext try: with open(self.file_name, "w+") as f: dump(obj=to_save_dict, fp=f) except Exception as e: # Catch any exception and log it if isinstance(e, KeyboardInterrupt): raise logger.warning("JSON project file unable to be opened/written to")
gpl-3.0
PetaVision/projects
momentLearn/scripts/recon_simple.py
2
1138
import os, sys lib_path = os.path.abspath("/home/slundquist/workspace/PetaVision/plab/") sys.path.append(lib_path) from plotRecon import plotRecon from plotReconError import plotReconError #For plotting #import matplotlib.pyplot as plt outputDir = "/nh/compneuro/Data/momentLearn/output/simple_momentum_out/" skipFrames = 10 #Only print every 20th frame startFrames = 0 doPlotRecon = True doPlotErr = False errShowPlots = False layers = [ "a1_ImageRescale", "a4_Recon", ] #Layers for constructing recon error preErrLayers = [ "a1_LeftDownsample", "a5_RightDownsample", ] postErrLayers = [ "a3_LeftRecon", "a7_RightRecon", ] gtLayers = None #gtLayers = [ # #"a25_DepthRescale", # #"a25_DepthRescale", # #"a25_DepthRescale", # "a25_DepthRescale", # "a25_DepthRescale", # "a25_DepthRescale", #] preToPostScale = [ .007, .007, ] if(doPlotRecon): print("Plotting reconstructions") plotRecon(layers, outputDir, skipFrames) if(doPlotErr): print("Plotting reconstruction error") plotReconError(preErrLayers, postErrLayers, preToPostScale, outputDir, errShowPlots, skipFrames, gtLayers)
epl-1.0
kaichogami/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
gwpy/seismon
RfPrediction/StackedEnsemble_Rfamplitude_prediction.py
2
11411
# Stacked Ensemble RfAmp Prediction Model # Multiple ML regressors are individually trained and then combined via meta-regressor. # Hyperparameters are tuned via GridSearchCV # coding: utf-8 from __future__ import division import optparse import numpy as np import pandas as pd import os if not os.getenv("DISPLAY", None): import matplotlib matplotlib.use("agg", warn=False) import matplotlib.pyplot as plt import matplotlib.lines as mlines import matplotlib.cm as cm from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.externals import joblib from mlxtend.regressor import StackingCVRegressor from sklearn.datasets import load_boston from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.model_selection import GridSearchCV from keras.models import Sequential, model_from_json from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD, Adagrad, Adadelta, RMSprop, Adam from keras import losses from keras import callbacks from keras.utils import plot_model import pickle __author__ = "Nikhil Mukund <nikhil.mukund@ligo.org>, Michael Coughlin <michael.coughlin.ligo.org>" __version__ = 1.0 __date__ = "11/26/2017" def parse_commandline(): """@parse the options given on the command-line. """ parser = optparse.OptionParser(usage=__doc__,version=__version__) parser.add_option("-f", "--earthquakesFile", help="Seismon earthquakes file.",default ="/home/mcoughlin/Seismon/Predictions/L1O1O2_CMT_GPR/earthquakes.txt") parser.add_option("-o", "--outputDirectory", help="output folder.",default ="/home/mcoughlin/Seismon/MLA/L1O1O2/") parser.add_option("-r", "--runType", help="run type (original, lowlatency, cmt)", default ="lowlatency") parser.add_option("-m", "--minMagnitude", help="Minimum earthquake magnitude.", default=5.0,type=float) parser.add_option("-N", "--Nepoch", help="number of epochs", default =10, type=int) parser.add_option("--doPlots", action="store_true", default=False) parser.add_option("-v", "--verbose", action="store_true", default=False, help="Run verbosely. (Default: False)") opts, args = parser.parse_args() # show parameters if opts.verbose: print >> sys.stderr, "" print >> sys.stderr, "running network_eqmon..." print >> sys.stderr, "version: %s"%__version__ print >> sys.stderr, "" print >> sys.stderr, "***************** PARAMETERS ********************" for o in opts.__dict__.items(): print >> sys.stderr, o[0]+":" print >> sys.stderr, o[1] print >> sys.stderr, "" return opts ''' 0: earthquake gps time 1: earthquake mag 2: p gps time 3: s gps time 4: r (2 km/s) 5: r (3.5 km/s) 6: r (5 km/s) 7: predicted ground motion (m/s) 8: lower bounding time 9: upper bounding time 10: latitude 11: longitude 12: distance 13: depth (m) 14: azimuth (deg) 15: nodalPlane1_strike 16: nodalPlane1_rake 17: nodalPlane1_dip 18: momentTensor_Mrt 19: momentTensor_Mtp 20: momentTensor_Mrp 21: momentTensor_Mtt 22: momentTensor_Mrr 23: momentTensor_Mpp 24: peak ground velocity gps time 25: peak ground velocity (m/s) 26: peak ground acceleration gps time 27: peak ground acceleration (m/s^2) 28: peak ground displacement gps time 29: peak ground displacement (m) 30: Lockloss time 31: Detector Status ''' # Parse command line opts = parse_commandline() outputDirectory = os.path.join(opts.outputDirectory,opts.runType) if not os.path.isdir(outputDirectory): os.makedirs(outputDirectory) data = pd.read_csv(opts.earthquakesFile,delimiter=' ',header=None) neqs, ncols = data.shape if ncols == 32: fileType = "seismon" elif ncols == 27: fileType = "usarray" data = data.drop(data.columns[[24]], 1) data = data.rename(index=int, columns={25: 24, 26: 25}) else: print("I do not understand the file type...") exit(0) # find magnitudes greater than minimum magnitude index = data[1] > opts.minMagnitude data = data[:][index] # find depth = 0 index = np.where(data[[13]] == 0)[0] data.iloc[index,13] = 1.0 # shuffle data data = data.reindex(np.random.permutation(data.index)) Mag_idx = 1 Dist_idx = 12 Depth_idx = 13 Rf_Amp_idx = 25 # Mag threshold Rf_Amp_thresh = 1e-8; index = data[Rf_Amp_idx] > Rf_Amp_thresh data = data[:][index] if opts.runType == "cmt": # Select features FeatSet_index = [1,10,11,12,13,14,15,16,17,18,19,20,21,22,23] elif opts.runType == "lowlatency": #FeatSet_index = [1,7,10,11,12,13,14,15,16,17] # these lower set paramaters makes sense FeatSet_index = [1,10,11,12,13,14] # these lower set paramaters makes sense elif opts.runType == "original": FeatSet_index = [1,12,13] # Just Mag, Dist, Depth else: print("--runType must be original, lowlatency, and cmt") exit(0) Target_index = [Rf_Amp_idx] # Artificially increase samples data_temp = data copy_num = 6 noise_level = 1e-2 # 1e-2 Rfamp_orig = data_temp[Target_index]; data_orig = data_temp def boost_samples(x_samples,y_samples,copy_num=3,noise_level=1e-2): # Artificially increase samples data_x_temp = x_samples data_y_temp = y_samples for i in range(copy_num): data_x_temp = np.vstack((data_x_temp,data_x_temp)) data_y_temp = np.vstack((data_y_temp,data_y_temp)) data_x_orig = data_x_temp data_y_orig = data_y_temp x1 = data_x_temp x2 = np.random.randn(*data_x_temp.shape)*noise_level x_samples_boosted = x1 + np.multiply(x1,x2) y1 = data_y_temp y2 = np.random.randn(*data_y_temp.shape)*noise_level y_samples_boosted = y1 + np.multiply(y1,y2) # Shuffle samples #IDX = np.random.permutation(y_samples_boosted.index) IDX = np.random.permutation(np.arange(0,len(y_samples_boosted))) x_samples_boosted = x_samples_boosted[IDX,:] y_samples_boosted = y_samples_boosted[IDX,:] return x_samples_boosted, y_samples_boosted data = data_temp # Take Log10 of certain features (Mag, Dist, Depth) data[[Dist_idx, Depth_idx]] = np.log10(data[[Dist_idx, Depth_idx]]) data[Target_index] = np.log10(data[Target_index]) X = np.asarray(data[FeatSet_index]) Y = np.asarray(data[Target_index]) # Normalize samples x_scaler = preprocessing.MinMaxScaler() #x_scaler = preprocessing.data.QuantileTransformer() X = x_scaler.fit_transform(X) y_scaler = preprocessing.MinMaxScaler() #y_scaler = preprocessing.data.QuantileTransformer() Y = y_scaler.fit_transform(Y) x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,random_state=42) x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.3,random_state=42) # boost_samples + normalize + shuffle them TUPLE1 = boost_samples(x_train,y_train,copy_num,noise_level) TUPLE2 = boost_samples(x_val,y_val,copy_num,noise_level) TUPLE3 = boost_samples(x_test,y_test,copy_num,noise_level) x_train = TUPLE1[0] y_train = TUPLE1[1] x_val = TUPLE2[0] y_val = TUPLE2[1] x_test = TUPLE3[0] y_test = TUPLE3[1] ############################################# # Construct Stacked Ensemble Model # ############################################# RANDOM_SEED = 42 ridge = Ridge() lasso = Lasso() svr_lin = SVR(kernel='linear') svr_rbf = SVR(kernel='rbf') lr = LinearRegression() rf = RandomForestRegressor(random_state=RANDOM_SEED) np.random.seed(RANDOM_SEED) regressors = [svr_lin, svr_rbf, lr, ridge, lasso] stack = StackingCVRegressor(regressors=regressors, meta_regressor=rf, use_features_in_secondary=True) '''params = {'lasso__alpha': [0.1, 1.0, 10.0], 'ridge__alpha': [0.1, 1.0, 10.0], 'svr__C': [0.1, 1.0, 10.0], 'meta-svr__C': [0.1, 1.0, 10.0, 100.0], 'meta-svr__gamma': [0.1, 1.0, 10.0]} params = {'lasso__alpha': [0.1, 1.0, 10.0], 'ridge__alpha': [0.1, 1.0, 10.0]}''' model = GridSearchCV( estimator=stack, param_grid={ 'lasso__alpha': [x/5.0 for x in range(1, 10)], 'ridge__alpha': [x/20.0 for x in range(1, 10)], 'meta-randomforestregressor__n_estimators': [10, 100] }, cv=5, refit=True, verbose=10, n_jobs=8, ) ################################################### model.fit(x_train, y_train.ravel()) print("Best: %f using %s" % (grid.best_score_, grid.best_params_)) ################################################### y_pred = model.predict(x_test) y_pred = np.expand_dims(y_pred,axis=1) # Rescale Back y_pred = 10**y_scaler.inverse_transform(y_pred) y_test = 10**y_scaler.inverse_transform(y_test) # Reject test samples below certain threshold Rf_thresh = 0.5*1e-7 # 0.5*1e-6 ijk = y_test > Rf_thresh y_test = y_test[ijk] y_pred = y_pred[ijk] x_test = x_test[ijk.flatten(),:] # Add bias #y_pred = y_pred + 0.1*y_pred # sort results in Ascending order y_test_sort = np.sort(y_test,axis=0) y_pred_sort = y_pred[np.argsort(y_test,axis=0)] ## Percentage within the specified factor Fac = 2 IDX = y_pred_sort/(y_test_sort+np.finfo(float).eps) >= 1 K = y_pred_sort[IDX] Q = y_test_sort[IDX] L = y_pred_sort[~IDX] M = y_test_sort[~IDX] Upper_indices = [i for i, x in enumerate(K <= Fac*Q) if x == True] Lower_indices = [i for i, x in enumerate(L >= M/Fac) if x == True] Percent_within_Fac = (len(Upper_indices) + len(Lower_indices))/len(y_pred)*100 print("Percentage captured within a factor of {} = {:.2f}".format(Fac,Percent_within_Fac)) Diff = abs(y_pred_sort - y_test_sort) # Errorbar values yerr_lower = y_test_sort - y_test_sort/Fac yerr_upper = Fac*y_test_sort - y_test_sort idx = np.arange(0,len(y_test_sort)) if opts.doPlots: font = {'weight' : 'bold', 'size' : 15} plt.rc('font', **font) plt.rc('legend',**{'fontsize':15}) plt.figure(figsize=(10,8)) plt.style.use('dark_background') #plt.style.use('ggplot') diff_plt = plt.scatter(idx,Diff,color='lightgreen',alpha=0.1) errorbar_plt = plt.errorbar(idx,y_test_sort,yerr=[yerr_lower,yerr_upper], alpha=0.05 ,color='lightgrey') actual_plt = plt.scatter(idx,y_test_sort,color='#1f77b4',alpha=0.9) idx2 = np.arange(0,len(y_pred_sort)) pred_plt = plt.scatter(idx2,y_pred_sort,color='#d62728',alpha=0.2) plt.yscale('log') plt.grid() plt.ylim([1e-7, 1e-3]) #plt.ylim([0, 1]) #plt.ylabel('Rf Amplitude (m/s) \n (Normalized to 1)',fontsize=25) plt.ylabel('Rf Amplitude (m/s) ',fontsize=25) plt.xlabel('Samples',fontsize=25) plt.title("Percentage captured within a factor of {} = {:.2f}".format(Fac,Percent_within_Fac)) legend_plt = plt.legend([pred_plt,actual_plt, diff_plt],['Prediction', 'Actual', 'Difference'],loc=2,markerscale=2., scatterpoints=100) plt.autoscale(enable=True, axis='x', tight=True) plt.grid(linestyle=':') plt.savefig(os.path.join(outputDirectory,'performance.pdf'),bbox_inches='tight') plt.close() # Save Model # serialize model & pickle pickle.dump(model, open("%s/model.p"%outputDirectory, "wb")) print("Saved model to disk") ''' # Load Saved Model # load pickle pickle_file = open('%s/model.p'%outputDirectory, 'rb') loaded_model_pickle = pickle.load(pickle_file) print("Loaded model from disk") '''
gpl-3.0
hiuwo/acq4
acq4/analysis/tools/Fitting.py
1
36006
#!/usr/bin/env python """ Python class wrapper for data fitting. Includes the following external methods: getFunctions returns the list of function names (dictionary keys) FitRegion performs the fitting Note that FitRegion will plot on top of the current data using MPlots routines if the current curve and the current plot instance are passed. """ # January, 2009 # Paul B. Manis, Ph.D. # UNC Chapel Hill # Department of Otolaryngology/Head and Neck Surgery # Supported by NIH Grants DC000425-22 and DC004551-07 to PBM. # Copyright Paul Manis, 2009 # """ This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ """ Additional Terms: The author(s) would appreciate that any modifications to this program, or corrections of erros, be reported to the principal author, Paul Manis, at pmanis@med.unc.edu, with the subject line "PySounds Modifications". Note: This program also relies on the TrollTech Qt libraries for the GUI. You must obtain these libraries from TrollTech directly, under their license to use the program. """ import sys import numpy import scipy try: import openopt HAVE_OPENOPT = True except ImportError: HAVE_OPENOPT = False print "There was an error importing openopt. Continuing...." import ctypes import numpy.random #from numba import autojit usingMPlot = False if usingMPlot: import MPlot # we include plotting as part of the fitting def debug_trace(): '''Set a tracepoint in the Python debugger that works with Qt''' if pyqt: from PyQt4.QtCore import pyqtRemoveInputHook from pdb import set_trace if pyqt: pyqtRemoveInputHook() set_trace() class Fitting(): # dictionary contains: # name of function: function call, initial parameters, iterations, plot color, then x and y for testing # target valutes, names of parameters, contant values, and derivative function if needed. # def __init__(self): self.fitfuncmap = { 'exp0' : (self.exp0eval, [0.0, 20.0], 2000, 'k', [0, 100, 1.], [1.0, 5.0], ['A0', 'tau'], None, None), 'exp1' : (self.expeval, [0.0, 0.0, 20.0], 2000, 'k', [0, 100, 1.], [0.5, 1.0, 5.0], ['DC', 'A0', 'tau'], None, self.expevalprime), 'expsum' : (self.expsumeval, [0.0, -0.5, 200.0, -0.25, 450.0], 500000, 'k', [0, 1000, 1.], [0.0, -1.0, 150.0, -0.25, 350.0], ['DC', 'A0', 'tau0', 'A1', 'tau1'], None, None), 'expsum2' : (self.expsumeval2, [0., -0.5, -0.250], 50000, 'k', [0, 1000, 1.], [0., -0.5, -0.25], ['A0', 'A1'], [5., 20.], None), 'exp2' : (self.exp2eval, [0.0, -0.5, 200.0, -0.25, 450.0], 500000, 'k', [0, 1000, 1.], [0.0, -1.0, 150.0, -0.25, 350.0], ['DC', 'A0', 'tau0', 'A1', 'tau1'], None, None), 'exppow' : (self.exppoweval, [0.0, 1.0, 100, ], 2000, 'k', [0, 100, 0.1], [0.0, 1.0, 100.0], ['DC', 'A0', 'tau'], None, None), 'exppulse' : (self.expPulse, [3.0, 2.5, 0.2, 2.5, 2.0, 0.5], 2000, 'k', [0, 10, 0.3], [0.0, 0., 0.75, 4., 1.5, 1.], ['DC', 't0', 'tau1', 'tau2', 'amp', 'width'], None, None), 'boltz' : (self.boltzeval, [0.0, 1.0, -50.0, -5.0], 5000, 'r', [-130., -30., 1.], [0.00, 0.010, -100.0, 7.0], ['DC', 'A0', 'x0', 'k'], None, None), 'gauss' : (self.gausseval, [1.0, 0.0, 0.5], 2000, 'y', [-10., 10., 0.2], [1.0, 1.0, 2.0], ['A', 'mu', 'sigma'], None, None), 'line' : (self.lineeval, [1.0, 0.0], 500, 'r', [-10., 10., 0.5], [0.0, 2.0], ['m', 'b'], None, None), 'poly2' : (self.poly2eval, [1.0, 1.0, 0.0], 500, 'r', [0, 100, 1.], [0.5, 1.0, 5.0], ['a', 'b', 'c'], None, None), 'poly3' : (self.poly3eval, [1.0, 1.0, 1.0, 0.0], 1000, 'r', [0., 100., 1.], [0.5, 1.0, 5.0, 2.0], ['a', 'b', 'c', 'd'], None, None), 'poly4' : (self.poly4eval, [1.0, 1.0, 1.0, 1.0, 0.0], 1000, 'r', [0., 100., 1.], [0.1, 0.5, 1.0, 5.0, 2.0], ['a', 'b', 'c', 'd', 'e'], None, None), 'sin' : (self.sineeval, [-1., 1.0, 4.0, 0.0], 1000, 'r', [0., 100., 0.2], [0.0, 1.0, 9.0, 0.0], ['DC', 'A', 'f', 'phi'], None, None), 'boltz2' : (self.boltzeval2, [0.0, 0.5, -50.0, 5.0, 0.5, -20.0, 3.0], 1200, 'r', [-100., 50., 1.], [0.0, 0.3, -45.0, 4.0, 0.7, 10.0, 12.0], ['DC', 'A1', 'x1', 'k1', 'A2', 'x2', 'k2'], None, None), 'taucurve' : (self.taucurve, [50., 300.0, 60.0, 10.0, 8.0, 65.0, 10.0], 50000, 'r', [-150., 50., 1.], [0.0, 237.0, 60.0, 12.0, 17.0, 60.0, 14.0], ['DC', 'a1', 'v1', 'k1', 'a2', 'v2', 'k2'], None, self.taucurveder), } self.fitSum2Err = 0 def getFunctions(self): return(self.fitfuncmap.keys()) def exp0eval(self, p, x, y=None, C = None, sumsq = False): """ Exponential function with an amplitude and 0 offset """ yd = p[0] * numpy.exp(-x/p[1]) if y is None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def expsumeval(self, p, x, y=None, C = None, sumsq = False, weights=None): """ Sum of two exponentials with independent time constants and amplitudes, and a DC offset """ yd = p[0] + (p[1]* numpy.exp(-x/p[2])) + (p[3]*numpy.exp(-x/p[4])) if y is None: return yd else: yerr = y - yd if weights is not None: yerr = yerr * weights if sumsq is True: return numpy.sum(yerr**2) else: return yerr def expsumeval2(self, p, x, y=None, C = None, sumsq = False, weights=None): """ Sum of two exponentials, with predefined time constants , allowing only the amplitudes and DC offset to vary """ yd = p[0] + (p[1]* numpy.exp(-x/C[0])) + (p[2]*numpy.exp(-x/C[1])) if y is None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def expeval(self, p, x, y=None, C = None, sumsq = False, weights=None): """ Exponential with offset """ yd = p[0] + p[1] * numpy.exp(-x/p[2]) # print yd.shape # print y.shape if y is None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def expevalprime(self, p, x, y=None, C = None, sumsq = False, weights=None): """ Derivative for exponential with offset """ ydp = p[1] * numpy.exp(-x/p[2])/(p[2]*p[2]) yd = p[0] + p[1] * numpy.exp(-x/p[2]) print y if y is None: return (yd, ydp) else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def exppoweval(self, p, x, y=None, C = None, sumsq = False, weights=None): """ Single exponential function, rising to a ppower """ if C is None: cx = 1.0 else: cx = C[0] yd = p[0] + p[1] * (1.0-numpy.exp(-x/p[2]))**cx if y is None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def exp2eval(self, p, x, y=None, C = None, sumsq = False, weights=None): """ For fit to activation currents... """ yd = p[0] + (p[1] * (1.0 - numpy.exp(-x/p[2]))**2.0 ) + (p[3] * (1.0 - numpy.exp(-x/p[4]))) if y == None: return yd else: if sumsq is True: ss = numpy.sqrt(numpy.sum((y - yd)**2.0)) # if p[4] < 3.0*p[2]: # ss = ss*1e6 # penalize them being too close return ss else: return y - yd # @autojit def expPulse(self, p, x, y=None, C=None, sumsq = False, weights = None): """Exponential pulse function (rising exponential with optional variable-length plateau followed by falling exponential) Parameter p is [yOffset, t0, tau1, tau2, amp, width] """ yOffset, t0, tau1, tau2, amp, width = p yd = numpy.empty(x.shape) yd[x<t0] = yOffset m1 = (x>=t0)&(x<(t0+width)) m2 = (x>=(t0+width)) x1 = x[m1] x2 = x[m2] yd[m1] = amp*(1-numpy.exp(-(x1-t0)/tau1))+yOffset amp2 = amp*(1-numpy.exp(-width/tau1)) ## y-value at start of decay yd[m2] = ((amp2)*numpy.exp(-(x2-(width+t0))/tau2))+yOffset if y == None: return yd else: if sumsq is True: ss = numpy.sqrt(numpy.sum((y-yd)**2.0)) return ss else: return y-yd def boltzeval(self,p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0] + (p[1]-p[0])/(1.0 + numpy.exp((x-p[2])/p[3])) if y == None: return yd else: if sumsq is True: return numpy.sqrt(numpy.sum((y - yd)**2.0)) else: return y - yd def boltzeval2(self,p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0] + p[1]/(1 + numpy.exp((x-p[2])/p[3])) + p[4]/(1 + numpy.exp((x-p[5])/p[6])) if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def gausseval(self,p, x, y=None, C = None, sumsq = False, weights=None): yd = (p[0]/(p[2]*numpy.sqrt(2.0*numpy.pi)))*numpy.exp(-((x - p[1])**2.0)/(2.0*(p[2]**2.0))) if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def lineeval(self, p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0]*x + p[1] if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def poly2eval(self, p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0]*x**2.0 + p[1]*x + p[2] if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def poly3eval(self, p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0]*x**3.0 + p[1]*x**2.0 + p[2]*x +p[3] if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def poly4eval(self, p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0]*x**4.0 + p[1]*x**3.0 + p[2]*x**2.0 + p[3]*x +p[4] if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def sineeval(self, p, x, y=None, C = None, sumsq = False, weights=None): yd = p[0] + p[1]*numpy.sin((x*2.0*numpy.pi/p[2])+p[3]) if y == None: return yd else: if sumsq is True: return numpy.sum((y - yd)**2) else: return y - yd def taucurve(self, p, x, y=None, C = None, sumsq=True, weights=None): """ HH-like description of activation/inactivation function 'DC', 'a1', 'v1', 'k1', 'a2', 'v2', 'k2' """ yd = p[0] + 1.0/(p[1]*numpy.exp((x+p[2])/p[3]) +p[4]*numpy.exp(-(x+p[5])/p[6])) if y == None: return yd else: if sumsq is True: return numpy.sqrt(numpy.sum((y - yd)**2)) else: return y - yd def taucurveder(self, p, x): """ Derivative for taucurve 'DC', 'a1', 'v1', 'k1', 'a2', 'v2', 'k2' """ y = -(p[1]*numpy.exp((p[2] + x)/p[3])/p[3] - p[4]*numpy.exp(-(p[5] + x)/p[6])/p[6])/(p[1]*numpy.exp((p[2] + x)/p[3]) + p[4]*numpy.exp(-(p[5] + x)/p[6]))**2.0 # print 'dy: ', y return y def getClipData(self, x, y, t0, t1): """ Return the values in y that match the x range in tx from t0 to t1. x must be monotonic increasing or decreasing. Allow for reverse ordering. """ it0 = (numpy.abs(x-t0)).argmin() it1 = (numpy.abs(x-t1)).argmin() if it0 > it1: t = it1 it1 = it0 it0 = t return(x[it0:it1], y[it0:it1]) def FitRegion(self, whichdata, thisaxis, tdat, ydat, t0 = None, t1 = None, fitFunc = 'exp1', fitFuncDer = None, fitPars = None, fixedPars = None, fitPlot = None, plotInstance = None, dataType= 'xy', method = None, bounds=None, weights=None, constraints=()): """ **Arguments** ============= =================================================== whichdata thisaxis tdat ydat t0 (optional) Minimum of time data - determined from tdat if left unspecified t1 (optional) Maximum of time data - determined from tdat if left unspecified fitFunc (optional) The function to fit the data to (as defined in __init__). Default is 'exp1'. fitFuncDer (optional) default=None fitPars (optional) Initial fit parameters. Use the values defined in self.fitfuncmap if unspecified. fixedPars (optional) Fixed parameters to pass to the function. Default=None fitPlot (optional) default=None plotInstance (optional) default=None dataType (optional) Options are ['xy', 'blocks']. Default='xy' method (optional) Options are ['curve_fit', 'fmin', 'simplex', 'Nelder-Mead', 'bfgs', 'TNC', 'SLSQP', 'COBYLA', 'L-BFGS-B', 'openopt']. Default='leastsq' bounds (optional) default=None weights (optional) default=None constraints (optional) default=() ============= =================================================== To call with tdat and ydat as simple arrays: FitRegion(1, 0, tdat, ydat, FitFunc = 'exp1') e.g., the first argument should be 1, but this axis is ignored if datatype is 'xy' """ self.fitSum2Err = 0.0 if t0 == t1: if plotInstance is not None and usingMPlot: (x, y) = plotInstance.getCoordinates() t0 = x[0] t1 = x[1] if t1 is None: t1 = numpy.max(tdat) if t0 is None: t0 = numpy.min(tdat) func = self.fitfuncmap[fitFunc] if func is None: print "FitRegion: unknown function %s" % (fitFunc) return xp = [] xf = [] yf = [] yn = [] tx = [] names = func[6] if fitPars is None: fpars = func[1] else: fpars = fitPars if method == 'simplex': # remap calls if needed for newer versions of scipy (>= 0.11) method = 'Nelder-Mead' if ydat.ndim == 1 or dataType == 'xy' or dataType == '2d': # check if 1-d, then "pretend" its only a 1-element block nblock = 1 else: nblock = ydat.shape[0] # otherwise, this is the number of traces in the block # print 'datatype: ', dataType # print 'nblock: ', nblock # print 'whichdata: ', whichdata # for block in range(nblock): for record in whichdata: if dataType == 'blocks': (tx, dy) = self.getClipData(tdat[block], ydat[block][record, thisaxis, :], t0, t1) else: (tx, dy) = self.getClipData(tdat, ydat[record,:], t0, t1) # print 'Fitting.py: block, type, Fit data: ', block, dataType # print tx.shape # print dy.shape yn.append(names) if not any(tx): continue # no data in the window... ier = 0 # # Different optimization methods are included here. Not all have been tested fully with # this wrapper. # if method is None or method == 'leastsq': # use standard leastsq, no bounds plsq, cov, infodict, mesg, ier = scipy.optimize.leastsq(func[0], fpars, args=(tx.astype('float64'), dy.astype('float64'), fixedPars), full_output = 1, maxfev = func[2]) if ier > 4: print "optimize.leastsq error flag is: %d" % (ier) print mesg elif method == 'curve_fit': print fpars print fixedPars plsq, cov = scipy.optimize.curve_fit(func[0], tx.astype('float64'), dy.astype('float64'), p0=fpars) ier = 0 elif method in ['fmin', 'simplex', 'Nelder-Mead', 'bfgs', 'TNC', 'SLSQP', 'COBYLA', 'L-BFGS-B']: # use standard wrapper from scipy for those routintes res = scipy.optimize.minimize(func[0], fpars, args=(tx.astype('float64'), dy.astype('float64'), fixedPars, True), method=method, jac=None, hess=None, hessp=None, bounds=bounds, constraints=constraints, tol=None, callback=None, options={'maxiter': func[2], 'disp': False }) plsq = res.x #print " method:", method #print " bounds:", bounds #print " result:", plsq # next section is replaced by the code above - kept here for reference if needed... # elif method == 'fmin' or method == 'simplex': # plsq = scipy.optimize.fmin(func[0], fpars, args=(tx.astype('float64'), dy.astype('float64'), fixedPars, True), # maxfun = func[2]) # , iprint=0) # ier = 0 # elif method == 'bfgs': # plsq, cov, infodict = scipy.optimize.fmin_l_bfgs_b(func[0], fpars, fprime=func[8], # args=(tx.astype('float64'), dy.astype('float64'), fixedPars, True, weights), # maxfun = func[2], bounds = bounds, # approx_grad = True) # , disp=0, iprint=-1) elif method == 'openopt': # use OpenOpt's routines - usually slower, but sometimes they converge better if not HAVE_OPENOPT: raise Exception("Requested openopt fitting method but openopt is not installed.") if bounds is not None: # unpack bounds lb = [y[0] for y in bounds] ub = [y[1] for y in bounds] fopt = openopt.DFP(func[0], fpars, tx, dy, df = fitFuncDer, lb=lb, ub=ub) # fopt.df = func[8] r = fopt.solve('nlp:ralg', plot=0, iprint = 10) plsq = r.xf ier = 0 else: fopt = openopt.DFP(func[0], fpars, tx, dy, df = fitFuncDer) print func[8] # fopt.df = func[7] fopt.checkdf() r = fopt.solve('nlp:ralg', plot=0, iprint = 10) plsq = r.xf ier = 0 else: print 'method %s not recognized, please check Fitting.py' % (method) return xfit = numpy.arange(min(tx), max(tx), (max(tx)-min(tx))/100.0) yfit = func[0](plsq, xfit, C=fixedPars) yy = func[0](plsq, tx, C=fixedPars) # calculate function self.fitSum2Err = numpy.sum((dy - yy)**2) if usingMPlot and FitPlot != None and plotInstance != None: self.FitPlot(xFit = xfit, yFit = yfit, fitFunc = fund[0], fitPars = plsq, plot = fitPlot, plotInstance = plotInstance) xp.append(plsq) # parameter list xf.append(xfit) # x plot point list yf.append(yfit) # y fit point list # print xp # print len(xp) return(xp, xf, yf, yn) # includes names with yn and range of tx def FitPlot(self, xFit = None, yFit = None, fitFunc = 'exp1', fitPars = None, fixedPars = None, fitPlot=None, plotInstance = None, color=None): """ Plot the fit data onto the fitPlot with the specified "plot Instance". if there is no xFit, or some parameters are missing, we just return. if there is xFit, but no yFit, then we try to compute the fit with what we have. The plot is superimposed on the specified "fitPlot" and the color is specified by the function color in the fitPars list. """ if xFit is None or fitPars is None: return func = self.fitfuncmap[fitFunc] if color is None: fcolor = func[3] else: fcolor = color if yFit is None: yFit = numpy.array([]) for k in range(0, len(fitPars)): yFit[k] = func[0](fitPars[k], xFit[k], C=fixedPars) if plotInstance is None or fitPlot is None: return(yfit) for k in range(0, len(fitPars)): plotInstance.PlotLine(fitPlot, xFit[k], yFit[k], color = fcolor) return(yfit) def getFitErr(self): """ Return the fit error for the most recent fit """ return(self.fitSum2Err) def expfit(self, x, y): """ find best fit of a single exponential function to x and y using the chebyshev polynomial approximation. returns (DC, A, tau) for fit. Perform a single exponential fit to data using Chebyshev polynomial method. Equation fit: y = a1 * exp(-x/tau) + a0 Call: [a0 a1 tau] = expfit(x,y); Calling parameter x is the time base, y is the data to be fit. Returned values: a0 is the offset, a1 is the amplitude, tau is the time constant (scaled in units of x). Relies on routines chebftd to generate polynomial coeffs, and chebint to compute the coefficients for the integral of the data. These are now included in this .py file source. This version is based on the one in the pClamp manual: HOWEVER, since I use the bounded [-1 1] form for the Chebyshev polynomials, the coefficients are different, and the resulting equation for tau is different. I manually optimized the tau estimate based on fits to some simulated noisy data. (Its ok to use the whole range of d1 and d0 when the data is clean, but only the first few coeffs really hold the info when the data is noisy.) NOTE: The user is responsible for making sure that the passed data is appropriate, e.g., no large noise or electronic transients, and that the time constants in the data are adequately sampled. To do a double exp fit with this method is possible, but more complex. It would be computationally simpler to try breaking the data into two regions where the fast and slow components are dominant, and fit each separately; then use that to seed a non-linear fit (e.g., L-M) algorithm. Final working version 4/13/99 Paul B. Manis converted to Python 7/9/2009 Paul B. Manis. Seems functional. """ n = 30; # default number of polynomials coeffs to use in fit a = numpy.amin(x) b = numpy.amax(x) d0 = self.chebftd(a, b, n, x, y) # coeffs for data trace... d1 = self.chebint(a, b, d0, n) # coeffs of integral... tau = -numpy.mean(d1[2:3]/d0[2:3]) try: g = numpy.exp(-x/tau) except: g = 0.0 dg = self.chebftd(a, b, n, x, g) # generate chebyshev polynomial for unit exponential function # now estimate the amplitude from the ratios of the coeffs. a1 = self.estimate(d0, dg, 1) a0 = (d0[0]-a1*dg[0])/2.0 # get the offset here return(a0, a1, tau)# def estimate(self, c, d, m): """ compute optimal estimate of parameter from arrays of data """ n = len(c) a = sum(c[m:n]*d[m:n])/sum(d[m:n]**2.0) return(a) # note : the following routine is a bottleneck. It should be coded in C. def chebftd(self, a, b, n, t, d): """ Chebyshev fit; from Press et al, p 192. matlab code P. Manis 21 Mar 1999 "Given a function func, lower and upper limits of the interval [a,b], and a maximum degree, n, this routine computes the n coefficients c[1..n] such that func(x) sum(k=1, n) of ck*Tk(y) - c0/2, where y = (x -0.5*(b+a))/(0.5*(b-a)) This routine is to be used with moderately large n (30-50) the array of c's is subsequently truncated at the smaller value m such that cm and subsequent terms are negligible." This routine is modified so that we find close points in x (data array) - i.e., we find the best Chebyshev terms to describe the data as if it is an arbitrary function. t is the x data, d is the y data... """ bma = 0.5*(b-a) bpa = 0.5*(b+a) inc = t[1]-t[0] f = numpy.zeros(n) for k in range(0, n): y = numpy.cos(numpy.pi*(k+0.5)/n) pos = int(0.5+(y*bma+bpa)/inc) if pos < 0: pos = 0 if pos >= len(d)-2: pos = len(d)-2 try: f[k]= d[pos+1] except: print "error in chebftd: k = %d (len f = %d) pos = %d, len(d) = %d\n" % (k, len(f), pos, len(d)) print "you should probably make sure this doesn't happen" fac = 2.0/n c=numpy.zeros(n) for j in range(0, n): sum=0.0 for k in range(0, n): sum = sum + f[k]*numpy.cos(numpy.pi*j*(k+0.5)/n) c[j]=fac*sum return(c) def chebint(self, a, b, c, n): """ Given a, b, and c[1..n] as output from chebft or chebftd, and given n, the desired degree of approximation (length of c to be used), this routine computes cint, the Chebyshev coefficients of the integral of the function whose coeffs are in c. The constant of integration is set so that the integral vanishes at a. Coded from Press et al, 3/21/99 P. Manis (Matlab) Python translation 7/8/2009 P. Manis """ sum = 0.0 fac = 1.0 con = 0.25*(b-a) # factor that normalizes the interval cint = numpy.zeros(n) for j in range(1,n-2): cint[j]=con*(c[j-1]-c[j+1])/j sum = sum + fac * cint[j] fac = - fac cint[n-1] = con*c[n-2]/(n-1) sum = sum + fac*cint[n-1] cint[0] = 2.0*sum # set constant of integration. return(cint) # routine to flatten an array/list. # def flatten(self, l, ltypes=(list, tuple)): i = 0 while i < len(l): while isinstance(l[i], ltypes): if not l[i]: l.pop(i) if not len(l): break else: l[i:i+1] = list(l[i]) i += 1 return l # flatten() # run tests if we are "main" if __name__ == "__main__": # import matplotlib.pyplot as pyplot import timeit import Fitting import matplotlib as MP MP.use('Qt4Agg') ################## Do not modify the following code # sets up matplotlib with sans-serif plotting... import matplotlib.gridspec as GS # import mpl_toolkits.axes_grid1.inset_locator as INSETS # #import inset_axes, zoomed_inset_axes # import mpl_toolkits.axes_grid1.anchored_artists as ANCHOR # # import AnchoredSizeBar stdFont = 'Arial' import matplotlib.pyplot as pylab pylab.rcParams['text.usetex'] = True pylab.rcParams['interactive'] = False pylab.rcParams['font.family'] = 'sans-serif' pylab.rcParams['font.sans-serif'] = 'Arial' pylab.rcParams['mathtext.default'] = 'sf' pylab.rcParams['figure.facecolor'] = 'white' # next setting allows pdf font to be readable in Adobe Illustrator pylab.rcParams['pdf.fonttype'] = 42 pylab.rcParams['text.dvipnghack'] = True ##################### to here (matplotlib stuff - touchy! Fits = Fitting.Fitting() # x = numpy.arange(0, 100.0, 0.1) # y = 5.0-2.5*numpy.exp(-x/5.0)+0.5*numpy.random.randn(len(x)) # (dc, aFit,tauFit) = Fits.expfit(x,y) # yf = dc + aFit*numpy.exp(-x/tauFit) # pyplot.figure(1) # pyplot.plot(x,y,'k') # pyplot.hold(True) # pyplot.plot(x, yf, 'r') # pyplot.show() exploreError = False if exploreError is True: # explore the error surface for a function: func = 'exppulse' f = Fits.fitfuncmap[func] p1range = numpy.arange(0.1, 5.0, 0.1) p2range = numpy.arange(0.1, 5.0, 0.1) err = numpy.zeros((len(p1range), len(p2range))) x = numpy.array(numpy.arange(f[4][0], f[4][1], f[4][2])) C = None if func == 'expsum2': C = f[7] # check exchange of tau1 ([1]) and width[4] C = None yOffset, t0, tau1, tau2, amp, width = f[1] # get inital parameters y0 = f[0](f[1], x, C=C) noise = numpy.random.random(y0.shape) - 0.5 y0 += 0.0* noise sh = err.shape yp = numpy.zeros((sh[0], sh[1], len(y0))) for i, p1 in enumerate(p1range): tau1t = tau1*p1 for j, p2 in enumerate(p2range): ampt = amp*p2 pars = (yOffset, t0, tau1t, tau2, ampt, width) # repackage err[i,j] = f[0](pars, x, y0, C=C, sumsq = True) yp[i,j] = f[0](pars, x, C=C, sumsq = False) pylab.figure() CS=pylab.contour(p1range*tau1, p2range*width, err, 25) CB = pylab.colorbar(CS, shrink=0.8, extend='both') pylab.figure() for i, p1 in enumerate(p1range): for j, p2 in enumerate(p2range): pylab.plot(x, yp[i,j]) pylab.plot(x, y0, 'r-', linewidth=2.0) # run tests for each type of fit, return results to compare parameters cons = None bnds = None signal_to_noise = 100000. for func in Fits.fitfuncmap: if func != 'exppulse': continue print "\nFunction: %s\nTarget: " % (func), f = Fits.fitfuncmap[func] for k in range(0,len(f[1])): print "%f " % (f[1][k]), print "\nStarting: ", for k in range(0,len(f[5])): print "%f " % (f[5][k]), # nstep = 500.0 # if func == 'sin': # nstep = 100.0 x = numpy.array(numpy.arange(f[4][0], f[4][1], f[4][2])) C = None if func == 'expsum2': C = f[7] if func == 'exppulse': C = f[7] y = f[0](f[1], x, C=C) yd = numpy.array(y) noise = numpy.random.normal(0, 0.1, yd.shape) my = numpy.amax(yd) #yd = yd + sigmax*0.05*my*(numpy.random.random_sample(shape(yd))-0.5) yd += noise*my/signal_to_noise testMethod = 'SLSQP' if func == 'taucurve': continue bounds=[(0., 100.), (0., 1000.), (0.0, 500.0), (0.1, 50.0), (0., 1000), (0.0, 500.0), (0.1, 50.0)] (fpar, xf, yf, names) = Fits.FitRegion(numpy.array([1]), 0, x, yd, fitFunc = func, bounds=bounds, method=testMethod) elif func == 'boltz': continue bounds = [(-0.5,0.5), (0.0, 20.0), (-120., 0.), (-20., 0.)] (fpar, xf, yf, names) = Fits.FitRegion(numpy.array([1]), 0, x, yd, fitFunc = func, bounds=bounds, method=testMethod) elif func == 'exp2': bounds=[(-0.001, 0.001), (-5.0, 0.), (1.0, 500.0), (-5.0, 0.0), (1., 10000.)] (fpar, xf, yf, names) = Fits.FitRegion(numpy.array([1]), 0, x, yd, fitFunc = func, bounds=bounds, method=testMethod) elif func == 'exppulse': # set some constraints to the fitting # yOffset, tau1, tau2, amp, width = f[1] # order of constraings dt = numpy.mean(numpy.diff(x)) bounds = [(-5, 5), (-15., 15.), (-2, 2.0), (2-10, 10.), (-5, 5.), (0., 5.)] # cxample for constraints: # cons = ({'type': 'ineq', 'fun': lambda x: x[4] - 3.0*x[2]}, # {'type': 'ineq', 'fun': lambda x: - x[4] + 12*x[2]}, # {'type': 'ineq', 'fun': lambda x: x[2]}, # {'type': 'ineq', 'fun': lambda x: - x[4] + 2000}, # ) cons = ({'type': 'ineq', 'fun': lambda x: x[3] - x[2] }, # tau1 < tau2 ) C = None tv = f[5] initialgr = f[0](f[5], x, None ) (fpar, xf, yf, names) = Fits.FitRegion( numpy.array([1]), 0, x, yd, fitFunc = func, fixedPars = C, constraints = cons, bounds = bounds, method=testMethod) # print xf # print yf # print fpar # print names else: (fpar, xf, yf, names) = Fits.FitRegion( numpy.array([1]), 0, x, yd, fitFunc = func, fixedPars = C, constraints = cons, bounds = bnds, method=testMethod) #print fpar s = numpy.shape(fpar) j = 0 outstr = "" initstr = "" truestr = "" for i in range(0, len(names[j])): # print "%f " % fpar[j][i], outstr = outstr + ('%s = %f, ' % (names[j][i], fpar[j][i])) initstr = initstr + '%s = %f, ' % (names[j][i], tv[i]) truestr = truestr + '%s = %f, ' % (names[j][i], f[1][i]) print( "\nTrue(%d) : %s" % (j, truestr) ) print( "FIT(%d) : %s" % (j, outstr) ) print( "init(%d) : %s" % (j, initstr) ) print( "Error: : %f" % (Fits.fitSum2Err)) if func is 'exppulse': pylab.figure() pylab.plot(numpy.array(x), yd, 'ro-') pylab.hold(True) pylab.plot(numpy.array(x), initialgr, 'k--') pylab.plot(xf[0], yf[0], 'b-') # fit pylab.show()
mit
nilearn/nilearn_sandbox
examples/rpbi/plot_localizer_rpbi.py
1
4435
""" Massively univariate analysis of a computation task from the Localizer dataset ============================================================================== A permuted Ordinary Least Squares algorithm is run at each voxel in order to determine which voxels are specifically active when a healthy subject performs a computation task as opposed to a sentence reading task. Randomized Parcellation Based Inference [1] is also used so as to illustrate that it conveys more sensitivity. """ # Author: Virgile Fritsch, <virgile.fritsch@inria.fr>, Mar. 2014 import numpy as np from nilearn import datasets from scipy import linalg from nilearn.input_data import NiftiMasker from nilearn.mass_univariate import permuted_ols from nilearn_sandbox.mass_univariate.rpbi import randomized_parcellation_based_inference ### Load Localizer motor contrast ############################################# n_samples = 20 # localizer_dataset = datasets.fetch_localizer_calculation_task( # n_subjects=n_samples) localizer_dataset = datasets.fetch_localizer_contrasts( ["calculation vs sentences"], n_subjects=n_samples) ### Mask data ################################################################# nifti_masker = NiftiMasker( memory='nilearn_cache', memory_level=1) # cache options fmri_masked = nifti_masker.fit_transform(localizer_dataset.cmaps) ### Perform massively univariate analysis with permuted OLS ################### tested_var = np.ones((n_samples, 1), dtype=float) # intercept neg_log_pvals, all_scores, h0 = permuted_ols( tested_var, fmri_masked, model_intercept=False, n_perm=5000, # 5,000 for the sake of time. 10,000 is recommended two_sided_test=False, # RPBI does not perform a two-sided test n_jobs=1) # can be changed to use more CPUs neg_log_pvals_unmasked = nifti_masker.inverse_transform( np.ravel(neg_log_pvals)) ### Randomized Parcellation Based Inference ################################### neg_log_pvals_rpbi, _, _ = randomized_parcellation_based_inference( tested_var, fmri_masked, np.asarray(nifti_masker.mask_img_.get_data()).astype(bool), n_parcellations=30, # 30 for the sake of time, 100 is recommended n_parcels=1000, threshold='auto', n_perm=5000, # 5,000 for the sake of time. 10,000 is recommended random_state=0, memory='nilearn_cache', n_jobs=1, verbose=True) neg_log_pvals_rpbi_unmasked = nifti_masker.inverse_transform( neg_log_pvals_rpbi) ### Visualization ############################################################# import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map # Here, we should use a structural image as a background, when available. # Various plotting parameters z_slice = 39 # plotted slice from nilearn.image.resampling import coord_transform affine = neg_log_pvals_unmasked.get_affine() _, _, k_slice = coord_transform(0, 0, z_slice, linalg.inv(affine)) k_slice = round(k_slice) threshold = - np.log10(0.1) # 10% corrected vmax = min(np.amax(neg_log_pvals), np.amax(neg_log_pvals_rpbi)) # Plot permutation p-values map fig = plt.figure(figsize=(5, 7), facecolor='k') display = plot_stat_map(neg_log_pvals_unmasked, threshold=threshold, cmap=plt.cm.autumn, display_mode='z', cut_coords=[z_slice], figure=fig, vmax=vmax, black_bg=True) neg_log_pvals_data = neg_log_pvals_unmasked.get_data() neg_log_pvals_slice_data = \ neg_log_pvals_data[..., k_slice] n_detections = (neg_log_pvals_slice_data > threshold).sum() title = ('Negative $\log_{10}$ p-values' '\n(Non-parametric + ' '\nmax-type correction)' '\n%d detections') % n_detections display.title(title, y=1.2) # Plot RPBI p-values map fig = plt.figure(figsize=(5, 7), facecolor='k') display = plot_stat_map(neg_log_pvals_rpbi_unmasked, threshold=threshold, cmap=plt.cm.autumn, display_mode='z', cut_coords=[z_slice], figure=fig, vmax=vmax, black_bg=True) neg_log_pvals_rpbi_data = \ neg_log_pvals_rpbi_unmasked.get_data() neg_log_pvals_rpbi_slice_data = \ neg_log_pvals_rpbi_data[..., k_slice] n_detections = (neg_log_pvals_rpbi_slice_data > threshold).sum() title = ('Negative $\log_{10}$ p-values' + '\n(RPBI)' '\n%d detections') % n_detections display.title(title, y=1.2) plt.show()
bsd-3-clause
zutshi/S3CAMR
examples/spi/spi_plant.py
1
2022
# Must satisfy the signature # [t,X,D,P] = sim_function(T,X0,D0,P0,I0); import numpy as np from scipy.integrate import ode import matplotlib.pyplot as PLT PLOT = True class SIM(object): def __init__(self, plt, pvt_init_data): #print I # atol = 1e-10 rtol = 1e-5 # tt,YY,dummy_D,dummy_P self.solver = ode(dyn).set_integrator('dopri5', rtol=rtol) return def sim(self, TT, X0, D, P, U, W, property_checker): if PLOT: num_dim_x = len(X0) plot_data = [np.empty(0, dtype=float), np.empty((0, num_dim_x), dtype=float)] else: plot_data = None Ti = TT[0] Tf = TT[1] T = Tf - Ti self.solver.set_solout(solout_fun(property_checker, plot_data)) # (2) self.solver.set_initial_value(X0, t=0.0) self.solver.set_f_params(W) X_ = self.solver.integrate(T) pvf = property_checker.check(Tf, X_) dummy_D = np.zeros(D.shape) dummy_P = np.zeros(P.shape) ret_t = Tf ret_X = X_ ret_D = dummy_D ret_P = dummy_P if PLOT: PLT.figure(5) PLT.plot(plot_data[0], plot_data[1][:, 0]) return (ret_t, ret_X, ret_D, ret_P), pvf # State Space Modeling Template # dx/dt = Ax + Bu # y = Cx + Du def dyn(t, X, w): if w > 0: u = 1.0 elif w < 0: u = -1.0 else: u = 0.0 x2 = u X_ = np.array([x2]) return X_ def solout_fun(property_checker, plot_data): def solout(t, Y): if PLOT: plot_data[0] = np.concatenate((plot_data[0], np.array([t]))) plot_data[1] = np.concatenate((plot_data[1], np.array([Y]))) if property_checker.check(t, Y): #violating_state[0] = (np.copy(t), np.copy(Y)) # print 'violation found:', violating_state[0] # return -1 to stop integration return -1 else: return 0 return 0 return solout
bsd-2-clause
pvcrossi/OnlineCS
online_CS.py
1
4043
''' Bayesian Online Compressed Sensing (2016) Paulo V. Rossi & Yoshiyuki Kabashima ''' from collections import namedtuple import matplotlib.pyplot as plt import numpy as np from numpy.linalg import norm from numpy.random import normal from utils import DlnH, DDlnH, G, H, moments def simulation(method='standard'): signal_length = 2000 alpha_max = 20 sigma_n_2 = 1e-1 phi = prior() P = posterior(signal_length, phi) x0 = generate_signal(signal_length, phi) print('Simulation parameters:') print('N='+str(signal_length)+', sparsity='+str(phi.rho)+ ', noise='+str(sigma_n_2)+', alpha_max='+str(alpha_max)) print('Measurement model: '+method+'\n') number_of_measurements = alpha_max*signal_length mean_square_error = np.zeros(number_of_measurements) for measurement in range(number_of_measurements): P = update_posterior(P, phi, x0, signal_length, sigma_n_2, method) mean_square_error[measurement] = reconstruction_error(P, x0) plot_results(P, x0, mean_square_error, phi) def prior(): phi = namedtuple('prior_distribution', ['rho', 'sigma_x_2', 'bar_x']) phi.rho = 0.1 phi.sigma_x_2 = 1. phi.bar_x = 0. return phi def posterior(signal_length, phi): P = namedtuple('posterior_distribution', ['m', 'v', 'a', 'h']) P.m = np.zeros(signal_length) P.v = phi.rho * phi.sigma_x_2 * np.ones(signal_length) P.a = np.zeros(signal_length) P.h = np.zeros(signal_length) return P def generate_signal (signal_length, phi): x0 = np.zeros(signal_length) number_of_non_zero_components = int(np.ceil(signal_length*phi.rho)) x0[:number_of_non_zero_components] = normal(loc=phi.bar_x, scale=np.sqrt(phi.sigma_x_2), size=number_of_non_zero_components) return x0 def update_posterior(P, phi, x0, signal_length, sigma_n_2, method): A_t = measurement_vector(signal_length) P.a, P.h = update_and_project(method, A_t, x0, sigma_n_2, P) P.m, P.v = moments(P, phi) return P def measurement_vector(signal_length): A_t = normal(size=signal_length) return A_t/norm(A_t) def update_and_project(method, A_t, x0, sigma_n_2, P): m, v, a, h = P.m, P.v, P.a, P.h u0 = np.dot(A_t, x0) if sigma_n_2 > 0: noise = normal(scale=np.sqrt(sigma_n_2)) else: noise = 0 y = u0 + noise Delta = np.dot(A_t, m) chi = np.dot(A_t**2, v) if method == 'standard': da, dh = update_and_project_std(y, Delta, chi, sigma_n_2, A_t, m) elif method == '1bit': da, dh = update_and_project_1bit(y, Delta, chi, sigma_n_2, A_t, m) else: raise ValueError('Measurement model not recognized. Please use "standard" or "1bit".') return a+da, h+dh def update_and_project_std(y, Delta, chi, sigma_n_2, A_t, m): da = A_t**2 / (sigma_n_2 + chi) dh = (y-Delta)*A_t / (sigma_n_2 + chi) + da*m return da, dh def update_and_project_1bit(y, Delta, chi, sigma_n_2, A_t, m): y = np.sign(y) u = y * np.dot(A_t, m) chi_prime = chi + sigma_n_2 z = -u/np.sqrt(chi_prime) da = -A_t**2/chi_prime * DDlnH(z) dh = -y*A_t/np.sqrt(chi_prime) * DlnH(z) + da*m return da, dh def reconstruction_error(P, x0): return norm(x0 - P.m)**2 / norm(x0)**2 def plot_results(P, x0, mse_t, phi): plt.subplots(figsize=(10,20)) plt.subplot(211) plt.plot(np.arange(len(mse_t))/float(len(P.m)), 10*np.log10(mse_t), color='k') plt.xlabel(r'$\alpha$') plt.ylabel(r'mse (dB)') plt.subplot(212) plt.plot(P.m, color='k', lw = 0.7, label=r'$m$') plt.scatter(range(int(len(x0)*phi.rho)), x0[:int(len(x0)*phi.rho)], \ marker='o', facecolors='none', edgecolors='r', lw=1.5, label=r'$x^0$') plt.xlim([0,len(P.m)]) plt.xlabel(r'Vector Component') plt.legend() plt.show() if __name__ == '__main__': simulation(method='1bit') #simulation(method='standard')
mit
pySTEPS/pysteps
examples/plot_optical_flow.py
1
5240
""" Optical flow ============ This tutorial offers a short overview of the optical flow routines available in pysteps and it will cover how to compute and plot the motion field from a sequence of radar images. """ from datetime import datetime from pprint import pprint import matplotlib.pyplot as plt import numpy as np from pysteps import io, motion, rcparams from pysteps.utils import conversion, transformation from pysteps.visualization import plot_precip_field, quiver ################################################################################ # Read the radar input images # --------------------------- # # First, we will import the sequence of radar composites. # You need the pysteps-data archive downloaded and the pystepsrc file # configured with the data_source paths pointing to data folders. # Selected case date = datetime.strptime("201505151630", "%Y%m%d%H%M") data_source = rcparams.data_sources["mch"] ############################################################################### # Load the data from the archive # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ root_path = data_source["root_path"] path_fmt = data_source["path_fmt"] fn_pattern = data_source["fn_pattern"] fn_ext = data_source["fn_ext"] importer_name = data_source["importer"] importer_kwargs = data_source["importer_kwargs"] timestep = data_source["timestep"] # Find the input files from the archive fns = io.archive.find_by_date( date, root_path, path_fmt, fn_pattern, fn_ext, timestep=5, num_prev_files=9 ) # Read the radar composites importer = io.get_method(importer_name, "importer") R, quality, metadata = io.read_timeseries(fns, importer, **importer_kwargs) del quality # Not used ############################################################################### # Preprocess the data # ~~~~~~~~~~~~~~~~~~~ # Convert to mm/h R, metadata = conversion.to_rainrate(R, metadata) # Store the reference frame R_ = R[-1, :, :].copy() # Log-transform the data [dBR] R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0) # Nicely print the metadata pprint(metadata) ################################################################################ # Lucas-Kanade (LK) # ----------------- # # The Lucas-Kanade optical flow method implemented in pysteps is a local # tracking approach that relies on the OpenCV package. # Local features are tracked in a sequence of two or more radar images. The # scheme includes a final interpolation step in order to produce a smooth # field of motion vectors. oflow_method = motion.get_method("LK") V1 = oflow_method(R[-3:, :, :]) # Plot the motion field on top of the reference frame plot_precip_field(R_, geodata=metadata, title="LK") quiver(V1, geodata=metadata, step=25) plt.show() ################################################################################ # Variational echo tracking (VET) # ------------------------------- # # This module implements the VET algorithm presented # by Laroche and Zawadzki (1995) and used in the McGill Algorithm for # Prediction by Lagrangian Extrapolation (MAPLE) described in # Germann and Zawadzki (2002). # The approach essentially consists of a global optimization routine that seeks # at minimizing a cost function between the displaced and the reference image. oflow_method = motion.get_method("VET") V2 = oflow_method(R[-3:, :, :]) # Plot the motion field plot_precip_field(R_, geodata=metadata, title="VET") quiver(V2, geodata=metadata, step=25) plt.show() ################################################################################ # Dynamic and adaptive radar tracking of storms (DARTS) # ----------------------------------------------------- # # DARTS uses a spectral approach to optical flow that is based on the discrete # Fourier transform (DFT) of a temporal sequence of radar fields. # The level of truncation of the DFT coefficients controls the degree of # smoothness of the estimated motion field, allowing for an efficient # motion estimation. DARTS requires a longer sequence of radar fields for # estimating the motion, here we are going to use all the available 10 fields. oflow_method = motion.get_method("DARTS") R[~np.isfinite(R)] = metadata["zerovalue"] V3 = oflow_method(R) # needs longer training sequence # Plot the motion field plot_precip_field(R_, geodata=metadata, title="DARTS") quiver(V3, geodata=metadata, step=25) plt.show() ################################################################################ # Anisotropic diffusion method (Proesmans et al 1994) # --------------------------------------------------- # # This module implements the anisotropic diffusion method presented in Proesmans # et al. (1994), a robust optical flow technique which employs the notion of # inconsitency during the solution of the optical flow equations. oflow_method = motion.get_method("proesmans") R[~np.isfinite(R)] = metadata["zerovalue"] V4 = oflow_method(R[-2:, :, :]) # Plot the motion field plot_precip_field(R_, geodata=metadata, title="Proesmans") quiver(V4, geodata=metadata, step=25) plt.show() # sphinx_gallery_thumbnail_number = 1
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/doc/mpl_examples/units/evans_test.py
3
2335
""" A mockup "Foo" units class which supports conversion and different tick formatting depending on the "unit". Here the "unit" is just a scalar conversion factor, but this example shows mpl is entirely agnostic to what kind of units client packages use """ import matplotlib from matplotlib.cbook import iterable import matplotlib.units as units import matplotlib.ticker as ticker from pylab import figure, show class Foo: def __init__( self, val, unit=1.0 ): self.unit = unit self._val = val * unit def value( self, unit ): if unit is None: unit = self.unit return self._val / unit class FooConverter: @staticmethod def axisinfo(unit, axis): 'return the Foo AxisInfo' if unit==1.0 or unit==2.0: return units.AxisInfo( majloc = ticker.IndexLocator( 8, 0 ), majfmt = ticker.FormatStrFormatter("VAL: %s"), label='foo', ) else: return None @staticmethod def convert(obj, unit, axis): """ convert obj using unit. If obj is a sequence, return the converted sequence """ if units.ConversionInterface.is_numlike(obj): return obj if iterable(obj): return [o.value(unit) for o in obj] else: return obj.value(unit) @staticmethod def default_units(x, axis): 'return the default unit for x or None' if iterable(x): for thisx in x: return thisx.unit else: return x.unit units.registry[Foo] = FooConverter() # create some Foos x = [] for val in range( 0, 50, 2 ): x.append( Foo( val, 1.0 ) ) # and some arbitrary y data y = [i for i in range( len(x) ) ] # plot specifying units fig = figure() fig.suptitle("Custom units") fig.subplots_adjust(bottom=0.2) ax = fig.add_subplot(1,2,2) ax.plot( x, y, 'o', xunits=2.0 ) for label in ax.get_xticklabels(): label.set_rotation(30) label.set_ha('right') ax.set_title("xunits = 2.0") # plot without specifying units; will use the None branch for axisinfo ax = fig.add_subplot(1,2,1) ax.plot( x, y ) # uses default units ax.set_title('default units') for label in ax.get_xticklabels(): label.set_rotation(30) label.set_ha('right') show()
gpl-2.0
aweimann/traitar
traitar/heatmap.py
1
19822
#!/usr/bin/env python #adapted from Nathan Salomonis: http://code.activestate.com/recipes/578175-hierarchical-clustering-heatmap-python/ import matplotlib as mpl #pick non-x display mpl.use('Agg') import matplotlib.pyplot as pylab import scipy import scipy.cluster.hierarchy as sch import scipy.spatial.distance as dist import numpy import string import time import sys, os import getopt import numpy as np import pandas as ps from .PhenotypeCollection import PhenotypeCollection import warnings warnings.filterwarnings("ignore", category=FutureWarning) #ignore these warnings #/usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison # if self._edgecolors == 'face': #/usr/lib/pymodules/python2.7/matplotlib/backends/backend_pdf.py:2184: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future. # different = bool(ours != theirs) ################# Perform the hierarchical clustering ################# def heatmap(x, row_header, column_header, primary_pt_models, color_f, row_method, column_method, row_metric, column_metric, filename, sample_f, secondary_pt_models): print "\nrunning hiearchical clustering using %s for columns and %s for rows" % (column_metric,row_metric) """ This below code is based in large part on the protype methods: http://old.nabble.com/How-to-plot-heatmap-with-matplotlib--td32534593.html http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre x is an m by n ndarray, m observations, n genes """ ### Define the color gradient to use based on the provided name #if color_gradient == 'red_white_blue': # cmap=pylab.cm.bwr #if color_gradient == 'red_black_sky': # cmap=RedBlackSkyBlue() #if color_gradient == 'red_black_blue': # cmap=RedBlackBlue() #if color_gradient == 'red_black_green': # cmap=RedBlackGreen() #if color_gradient == 'yellow_black_blue': # cmap=YellowBlackBlue() #if color_gradient == 'seismic': # cmap=pylab.cm.seismic #if color_gradient == 'green_white_purple': # cmap=pylab.cm.PiYG_r #if color_gradient == 'coolwarm': # cmap=pylab.cm.coolwarm ### Scale the max and min colors so that 0 is white/black #vmin=x.min() #vmax=x.max() #vmax = max([vmax,abs(vmin)]) #vmin = vmax*-1 #norm = mpl.colors.Normalize(vmin/2, vmax/2) ### adjust the max and min to scale these colors ### Scale the Matplotlib window size default_window_hight = 10.5 default_window_width = 10 fig = pylab.figure(figsize=(default_window_width,default_window_hight)) ### could use m,n to scale here color_bar_w = 0.015 ### Sufficient size to show color_bar_w = 0.015 ### Sufficient size to show ## calculate positions for all elements # ax1, placement of dendrogram 1, on the left of the heatmap #if row_method != None: w1 = [ax1_x, ax1_y, ax1_w, ax1_h] = [0.05,0.42,0.2,0.4] ### The second value controls the position of the matrix relative to the bottom of the view width_between_ax1_axr = 0.004 height_between_ax1_axc = 0.004 ### distance between the top color bar axis and the matrix # axr, placement of row side colorbar [axr_x, axr_y, axr_w, axr_h] = [0.31,0.1,color_bar_w,0.6] ### second to last controls the width of the side color bar - 0.015 when showing axr_x = ax1_x + ax1_w + width_between_ax1_axr axr_y = ax1_y; axr_h = ax1_h width_between_axr_axm = 0.004 # axc, placement of column side colorbar [axc_x, axc_y, axc_w, axc_h] = [0.4,0.63,0.5,color_bar_w] ### last one controls the hight of the top color bar - 0.015 when showing axc_x = axr_x + axr_w + width_between_axr_axm axc_y = ax1_y + ax1_h + height_between_ax1_axc height_between_axc_ax2 = 0.004 # axm, placement of heatmap for the data matrix [axm_x, axm_y, axm_w, axm_h] = [0.4,0.9,2.5,0.5] axm_x = axr_x + axr_w + width_between_axr_axm axm_y = ax1_y; axm_h = ax1_h axm_w = axc_w # ax2, placement of dendrogram 2, on the top of the heatmap [ax2_x, ax2_y, ax2_w, ax2_h] = [0.3,0.72,0.6,0.15] ### last one controls hight of the dendrogram ax2_x = axr_x + axr_w + width_between_axr_axm ax2_y = ax1_y + ax1_h + height_between_ax1_axc + axc_h + height_between_axc_ax2 ax2_w = axc_w # placement of the phenotype legend [axpl_x, axpl_y, axpl_w, axpl_h] = [0.78,0.84,0.05,0.13] # placement of the sample legend # axcb - placement of the sample legend [axsl_x, axsl_y, axsl_w, axsl_h] = [0.05,0.29,0.05,0.09] # axcb - placement of the color legend [axcb_x, axcb_y, axcb_w, axcb_h] = [0.05, 0.88,0.05,0.09] # Compute and plot top dendrogram if not column_method is None and x.shape[1] > 1: start_time = time.time() d2 = dist.pdist(x.T) D2 = dist.squareform(d2) ax2 = fig.add_axes([ax2_x, ax2_y, ax2_w, ax2_h], frame_on=True) Y2 = sch.linkage(D2, method=column_method, metric=column_metric) ### array-clustering metric - 'average', 'single', 'centroid', 'complete' Z2 = sch.dendrogram(Y2) ind2 = sch.fcluster(Y2,0.7*max(Y2[:,2]),'distance') ### This is the default behavior of dendrogram time_diff = str(round(time.time()-start_time,1)) ax2.set_xticks([]) ### Hides ticks ax2.set_yticks([]) #print 'Column clustering completed in %s seconds' % time_diff else: ind2 = ['NA']*len(column_header) ### Used for exporting the flat cluster data # Compute and plot left dendrogram. if not row_method is None and x.shape[0] > 1: start_time = time.time() x_bin = x.copy() x_bin[x_bin > 0] = 1 d1 = dist.pdist(x_bin) D1 = dist.squareform(d1) # full matrix ax1 = fig.add_axes([ax1_x, ax1_y, ax1_w, ax1_h], frame_on=True) # frame_on may be False ax1.set_xticks([]) ### Hides ticks ax1.set_yticks([]) Y1 = sch.linkage(D1, method=row_method, metric=row_metric) ### gene-clustering metric - 'average', 'single', 'centroid', 'complete' Z1 = sch.dendrogram(Y1, orientation='right') ind1 = sch.fcluster(Y1,0.7*max(Y1[:,2]),'distance') ### This is the default behavior of dendrogram time_diff = str(round(time.time()-start_time,1)) #print 'Row clustering completed in %s seconds' % time_diff else: ind1 = ['NA']*len(row_header) ### Used for exporting the flat cluster data # Plot heatmap color legend n = len(x[0]); m = len(x) if secondary_pt_models is not None: cmaplist = np.array([[247,247,247],[166,206,227],[178,223,138],[31,120,180]])/256.0 else: cmaplist = np.array([[247,247,247],[31,120,180]])/256.0 cmap = mpl.colors.ListedColormap(cmaplist) axcb = fig.add_axes([axcb_x, axcb_y, axcb_w, axcb_h], frame_on=False) # axes for colorbar #cb = mpl.colorbar.ColorbarBase(axcb, cmap=cmap, orientation='horizontal') bounds = numpy.linspace(0, len(cmaplist), len(cmaplist) + 1) norm = mpl.colors.BoundaryNorm(bounds, len(cmaplist)) cb = mpl.colorbar.ColorbarBase(axcb, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds) if secondary_pt_models is not None: axcb.set_yticklabels(["negative", "%s positive" % primary_pt_models.get_name(), "%s positive" % secondary_pt_models.get_name(), "both predictors positive"], fontsize = 8) axcb.yaxis.set_ticks([0.125, 0.375, 0.625, 0.875]) else: axcb.set_yticklabels(["%s negative" % primary_pt_models.get_name(), "%s positive" % primary_pt_models.get_name()], fontsize = 8) axcb.yaxis.set_ticks([0.25, 0.75]) axcb.set_title("Heatmap colorkey", fontsize = 10, loc = "left") # Plot distance matrix. axm = fig.add_axes([axm_x, axm_y, axm_w, axm_h]) # axes for the data matrix xt = x if not column_method is None and x.shape[1] > 1: idx2 = Z2['leaves'] ### apply the clustering for the array-dendrograms to the actual matrix data xt = xt[:,idx2] ind2 = ind2[idx2] ### reorder the flat cluster to match the order of the leaves the dendrogram pass if not row_method is None and x.shape[0] > 1 : idx1 = Z1['leaves'] ### apply the clustering for the gene-dendrograms to the actual matrix data xt = xt[idx1,:] # xt is transformed x ind1 = ind1[idx1] ### reorder the flat cluster to match the order of the leaves the dendrogram ### taken from http://stackoverflow.com/questions/2982929/plotting-results-of-hierarchical-clustering-ontop-of-a-matrix-of-data-in-python/3011894#3011894 im = axm.matshow(xt, aspect='auto', origin='lower', cmap=cmap, norm=norm) ### norm=norm added to scale coloring of expression with zero = white or black axm.set_xticks([]) ### Hides x-ticks axm.set_yticks([]) # Add text new_row_header=[] new_column_header=[] for i in range(x.shape[0]): margin = 0 if len(row_header) > 0 : fontdict = {'fontsize': 7} if len(row_header) > 30 : fontdict = {'fontsize': 7} margin = 0.5 if len(row_header) > 50 : fontdict = {'fontsize': 4} if len(row_header) > 100 : fontdict = {'fontsize': 2} if len(row_header) > 200: fontdict = {'fontsize': 1} #if len(row_header)<100: ### Don't visualize gene associations when more than 100 rows axm.plot([-0.5, len(column_header)], [i - 0.5, i - 0.5], color = 'black', ls = '-') if x.shape[0] > 1 and row_method is not None: label = row_header[idx1[i]] else: label = row_header[i] fontdict.items axm.text(x.shape[1] + 0.2, i - margin , ' ' + label, fontdict = fontdict) new_row_header.append(label) for i in range(x.shape[1]): if not column_method is None and x.shape[1] > 1: axm.plot([i-0.5, i-0.5], [-0.5, len(row_header) - 0.5], color = 'black', ls = '-') axm.text(i-0.5, -0.5, ' '+ column_header[idx2[i]], fontdict = {'fontsize': 7}, rotation=270, verticalalignment="top") # rotation could also be degrees new_column_header.append(column_header[idx2[i]]) else: ### When not clustering columns axm.plot([i-0.5, i-0.5], [-0.5, len(row_header) - 0.5], color = 'black', ls = '-') axm.text(i-0.5, -0.8, ' '+column_header[i], fontdict = {'fontsize': 7}, rotation=270, verticalalignment="top") new_column_header.append(column_header[i]) pt2acc = primary_pt_models.get_pt2acc() pt2acc.index = pt2acc.loc[:, "accession"] #colors colors = ps.read_csv(color_f, index_col = None, sep = "\t") if "category" in pt2acc.columns: #assign categories to colors import sets #get unique categories in the order they appear in the pt mapping table cats = sorted(set(pt2acc.loc[:, "category"].tolist()), key=lambda x: pt2acc.loc[:, "category"].tolist().index(x)) if not colors.shape[0] < len(cats): # Plot phenotype legend axpl = fig.add_axes([axpl_x, axpl_y, axpl_w, axpl_h], frame_on=False) # axes for colorbar #for i in pt2cat2col.index: # if pt2cat2col.loc[i,"Category"] not in cat2col: # cat2col[pt2cat2col.loc[i,"Category"]] = pt2cat2col.loc[i, ["r", "g", "b"]] # col2id[pt2cat2col.loc[i,"Category"]] = j # j += 1 pt2cat = dict([(pt2acc.loc[i, "accession"], pt2acc.loc[i, "category"]) for i in pt2acc.index]) cat2id = dict([(cats[i - 1], i) for i in range(1, len(cats) + 1)]) cmaplist = ps.DataFrame(colors.iloc[:len(cats),]) cmaplist.index = cats cmaplist = cmaplist / 256.0 cmap_p = mpl.colors.ListedColormap(cmaplist.values) bounds = numpy.linspace(0, cmaplist.shape[0], cmaplist.shape[0] + 1) norm = mpl.colors.BoundaryNorm(bounds, cmaplist.shape[0]) cb = mpl.colorbar.ColorbarBase(axpl, cmap=cmap_p, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds) axpl.set_yticklabels([i for i in cats], fontsize = 6) axpl.yaxis.set_ticks(np.arange(1.0 / len(cats) / 2, 1, 1.0 / len(cats))) axpl.set_title("Phenotype colorkey", fontsize = 10, loc = "left") # Plot colside colors # axc --> axes for column side colorbar axc = fig.add_axes([axc_x, axc_y, axc_w, axc_h]) # axes for column side colorbar dc = numpy.array([cat2id[pt2cat[i]] for i in column_header]).T if x.shape[1] > 1 and column_method is not None: dc = dc[idx2] dc.shape = (1, x.shape[1]) im_c = axc.matshow(dc, aspect='auto', origin='lower', cmap=cmap_p) axc.set_xticks([]) ### Hides ticks axc.set_yticks([]) # Plot rowside colors if sample_f is not None and x.shape[0] > 1: samples = ps.read_csv(sample_f, sep = "\t", index_col = "sample_name") if "category" in samples.columns: #get unique sample categories and sort according to the order they appear in the sampling file sample_cats = sorted(set(samples.loc[:, "category"].tolist()), key = lambda x: samples.loc[:, "category"].tolist().index(x)) cat2col = dict([(sample_cats[i - 1], i) for i in range(1, len(sample_cats) + 1)]) cmaplist = ps.DataFrame(colors.iloc[:len(sample_cats),]) / 256.0 cmap_p = mpl.colors.ListedColormap(cmaplist.values) axr = fig.add_axes([axr_x, axr_y, axr_w, axr_h]) # axes for row side colorbar dr = numpy.array([cat2col[samples.loc[i, "category"]] for i in row_header]).T if row_method is not None: dr = dr[idx1] dr.shape = (samples.shape[0], 1) #cmap_r = mpl.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm']) im_r = axr.matshow(dr, aspect='auto', origin='lower', cmap=cmap_p) axr.set_xticks([]) ### Hides ticks axr.set_yticks([]) # Plot sample legend axsl = fig.add_axes([axsl_x, axsl_y, axsl_w, axsl_h], frame_on=False) # axes for colorbar bounds = numpy.linspace(0, len(sample_cats), len(sample_cats) + 1) norm = mpl.colors.BoundaryNorm(bounds, len(sample_cats)) cb = mpl.colorbar.ColorbarBase(axsl, cmap=cmap_p, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds) axsl.yaxis.set_ticks(np.arange(1.0 / len(sample_cats) / 2, 1, 1.0 / len(sample_cats))) axsl.set_yticklabels([i for i in sample_cats], fontsize = 6) axsl.set_title("Sample colorkey", loc = "left", fontsize = 10) #exportFlatClusterData(filename, new_row_header,new_column_header,xt,ind1,ind2) ### Render the graphic if len(row_header)>50 or len(column_header)>50: pylab.rcParams['font.size'] = 6 else: pylab.rcParams['font.size'] = 8 pylab.savefig(filename) pylab.savefig(filename, dpi=300) #,dpi=200 #pylab.show() def getColorRange(x): """ Determines the range of colors, centered at zero, for normalizing cmap """ vmax=x.max() vmin=x.min() if vmax<0 and vmin<0: direction = 'negative' elif vmax>0 and vmin>0: direction = 'positive' else: direction = 'both' if direction == 'both': vmax = max([vmax,abs(vmin)]) vmin = -1*vmax return vmax,vmin else: return vmax,vmin ################# Export the flat cluster data ################# def exportFlatClusterData(filename, new_row_header,new_column_header,xt,ind1,ind2): """ Export the clustered results as a text file, only indicating the flat-clusters rather than the tree """ filename = string.replace(filename,'.pdf','.txt') export_text = open(filename,'w') column_header = string.join(['UID','row_clusters-flat']+new_column_header,'\t')+'\n' ### format column-names for export export_text.write(column_header) column_clusters = string.join(['column_clusters-flat','']+ map(str, ind2),'\t')+'\n' ### format column-flat-clusters for export export_text.write(column_clusters) ### The clusters, dendrogram and flat clusters are drawn bottom-up, so we need to reverse the order to match new_row_header = new_row_header[::-1] xt = xt[::-1] ### Export each row in the clustered data matrix xt i=0 for row in xt: export_text.write(string.join([new_row_header[i],str(ind1[i])]+map(str, row),'\t')+'\n') i+=1 export_text.close() ### Export as CDT file filename = string.replace(filename,'.txt','.cdt') export_cdt = open(filename,'w') column_header = string.join(['UNIQID','NAME','GWEIGHT']+new_column_header,'\t')+'\n' ### format column-names for export export_cdt.write(column_header) eweight = string.join(['EWEIGHT','','']+ ['1']*len(new_column_header),'\t')+'\n' ### format column-flat-clusters for export export_cdt.write(eweight) ### Export each row in the clustered data matrix xt i=0 for row in xt: export_cdt.write(string.join([new_row_header[i]]*2+['1']+map(str, row),'\t')+'\n') i+=1 export_cdt.close() ################# Create Custom Color Gradients ################# #http://matplotlib.sourceforge.net/examples/pylab_examples/custom_cmap.html def RedBlackSkyBlue(): cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.9), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return my_cmap def RedBlackBlue(): cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return my_cmap def RedBlackGreen(): cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return my_cmap def YellowBlackBlue(): cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.8), (0.5, 0.1, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)) } ### yellow is created by adding y = 1 to RedBlackSkyBlue green last tuple ### modulate between blue and cyan using the last y var in the first green tuple my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return my_cmap
gpl-3.0
balazssimon/ml-playground
udemy/lazyprogrammer/reinforcement-learning-python/comparing_explore_exploit_methods.py
1
2913
import numpy as np import matplotlib.pyplot as plt from comparing_epsilons import Bandit from optimistic_initial_values import run_experiment as run_experiment_oiv from ucb1 import run_experiment as run_experiment_ucb class BayesianBandit: def __init__(self, true_mean): self.true_mean = true_mean # parameters for mu - prior is N(0,1) self.predicted_mean = 0 self.lambda_ = 1 self.sum_x = 0 # for convenience self.tau = 1 def pull(self): return np.random.randn() + self.true_mean def sample(self): return np.random.randn() / np.sqrt(self.lambda_) + self.predicted_mean def update(self, x): self.lambda_ += self.tau self.sum_x += x self.predicted_mean = self.tau*self.sum_x / self.lambda_ def run_experiment_decaying_epsilon(m1, m2, m3, N): bandits = [Bandit(m1), Bandit(m2), Bandit(m3)] data = np.empty(N) for i in range(N): # epsilon greedy p = np.random.random() if p < 1.0/(i+1): j = np.random.choice(3) else: j = np.argmax([b.mean for b in bandits]) x = bandits[j].pull() bandits[j].update(x) # for the plot data[i] = x cumulative_average = np.cumsum(data) / (np.arange(N) + 1) # plot moving average ctr plt.plot(cumulative_average) plt.plot(np.ones(N)*m1) plt.plot(np.ones(N)*m2) plt.plot(np.ones(N)*m3) plt.xscale('log') plt.show() for b in bandits: print(b.mean) return cumulative_average def run_experiment(m1, m2, m3, N): bandits = [BayesianBandit(m1), BayesianBandit(m2), BayesianBandit(m3)] data = np.empty(N) for i in range(N): # optimistic initial values j = np.argmax([b.sample() for b in bandits]) x = bandits[j].pull() bandits[j].update(x) # for the plot data[i] = x cumulative_average = np.cumsum(data) / (np.arange(N) + 1) # plot moving average ctr plt.plot(cumulative_average) plt.plot(np.ones(N)*m1) plt.plot(np.ones(N)*m2) plt.plot(np.ones(N)*m3) plt.xscale('log') plt.show() return cumulative_average if __name__ == '__main__': m1 = 1.0 m2 = 2.0 m3 = 3.0 eps = run_experiment_decaying_epsilon(m1, m2, m3, 100000) oiv = run_experiment_oiv(m1, m2, m3, 100000) ucb = run_experiment_ucb(m1, m2, m3, 100000) bayes = run_experiment(m1, m2, m3, 100000) # log scale plot plt.plot(eps, label='decaying-epsilon-greedy') plt.plot(oiv, label='optimistic') plt.plot(ucb, label='ucb1') plt.plot(bayes, label='bayesian') plt.legend() plt.xscale('log') plt.show() # linear plot plt.plot(eps, label='decaying-epsilon-greedy') plt.plot(oiv, label='optimistic') plt.plot(ucb, label='ucb1') plt.plot(bayes, label='bayesian') plt.legend() plt.show()
apache-2.0
diego0020/PySurfer
examples/plot_label.py
4
1526
""" Display ROI Labels ================== Using PySurfer you can plot Freesurfer cortical labels on the surface with a large amount of control over the visual representation. """ import os from surfer import Brain print(__doc__) subject_id = "fsaverage" hemi = "lh" surf = "smoothwm" brain = Brain(subject_id, hemi, surf) # If the label lives in the normal place in the subjects directory, # you can plot it by just using the name brain.add_label("BA1") # Some labels have an associated scalar value at each ID in the label. # For example, they may be probabilistically defined. You can threshold # what vertices show up in the label using this scalar data brain.add_label("BA1", color="blue", scalar_thresh=.5) # Or you can give a path to a label in an arbitrary location subj_dir = os.environ["SUBJECTS_DIR"] label_file = os.path.join(subj_dir, subject_id, "label", "%s.MT.label" % hemi) brain.add_label(label_file) # By default the label is 'filled-in', but you can # plot just the label boundaries brain.add_label("BA44", borders=True) # You can also control the opacity of the label color brain.add_label("BA6", alpha=.7) # Finally, you can plot the label in any color you want. brain.show_view(dict(azimuth=-42, elevation=105, distance=225, focalpoint=[-30, -20, 15])) # Use any valid matplotlib color. brain.add_label("V1", color="steelblue", alpha=.6) brain.add_label("V2", color="#FF6347", alpha=.6) brain.add_label("entorhinal", color=(.2, 1, .5), alpha=.6)
bsd-3-clause
akpetty/ibtopo2016
calc_multi_atm.py
1
9475
############################################################## # Date: 20/01/16 # Name: calc_multi_atm.py # Author: Alek Petty # Description: Main script to calculate sea ice topography from IB ATM data # Input requirements: ATM data, PosAV data (for geolocation) # Output: topography datasets import matplotlib matplotlib.use("AGG") import IB_functions as ro import mpl_toolkits.basemap.pyproj as pyproj from osgeo import osr, gdal from pyproj import Proj from glob import glob from pylab import * from scipy import ndimage from matplotlib import rc #from scipy.interpolate import griddata from matplotlib.mlab import griddata import time import scipy.interpolate import h5py from scipy.spatial import cKDTree as KDTree import os def calc_bulk_stats(): ice_area=-999 ridge_area_all=-999 mean_ridge_height_all=-999 mean_ridge_heightL=-999 ridge_areaL=-999 num_ridges_out=-999 levpercent_out=-999 num_pts_section=-999 # IF SECTION GOOD THEN GET ICE SWATH AREA if (points_good==1): ice_area = ma.count(elevation2d)*(xy_res**2) levpercent_out=levpercent # IF SECTION GOOD AND HAVE SOME RIDGING THEN ASSIGN TOTAL RIDGE AREA AND ELEVATION if ((points_good==1)&(found_ridges==1)): ridge_area_all = ma.count(elevation2d_ridge_ma)*(xy_res**2) mean_ridge_height_all = np.mean(elevation2d_ridge_ma) - level_elev # IF SECTION GOOD AND WE HAVE NO RIDGING (AREA OF RIDGING = 0) THEN ASSIGN ZERO RIDGE AREA HEIGHT if ((points_good==1)&(found_ridges==0)): ridge_area_all = 0. mean_ridge_height_all = 0. #IF GOOD SECTION BUT NO BIG RIDGES THEN SET THESE VALUES TO ZERO if ((points_good==1)&(found_big_ridge==0)): mean_ridge_heightL=0. ridge_areaL=0. num_ridges_out=0 # IF WE FOUND SOME BIG RIDGES THENA SSIGN BIG RIDGE AREA HEIGHT AND NUMBER if ((points_good==1)&(found_big_ridge==1)): mean_ridge_heightL = np.mean(ridge_height_mesh) ridge_areaL = ma.count(ridge_height_mesh)*(xy_res**2) num_ridges_out = num_ridges return [mean_x, mean_y, ice_area, num_ridges_out, ridge_area_all, ridge_areaL, mean_ridge_height_all, mean_ridge_heightL, mean_alt, mean_pitch, mean_roll, mean_vel, num_pts_section,levpercent_out, section_num, found_ridges, points_good, plane_good] #-------------- ATM AND DMS PATHS------------------ datapath='./Data_output/' rawdatapath = '../../../DATA/ICEBRIDGE/' ATM_path = rawdatapath+'/ATM/ARCTIC/' posAV_path =rawdatapath+'/POSAV/SEA_ICE/GR/' #posAV_path ='/Volumes/TBOLT_HD_PETTY/POSAV/' m=pyproj.Proj("+init=EPSG:3413") #FREE PARAMETERS min_ridge_height = 0.2 along_track_res=1000 pwidth=20 pint=5 xy_res=2 start_year=2009 end_year=2009 min_ridge_size=100 sh=0 if (sh==1): print 'Ridge threshold:', sys.argv[1] print 'Along track res:',sys.argv[2] print 'xy res:',sys.argv[3] print 'Start year:',sys.argv[4] print 'End year:',sys.argv[5] min_ridge_height = float(sys.argv[1]) along_track_res = int(sys.argv[2]) xy_res = int(sys.argv[3]) start_year=int(sys.argv[4]) end_year=int(sys.argv[5]) pts_threshold=15000 num_points_req = min_ridge_size/(xy_res**2) section_num=0 print 'Num points req', num_points_req ftype = str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm' outpath = datapath+ftype+'/' for year in xrange(start_year, end_year+1): ATM_year = ATM_path+str(year)+'/' atm_files_year = glob(ATM_year+'/*/') #for days in xrange(): for days in xrange(size(atm_files_year)): atm_path_date = atm_files_year[days] print 'ATM day:', atm_path_date atm_files_in_day = ro.get_atm_files(atm_path_date, year) #load POS file posAV = loadtxt(posAV_path+str(year)+'_GR_NASA/sbet_'+str(atm_path_date[-9:-1])+'.out.txt', skiprows=1) #GET POSITION OF PLANE AND 1km MARKERS FROM POSAV xp, yp, dist, km_idxs, km_utc_times = ro.get_pos_sections(posAV, m, along_track_res) for atm_file in xrange(size(atm_files_in_day)): atm_statsALL=np.array([]).reshape(0,3) ridge_statsALL=np.array([]).reshape(0,9) covarALL=np.array([]).reshape(0,5) bulk_statsALL=np.array([]).reshape(0,18) print 'ATM file:', atm_files_in_day[atm_file], str(atm_file)+'/'+str(size(atm_files_in_day)) lonT, latT, elevationT, utc_timeT= ro.get_atmqih5(atm_files_in_day[atm_file], year, 1) #IF SIZE OF DATA IS LESS THAN SOME THRESHOLD THEN DONT BOTHER ANALYZING if (size(utc_timeT)<100): break xT, yT = m(lonT, latT) #GET POSAV INDICES COINCIDING WITH START AND END OF ATM FILE. ADD PLUS/MINUS 1 FOR SOME LEEWAY. start_i = np.abs(km_utc_times - utc_timeT[0]).argmin() end_i = np.abs(km_utc_times - utc_timeT[-1]).argmin() print 'START/END:', start_i, end_i for i in xrange(start_i -1, end_i + 1): section_num+=1 found_ridges=0 found_big_ridge=0 plane_good=0 points_good=0 ridge_statsT = np.array([]).reshape(0,9) cov_matrix = np.array([]).reshape(0,5) #label_numsL=np.array(0) mean_x, mean_y, mean_alt, mean_pitch, mean_roll, mean_vel = ro.posav_section_info(m, posAV[km_idxs[i]:km_idxs[i+1]] ) print ' ' print str(i)+'/'+str(end_i + 1) print 'Mean altitude:', mean_alt print 'Mean pitch:', mean_pitch print 'Mean roll:', mean_roll print 'Mean vel:', mean_vel if (abs(mean_alt-500)<200) & (abs(mean_pitch)<5) & (abs(mean_roll)<5): plane_good=1 poly_path, vertices, sides = ro.get_pos_poly(xp, yp, km_idxs[i], km_idxs[i+1]) xatm_km, yatm_km, elevation_km = ro.get_atm_poly(xT, yT, elevationT, km_utc_times, utc_timeT, poly_path, i) num_pts_section = size(xatm_km) print 'Num pts in section:', size(xatm_km) #if there are more than 15000 pts in the 1km grid (average of around 20000) then proceed if (num_pts_section>pts_threshold): points_good=1 #ro.plot_atm_poly(m, xatm_km, yatm_km, elevation_km, poly_path, i, out_path, year) #GET ATM GRID xx2d, yy2d = ro.grid_atm(xatm_km, yatm_km, xy_res) print 'Grid:', size(xx2d[0]), size(xx2d[1]) # CALCULATE THE LEVEL ICE SURFACE USING THE CUMULATIVE DISTRIBUTION #THRESH IS THE LEVEL ICE PLUS RIDGED ICE ELEVATION level_elev, thresh, levpercent = ro.calc_level_ice(elevation_km, pint, pwidth, min_ridge_height) #level_elev, thresh, levpercent = ro.calc_level_ice(elevation_km, pwidth, min_ridge_height) elevation2d, elevation2d_ridge_ma, ridge_area = ro.grid_elevation(xatm_km, yatm_km,elevation_km, xx2d, yy2d, thresh, kdtree=1) elevation2d_ridge_maL =elevation2d_ridge_ma-level_elev #IF THERE IS EVEN A LITTLE BIT OF RIDGING (might not actually be enough for a big areal ridge from the labelling) then proceed to clean up data. if (ridge_area>0): found_ridges=1 #CLEAN UP DATA WITH KDTREE AROUND RIDGE POINTS #REMOVE FOR PRELIMINARY STUDIES AS COMPUTATIONALLY EXPENSIVE! #elevation2d_ridge_ma = kdtree_clean() #GET RIDGE LABELS - MAKE SURE RIDGES ARE ABOVE CERTAIN SIZE, DECIDED BY NUM_PTS_REQ label_im = ro.get_labels(elevation2d_ridge_maL, xy_res, min_ridge_size, min_ridge_height) # DECIDE IF WE WANT TO CALCULATE RIDGE ORIENTATION OR NOT. if (np.amax(label_im)>=1): found_big_ridge=1 print 'Found Ridge!' print 'Number of labels:', np.amax(label_im) num_ridges = np.amax(label_im) #GET RIDGE STATS IF WE DID FIND A RIDGE ridge_statsT, ridge_height_mesh, cov_matrix, indexT = ro.calc_ridge_stats(elevation2d_ridge_ma, num_ridges, label_im, xx2d, yy2d, level_elev, section_num, calc_orientation=1) #CALCULATE BULK STATISTICS AS WE HAVE VALID NUMBER OF POINTS WITHIN THE SECTION else: print 'No data - WHY?! --------------' print 'Num pts in section:', size(xatm_km) #ASSIGN BULK STATISTICS AS WE HAVE NOT CARRIED OUT RIDGE CALCULATION AS PLANE IS DOING FUNNY THINGS bulk_statsT = calc_bulk_stats() ridge_statsALL = vstack([ridge_statsALL, ridge_statsT]) covarALL = vstack([covarALL, cov_matrix]) bulk_statsALL = vstack([bulk_statsALL, bulk_statsT]) if not os.path.exists(outpath+str(year)): os.makedirs(outpath+str(year)) ridge_statsALL.dump(outpath+str(year)+'/ridge_stats_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file).zfill(3)+'.txt') covarALL.dump(outpath+str(year)+'/cov_matrix_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file).zfill(3)+'.txt') bulk_statsALL.dump(outpath+str(year)+'/bulk_ridge_stats_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file).zfill(3)+'.txt') #CAN OUTPUT AS TEXT FILES INSTEAD - BIGGER BUT CAN OPEN RAW #savetxt(outpath+str(year)+'/ridge_stats_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file)+'.txt', ridge_statsALL) #savetxt(outpath+str(year)+'/cov_matrix_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file)+'.txt', covarALL) #savetxt(outpath+str(year)+'/bulk_ridge_stats_'+str(int(along_track_res/1000))+'km_xyres'+str(xy_res)+'m_'+str(int(min_ridge_height*100))+'cm_poly'+str(atm_path_date[-9:-1])+'_f'+str(atm_file)+'.txt', bulk_statsALL)
gpl-3.0
ishank08/scikit-learn
examples/applications/plot_stock_market.py
76
8522
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt try: from matplotlib.finance import quotes_historical_yahoo_ochl except ImportError: # quotes_historical_yahoo_ochl was named quotes_historical_yahoo before matplotlib 1.4 from matplotlib.finance import quotes_historical_yahoo as quotes_historical_yahoo_ochl from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [quotes_historical_yahoo_ochl(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
alpenwasser/laborjournal
versuche/skineffect/python/stuetzpunkte_new_lowfreq.py
1
6373
#!/usr/bin/env python3 from sympy import * from mpmath import * from matplotlib.pyplot import * #init_printing() # make things prettier when we print stuff for debugging. # ************************************************************************** # # Magnetic field inside copper coil with hollow copper cylinder # # ************************************************************************** # # All values are in standard SI units unless otherwise noted. # ---------------------------------------------------------# # Define Variables and Constants # # ---------------------------------------------------------# npts = 19 # careful: number of points is npts + 1 (starts at 0) #fmin = 5e-4 #fmax = 5e-2 fmin = 0.1 fmax = 0.2 highest_frequency = fmin * exp(log(fmax-fmin)) freq_max_ratio = highest_frequency / fmax font = { 'family' : 'serif', 'color' : 'black', 'weight' : 'normal', 'size' : 9, } titlefont = { 'family' : 'serif', 'color' : 'black', 'weight' : 'normal', 'size' : 10, } plot_legend_fontsize = 9 plot_color_old = 'magenta' plot_color_new = 'blue' plot_color_common = 'black' plot_label_points_old = r"St\"utzpunktformel A: $\displaystyle f_{kA} = f_{min} \cdot exp\Biggr(\frac{k}{NPTS} \cdot ln(f_{max}-f_{min})\Biggr)$" plot_label_points_new = r"St\"utzpunktformel B: $\displaystyle f_{kB} = exp\Biggr((1-\frac{k}{NPTS}) \cdot ln(f_{min})\Biggr) \cdot exp\Biggr(\frac{k}{NPTS} \cdot ln(f_{max})\Biggr)$" plot_label_vertical_common = r"minimale Frequenz St\"utzpunkt: " plot_label_vertical_old = r"maximale Frequenz St\"utzpunkt, Methode A: " plot_label_vertical_new = r"maximale Frequenz St\"utzpunkt, Methode B: " plot_added_text = r"Verh\"altnis der maximalen Frequenzen Methode A -- Methode B: $\displaystyle \frac{f_{kA}}{f_{kB}}\Bigg|_{k=NPTS} \approx " + str(freq_max_ratio) + "$" plot_freq_range_label = r"Eingestellter Frequenzbereich: $f_{min} = " + str(fmin) + r"$Hz bis $f_{max} = " + str(fmax) + r"$Hz" plot_size_measurements = 24 plot_scale_x = 'log' plot_label_x = r"Frequenz des St\"utzpunkts (Hz)" plot_1_label_y = 'k (siehe Formel)' plot_1_title = r"Vergleich St\"utzpunktformeln, effektiv abgedeckter Frequenzbereich:" + str(fmin) + " Hz bis " + str(highest_frequency) + " Hz, " + str(npts+1) + " Punkte" y_lim_low = -2 y_lim_high = npts + 2 x_lim_low = 0.67 * fmin x_lim_high = 1.33 * fmin * fmax # ---------------------------------------------------------# # Generate points for frequency axis # # ---------------------------------------------------------# n = np.linspace(0,npts,npts) expufunc = np.frompyfunc(exp,1,1) frequency_vector_old = fmin*expufunc(n*log(fmax-fmin)/npts) frequency_vector_new = expufunc((1-n/npts)*log(fmin)) * expufunc(n*log(fmax)/npts) plot_label_vertical_common += str(frequency_vector_old[0]) + " Hz" plot_label_vertical_old += str(frequency_vector_old[npts-1]) + " Hz" plot_label_vertical_new += str(frequency_vector_new[npts-1]) + " Hz" # ---------------------------------------------------------# # Plot the Things # # ---------------------------------------------------------# matplotlib.pyplot.rc('text', usetex=True) matplotlib.pyplot.rc('font', family='serif') #fig1 = figure(1) #fig1 = figure(1,figsize=(9,9)) #fig1 = figure(1,figsize=(8.26,11.7)) # A4 size in inches fig1 = figure(1,figsize=(8.26,10.0)) axes1 = fig1.add_subplot(111) axes1.set_position([0.1,0.1,0.5,0.8]) axes1.scatter(frequency_vector_old, n, color=plot_color_old, s=plot_size_measurements, label=plot_label_points_old ) axes1.scatter(frequency_vector_new, n, color=plot_color_new, s=plot_size_measurements, label=plot_label_points_new ) # Draw the common starting point black and a bit bigger axes1.scatter(frequency_vector_old[0], n[0], color=plot_color_common, s=plot_size_measurements*1.5, ) axes1.plot([frequency_vector_old[0],frequency_vector_old[0]], [y_lim_low,y_lim_high], color=plot_color_common, label=plot_label_vertical_common ) axes1.plot([frequency_vector_old[npts-1],frequency_vector_old[npts-1]], [y_lim_low,y_lim_high], color=plot_color_old, label=plot_label_vertical_old ) axes1.plot([frequency_vector_new[npts-1],frequency_vector_new[npts-1]], [y_lim_low,y_lim_high], color=plot_color_new, label=plot_label_vertical_new ) axes1.set_xscale(plot_scale_x) axes1.set_ylim([y_lim_low,y_lim_high]) #axes1.set_xlim([x_lim_low,x_lim_high]) axes1.set_xlabel(plot_label_x,fontdict=font) axes1.set_ylabel(plot_1_label_y,fontdict=font) axes1.set_title(plot_1_title,fontdict=titlefont) axes1.tick_params(labelsize=9) # ---------------------------------------------------- # # Work some magic to append the fraction of the two # # methods to the legend instead of it being some # # random piece of text on the plot. # # ---------------------------------------------------- # rect = matplotlib.patches.Rectangle([0,0],0,0,color='white',label=plot_added_text) rect2= matplotlib.patches.Rectangle([0,0],0,0,color='white',label=plot_freq_range_label) handles,legends = axes1.get_legend_handles_labels() handles.append(rect) handles.append(rect2) axes1.legend(handles=handles,fontsize=plot_legend_fontsize,loc='upper left',bbox_to_anchor=(0.0,-0.075)) # ---------------------------------------------------- # # This would be necessary if we wanted to actually # # draw the patch, leaving this here for future # # reference. # # ---------------------------------------------------- # #axes1.add_patch(rect) fig1.subplots_adjust(bottom=0.29,left=0.05,right=0.99,top=.98,hspace=0.3) fig1.savefig('plots-pgf/stuetzpunkte-lowfreq.pgf') fig1.savefig('plots-pdf/stuetzpunkte-lowfreq.pdf') #show()
mit