repo_name
stringlengths
7
92
path
stringlengths
5
129
copies
stringclasses
201 values
size
stringlengths
4
6
content
stringlengths
1.03k
375k
license
stringclasses
15 values
g2p/systems
lib/systems/context.py
1
17949
# vim: set fileencoding=utf-8 sw=2 ts=2 et : from __future__ import absolute_import from __future__ import with_statement from logging import getLogger import networkx as NX import yaml from systems.collector import Aggregate, CResource from systems.registry import get_registry from systems.typesystem import EResource, Transition, ResourceRef __all__ = ('Realizer', ) LOGGER = getLogger(__name__) DESC_LIMIT = 64 def describe(thing): return '%s' % str(thing)[:DESC_LIMIT] class CycleError(Exception): pass class Node(object): def __init__(self): if type(self) == Node: raise TypeError def __repr__(self): return '<%s>' % self def __str__(self): return type(self).__name__ class CheckPointNode(Node): pass class ExpandableNode(Node): def __init__(self, res): super(ExpandableNode, self).__init__() if type(self) == ExpandableNode: # Abstract class raise TypeError self._res = res class BeforeExpandableNode(ExpandableNode): def __str__(self): return 'Before %s' % self._res class AfterExpandableNode(ExpandableNode): def __str__(self): return 'After %s' % self._res class GraphFirstNode(Node, yaml.YAMLObject): yaml_tag = u'GraphFirstNode' class GraphLastNode(Node, yaml.YAMLObject): yaml_tag = u'GraphLastNode' node_types = (CheckPointNode, BeforeExpandableNode, AfterExpandableNode, GraphFirstNode, GraphLastNode, Transition, Aggregate, CResource, EResource, ResourceRef) class ResourceGraph(yaml.YAMLObject): """ A graph of resources and transitions linked by dependencies. Resources are positioned as two sentinels in the transition graph. Invariant: directed, acyclic. """ def __init__(self, top=None): self._graph = NX.DiGraph() self._first = GraphFirstNode() self._last = GraphLastNode() self._graph.add_edge(self._first, self._last) # Contains CResource and EResource, despite the name. # Used to enforce max one resource per id. self.__expandables = {} # Received references, by name. self.__received_refs = {} # What nodes were processed (meaning expanding or collecting) self.__processed = set() # Pre-bound args pased by ref. Allow putting extra depends on them. if top is not None: if not isinstance(top, ResourceGraph): raise TypeError(top, ResourceGraph) self.__top = top else: self.__top = self yaml_tag = u'!ResourceGraph' @classmethod def from_yaml(cls, loader, ynode): rg = cls() # Deep because of aliases and anchors, I think. mp = loader.construct_mapping(ynode, deep=True) pred_rels = mp['nodes'] for rel in pred_rels: rg._add_node(rel['node'], depends=rel['depends']) return rg @classmethod def to_yaml(cls, dumper, rg): # This is incomplete. pred_rels = [{'node': node, 'depends': list(depends), } for (node, depends) in rg._iter_pred_rels()] return dumper.represent_mapping(cls.yaml_tag, { 'nodes': pred_rels, }) def _iter_node_preds(self, node0): return (node for node in self._graph.predecessors_iter(node0) if node not in (self._first, self._last)) def _iter_pred_rels(self): return ((node, self._iter_node_preds(node)) for node in self.sorted_nodes() if node not in (self._first, self._last)) def sorted_nodes(self): return NX.topological_sort(self._graph) def sorted_transitions(self): return [n for n in self.sorted_nodes() if isinstance(n, Transition)] def iter_uncollected_resources(self): for nod in self._graph.nodes_iter(): if isinstance(nod, CResource): if not nod in self.__processed: yield nod def iter_unexpanded_resources(self): for nod in self._graph.nodes_iter(): if isinstance(nod, EResource): if not nod in self.__processed: yield nod def iter_unexpanded_aggregates(self): for agg in self._graph.nodes_iter(): if isinstance(agg, Aggregate): if not agg in self.__processed: yield agg def iter_unprocessed(self): for nod in self.iter_uncollected_resources(): yield nod for nod in self.iter_unexpanded_resources(): yield nod for nod in self.iter_unexpanded_aggregates(): yield nod def has_unprocessed(self): l = list(self.iter_unprocessed()) return bool(l) # Tests for non-emptiness def require_acyclic(self): if not NX.is_directed_acyclic_graph(self._graph): # XXX NX doesn't have a 1-line method for listing those cycles raise CycleError def _add_node(self, node, depends=()): if not isinstance(node, node_types): raise TypeError(node, node_types) self._graph.add_node(node) self._graph.add_edge(self._first, node) self._graph.add_edge(node, self._last) for dep in depends: depn = self._intern(dep) self._add_node_dep(depn, node) return node def add_checkpoint(self, depends=()): return self._add_node(CheckPointNode(), depends) def add_transition(self, transition, depends=()): if not isinstance(transition, Transition): raise TypeError(transition, Transition) return self._add_node(transition, depends) def _add_aggregate(self, aggregate, depends=()): if not isinstance(aggregate, Aggregate): raise TypeError(aggregate, Aggregate) return self._add_node(aggregate, depends) def add_resource(self, resource, depends=()): """ Add a resource. If an identical resource exists, it is returned. """ if not isinstance(resource, (CResource, EResource)): raise TypeError(resource, (CResource, EResource)) if resource.identity in self.__expandables: # We have this id already. # Either it's the exact same resource, or a KeyError is thrown. resource = self._intern(resource) # XXX Need to bypass _intern for already expanded. # XXX When we use add_to_top, we sometimes have to deal # with a resource that's already been expanded. # Those are not in the graph anymore. How do we refer to them? else: self.__expandables[resource.identity] = resource # Even if already there, we need to add the depends. resource = self._add_node(resource, depends) # If already there, notice we aliase it. return self.make_ref(resource) def make_ref(self, res, depends=()): res = self._intern(res) if not isinstance(res, (CResource, EResource)): raise TypeError(res, (CResource, EResource)) depends = list(depends) depends.append(res) return self._add_node(ResourceRef(res), depends) def make_alias_ref(self, ref, depends=()): ref = self._intern(ref) if not isinstance(ref, ResourceRef): raise TypeError(ref, ResourceRef) depends = list(depends) depends.append(ref) return self._add_node(ResourceRef(ref.unref), depends) def add_to_top(self, res): """ Add a resource to the top ResourceGraph. Use it to put things that you don't necessarily want to be after the outside dependencies the current graph has. """ ref = self.__top.add_resource(res) return self._add_node(ref) def _add_node_dep(self, node0, node1): if not isinstance(node0, node_types): raise TypeError(node0, node_types) if not isinstance(node1, node_types): raise TypeError(node1, node_types) if not self._graph.has_node(node0): raise KeyError(node0) if not self._graph.has_node(node1): raise KeyError(node1) if self._graph.has_edge(node0, node1): return False if node0 == node1: # Disallow self-loops to keep acyclic invariant. # Also they don't make sense. raise ValueError(node0) # Invariant check rev_path = NX.shortest_path(self._graph, node1, node0) if rev_path is not False: raise CycleError(rev_path) self._graph.add_edge(node0, node1) return True def _intern(self, thing): if not isinstance(thing, node_types): raise TypeError if thing not in self._graph: raise KeyError(thing) return thing def add_dependency(self, elem0, elem1): node0 = self._intern(elem0) node1 = self._intern(elem1) return self._add_node_dep(node0, node1) def _is_direct_rconnect(self, r0, r1): s0 = self._intern(r0) s1 = self._intern(r1) # shortest_path is also a test for connectedness. return bool(NX.shortest_path(self._graph, s0, s1)) def resources_connected(self, r0, r1): return self._is_direct_rconnect(r0, r1) \ or self._is_direct_rconnect(r1, r0) def draw(self, fname): return self.draw_agraph(fname) def draw_agraph(self, fname): # XXX pygraphviz has steep dependencies (x11 libs) # and recommends (texlive) for a headless box. # We duplicate the graph, otherwise networkx / pygraphviz # would make a lossy conversion (sometimes refusing to convert), by adding # nodes as their string representation. Madness, I know. gr2 = NX.create_empty_copy(self._graph, False) for node in self._graph.nodes_iter(): gr2.add_node(id(node)) for (n0, n1) in self._graph.edges_iter(): gr2.add_edge(id(n0), id(n1)) names = dict((id(node), { 'label': describe(node)}) for node in self._graph.nodes_iter()) gr2.delete_node(id(self._first)) gr2.delete_node(id(self._last)) g = NX.to_agraph(gr2, { 'graph': { 'nodesep': '0.2', 'rankdir': 'TB', 'ranksep': '0.5', }, 'node': { 'shape': 'box', }, }, names) g.write(fname + '.dot') # Dot is good for DAGs. g.layout(prog='dot') g.draw(fname + '.svg') with open(fname + '.yaml', 'w') as f: yaml.dump(self, f) # Fails with the expanded graph, due to instancemethod #yaml.load(yaml.dump(self)) def draw_matplotlib(self, fname): # Pyplot is stateful and awkward to use. import matplotlib.pyplot as P # Disable hold or it definitely won't work (probably a bug). P.hold(False) NX.draw(self._graph) P.savefig(fname) def collect_resources(self, r0s, r1): """ Replace an iterable of resources with one new resource. May break the acyclic invariant, caveat emptor. """ # The invariant is kept iff the r0s don't have paths linking them. # For our use case (collectors), we could allow paths provided they are # internal to r0s. This introduces self-loops that we would then remove. for r0 in r0s: r0 = self._intern(r0) if r0 in self.__processed: raise RuntimeError if r1 in self._graph: raise ValueError(r1) r1 = self._add_aggregate(r1) for r0 in r0s: r0 = self._intern(r0) self._move_edges(r0, r1) self.__processed.add(r0) self.require_acyclic() def _move_edges(self, n0, n1): if n0 == n1: raise RuntimeError n0 = self._intern(n0) n1 = self._intern(n1) # list is used as a temporary # add after delete in case of same. for pred in list(self._graph.predecessors_iter(n0)): self._graph.delete_edge(pred, n0) self._graph.add_edge(pred, n1) for succ in list(self._graph.successors_iter(n0)): self._graph.delete_edge(n0, succ) self._graph.add_edge(n1, succ) self._graph.delete_node(n0) # Can't undo. Invariant will stay broken. def _split_node(self, res): res = self._intern(res) before = self._add_node(BeforeExpandableNode(res)) after = self._add_node(AfterExpandableNode(res)) self._graph.add_edge(before, after) for pred in list(self._graph.predecessors_iter(res)): self._graph.delete_edge(pred, res) self._graph.add_edge(pred, before) for succ in list(self._graph.successors_iter(res)): self._graph.delete_edge(res, succ) self._graph.add_edge(after, succ) self._graph.delete_node(res) return before, after def _receive_by_ref(self, name, ref): if name in self.__received_refs: raise RuntimeError(name, ref) ref = self._add_node(ref) self.__received_refs[name] = ref return ref def _pass_by_ref(self, subgraph, name, ref): # The origin/value distinction is important # for aliased arguments (two refs, same val). ref = self._intern(ref) if not isinstance(ref, ResourceRef): raise TypeError(ref, ResourceRef) subgraph._receive_by_ref(name, ref) def expand_resource(self, res): """ Replace res by a small resource graph. The resource_graph is inserted in the main graph between the sentinels that represent the resource. """ res = self._intern(res) # We're processing from the outside in. if res in self.__processed: raise RuntimeError resource_graph = ResourceGraph(self.__top) if isinstance(res, EResource): for (name, ref) in res.iter_passed_by_ref(): # ref will be present in both graphs. self._pass_by_ref(resource_graph, name, ref) elif isinstance(res, Aggregate): pass else: raise TypeError(res) res.expand_into(resource_graph) # We expand from the outside in if bool(resource_graph.__processed): raise RuntimeError # Do not skip sentinels. for n in resource_graph._graph.nodes_iter(): self._add_node(n) for (n0, n1) in resource_graph._graph.edges_iter(): self._add_node_dep(n0, n1) for (id1, res1) in resource_graph.__expandables.iteritems(): # We expand from the outside in. assert res1 not in self.__processed if id1 in self.__expandables: # Pass by reference if you must use the same resource # in different contexts. raise RuntimeError('ResourceBase collision.', res, res1) else: self.__expandables[id1] = res1 before, after = self._split_node(res) self.__processed.add(res) self._move_edges(resource_graph._first, before) self._move_edges(resource_graph._last, after) # What may break the invariant: # Passing a ref to res, and making res depend on ref. # ref ends up on both sides of ref.before. self.require_acyclic() class Realizer(object): """ A graph of realizables linked by dependencies. """ def __init__(self, expandable): self.__resources = ResourceGraph() self.__expandable = expandable self.__state = 'init' def require_state(self, state): """ Raise an exception if we are not in the required state. """ if self.__state != state: raise RuntimeError(u'Realizer state should be «%s»' % state) def ensure_frozen(self): """ Build the finished dependency graph. Merge identical realizables, collect what can be. """ if self.__state == 'frozen': return # Order is important self.require_state('init') self.__expandable.expand_into(self.__resources) #self.__resources.draw('/tmp/freezing') self._expand() #self.__resources.draw('/tmp/pre-collect') self._collect() self._expand_aggregates() assert not bool(list(self.__resources.iter_unprocessed())) self.__state = 'frozen' #self.__resources.draw('/tmp/frozen') def _collect(self): # Collects compatible nodes into merged nodes. def can_merge(part0, part1): for n0 in part0: for n1 in part1: if self.__resources.resources_connected(n0, n1): return False return True def possibly_merge(partition): # Merge once if possible. Return true if did merge. e = dict(enumerate(partition)) n = len(partition) # Loop over the triangle of unordered pairs for i in xrange(n): for j in xrange(i + 1, n): part0, part1 = e[i], e[j] if can_merge(part0, part1): partition.add(part0.union(part1)) partition.remove(part0) partition.remove(part1) return True return False reg = get_registry() for collector in reg.collectors: # Pre-partition is made of parts acceptable for the collector. pre_partition = collector.partition( [r for r in self.__resources.iter_uncollected_resources() if collector.filter(r)]) for part in pre_partition: # Collector parts are split again, the sub-parts are merged # when dependencies allow. # Not a particularly efficient algorithm, just simple. # Gives one solution among many possibilities. partition = set(frozenset((r, )) for r in part for part in pre_partition) while possibly_merge(partition): pass # Let the collector handle the rest for part in partition: if not bool(part): # Test for emptiness. # Aggregate even singletons. continue merged = collector.collect(part) self.__resources.collect_resources(part, merged) assert not bool(list(self.__resources.iter_uncollected_resources())) def _expand(self): # Poor man's recursion while True: fresh = set(r for r in self.__resources.iter_unexpanded_resources()) if bool(fresh) == False: # Test for emptiness break for r in fresh: self.__resources.expand_resource(r) assert not bool(list(self.__resources.iter_unexpanded_resources())) def _expand_aggregates(self): for a in list(self.__resources.iter_unexpanded_aggregates()): self.__resources.expand_resource(a) assert not bool(list(self.__resources.iter_unexpanded_aggregates())) # Enforce the rule that aggregates can only expand into transitions. if self.__resources.has_unprocessed(): raise RuntimeError(list(self.__resources.iter_unprocessed())) def realize(self): """ Realize all realizables and transitions in dependency order. """ self.ensure_frozen() for t in self.__resources.sorted_transitions(): t.realize() self.__state = 'realized'
gpl-2.0
Lyleo/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
gpl-3.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/scipy/signal/spectral.py
4
66089
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import _lombscargle from ._arraytools import const_ext, even_ext, odd_ext, zero_ext import warnings from scipy._lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence', 'spectrogram', 'stft', 'istft', 'check_COLA'] def lombscargle(x, y, freqs, precenter=False, normalize=False): """ lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram. The Lomb-Scargle periodogram was developed by Lomb [1]_ and further extended by Scargle [2]_ to find, and test the significance of weak periodic signals with uneven temporal sampling. When *normalize* is False (default) the computed periodogram is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic signal with amplitude A for sufficiently large N. When *normalize* is True the computed periodogram is is normalized by the residuals of the data around a constant reference model (at zero). Input arrays should be one-dimensional and will be cast to float64. Parameters ---------- x : array_like Sample times. y : array_like Measurement values. freqs : array_like Angular frequencies for output periodogram. precenter : bool, optional Pre-center amplitudes by subtracting the mean. normalize : bool, optional Compute normalized periodogram. Returns ------- pgram : array_like Lomb-Scargle periodogram. Raises ------ ValueError If the input arrays `x` and `y` do not have the same shape. Notes ----- This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3]_ which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency. The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies. References ---------- .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976 .. [2] J.D. Scargle "Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data", The Astrophysical Journal, vol 263, pp. 835-853, 1982 .. [3] R.H.D. Townsend, "Fast calculation of the Lomb-Scargle periodogram using graphics processing units.", The Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010 Examples -------- >>> import scipy.signal >>> import matplotlib.pyplot as plt First define some input parameters for the signal: >>> A = 2. >>> w = 1. >>> phi = 0.5 * np.pi >>> nin = 1000 >>> nout = 100000 >>> frac_points = 0.9 # Fraction of points to select Randomly select a fraction of an array with timesteps: >>> r = np.random.rand(nin) >>> x = np.linspace(0.01, 10*np.pi, nin) >>> x = x[r >= frac_points] Plot a sine wave for the selected times: >>> y = A * np.sin(w*x+phi) Define the array of frequencies for which to compute the periodogram: >>> f = np.linspace(0.01, 10, nout) Calculate Lomb-Scargle periodogram: >>> import scipy.signal as signal >>> pgram = signal.lombscargle(x, y, f, normalize=True) Now make a plot of the input data: >>> plt.subplot(2, 1, 1) >>> plt.plot(x, y, 'b+') Then plot the normalized periodogram: >>> plt.subplot(2, 1, 2) >>> plt.plot(f, pgram) >>> plt.show() """ x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) freqs = np.asarray(freqs, dtype=np.float64) assert x.ndim == 1 assert y.ndim == 1 assert freqs.ndim == 1 if precenter: pgram = _lombscargle(x, y - y.mean(), freqs) else: pgram = _lombscargle(x, y, freqs) if normalize: pgram *= 2 / np.dot(y, y) return pgram def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to 'boxcar'. nfft : int, optional Length of the FFT used. If `None` the length of `x` will be used. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[25000:]) 0.00099728892368242854 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ freqs, Pxx = csd(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis) return freqs, Pxx.real def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate the cross power spectral density, Pxy, using Welch's method. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the CSD is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxy : ndarray Cross spectral density or cross power spectrum of x,y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. [Equivalent to csd(x,x)] coherence: Magnitude squared coherence by Welch's method. Notes -------- By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y. If the input series differ in length, the shorter series will be zero-padded to match. An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the magnitude of the cross spectral density. >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024) >>> plt.semilogy(f, np.abs(Pxy)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('CSD [V**2/Hz]') >>> plt.show() """ freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') # Average over windows. if len(Pxy.shape) >= 2 and Pxy.size > 0: if Pxy.shape[-1] > 1: Pxy = Pxy.mean(axis=-1) else: Pxy = np.reshape(Pxy, Pxy.shape[:-1]) return freqs, Pxy def spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd'): """ Compute a spectrogram with consecutive Fourier transforms. Spectrograms can be used as a way of visualizing the change of a nonstationary signal's frequency content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Tukey window with shape parameter of 0.25. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 8``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Sxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Sxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density'. axis : int, optional Axis along which the spectrogram is computed; the default is over the last axis (i.e. ``axis=-1``). mode : str, optional Defines what kind of return values are expected. Options are ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is equivalent to the output of `stft` with no padding or boundary extension. 'magnitude' returns the absolute magnitude of the STFT. 'angle' and 'phase' return the complex angle of the STFT, with and without unwrapping, respectively. Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Sxx : ndarray Spectrogram of x. By default, the last axis of Sxx corresponds to the segment times. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to welch's method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps none at all) when computing a spectrogram, to maintain some statistical independence between individual segments. It is for this reason that the default window is a Tukey window with 1/8th of a window's length overlap at each end. .. versionadded:: 0.16.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the spectrogram. >>> f, t, Sxx = signal.spectrogram(x, fs) >>> plt.pcolormesh(t, f, Sxx) >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase'] if mode not in modelist: raise ValueError('unknown value for mode {}, must be one of {}' .format(mode, modelist)) # need to set default for nperseg before setting default for noverlap below window, nperseg = _triage_segments(window, nperseg, input_length=x.shape[axis]) # Less overlap than welch, so samples are more statisically independent if noverlap is None: noverlap = nperseg // 8 if mode == 'psd': freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') else: freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='stft') if mode == 'magnitude': Sxx = np.abs(Sxx) elif mode in ['angle', 'phase']: Sxx = np.angle(Sxx) if mode == 'phase': # Sxx has one additional dimension for time strides if axis < 0: axis -= 1 Sxx = np.unwrap(Sxx, axis=axis) # mode =='complex' is same as `stft`, doesn't need modification return freqs, time, Sxx def check_COLA(window, nperseg, noverlap, tol=1e-10): r""" Check whether the Constant OverLap Add (COLA) constraint is met Parameters ---------- window : str or tuple or array_like Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. nperseg : int Length of each segment. noverlap : int Number of points to overlap between segments. tol : float, optional The allowed variance of a bin's weighted sum from the median bin sum. Returns ------- verdict : bool `True` if chosen combination satisfies COLA within `tol`, `False` otherwise See Also -------- stft: Short Time Fourier Transform istft: Inverse Short Time Fourier Transform Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Some examples of windows that satisfy COLA: - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ... - Bartlett window at overlap of 1/2, 3/4, 5/6, ... - Hann window at 1/2, 2/3, 3/4, ... - Any Blackman family window at 2/3 overlap - Any window with ``noverlap = nperseg-1`` A very comprehensive list of other windows may be found in [2]_, wherein the COLA condition is satisfied when the "Amplitude Flatness" is unity. .. versionadded:: 0.19.0 References ---------- .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K Publishing, 2011,ISBN 978-0-9745607-3-1. .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows", 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 Examples -------- >>> from scipy import signal Confirm COLA condition for rectangular window of 75% (3/4) overlap: >>> signal.check_COLA(signal.boxcar(100), 100, 75) True COLA is not true for 25% (1/4) overlap, though: >>> signal.check_COLA(signal.boxcar(100), 100, 25) False "Symmetrical" Hann window (for filter design) is not COLA: >>> signal.check_COLA(signal.hann(120, sym=True), 120, 60) False "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for overlap of 1/2, 2/3, 3/4, etc.: >>> signal.check_COLA(signal.hann(120, sym=False), 120, 60) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 80) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 90) True """ nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') noverlap = int(noverlap) if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of nperseg') step = nperseg - noverlap binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step)) if nperseg % step != 0: binsums[:nperseg % step] += win[-(nperseg % step):] deviation = binsums - np.median(binsums) return np.max(np.abs(deviation)) < tol def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1): r""" Compute the Short Time Fourier Transform (STFT). STFTs can be used as a way of quantifying the change of a nonstationary signal's frequency and phase content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below). nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to `False`. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. Defaults to `True`. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to 'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `True`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`, as is the default. axis : int, optional Axis along which the STFT is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Zxx : ndarray STFT of `x`. By default, the last axis of `Zxx` corresponds to the segment times. See Also -------- istft: Inverse Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met welch: Power spectral density by Welch's method. spectrogram: Spectrogram by Welch's method. csd: Cross spectral density by Welch's method. lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA), and the input signal must have complete windowing coverage (i.e. ``(x.shape[axis] - nperseg) % (nperseg-noverlap) == 0``). The `padded` argument may be used to accomplish this. The COLA constraint ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the STFT's magnitude. >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000) >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling='spectrum', axis=axis, mode='stft', boundary=boundary, padded=padded) return freqs, time, Zxx def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2): r""" Perform the inverse Short Time Fourier transform (iSTFT). Parameters ---------- Zxx : array_like STFT of the signal to be reconstructed. If a purely real array is passed, it will be cast to a complex data type. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. Must match the window used to generate the STFT for faithful inversion. nperseg : int, optional Number of data points corresponding to each STFT segment. This parameter must be specified if the number of data points per segment is odd, or if the STFT was padded via ``nfft > nperseg``. If `None`, the value depends on the shape of `Zxx` and `input_onesided`. If `input_onesided` is True, ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise, ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`. noverlap : int, optional Number of points to overlap between segments. If `None`, half of the segment length. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below), and should match the parameter used to generate the STFT. Defaults to `None`. nfft : int, optional Number of FFT points corresponding to each STFT segment. This parameter must be specified if the STFT was padded via ``nfft > nperseg``. If `None`, the default values are the same as for `nperseg`, detailed above, with one exception: if `input_onesided` is True and ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on that value. This case allows the proper inversion of an odd-length unpadded STFT using ``nfft=None``. Defaults to `None`. input_onesided : bool, optional If `True`, interpret the input array as one-sided FFTs, such as is returned by `stft` with ``return_onesided=True`` and `numpy.fft.rfft`. If `False`, interpret the input as a a two-sided FFT. Defaults to `True`. boundary : bool, optional Specifies whether the input signal was extended at its boundaries by supplying a non-`None` ``boundary`` argument to `stft`. Defaults to `True`. time_axis : int, optional Where the time segments of the STFT is located; the default is the last axis (i.e. ``axis=-1``). freq_axis : int, optional Where the frequency axis of the STFT is located; the default is the penultimate axis (i.e. ``axis=-2``). Returns ------- t : ndarray Array of output data times. x : ndarray iSTFT of `Zxx`. See Also -------- stft: Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met Notes ----- In order to enable inversion of an STFT via the inverse STFT with `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`, by using ``nperseg = Zxx.shape[freq_axis]``. An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly realizible signal. This function implements the iSTFT via the least-squares esimation algorithm detailed in [2]_, which produces a signal that minimizes the mean squared error between the STFT of the returned signal and the modified STFT. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024 Hz. >>> fs = 1024 >>> N = 10*fs >>> nperseg = 512 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / float(fs) >>> carrier = amp * np.sin(2*np.pi*50*time) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> x = carrier + noise Compute the STFT, and plot its magnitude >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg) >>> plt.figure() >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.ylim([f[1], f[-1]]) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.yscale('log') >>> plt.show() Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse STFT >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0) >>> _, xrec = signal.istft(Zxx, fs) Compare the cleaned signal with the original and true carrier signals. >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([2, 2.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient were also removed: >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([0, 0.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() """ # Make sure input is an ndarray of appropriate complex dtype Zxx = np.asarray(Zxx) + 0j freq_axis = int(freq_axis) time_axis = int(time_axis) if Zxx.ndim < 2: raise ValueError('Input stft must be at least 2d!') if freq_axis == time_axis: raise ValueError('Must specify differing time and frequency axes!') nseg = Zxx.shape[time_axis] if input_onesided: # Assume even segment length n_default = 2*(Zxx.shape[freq_axis] - 1) else: n_default = Zxx.shape[freq_axis] # Check windowing parameters if nperseg is None: nperseg = n_default else: nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if nfft is None: if (input_onesided) and (nperseg == n_default + 1): # Odd nperseg, no FFT padding nfft = nperseg else: nfft = n_default elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap if not check_COLA(window, nperseg, noverlap): raise ValueError('Window, STFT shape and noverlap do not satisfy the ' 'COLA constraint.') # Rearrange axes if necessary if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2: # Turn negative indices to positive for the call to transpose if freq_axis < 0: freq_axis = Zxx.ndim + freq_axis if time_axis < 0: time_axis = Zxx.ndim + time_axis zouter = list(range(Zxx.ndim)) for ax in sorted([time_axis, freq_axis], reverse=True): zouter.pop(ax) Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis]) # Get window as array if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of {0}'.format(nperseg)) if input_onesided: ifunc = np.fft.irfft else: ifunc = fftpack.ifft xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :] # Initialize output and normalization arrays outputlength = nperseg + (nseg-1)*nstep x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype) norm = np.zeros(outputlength, dtype=xsubs.dtype) if np.result_type(win, xsubs) != xsubs.dtype: win = win.astype(xsubs.dtype) xsubs *= win.sum() # This takes care of the 'spectrum' scaling # Construct the output from the ifft segments # This loop could perhaps be vectorized/strided somehow... for ii in range(nseg): # Window the ifft x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win norm[..., ii*nstep:ii*nstep+nperseg] += win**2 # Divide out normalization where non-tiny x /= np.where(norm > 1e-10, norm, 1.0) # Remove extension points if boundary: x = x[..., nperseg//2:-(nperseg//2)] if input_onesided: x = x.real # Put axes back if x.ndim > 1: if time_axis != Zxx.ndim-1: if freq_axis < time_axis: time_axis -= 1 x = np.rollaxis(x, -1, time_axis) time = np.arange(x.shape[0])/float(fs) return time, x def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1): r""" Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch's method. ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power spectral density estimates of X and Y, and `Pxy` is the cross spectral density estimate of X and Y. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. axis : int, optional Axis along which the coherence is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Cxy : ndarray Magnitude squared coherence of x and y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes -------- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of Signals" Prentice Hall, 2005 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the coherence. >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024) >>> plt.semilogy(f, Cxy) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Coherence') >>> plt.show() """ freqs, Pxx = welch(x, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pyy = welch(y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pxy = csd(x, y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) Cxy = np.abs(Pxy)**2 / Pxx / Pyy return freqs, Cxy def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='spectrum', axis=-1, mode='psd', boundary=None, padded=False): """ Calculate various forms of windowed FFTs for PSD, CSD, etc. This is a helper function that implements the commonality between the stft, psd, csd, and spectrogram functions. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Parameters --------- x : array_like Array or sequence containing the data to be analyzed. y : array_like Array or sequence containing the data to be analyzed. If this is the same object in memory as `x` (i.e. ``_spectral_helper(x, x, ...)``), the extra computations are spared. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the FFTs are computed; the default is over the last axis (i.e. ``axis=-1``). mode: str {'psd', 'stft'}, optional Defines what kind of return values are expected. Defaults to 'psd'. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to `None`. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `False`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`. Returns ------- freqs : ndarray Array of sample frequencies. t : ndarray Array of times corresponding to each data segment result : ndarray Array of output data, contents dependent on *mode* kwarg. Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ if mode not in ['psd', 'stft']: raise ValueError("Unknown value for mode %s, must be one of: " "{'psd', 'stft'}" % mode) boundary_funcs = {'even': even_ext, 'odd': odd_ext, 'constant': const_ext, 'zeros': zero_ext, None: None} if boundary not in boundary_funcs: raise ValueError("Unknown boundary option '{0}', must be one of: {1}" .format(boundary, list(boundary_funcs.keys()))) # If x and y are the same object we can save ourselves some computation. same_data = y is x if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is 'stft'") axis = int(axis) # Ensure we have np.arrays, get outdtype x = np.asarray(x) if not same_data: y = np.asarray(y) outdtype = np.result_type(x, y, np.complex64) else: outdtype = np.result_type(x, np.complex64) if not same_data: # Check if we can broadcast the outer axes together xouter = list(x.shape) youter = list(y.shape) xouter.pop(axis) youter.pop(axis) try: outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape except ValueError: raise ValueError('x and y cannot be broadcast together.') if same_data: if x.size == 0: return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape) else: if x.size == 0 or y.size == 0: outshape = outershape + (min([x.shape[axis], y.shape[axis]]),) emptyout = np.rollaxis(np.empty(outshape), -1, axis) return emptyout, emptyout, emptyout if x.ndim > 1: if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if not same_data and y.ndim > 1: y = np.rollaxis(y, axis, len(y.shape)) # Check if x and y are the same length, zero-pad if necessary if not same_data: if x.shape[-1] != y.shape[-1]: if x.shape[-1] < y.shape[-1]: pad_shape = list(x.shape) pad_shape[-1] = y.shape[-1] - x.shape[-1] x = np.concatenate((x, np.zeros(pad_shape)), -1) else: pad_shape = list(y.shape) pad_shape[-1] = x.shape[-1] - y.shape[-1] y = np.concatenate((y, np.zeros(pad_shape)), -1) if nperseg is not None: # if specified by user nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') # parse window; if array like, then set nperseg = win.shape win, nperseg = _triage_segments(window, nperseg,input_length=x.shape[-1]) if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap # Padding occurs after boundary extension, so that the extended signal ends # in zeros, instead of introducing an impulse at the end. # I.e. if x = [..., 3, 2] # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0] # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3] if boundary is not None: ext_func = boundary_funcs[boundary] x = ext_func(x, nperseg//2, axis=-1) if not same_data: y = ext_func(y, nperseg//2, axis=-1) if padded: # Pad to integer number of windowed segments # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg zeros_shape = list(x.shape[:-1]) + [nadd] x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1) if not same_data: zeros_shape = list(y.shape[:-1]) + [nadd] y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1) # Handle detrending and window functions if not detrend: def detrend_func(d): return d elif not hasattr(detrend, '__call__'): def detrend_func(d): return signaltools.detrend(d, type=detrend, axis=-1) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(d): d = np.rollaxis(d, -1, axis) d = detrend(d) return np.rollaxis(d, axis, len(d.shape)) else: detrend_func = detrend if np.result_type(win,np.complex64) != outdtype: win = win.astype(outdtype) if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if mode == 'stft': scale = np.sqrt(scale) if return_onesided: if np.iscomplexobj(x): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'onesided' if not same_data: if np.iscomplexobj(y): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'twosided' if sides == 'twosided': freqs = fftpack.fftfreq(nfft, 1/fs) elif sides == 'onesided': freqs = np.fft.rfftfreq(nfft, 1/fs) # Perform the windowed FFTs result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides) if not same_data: # All the same operations on the y data result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft, sides) result = np.conjugate(result) * result_y elif mode == 'psd': result = np.conjugate(result) * result result *= scale if sides == 'onesided' and mode == 'psd': if nfft % 2: result[..., 1:] *= 2 else: # Last point is unpaired Nyquist freq point, don't double result[..., 1:-1] *= 2 time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs) if boundary is not None: time -= (nperseg/2) / fs result = result.astype(outdtype) # All imaginary parts are zero anyways if same_data and mode != 'stft': result = result.real # Output is going to have new last axis for time/window index, so a # negative axis index shifts down one if axis < 0: axis -= 1 # Roll frequency axis back to axis where the data came from result = np.rollaxis(result, -1, axis) return freqs, time, result def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides): """ Calculate windowed FFT, for internal use by scipy.signal._spectral_helper This is a helper function that does the main FFT calculation for `_spectral helper`. All input validation is performed there, and the data axis is assumed to be the last axis of x. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Returns ------- result : ndarray Array of FFT data Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ # Created strided array of data segments if nperseg == 1 and noverlap == 0: result = x[..., np.newaxis] else: # http://stackoverflow.com/a/5568169 step = nperseg - noverlap shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg) strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) # Detrend each data segment individually result = detrend_func(result) # Apply window by multiplication result = win * result # Perform the fft. Acts on last axis by default. Zero-pads automatically if sides == 'twosided': func = fftpack.fft else: result = result.real func = np.fft.rfft result = func(result, n=nfft) return result def _triage_segments(window, nperseg,input_length): """ Parses window and nperseg arguments for spectrogram and _spectral_helper. This is a helper function, not meant to be called externally. Parameters --------- window : string, tuple, or ndarray If window is specified by a string or tuple and nperseg is not specified, nperseg is set to the default of 256 and returns a window of that length. If instead the window is array_like and nperseg is not specified, then nperseg is set to the length of the window. A ValueError is raised if the user supplies both an array_like window and a value for nperseg but nperseg does not equal the length of the window. nperseg : int Length of each segment input_length: int Length of input signal, i.e. x.shape[-1]. Used to test for errors. Returns ------- win : ndarray window. If function was called with string or tuple than this will hold the actual array used as a window. nperseg : int Length of each segment. If window is str or tuple, nperseg is set to 256. If window is array_like, nperseg is set to the length of the 6 window. """ #parse window; if array like, then set nperseg = win.shape if isinstance(window, string_types) or isinstance(window, tuple): # if nperseg not specified if nperseg is None: nperseg = 256 # then change to default if nperseg > input_length: warnings.warn('nperseg = {0:d} is greater than input length ' ' = {1:d}, using nperseg = {1:d}' .format(nperseg, input_length)) nperseg = input_length win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if input_length < win.shape[-1]: raise ValueError('window is longer than input signal') if nperseg is None: nperseg = win.shape[0] elif nperseg is not None: if nperseg != win.shape[0]: raise ValueError("value specified for nperseg is different from" " length of window") return win, nperseg
gpl-3.0
se4u/pylearn2
pylearn2/sandbox/cuda_convnet/bench.py
44
3589
__authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" from pylearn2.testing.skip import skip_if_no_gpu skip_if_no_gpu() import numpy as np from theano.compat.six.moves import xrange from theano import shared from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs from theano.tensor.nnet.conv import conv2d from theano import function import time import matplotlib.pyplot as plt def make_funcs(batch_size, rows, cols, channels, filter_rows, num_filters): rng = np.random.RandomState([2012,10,9]) filter_cols = filter_rows base_image_value = rng.uniform(-1., 1., (channels, rows, cols, batch_size)).astype('float32') base_filters_value = rng.uniform(-1., 1., (channels, filter_rows, filter_cols, num_filters)).astype('float32') images = shared(base_image_value) filters = shared(base_filters_value, name='filters') # bench.py should always be run in gpu mode so we should not need a gpu_from_host here output = FilterActs()(images, filters) output_shared = shared( output.eval() ) cuda_convnet = function([], updates = { output_shared : output } ) cuda_convnet.name = 'cuda_convnet' images_bc01v = base_image_value.transpose(3,0,1,2) filters_bc01v = base_filters_value.transpose(3,0,1,2) filters_bc01v = filters_bc01v[:,:,::-1,::-1] images_bc01 = shared(images_bc01v) filters_bc01 = shared(filters_bc01v) output_conv2d = conv2d(images_bc01, filters_bc01, border_mode='valid', image_shape = images_bc01v.shape, filter_shape = filters_bc01v.shape) output_conv2d_shared = shared(output_conv2d.eval()) baseline = function([], updates = { output_conv2d_shared : output_conv2d } ) baseline.name = 'baseline' return cuda_convnet, baseline def bench(f): for i in xrange(3): f() trials = 10 t1 = time.time() for i in xrange(trials): f() t2 = time.time() return (t2-t1)/float(trials) def get_speedup( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) return bench(baseline) / bench(cuda_convnet) def get_time_per_10k_ex( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) batch_size = kwargs['batch_size'] return 10000 * bench(cuda_convnet) / float(batch_size) def make_batch_size_plot(yfunc, yname, batch_sizes, rows, cols, channels, filter_rows, num_filters): speedups = [] for batch_size in batch_sizes: speedup = yfunc(batch_size = batch_size, rows = rows, cols = cols, channels = channels, filter_rows = filter_rows, num_filters = num_filters) speedups.append(speedup) plt.plot(batch_sizes, speedups) plt.title("cuda-convnet benchmark") plt.xlabel("Batch size") plt.ylabel(yname) plt.show() make_batch_size_plot(get_speedup, "Speedup factor", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 64, filter_rows = 7, num_filters = 64) """ make_batch_size_plot(get_time_per_10k_ex, "Time per 10k examples", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 3, filter_rows = 5, num_filters = 64) """
bsd-3-clause
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/tests/test_coding_standards.py
7
12216
from __future__ import (absolute_import, division, print_function, unicode_literals) from fnmatch import fnmatch import os from nose.tools import assert_equal from nose.plugins.skip import SkipTest from matplotlib.testing.noseclasses import KnownFailureTest try: import pep8 except ImportError: HAS_PEP8 = False else: HAS_PEP8 = pep8.__version__ > '1.4.5' import matplotlib PEP8_ADDITIONAL_IGNORE = ['E111', 'E114', 'E115', 'E116', 'E121', 'E122', 'E123', 'E124', 'E125', 'E126', 'E127', 'E128', 'E129', 'E131', 'E265', 'E266', 'W503'] EXTRA_EXCLUDE_FILE = os.path.join(os.path.dirname(__file__), '.pep8_test_exclude.txt') if HAS_PEP8: class StandardReportWithExclusions(pep8.StandardReport): #: A class attribute to store the exception exclusion file patterns. expected_bad_files = [] #: A class attribute to store the lines of failing tests. _global_deferred_print = [] #: A class attribute to store patterns which have seen exceptions. matched_exclusions = set() def get_file_results(self): # If the file had no errors, return self.file_errors # (which will be 0). if not self._deferred_print: return self.file_errors # Iterate over all of the patterns, to find a possible exclusion. # If the filename is to be excluded, go ahead and remove the # counts that self.error added. for pattern in self.expected_bad_files: if fnmatch(self.filename, pattern): self.matched_exclusions.add(pattern) # invert the error method's counters. for _, _, code, _, _ in self._deferred_print: self.counters[code] -= 1 if self.counters[code] == 0: self.counters.pop(code) self.messages.pop(code) self.file_errors -= 1 self.total_errors -= 1 return self.file_errors # mirror the content of StandardReport, only storing the output to # file rather than printing. This could be a feature request for # the PEP8 tool. self._deferred_print.sort() for line_number, offset, code, text, _ in self._deferred_print: self._global_deferred_print.append( self._fmt % {'path': self.filename, 'row': self.line_offset + line_number, 'col': offset + 1, 'code': code, 'text': text}) return self.file_errors def assert_pep8_conformance(module=matplotlib, exclude_files=None, extra_exclude_file=EXTRA_EXCLUDE_FILE, pep8_additional_ignore=PEP8_ADDITIONAL_IGNORE, dirname=None, expected_bad_files=None, extra_exclude_directories=None): """ Tests the matplotlib codebase against the "pep8" tool. Users can add their own excluded files (should files exist in the local directory which is not in the repository) by adding a ".pep8_test_exclude.txt" file in the same directory as this test. The file should be a line separated list of filenames/directories as can be passed to the "pep8" tool's exclude list. """ if not HAS_PEP8: raise SkipTest('The pep8 tool is required for this test') # to get a list of bad files, rather than the specific errors, add # "reporter=pep8.FileReport" to the StyleGuide constructor. pep8style = pep8.StyleGuide(quiet=False, reporter=StandardReportWithExclusions) reporter = pep8style.options.reporter if expected_bad_files is not None: reporter.expected_bad_files = expected_bad_files # Extend the number of PEP8 guidelines which are not checked. pep8style.options.ignore = (pep8style.options.ignore + tuple(pep8_additional_ignore)) # Support for egg shared object wrappers, which are not PEP8 compliant, # nor part of the matplotlib repository. # DO NOT ADD FILES *IN* THE REPOSITORY TO THIS LIST. if exclude_files is not None: pep8style.options.exclude.extend(exclude_files) # Allow users to add their own exclude list. if extra_exclude_file is not None and os.path.exists(extra_exclude_file): with open(extra_exclude_file, 'r') as fh: extra_exclude = [line.strip() for line in fh if line.strip()] pep8style.options.exclude.extend(extra_exclude) if extra_exclude_directories: pep8style.options.exclude.extend(extra_exclude_directories) if dirname is None: dirname = os.path.dirname(module.__file__) result = pep8style.check_files([dirname]) if reporter is StandardReportWithExclusions: msg = ("Found code syntax errors (and warnings):\n" "{0}".format('\n'.join(reporter._global_deferred_print))) else: msg = "Found code syntax errors (and warnings)." assert_equal(result.total_errors, 0, msg) # If we've been using the exclusions reporter, check that we didn't # exclude files unnecessarily. if reporter is StandardReportWithExclusions: unexpectedly_good = sorted(set(reporter.expected_bad_files) - reporter.matched_exclusions) if unexpectedly_good: raise ValueError('Some exclude patterns were unnecessary as the ' 'files they pointed to either passed the PEP8 ' 'tests or do not point to a file:\n ' '{0}'.format('\n '.join(unexpectedly_good))) def test_pep8_conformance_installed_files(): exclude_files = ['_delaunay.py', '_image.py', '_tri.py', '_backend_agg.py', '_tkagg.py', 'ft2font.py', '_cntr.py', '_contour.py', '_png.py', '_path.py', 'ttconv.py', '_gtkagg.py', '_backend_gdk.py', 'pyparsing*', '_qhull.py', '_macosx.py'] expected_bad_files = ['_cm.py', '_mathtext_data.py', 'backend_bases.py', 'cbook.py', 'collections.py', 'dviread.py', 'font_manager.py', 'fontconfig_pattern.py', 'gridspec.py', 'legend_handler.py', 'mathtext.py', 'patheffects.py', 'pylab.py', 'pyplot.py', 'rcsetup.py', 'stackplot.py', 'texmanager.py', 'transforms.py', 'type1font.py', 'widgets.py', 'testing/decorators.py', 'testing/jpl_units/Duration.py', 'testing/jpl_units/Epoch.py', 'testing/jpl_units/EpochConverter.py', 'testing/jpl_units/StrConverter.py', 'testing/jpl_units/UnitDbl.py', 'testing/jpl_units/UnitDblConverter.py', 'testing/jpl_units/UnitDblFormatter.py', 'testing/jpl_units/__init__.py', 'tri/triinterpolate.py', 'tests/test_axes.py', 'tests/test_bbox_tight.py', 'tests/test_delaunay.py', 'tests/test_dviread.py', 'tests/test_image.py', 'tests/test_legend.py', 'tests/test_lines.py', 'tests/test_mathtext.py', 'tests/test_rcparams.py', 'tests/test_simplification.py', 'tests/test_streamplot.py', 'tests/test_subplots.py', 'tests/test_tightlayout.py', 'tests/test_triangulation.py', 'compat/subprocess.py', 'backends/__init__.py', 'backends/backend_agg.py', 'backends/backend_cairo.py', 'backends/backend_cocoaagg.py', 'backends/backend_gdk.py', 'backends/backend_gtk.py', 'backends/backend_gtk3.py', 'backends/backend_gtk3cairo.py', 'backends/backend_gtkagg.py', 'backends/backend_gtkcairo.py', 'backends/backend_macosx.py', 'backends/backend_mixed.py', 'backends/backend_pgf.py', 'backends/backend_ps.py', 'backends/backend_svg.py', 'backends/backend_template.py', 'backends/backend_tkagg.py', 'backends/tkagg.py', 'backends/windowing.py', 'backends/qt_editor/formlayout.py', 'sphinxext/mathmpl.py', 'sphinxext/only_directives.py', 'sphinxext/plot_directive.py', 'projections/__init__.py', 'projections/geo.py', 'projections/polar.py', 'externals/six.py'] expected_bad_files = ['*/matplotlib/' + s for s in expected_bad_files] assert_pep8_conformance(module=matplotlib, exclude_files=exclude_files, expected_bad_files=expected_bad_files) def test_pep8_conformance_examples(): mpldir = os.environ.get('MPL_REPO_DIR', None) if mpldir is None: # try and guess! fp = os.getcwd() while len(fp) > 2: if os.path.isdir(os.path.join(fp, 'examples')): mpldir = fp break fp, tail = os.path.split(fp) if mpldir is None: raise KnownFailureTest("can not find the examples, set env " "MPL_REPO_DIR to point to the top-level path " "of the source tree") exdir = os.path.join(mpldir, 'examples') blacklist = () expected_bad_files = ['*/pylab_examples/table_demo.py', '*/pylab_examples/tricontour_demo.py', '*/pylab_examples/tripcolor_demo.py', '*/pylab_examples/triplot_demo.py', '*/shapes_and_collections/artist_reference.py'] assert_pep8_conformance(dirname=exdir, extra_exclude_directories=blacklist, pep8_additional_ignore=PEP8_ADDITIONAL_IGNORE + ['E116', 'E501', 'E402'], expected_bad_files=expected_bad_files) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
weidel-p/nest-simulator
pynest/nest/tests/test_spatial/test_plotting.py
12
5748
# -*- coding: utf-8 -*- # # test_plotting.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Tests for basic spatial plotting functions. """ import unittest import nest import numpy as np try: import matplotlib.pyplot as plt tmp_fig = plt.figure() # make sure we can open a window; DISPLAY may not be set plt.close(tmp_fig) PLOTTING_POSSIBLE = True except: PLOTTING_POSSIBLE = False @unittest.skipIf(not PLOTTING_POSSIBLE, 'Plotting impossible because matplotlib or display missing') class PlottingTestCase(unittest.TestCase): def test_PlotLayer(self): """Test plotting layer.""" nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) nest.PlotLayer(l) plotted_datapoints = plt.gca().collections[-1].get_offsets().data reference_datapoints = nest.GetPosition(l) self.assertTrue(np.allclose(plotted_datapoints, reference_datapoints)) def test_PlotTargets(self): """Test plotting targets.""" delta = 0.05 mask = {'rectangular': {'lower_left': [-delta, -2/3 - delta], 'upper_right': [2/3 + delta, delta]}} cdict = {'rule': 'pairwise_bernoulli', 'p': 1., 'mask': mask} sdict = {'synapse_model': 'stdp_synapse'} nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) # connect l -> l nest.Connect(l, l, cdict, sdict) ctr = nest.FindCenterElement(l) fig = nest.PlotTargets(ctr, l) fig.gca().set_title('Plain call') plotted_datapoints = plt.gca().collections[0].get_offsets().data eps = 0.01 pos = np.array(nest.GetPosition(l)) pos_xmask = pos[np.where(pos[:, 0] > -eps)] reference_datapoints = pos_xmask[np.where(pos_xmask[:, 1] < eps)][::-1] self.assertTrue(np.array_equal(np.sort(plotted_datapoints, axis=0), np.sort(reference_datapoints, axis=0))) fig = nest.PlotTargets(ctr, l, mask=mask) ax = fig.gca() ax.set_title('Call with mask') self.assertGreaterEqual(len(ax.patches), 1) def test_plot_probability_kernel(self): """Plot parameter probability""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] def probability_calculation(distance): return 1 - 1.5*distance l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) source = l[25] source_pos = np.array(nest.GetPosition(source)) source_x, source_y = source_pos # Calculate reference values ref_probability = np.zeros(plot_shape[::-1]) for i, x in enumerate(np.linspace(plot_edges[0], plot_edges[1], plot_shape[0])): positions = np.array([[x, y] for y in np.linspace(plot_edges[2], plot_edges[3], plot_shape[1])]) ref_distances = np.sqrt((positions[:, 0] - source_x)**2 + (positions[:, 1] - source_y)**2) values = probability_calculation(ref_distances) ref_probability[:, i] = np.maximum(np.minimum(np.array(values), 1.0), 0.0) # Create the parameter parameter = probability_calculation(nest.spatial.distance) fig, ax = plt.subplots() nest.PlotProbabilityParameter(source, parameter, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) img = ax.images[0] img_data = img.get_array().data self.assertTrue(np.array_equal(img_data, ref_probability)) def test_plot_probability_kernel_with_mask(self): """Plot parameter probability with mask""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) parameter = 1 - 1.5*nest.spatial.distance source = l[25] masks = [{'circular': {'radius': 0.4}}, {'doughnut': {'inner_radius': 0.2, 'outer_radius': 0.45}}, {'rectangular': {'lower_left': [-.3, -.3], 'upper_right': [0.3, 0.3]}}, {'elliptical': {'major_axis': 0.8, 'minor_axis': 0.4}}] fig, axs = plt.subplots(2, 2) for mask, ax in zip(masks, axs.flatten()): nest.PlotProbabilityParameter(source, parameter, mask=mask, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) self.assertGreaterEqual(len(ax.patches), 1) def suite(): suite = unittest.makeSuite(PlottingTestCase, 'test') return suite if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) runner.run(suite()) plt.show()
gpl-2.0
mattilyra/scikit-learn
sklearn/__init__.py
27
3086
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.18.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'model_selection', 'multiclass', 'multioutput', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', 'discriminant_analysis', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
NelisVerhoef/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
CVML/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
huzq/scikit-learn
examples/cluster/plot_mean_shift.py
23
1775
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets import make_blobs # ############################################################################# # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) # ############################################################################# # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) # ############################################################################# # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
waterponey/scikit-learn
examples/neighbors/plot_lof.py
30
1939
""" ================================================= Anomaly detection with Local Outlier Factor (LOF) ================================================= This example presents the Local Outlier Factor (LOF) estimator. The LOF algorithm is an unsupervised outlier detection method which computes the local density deviation of a given data point with respect to its neighbors. It considers as outlier samples that have a substantially lower density than their neighbors. The number of neighbors considered, (parameter n_neighbors) is typically chosen 1) greater than the minimum number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2) smaller than the maximum number of close by objects that can potentially be local outliers. In practice, such informations are generally not available, and taking n_neighbors=20 appears to work well in general. """ import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor print(__doc__) np.random.seed(42) # Generate train data X = 0.3 * np.random.randn(100, 2) # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) X = np.r_[X + 2, X - 2, X_outliers] # fit the model clf = LocalOutlierFactor(n_neighbors=20) y_pred = clf.fit_predict(X) y_pred_outliers = y_pred[200:] # plot the level sets of the decision function xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Local Outlier Factor (LOF)") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) a = plt.scatter(X[:200, 0], X[:200, 1], c='white') b = plt.scatter(X[200:, 0], X[200:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a, b], ["normal observations", "abnormal observations"], loc="upper left") plt.show()
bsd-3-clause
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/scipy/spatial/tests/test__plotutils.py
15
2140
from __future__ import division, print_function, absolute_import import pytest from numpy.testing import assert_, assert_array_equal from scipy._lib._numpy_compat import suppress_warnings try: import matplotlib matplotlib.rcParams['backend'] = 'Agg' import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib import MatplotlibDeprecationWarning has_matplotlib = True except: has_matplotlib = False from scipy.spatial import \ delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ Delaunay, Voronoi, ConvexHull @pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available") class TestPlotting: points = [(0,0), (0,1), (1,0), (1,1)] def test_delaunay(self): # Smoke test fig = plt.figure() obj = Delaunay(self.points) s_before = obj.simplices.copy() with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = delaunay_plot_2d(obj, ax=fig.gca()) assert_array_equal(obj.simplices, s_before) # shouldn't modify assert_(r is fig) delaunay_plot_2d(obj, ax=fig.gca()) def test_voronoi(self): # Smoke test fig = plt.figure() obj = Voronoi(self.points) with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = voronoi_plot_2d(obj, ax=fig.gca()) assert_(r is fig) voronoi_plot_2d(obj) voronoi_plot_2d(obj, show_vertices=False) def test_convex_hull(self): # Smoke test fig = plt.figure() tri = ConvexHull(self.points) with suppress_warnings as sup: # filter can be removed when matplotlib 1.x is dropped sup.filter(message="The ishold function was deprecated in version") r = convex_hull_plot_2d(tri, ax=fig.gca()) assert_(r is fig) convex_hull_plot_2d(tri)
mit
anntzer/seaborn
seaborn/_core.py
1
44884
import warnings import itertools from copy import copy from functools import partial from collections.abc import Iterable, Sequence, Mapping from numbers import Number from datetime import datetime import numpy as np import pandas as pd import matplotlib as mpl from ._decorators import ( share_init_params_with_map, ) from .palettes import ( QUAL_PALETTES, color_palette, cubehelix_palette, _parse_cubehelix_args, ) from .utils import ( get_color_cycle, remove_na, ) class SemanticMapping: """Base class for mapping data values to plot attributes.""" # -- Default attributes that all SemanticMapping subclasses must set # Whether the mapping is numeric, categorical, or datetime map_type = None # Ordered list of unique values in the input data levels = None # A mapping from the data values to corresponding plot attributes lookup_table = None def __init__(self, plotter): # TODO Putting this here so we can continue to use a lot of the # logic that's built into the library, but the idea of this class # is to move towards semantic mappings that are agnositic about the # kind of plot they're going to be used to draw. # Fully achieving that is going to take some thinking. self.plotter = plotter def map(cls, plotter, *args, **kwargs): # This method is assigned the __init__ docstring method_name = "_{}_map".format(cls.__name__[:-7].lower()) setattr(plotter, method_name, cls(plotter, *args, **kwargs)) return plotter def _lookup_single(self, key): """Apply the mapping to a single data value.""" return self.lookup_table[key] def __call__(self, key, *args, **kwargs): """Get the attribute(s) values for the data key.""" if isinstance(key, (list, np.ndarray, pd.Series)): return [self._lookup_single(k, *args, **kwargs) for k in key] else: return self._lookup_single(key, *args, **kwargs) @share_init_params_with_map class HueMapping(SemanticMapping): """Mapping that sets artist colors according to data values.""" # A specification of the colors that should appear in the plot palette = None # An object that normalizes data values to [0, 1] range for color mapping norm = None # A continuous colormap object for interpolating in a numeric context cmap = None def __init__( self, plotter, palette=None, order=None, norm=None, ): """Map the levels of the `hue` variable to distinct colors. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["hue"] if data.notna().any(): map_type = self.infer_map_type( palette, norm, plotter.input_format, plotter.var_types["hue"] ) # Our goal is to end up with a dictionary mapping every unique # value in `data` to a color. We will also keep track of the # metadata about this mapping we will need for, e.g., a legend # --- Option 1: numeric mapping with a matplotlib colormap if map_type == "numeric": data = pd.to_numeric(data) levels, lookup_table, norm, cmap = self.numeric_mapping( data, palette, norm, ) # --- Option 2: categorical mapping using seaborn palette elif map_type == "categorical": cmap = norm = None levels, lookup_table = self.categorical_mapping( data, palette, order, ) # --- Option 3: datetime mapping else: # TODO this needs actual implementation cmap = norm = None levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), palette, order, ) self.map_type = map_type self.lookup_table = lookup_table self.palette = palette self.levels = levels self.norm = norm self.cmap = cmap def _lookup_single(self, key): """Get the color for a single value, using colormap to interpolate.""" try: # Use a value that's in the original data vector value = self.lookup_table[key] except KeyError: # Use the colormap to interpolate between existing datapoints # (e.g. in the context of making a continuous legend) normed = self.norm(key) if np.ma.is_masked(normed): normed = np.nan value = self.cmap(normed) return value def infer_map_type(self, palette, norm, input_format, var_type): """Determine how to implement the mapping.""" if palette in QUAL_PALETTES: map_type = "categorical" elif norm is not None: map_type = "numeric" elif isinstance(palette, (dict, list)): map_type = "categorical" elif input_format == "wide": map_type = "categorical" else: map_type = var_type return map_type def categorical_mapping(self, data, palette, order): """Determine colors when the hue mapping is categorical.""" # -- Identify the order and name of the levels levels = categorical_order(data, order) n_colors = len(levels) # -- Identify the set of colors to use if isinstance(palette, dict): missing = set(levels) - set(palette) if any(missing): err = "The palette dictionary is missing keys: {}" raise ValueError(err.format(missing)) lookup_table = palette else: if palette is None: if n_colors <= len(get_color_cycle()): colors = color_palette(None, n_colors) else: colors = color_palette("husl", n_colors) elif isinstance(palette, list): if len(palette) != n_colors: err = "The palette list has the wrong number of colors." raise ValueError(err) colors = palette else: colors = color_palette(palette, n_colors) lookup_table = dict(zip(levels, colors)) return levels, lookup_table def numeric_mapping(self, data, palette, norm): """Determine colors when the hue variable is quantitative.""" if isinstance(palette, dict): # The presence of a norm object overrides a dictionary of hues # in specifying a numeric mapping, so we need to process it here. levels = list(sorted(palette)) colors = [palette[k] for k in sorted(palette)] cmap = mpl.colors.ListedColormap(colors) lookup_table = palette.copy() else: # The levels are the sorted unique values in the data levels = list(np.sort(remove_na(data.unique()))) # --- Sort out the colormap to use from the palette argument # Default numeric palette is our default cubehelix palette # TODO do we want to do something complicated to ensure contrast? palette = "ch:" if palette is None else palette if isinstance(palette, mpl.colors.Colormap): cmap = palette elif str(palette).startswith("ch:"): args, kwargs = _parse_cubehelix_args(palette) cmap = cubehelix_palette(0, *args, as_cmap=True, **kwargs) else: try: cmap = mpl.cm.get_cmap(palette) except (ValueError, TypeError): err = "Palette {} not understood" raise ValueError(err) # Now sort out the data normalization if norm is None: norm = mpl.colors.Normalize() elif isinstance(norm, tuple): norm = mpl.colors.Normalize(*norm) elif not isinstance(norm, mpl.colors.Normalize): err = "``hue_norm`` must be None, tuple, or Normalize object." raise ValueError(err) if not norm.scaled(): norm(np.asarray(data.dropna())) lookup_table = dict(zip(levels, cmap(norm(levels)))) return levels, lookup_table, norm, cmap @share_init_params_with_map class SizeMapping(SemanticMapping): """Mapping that sets artist sizes according to data values.""" # An object that normalizes data values to [0, 1] range norm = None def __init__( self, plotter, sizes=None, order=None, norm=None, ): """Map the levels of the `size` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["size"] if data.notna().any(): map_type = self.infer_map_type( norm, sizes, plotter.var_types["size"] ) # --- Option 1: numeric mapping if map_type == "numeric": levels, lookup_table, norm = self.numeric_mapping( data, sizes, norm, ) # --- Option 2: categorical mapping elif map_type == "categorical": levels, lookup_table = self.categorical_mapping( data, sizes, order, ) # --- Option 3: datetime mapping # TODO this needs an actual implementation else: levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), sizes, order, ) self.map_type = map_type self.levels = levels self.norm = norm self.sizes = sizes self.lookup_table = lookup_table def infer_map_type(self, norm, sizes, var_type): if norm is not None: map_type = "numeric" elif isinstance(sizes, (dict, list)): map_type = "categorical" else: map_type = var_type return map_type def _lookup_single(self, key): try: value = self.lookup_table[key] except KeyError: normed = self.norm(key) if np.ma.is_masked(normed): normed = np.nan size_values = self.lookup_table.values() size_range = min(size_values), max(size_values) value = size_range[0] + normed * np.ptp(size_range) return value def categorical_mapping(self, data, sizes, order): levels = categorical_order(data, order) if isinstance(sizes, dict): # Dict inputs map existing data values to the size attribute missing = set(levels) - set(sizes) if any(missing): err = f"Missing sizes for the following levels: {missing}" raise ValueError(err) lookup_table = sizes.copy() elif isinstance(sizes, list): # List inputs give size values in the same order as the levels if len(sizes) != len(levels): err = "The `sizes` list has the wrong number of values." raise ValueError(err) lookup_table = dict(zip(levels, sizes)) else: if isinstance(sizes, tuple): # Tuple input sets the min, max size values if len(sizes) != 2: err = "A `sizes` tuple must have only 2 values" raise ValueError(err) elif sizes is not None: err = f"Value for `sizes` not understood: {sizes}" raise ValueError(err) else: # Otherwise, we need to get the min, max size values from # the plotter object we are attached to. # TODO this is going to cause us trouble later, because we # want to restructure things so that the plotter is generic # across the visual representation of the data. But at this # point, we don't know the visual representation. Likely we # want to change the logic of this Mapping so that it gives # points on a nornalized range that then gets unnormalized # when we know what we're drawing. But given the way the # package works now, this way is cleanest. sizes = self.plotter._default_size_range # For categorical sizes, use regularly-spaced linear steps # between the minimum and maximum sizes sizes = np.linspace(*sizes, len(levels)) lookup_table = dict(zip(levels, sizes)) return levels, lookup_table def numeric_mapping(self, data, sizes, norm): if isinstance(sizes, dict): # The presence of a norm object overrides a dictionary of sizes # in specifying a numeric mapping, so we need to process it # dictionary here levels = list(np.sort(list(sizes))) size_values = sizes.values() size_range = min(size_values), max(size_values) else: # The levels here will be the unique values in the data levels = list(np.sort(remove_na(data.unique()))) if isinstance(sizes, tuple): # For numeric inputs, the size can be parametrized by # the minimum and maximum artist values to map to. The # norm object that gets set up next specifies how to # do the mapping. if len(sizes) != 2: err = "A `sizes` tuple must have only 2 values" raise ValueError(err) size_range = sizes elif sizes is not None: err = f"Value for `sizes` not understood: {sizes}" raise ValueError(err) else: # When not provided, we get the size range from the plotter # object we are attached to. See the note in the categorical # method about how this is suboptimal for future development.: size_range = self.plotter._default_size_range # Now that we know the minimum and maximum sizes that will get drawn, # we need to map the data values that we have into that range. We will # use a matplotlib Normalize class, which is typically used for numeric # color mapping but works fine here too. It takes data values and maps # them into a [0, 1] interval, potentially nonlinear-ly. if norm is None: # Default is a linear function between the min and max data values norm = mpl.colors.Normalize() elif isinstance(norm, tuple): # It is also possible to give different limits in data space norm = mpl.colors.Normalize(*norm) elif not isinstance(norm, mpl.colors.Normalize): err = f"Value for size `norm` parameter not understood: {norm}" raise ValueError(err) else: # If provided with Normalize object, copy it so we can modify norm = copy(norm) # Set the mapping so all output values are in [0, 1] norm.clip = True # If the input range is not set, use the full range of the data if not norm.scaled(): norm(levels) # Map from data values to [0, 1] range sizes_scaled = norm(levels) # Now map from the scaled range into the artist units if isinstance(sizes, dict): lookup_table = sizes else: lo, hi = size_range sizes = lo + sizes_scaled * (hi - lo) lookup_table = dict(zip(levels, sizes)) return levels, lookup_table, norm @share_init_params_with_map class StyleMapping(SemanticMapping): """Mapping that sets artist style according to data values.""" # Style mapping is always treated as categorical map_type = "categorical" def __init__( self, plotter, markers=None, dashes=None, order=None, ): """Map the levels of the `style` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data["style"] if data.notna().any(): # Cast to list to handle numpy/pandas datetime quirks if variable_type(data) == "datetime": data = list(data) # Find ordered unique values levels = categorical_order(data, order) markers = self._map_attributes( markers, levels, unique_markers(len(levels)), "markers", ) dashes = self._map_attributes( dashes, levels, unique_dashes(len(levels)), "dashes", ) # Build the paths matplotlib will use to draw the markers paths = {} filled_markers = [] for k, m in markers.items(): if not isinstance(m, mpl.markers.MarkerStyle): m = mpl.markers.MarkerStyle(m) paths[k] = m.get_path().transformed(m.get_transform()) filled_markers.append(m.is_filled()) # Mixture of filled and unfilled markers will show line art markers # in the edge color, which defaults to white. This can be handled, # but there would be additional complexity with specifying the # weight of the line art markers without overwhelming the filled # ones with the edges. So for now, we will disallow mixtures. if any(filled_markers) and not all(filled_markers): err = "Filled and line art markers cannot be mixed" raise ValueError(err) lookup_table = {} for key in levels: lookup_table[key] = {} if markers: lookup_table[key]["marker"] = markers[key] lookup_table[key]["path"] = paths[key] if dashes: lookup_table[key]["dashes"] = dashes[key] self.levels = levels self.lookup_table = lookup_table def _lookup_single(self, key, attr=None): """Get attribute(s) for a given data point.""" if attr is None: value = self.lookup_table[key] else: value = self.lookup_table[key][attr] return value def _map_attributes(self, arg, levels, defaults, attr): """Handle the specification for a given style attribute.""" if arg is True: lookup_table = dict(zip(levels, defaults)) elif isinstance(arg, dict): missing = set(levels) - set(arg) if missing: err = f"These `{attr}` levels are missing values: {missing}" raise ValueError(err) lookup_table = arg elif isinstance(arg, Sequence): if len(levels) != len(arg): err = f"The `{attr}` argument has the wrong number of values" raise ValueError(err) lookup_table = dict(zip(levels, arg)) elif arg: err = f"This `{attr}` argument was not understood: {arg}" raise ValueError(err) else: lookup_table = {} return lookup_table # =========================================================================== # class VectorPlotter: """Base class for objects underlying *plot functions.""" _semantic_mappings = { "hue": HueMapping, "size": SizeMapping, "style": StyleMapping, } # TODO units is another example of a non-mapping "semantic" # we need a general name for this and separate handling semantics = "x", "y", "hue", "size", "style", "units" wide_structure = { "x": "index", "y": "values", "hue": "columns", "style": "columns", } flat_structure = {"x": "index", "y": "values"} _default_size_range = 1, 2 # Unused but needed in tests, ugh def __init__(self, data=None, variables={}): self.assign_variables(data, variables) for var, cls in self._semantic_mappings.items(): if var in self.semantics: # Create the mapping function map_func = partial(cls.map, plotter=self) setattr(self, f"map_{var}", map_func) # Call the mapping function to initialize with default values getattr(self, f"map_{var}")() @classmethod def get_semantics(cls, kwargs): """Subset a dictionary` arguments with known semantic variables.""" return {k: kwargs[k] for k in cls.semantics} def assign_variables(self, data=None, variables={}): """Define plot variables, optionally using lookup from `data`.""" x = variables.get("x", None) y = variables.get("y", None) if x is None and y is None: self.input_format = "wide" plot_data, variables = self._assign_variables_wideform( data, **variables, ) else: self.input_format = "long" plot_data, variables = self._assign_variables_longform( data, **variables, ) self.plot_data = plot_data self.variables = variables self.var_types = { v: variable_type( plot_data[v], boolean_type="numeric" if v in "xy" else "categorical" ) for v in variables } return self def _assign_variables_wideform(self, data=None, **kwargs): """Define plot variables given wide-form data. Parameters ---------- data : flat vector or collection of vectors Data can be a vector or mapping that is coerceable to a Series or a sequence- or mapping-based collection of such vectors, or a rectangular numpy array, or a Pandas DataFrame. kwargs : variable -> data mappings Behavior with keyword arguments is currently undefined. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined). """ # TODO raise here if any kwarg values are not None, # # if we decide for "structure-only" wide API # First, determine if the data object actually has any data in it empty = data is None or not len(data) # Then, determine if we have "flat" data (a single vector) if isinstance(data, dict): values = data.values() else: values = np.atleast_1d(data) flat = not any( isinstance(v, Iterable) and not isinstance(v, (str, bytes)) for v in values ) if empty: # Make an object with the structure of plot_data, but empty plot_data = pd.DataFrame(columns=self.semantics) variables = {} elif flat: # Handle flat data by converting to pandas Series and using the # index and/or values to define x and/or y # (Could be accomplished with a more general to_series() interface) flat_data = pd.Series(data).copy() names = { "values": flat_data.name, "index": flat_data.index.name } plot_data = {} variables = {} for var in ["x", "y"]: if var in self.flat_structure: attr = self.flat_structure[var] plot_data[var] = getattr(flat_data, attr) variables[var] = names[self.flat_structure[var]] plot_data = pd.DataFrame(plot_data).reindex(columns=self.semantics) else: # Otherwise assume we have some collection of vectors. # Handle Python sequences such that entries end up in the columns, # not in the rows, of the intermediate wide DataFrame. # One way to accomplish this is to convert to a dict of Series. if isinstance(data, Sequence): data_dict = {} for i, var in enumerate(data): key = getattr(var, "name", i) # TODO is there a safer/more generic way to ensure Series? # sort of like np.asarray, but for pandas? data_dict[key] = pd.Series(var) data = data_dict # Pandas requires that dict values either be Series objects # or all have the same length, but we want to allow "ragged" inputs if isinstance(data, Mapping): data = {key: pd.Series(val) for key, val in data.items()} # Otherwise, delegate to the pandas DataFrame constructor # This is where we'd prefer to use a general interface that says # "give me this data as a pandas DataFrame", so we can accept # DataFrame objects from other libraries wide_data = pd.DataFrame(data, copy=True) # At this point we should reduce the dataframe to numeric cols numeric_cols = wide_data.apply(variable_type) == "numeric" wide_data = wide_data.loc[:, numeric_cols] # Now melt the data to long form melt_kws = {"var_name": "columns", "value_name": "values"} if "index" in self.wide_structure.values(): melt_kws["id_vars"] = "index" wide_data["index"] = wide_data.index.to_series() plot_data = wide_data.melt(**melt_kws) # Assign names corresponding to plot semantics for var, attr in self.wide_structure.items(): plot_data[var] = plot_data[attr] plot_data = plot_data.reindex(columns=self.semantics) # Define the variable names variables = {} for var, attr in self.wide_structure.items(): obj = getattr(wide_data, attr) variables[var] = getattr(obj, "name", None) return plot_data, variables def _assign_variables_longform(self, data=None, **kwargs): """Define plot variables given long-form data and/or vector inputs. Parameters ---------- data : dict-like collection of vectors Input data where variable names map to vector values. kwargs : variable -> data mappings Keys are seaborn variables (x, y, hue, ...) and values are vectors in any format that can construct a :class:`pandas.DataFrame` or names of columns or index levels in ``data``. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined). Raises ------ ValueError When variables are strings that don't appear in ``data``. """ plot_data = {} variables = {} # Data is optional; all variables can be defined as vectors if data is None: data = {} # TODO should we try a data.to_dict() or similar here to more # generally accept objects with that interface? # Note that dict(df) also works for pandas, and gives us what we # want, whereas DataFrame.to_dict() gives a nested dict instead of # a dict of series. # Variables can also be extraced from the index attribute # TODO is this the most general way to enable it? # There is no index.to_dict on multiindex, unfortunately try: index = data.index.to_frame() except AttributeError: index = {} # The caller will determine the order of variables in plot_data for key, val in kwargs.items(): if isinstance(val, (str, bytes)): # String inputs trigger __getitem__ if val in data: # First try to get an entry in the data object plot_data[key] = data[val] variables[key] = val elif val in index: # Failing that, try to get an entry in the index object plot_data[key] = index[val] variables[key] = val else: # We don't know what this name means err = f"Could not interpret input '{val}'" raise ValueError(err) else: # Otherwise, assume the value is itself a vector of data # TODO check for 1D here or let pd.DataFrame raise? plot_data[key] = val # Try to infer the name of the variable variables[key] = getattr(val, "name", None) # Construct a tidy plot DataFrame. This will convert a number of # types automatically, aligning on index in case of pandas objects plot_data = pd.DataFrame(plot_data, columns=self.semantics) # Reduce the variables dictionary to fields with valid data variables = { var: name for var, name in variables.items() if plot_data[var].notnull().any() } return plot_data, variables def _semantic_subsets( self, grouping_semantics, reverse=False, from_comp_data=False, ): """Generator for getting subsets of data defined by semantic variables. Parameters ---------- grouping_semantics : list of strings Semantic variables that define the subsets of data. reverse : bool, optional If True, reverse the order of iteration. from_comp_data : bool, optional If True, use self.comp_data rather than self.plot_data Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values. """ if isinstance(grouping_semantics, str): grouping_semantics = [grouping_semantics] # Reduce to the semantics used in this plot grouping_semantics = [ var for var in grouping_semantics if var in self.variables ] if from_comp_data: data = self.comp_data else: data = self.plot_data if grouping_semantics: grouped_data = data.groupby( grouping_semantics, sort=False, as_index=False ) grouping_keys = [] for var in grouping_semantics: # TODO this is messy, add "semantic levels" property? map_obj = getattr(self, f"_{var}_map") grouping_keys.append(map_obj.levels) iter_keys = itertools.product(*grouping_keys) if reverse: iter_keys = reversed(list(iter_keys)) for key in iter_keys: # Pandas fails with singleton tuple inputs pd_key = key[0] if len(key) == 1 else key try: data_subset = grouped_data.get_group(pd_key) except KeyError: continue yield dict(zip(grouping_semantics, key)), data_subset else: yield {}, data @property def comp_data(self): """Dataframe with numeric x and y, after unit conversion and log scaling.""" if not hasattr(self, "ax"): # Probably a good idea, but will need a bunch of tests updated # Most of these tests should just use the external interface # Then this can be reeneabled. # raise AttributeError("No Axes attached to plotter") return self.plot_data if not hasattr(self, "_comp_data"): comp_data = self.plot_data.copy(deep=False) for var in "xy": axis = getattr(self.ax, f"{var}axis") comp_var = axis.convert_units(self.plot_data[var]) if axis.get_scale() == "log": comp_var = np.log10(comp_var) comp_data[var] = comp_var self._comp_data = comp_data return self._comp_data def _attach(self, ax, allowed_types=None, log_scale=None): """Associate the plotter with a matplotlib Axes and initialize its units. Parameters ---------- ax : :class:`matplotlib.axes.Axes` Axes object that we will eventually plot onto. allowed_types : str or list of str If provided, raise when either the x or y variable does not have one of the declared seaborn types. log_scale : bool, number, or pair of bools or numbers If not False, set the axes to use log scaling, with the given base or defaulting to 10. If a tuple, interpreted as separate arguments for the x and y axes. """ if allowed_types is None: # TODO should we define this default somewhere? allowed_types = ["numeric", "datetime", "categorical"] elif isinstance(allowed_types, str): allowed_types = [allowed_types] for var in set("xy").intersection(self.variables): # Check types of x/y variables var_type = self.var_types[var] if var_type not in allowed_types: err = ( f"The {var} variable is {var_type}, but one of " f"{allowed_types} is required" ) raise TypeError(err) # Register with the matplotlib unit conversion machinery # TODO do we want to warn or raise if mixing units? axis = getattr(ax, f"{var}axis") seed_data = self.plot_data[var] if var_type == "categorical": seed_data = categorical_order(seed_data) axis.update_units(seed_data) # Possibly log-scale one or both axes if log_scale is not None: # Allow single value or x, y tuple try: scalex, scaley = log_scale except TypeError: scalex = log_scale if "x" in self.variables else False scaley = log_scale if "y" in self.variables else False for axis, scale in zip("xy", (scalex, scaley)): if scale: set_scale = getattr(ax, f"set_{axis}scale") if scale is True: set_scale("log") else: set_scale("log", **{f"base{axis}": scale}) self.ax = ax def _add_axis_labels(self, ax, default_x="", default_y=""): """Add axis labels from internal variable names if not already existing.""" if not ax.get_xlabel(): ax.set_xlabel(self.variables.get("x", default_x)) if not ax.get_ylabel(): ax.set_ylabel(self.variables.get("y", default_y)) def variable_type(vector, boolean_type="numeric"): """Determine whether a vector contains numeric, categorical, or dateime data. This function differs from the pandas typing API in two ways: - Python sequences or object-typed PyData objects are considered numeric if all of their entries are numeric. - String or mixed-type data are considered categorical even if not explicitly represented as a :class:pandas.api.types.CategoricalDtype`. Parameters ---------- vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence Input data to test. binary_type : 'numeric' or 'categorical' Type to use for vectors containing only 0s and 1s (and NAs). Returns ------- var_type : 'numeric', 'categorical', or 'datetime' Name identifying the type of data in the vector. """ # Special-case all-na data, which is always "numeric" if pd.isna(vector).all(): return "numeric" # Special-case binary/boolean data, allow caller to determine # This triggers a numpy warning when vector has strings/objects # https://github.com/numpy/numpy/issues/6784 # Because we reduce with .all(), we are agnostic about whether the # comparison returns a scalar or vector, so we will ignore the warning. # It triggers a separate DeprecationWarning when the vector has datetimes: # https://github.com/numpy/numpy/issues/13548 # This is considered a bug by numpy and will likely go away. with warnings.catch_warnings(): warnings.simplefilter( action='ignore', category=(FutureWarning, DeprecationWarning) ) if np.isin(vector, [0, 1, np.nan]).all(): return boolean_type # Defer to positive pandas tests if pd.api.types.is_numeric_dtype(vector): return "numeric" if pd.api.types.is_categorical_dtype(vector): return "categorical" if pd.api.types.is_datetime64_dtype(vector): return "datetime" # --- If we get to here, we need to check the entries # Check for a collection where everything is a number def all_numeric(x): for x_i in x: if not isinstance(x_i, Number): return False return True if all_numeric(vector): return "numeric" # Check for a collection where everything is a datetime def all_datetime(x): for x_i in x: if not isinstance(x_i, (datetime, np.datetime64)): return False return True if all_datetime(vector): return "datetime" # Otherwise, our final fallback is to consider things categorical return "categorical" def infer_orient(x=None, y=None, orient=None, require_numeric=True): """Determine how the plot should be oriented based on the data. For historical reasons, the convention is to call a plot "horizontally" or "vertically" oriented based on the axis representing its dependent variable. Practically, this is used when determining the axis for numerical aggregation. Paramters --------- x, y : Vector data or None Positional data vectors for the plot. orient : string or None Specified orientation, which must start with "v" or "h" if not None. require_numeric : bool If set, raise when the implied dependent variable is not numeric. Returns ------- orient : "v" or "h" Raises ------ ValueError: When `orient` is not None and does not start with "h" or "v" TypeError: When dependant variable is not numeric, with `require_numeric` """ x_type = None if x is None else variable_type(x) y_type = None if y is None else variable_type(y) nonnumeric_dv_error = "{} orientation requires numeric `{}` variable." single_var_warning = "{} orientation ignored with only `{}` specified." if x is None: if str(orient).startswith("h"): warnings.warn(single_var_warning.format("Horizontal", "y")) if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "v" elif y is None: if str(orient).startswith("v"): warnings.warn(single_var_warning.format("Vertical", "x")) if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "h" elif str(orient).startswith("v"): if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "v" elif str(orient).startswith("h"): if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "h" elif orient is not None: raise ValueError(f"Value for `orient` not understood: {orient}") elif x_type != "numeric" and y_type == "numeric": return "v" elif x_type == "numeric" and y_type != "numeric": return "h" elif require_numeric and "numeric" not in (x_type, y_type): err = "Neither the `x` nor `y` variable appears to be numeric." raise TypeError(err) else: return "v" def unique_dashes(n): """Build an arbitrarily long list of unique dash styles for lines. Parameters ---------- n : int Number of unique dash specs to generate. Returns ------- dashes : list of strings or tuples Valid arguments for the ``dashes`` parameter on :class:`matplotlib.lines.Line2D`. The first spec is a solid line (``""``), the remainder are sequences of long and short dashes. """ # Start with dash specs that are well distinguishable dashes = [ "", (4, 1.5), (1, 1), (3, 1.25, 1.5, 1.25), (5, 1, 1, 1), ] # Now programatically build as many as we need p = 3 while len(dashes) < n: # Take combinations of long and short dashes a = itertools.combinations_with_replacement([3, 1.25], p) b = itertools.combinations_with_replacement([4, 1], p) # Interleave the combinations, reversing one of the streams segment_list = itertools.chain(*zip( list(a)[1:-1][::-1], list(b)[1:-1] )) # Now insert the gaps for segments in segment_list: gap = min(segments) spec = tuple(itertools.chain(*((seg, gap) for seg in segments))) dashes.append(spec) p += 1 return dashes[:n] def unique_markers(n): """Build an arbitrarily long list of unique marker styles for points. Parameters ---------- n : int Number of unique marker specs to generate. Returns ------- markers : list of string or tuples Values for defining :class:`matplotlib.markers.MarkerStyle` objects. All markers will be filled. """ # Start with marker specs that are well distinguishable markers = [ "o", "X", (4, 0, 45), "P", (4, 0, 0), (4, 1, 0), "^", (4, 1, 45), "v", ] # Now generate more from regular polygons of increasing order s = 5 while len(markers) < n: a = 360 / (s + 1) / 2 markers.extend([ (s + 1, 1, a), (s + 1, 0, a), (s, 1, 0), (s, 0, 0), ]) s += 1 # Convert to MarkerStyle object, using only exactly what we need # markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]] return markers[:n] def categorical_order(vector, order=None): """Return a list of unique data values. Determine an ordered list of levels in ``values``. Parameters ---------- vector : list, array, Categorical, or Series Vector of "categorical" values order : list-like, optional Desired order of category levels to override the order determined from the ``values`` object. Returns ------- order : list Ordered list of category levels not including null values. """ if order is None: if hasattr(vector, "categories"): order = vector.categories else: try: order = vector.cat.categories except (TypeError, AttributeError): try: order = vector.unique() except AttributeError: order = pd.unique(vector) if variable_type(vector) == "numeric": order = np.sort(order) order = filter(pd.notnull, order) return list(order)
bsd-3-clause
jeffwdoak/free_energies
free_energies/electronicdos.py
1
14960
#!/usr/bin/python # electronicdos.py v0.5 5-16-2012 Jeff Doak jeff.w.doak@gmail.com import numpy as np from scipy.interpolate import UnivariateSpline from scipy.integrate import quad from scipy.optimize import fsolve import sys, subprocess BOLTZCONST = 8.617e-5 #eV/K class ElectronicDOS: """ Class to calculate equilibrium carrier concentrations, as well as equilibrium thermodynamic properties of an electronic density of states. Class constants of ElectronicDOS: - BOLTZCONST - Boltzmann's Constant (eV/K) Instance attributes of ElectronicDOS: - n_atoms - number of atoms of the unit cell from which the DOS was calculated - energy - numpy array of energies at which DOS is calculated (eV) - dos_tot - numpy array of density of spin up and spin down allowed electron states at each energy in the array energy (# states/eV/atom) - dos_spin - numpy array of the difference in density between spin up and spin down states (# states/eV/atom) - e_min - minimum energy in numpy array energy (eV) - e_max - maximum energy in numpy array energy (eV) - e_fermi - zero Kelvin fermi energy for the electronic DOS (eV) - step_size - energy difference between two consecutive points in the DOSCAR file (eV) - vbm - valence band maximum, set to e_fermi for metals (eV) - cbm - conduction band minimum, set to e_fermi for metals (eV) - band_gap - band gap around the fermi energy, zero for metals (eV) - temp - numpy array of temperatures at which to calculate equilibrium electron chemical potentials, electron concentrations, and hole concentrations (K) - mu_e - numpy array of electron chemical potentials calculated at each temperature in temp (eV) - num_e - numpy array of equilibrium electron concentrations calculated at each temperature in temp (# e's/atom) - num_h - numpy array of equilibrium hole concentrations calculated at each temperature in temp (# h's/atom) - E_el - numpy array of electronic energy calculated at each temperature in temp (eV/atom) - S_el - numpy array of electronic entropy calculated at each temperature in temp (kB/atom) - F_el - numpy array of electronic free energy calculated at each temperature in temp (eV/atom) """ def __init__(self,input_,format=None): if isinstance(input_,str): try: input_ = open(input_,'r') except IOError: print "Error reading input file." print "Program will now exit!" sys.exit(1) if isinstance(input_,file): if format == "ezvasp": self.read_ezvasp_dos(input_) else: self.read_doscar(input_) nelec = subprocess.Popen("grep NELECT OUTCAR", shell=True,stdin=None,stdout=subprocess.PIPE).communicate()[0] self.nelec = int(float(nelec.split()[2])) self.get_bandgap() # Calculate finite temperature properties self.temp = np.linspace(0,2000,21) self.mu_e = np.zeros_like(self.temp) self.num_e = np.zeros_like(self.temp) self.num_h = np.zeros_like(self.temp) self.E_el = np.zeros_like(self.temp) self.S_el = np.zeros_like(self.temp) self.F_el = np.zeros_like(self.temp) # Calculate E_el_0 self.E_el_0 = None tol = 1e-5 for i in range(len(self.temp)): if i < tol: self.mu_e[i] = self.e_fermi self.E_el[i] = 0.0 self.S_el[i] = 0.0 self.num_e[i] = 0.0 self.num_h[i] = 0.0 elif i > 0.0: self.mu_e[i] = self.calc_mu_e(self.temp[i]) if self.E_el_0 == None: self.E_el_0 = self.calc_E_el(self.mu_e[i],self.temp[i]) self.num_e[i] = self.n(self.mu_e[i],self.temp[i]) self.num_h[i] = self.p(self.mu_e[i],self.temp[i]) self.E_el[i] = (self.calc_E_el(self.mu_e[i],self.temp[i])) self.S_el[i] = self.calc_S_el(self.mu_e[i],self.temp[i]) self.E_el[1:] = self.E_el[1:] - self.E_el_0 self.F_el = self.E_el - self.temp*BOLTZCONST*self.S_el def read_doscar(self,input_): """ Reads in a doscar file to grab the density of states as a function of energy. The argument input_ is assumed to be a file object. """ self.n_atoms = int(input_.readline().split()[0]) # Discard header information for i in range(4): input_.readline() # Read in Fermi Energy line = input_.readline().split() self.e_max = float(line[0]) self.e_min = float(line[1]) self.e_fermi = float(line[3]) energy = []; dos_tot = []; dos_spin = [] for line in input_: line = line.split() energy.append(float(line[0])) if len(line) == 3: dos_tot.append(float(line[1])) # DOS includes spin up and down dos_spin.append(0.0) elif len(line) == 5: dos_tot.append(float(line[1])+float(line[2])) dos_spin.append(float(line[1])-float(line[2])) self.energy = np.array(energy) #self.dos_tot = np.array(dos_tot)/float(self.n_atoms) self.dos_tot = np.array(dos_tot) #self.dos_spin = np.array(dos_spin)/float(self.n_atoms) self.dos_spin = np.array(dos_spin) self.dos_spline = UnivariateSpline(self.energy,self.dos_tot) def read_ezvasp_dos(self,input_): """ Reads an ezvasp-formatted dos.out file to get the electronic density of states. The argument input_ is assumned to be a file object. """ nions = subprocess.Popen("grep NIONS OUTCAR", shell=True,stdin=None,stdout=subprocess.PIPE).communicate()[0] self.n_atoms = int(float(nions.split()[-1])) self.e_min = 0.0 line = input_.readline().split() self.nelec = int(float(line[0])) self.step_size = float(line[1]) self.scale = float(line[2]) energy = []; dos_tot = [] i = 0 for line in input_: line = line.split() dos_tot.append(float(line[0])) energy.append(float(i)*self.step_size) i += 1 self.energy = np.array(energy) self.dos_tot = np.array(dos_tot) self.dos_spin = np.zeros_like(self.dos_tot) # Change this for spin-polar self.dos_spline = UnivariateSpline(self.energy,self.dos_tot) self.e_max = self.energy[-1] # Find the 0 Kelvin 'Fermi Energy' using ATAT's method ne = 0.0 for i in range(len(self.dos_tot)): ne += self.dos_tot[i]*self.step_size e_fermi = self.energy[i] if ne >= self.nelec: break self.e_fermi = e_fermi def get_bandgap(self): """ Finds the band gap of a DOS around the fermi energy. """ self.step_size = self.energy[1] - self.energy[0] i = 0 not_found = True while not_found: if self.energy[i] < self.e_fermi and self.dos_tot[i] > 1e-3: bot = self.energy[i] elif self.energy[i] > self.e_fermi and self.dos_tot[i] > 1e-3: top = self.energy[i] not_found = False i += 1 if top - bot < 2*self.step_size: self.vbm = self.cbm = self.e_fermi self.band_gap = 0.0 else: self.vbm = bot; self.cbm = top self.band_gap = top - bot def shift_energy(self,new_ref): """ Change the reference energy for all of the energy attributes. """ self.energy = self.energy - new_ref self.e_min = self.e_min - new_ref self.e_max = self.e_max - new_ref self.e_fermi = self.e_fermi - new_ref self.vbm = self.vbm - new_ref self.cbm = self.cbm - new_ref self.mu_e = self.mu_e - new_ref #def sum_dos(self,weight,start,end,args=None): def sum_dos(self,weight,start,end,args=None): """ Sums the density of states, dos, in the energy range [start,end], weighted by the function weight, which takes as inputs energy and args. """ flag = False sum = 0. for i in range(len(self.energy)): if flag: sum += self.step_size*self.dos_tot[i]*weight( self.energy[i],args) if self.energy[i] > end: break elif self.energy[i] >= start: flag = True return sum #def integrate_dos(self,weight,start,end,args=None,threshold=0.1): def ium_dos(self,weight,start,end,args=None,threshold=0.1): """ Takes numpy arrays containing the energy and dos and integrates them over the range [start,end] with the weighting function weight. Weight should take as an argument the integrated energy and a list of other arguements args. """ def integrand(x,weight,args): return self.dos_spline(x)*weight(x,args) result = quad( integrand,start,end,args=(weight,args),full_output=1,limit=350) integral = result[0] error = result[1] #if error > integral*threshold: # print "Numerical integration error is greater than" # print str(threshold)+" of the integrated value." # sys.exit(1) return integral def n(self,mu_e,T): """ Calculate the intrinsic number of conduction electrons per atom at an electron chemical potential mu_e and temperature T. """ def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) #n = self.integrate_dos(fermi,self.cbm,self.e_max,args=(mu_e,T)) #n = self.sum_dos(fermi,self.cbm,self.e_max,args=(mu_e,T)) n = self.sum_dos(fermi,mu_e,self.e_max,args=(mu_e,T)) return n def p(self,mu_e,T): """ Calculate the intrinsic number of valence holes per atom at an electron chemical potential of mu_e and temperature T. """ def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((mu-x)/(BOLTZCONST*T))+1.) #p = self.integrate_dos(fermi,self.e_min,self.vbm,args=(mu_e,T)) #p = self.sum_dos(fermi,self.e_min,self.vbm,args=(mu_e,T)) p = self.sum_dos(fermi,self.e_min,mu_e,args=(mu_e,T)) return p def charge_neut2(self,mu_e,args): def fermi(x,args): mu = args[0]; T = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) T = args n_sum = self.sum_dos(fermi,self.e_min,self.e_max,args=(mu_e,T)) return self.nelec - n_sum def charge_neutrality(self,mu_e,args): """ Condition for charge neutrality for intrinsic doping in a perfect semiconductor. This function should be overwritten for a more complicated case. """ T = args # Args could also include atomic chemical potentials. return self.p(mu_e,T) - self.n(mu_e,T) def calc_mu_e(self,temp): """ Calculate the electron chemical potential at temperature temp using the condition of charge neutrality. """ #mu_e = fsolve(self.charge_neutrality,self.e_fermi,args=(temp)) mu_e = fsolve(self.charge_neut2,self.e_fermi,args=(temp)) return mu_e def calc_E_el(self,mu_e,T): """ Calculate the electronic energy at a temperature T and electron chemical potential mu_e. """ def energy(x,args): return x def fermi_energy(x,args): mu = args[0]; T = args[1] if x-mu < -30.0*BOLTZCONST*T: return x elif x-mu > 30.0*BOLTZCONST*T: return 0.0 else: return x/(np.exp((x-mu)/(BOLTZCONST*T))+1.) #E = self.integrate_dos(fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) #E_0 = self.integrate_dos( # fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) E = self.sum_dos(fermi_energy,self.e_min,self.e_max,args=(mu_e,T)) #E_0 = self.sum_dos(energy,self.e_min,self.e_fermi,args=None) return E def calc_S_el(self,mu_e,T): """ Calculate the electronic entropy at an electron chemical potential mu_e and temperature T. """ def weight(x,args): mu = args[0]; T = args[1] x = (x - mu)/(BOLTZCONST*T) f = 1.0/(np.exp(x)+1) if f > 1e-5 and (1.0 - f) > 1e-5: return -f*np.log(f)-(1.-f)*np.log(1.-f) else: return 0.0 #f = -np.log(np.exp(x)+1)/(np.exp(x)+1) #f += -np.log(np.exp(-x)+1)/(np.exp(-x)+1) #return f #S = self.integrate_dos(weight,self.e_min,self.e_max,args=(mu_e,T)) S = self.sum_dos(weight,self.e_min,self.e_max,args=(mu_e,T)) return S def fermi_dirac_dist(x,args): """ Calculates the Fermi-Dirac distribution for an energy x, temperature args[0], and electron chemical potential args[1]. """ T = args[0]; mu = args[1] return 1./(np.exp((x-mu)/(BOLTZCONST*T))+1.) def test2(argv): doscar = ElectronicDOS(open(str(argv[0]),'r')) T = 500 #n = doscar.integrate_dos( # fermi_dirac_dist,doscar.cbm,doscar.e_max,args=(T,doscar.e_fermi)) p = doscar.p(doscar.e_fermi,T) print p def test3(argv): format = None if len(argv) > 1: format = str(argv[1]) doscar = ElectronicDOS(open(str(argv[0]),'r'),format) print doscar.temp print doscar.num_e print doscar.num_h print doscar.E_el print doscar.S_el print doscar.F_el def atat_test(argv): format = None if len(argv) > 1: format = str(argv[1]) doscar = ElectronicDOS(open(str(argv[0]),'r'),format) print doscar.E_el_0 for i in range(len(doscar.temp)): print doscar.temp[i],doscar.mu_e[i],doscar.E_el[i],doscar.S_el[i],doscar.F_el[i] def test1(argv): import matplotlib.pyplot as plt doscar = ElectronicDOS(open(str(argv[0]),'r')) plt.plot(doscar.energy,doscar.dos_tot) plt.show() def main(argv): import matplotlib.pyplot as plt doscar = open(str(argv[0])) e_fermi,energy,n_tot,n_spin = read_doscar(doscar) plt.plot(energy,n_tot) if len(argv) > 1: doscar2 = open(str(argv[1])) e_fermi2,energy2,n_tot2,n_spin2 = read_doscar(doscar2) plt.plot(energy2,n_tot2) plt.show() if __name__ == "__main__": import sys #test3(sys.argv[1:]) atat_test(sys.argv[1:])
mit
gotomypc/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
giruenf/GRIPy
app/app_utils.py
1
29345
import re import os import json import importlib import timeit import inspect import collections from enum import Enum from pathlib import Path import numpy as np from matplotlib.cm import cmap_d import wx import app import fileio from classes.om.base.manager import ObjectManager from app import log class GripyBitmap(wx.Bitmap): def __init__(self, path_to_bitmap=None): if path_to_bitmap is None: super().__init__() return if os.path.exists(path_to_bitmap): full_file_name = path_to_bitmap elif os.path.exists(os.path.join(app.ICONS_PATH, \ path_to_bitmap)): full_file_name = os.path.join(app.ICONS_PATH, path_to_bitmap) else: raise Exception('ERROR: Wrong bitmap path [{}, {}].'.format( \ app.ICONS_PATH, path_to_bitmap) ) super().__init__(full_file_name) class GripyIcon(wx.Icon): def __init__(self, path_to_bitmap=None, type_=wx.BITMAP_TYPE_ANY): # print(PurePath(app.ICONS_PATH, path_to_bitmap), 'r') if path_to_bitmap is not None: if Path(path_to_bitmap).exists(): pass elif Path(app.ICONS_PATH, path_to_bitmap).exists(): path_to_bitmap = Path(app.ICONS_PATH, path_to_bitmap) else: raise Exception('ERROR: Wrong bitmap path.') super().__init__(path_to_bitmap, type_) def calc_well_time_from_depth(event, well_uid): OM = ObjectManager() well = OM.get(well_uid) vp = None for log_obj in OM.list('log', well.uid): if log_obj.datatype == 'Velocity': vp = log_obj break if vp is None: raise Exception('ERROR [calc_prof_tempo]: Vp log not found.') index_set = OM.get(vp.index_set_uid) md = index_set.get_z_axis_indexes_by_type('MD')[0] # if md.data[0] != 0.0: return owt = [0.0] # for idx in range(1, len(md.data)): if vp.data[idx - 1] == np.nan: raise Exception('ERROR [calc_prof_tempo]: Found np.nan on Vp[{}] '.format(idx - 1)) diff_prof = md.data[idx] - md.data[idx - 1] value = (float(diff_prof) / vp.data[idx - 1]) * 1000.0 # To milliseconds value = owt[idx - 1] + value owt.append(value) # owt = np.array(owt) twt = owt * 2.0 # print('\nOWT:', owt) # owt_index = OM.new('data_index', 0, 'One Way Time', 'TIME', 'ms', data=owt) OM.add(owt_index, index_set.uid) # twt_index = OM.new('data_index', 0, 'Two Way Time', 'TWT', 'ms', data=twt) OM.add(twt_index, index_set.uid) # def load_segy(event, filename, new_obj_name='', comparators_list=None, iline_byte=9, xline_byte=21, offset_byte=37, tid='seismic', datatype='amplitude', parentuid=None): OM = ObjectManager() disableAll = wx.WindowDisabler() wait = wx.BusyInfo("Loading SEG-Y file...") # try: print("\nLoading SEG-Y file...") segy_file = fileio.segy.SEGYFile(filename) # segy_file.print_dump() # """ segy_file.read(comparators_list) segy_file.organize_3D_data(iline_byte, xline_byte, offset_byte) # print('segy_file.traces.shape:', segy_file.traces.shape) # # seis_like_obj = OM.new(tid, segy_file.traces, name=new_obj_name, datatype=datatype ) if not OM.add(seis_like_obj, parentuid): raise Exception('Object was not added. tid={}'.format(tid)) # # z_index = OM.new('data_index', name='Time', datatype='TWT', unit='ms', start=0.0, step=(segy_file.sample_rate * 1000), samples=segy_file.number_of_samples ) OM.add(z_index, seis_like_obj.uid) # try: offset_index = OM.new('data_index', segy_file.dimensions[2], name='Offset', datatype='OFFSET', unit='m' ) OM.add(offset_index, seis_like_obj.uid) next_dim = 2 except Exception as e: next_dim = 1 # xline_index = OM.new('data_index', segy_file.dimensions[1], name='X Line', datatype='X_LINE' ) if OM.add(xline_index, seis_like_obj.uid): next_dim += 1 # iline_index = OM.new('data_index', segy_file.dimensions[0], name='I Line', datatype='I_LINE' ) OM.add(iline_index, seis_like_obj.uid) # seis_like_obj._create_data_index_map( [iline_index.uid], [xline_index.uid], [offset_index.uid], [z_index.uid] ) print('seis_like_obj.traces.shape:', seis_like_obj.data.shape) # """ except Exception as e: raise e finally: del wait del disableAll # # TODO: Verificar melhor opcao no Python 3.6 # CallerInfo = collections.namedtuple('CallerInfo', ['object_', 'class_', 'module', 'function_name', 'filename', 'line_number', 'line_code' ] ) def get_callers_stack(): """ Based on: https://gist.github.com/techtonik/2151727 with some changes. Get a list with caller modules, objects and functions in the stack with list index 0 being the latest call. Returns: list(collections.namedtuple('CallerInfo', ['object_', 'class_', 'module', 'function_name', 'filename', 'line_number', 'line_code'])) """ ret_list = [] print('app_utils.get_callers_stack') try: stack = inspect.stack() for i in range(1, len(stack)): fi = stack[i] module_ = None obj = fi.frame.f_locals.get('self', None) class_ = fi.frame.f_locals.get('__class__', None) if obj: module_ = inspect.getmodule(obj) if not class_ and obj: class_ = obj.__class__ ret_list.append( CallerInfo(object_=obj, class_=class_, module=module_, function_name=fi.function, filename=fi.filename, line_number=fi.lineno, line_code=fi.code_context, # index=fi.index, # traceback=traceback, f_locals=fi.frame.f_locals ) ) if fi.frame.f_locals.get('__name__') == '__main__': break except Exception as e: print(e) raise return ret_list def get_class_full_name(obj): try: full_name = obj.__class__.__module__ + "." + obj.__class__.__name__ except Exception as e: msg = 'ERROR in function app.app_utils.get_class_full_name().' log.exception(msg) raise e return full_name def get_string_from_function(function_): if not callable(function_): msg = 'ERROR: Given input is not a function: {}.'.format(str(function_)) log.error(msg) raise Exception(msg) return function_.__module__ + '.' + function_.__name__ def get_function_from_filename(full_filename, function_name): try: # print ('\nget_function_from_filename', full_filename, function_name) if function_name == '<module>': return None rel_path = os.path.relpath(full_filename, app.BASE_PATH) module_rel_path = os.path.splitext(rel_path)[0] # print (module_rel_path) module_str = '.'.join(module_rel_path.split(os.path.sep)) # print (module_str) module_ = importlib.import_module(module_str) # print (module_, function_name) function_ = getattr(module_, function_name) return function_ except: raise def get_function_from_string(fullpath_function): try: # print ('\nget_function_from_string:', fullpath_function) module_str = '.'.join(fullpath_function.split('.')[:-1]) function_str = fullpath_function.split('.')[-1] # print ('importing module:', module_str) module_ = importlib.import_module(module_str) # print ('getting function:', function_str, '\n') function_ = getattr(module_, function_str) return function_ except Exception as e: msg = 'ERROR in function app.app_utils.get_function_from_string({}).'.format(fullpath_function) log.exception(msg) print(msg) raise e class Chronometer(object): def __init__(self): self.start_time = timeit.default_timer() def end(self): self.total = timeit.default_timer() - self.start_time return 'Execution in {:0.3f}s'.format(self.total) # Phoenix DropTarget code class DropTarget(wx.DropTarget): def __init__(self, _test_func, callback=None): wx.DropTarget.__init__(self) self.data = wx.CustomDataObject('obj_uid') self.SetDataObject(self.data) self._test_func = _test_func self._callback = callback def OnDrop(self, x, y): return True def OnData(self, x, y, defResult): obj_uid = self._get_object_uid() if self._callback: wx.CallAfter(self._callback, obj_uid) return defResult def OnDragOver(self, x, y, defResult): obj_uid = self._get_object_uid() if obj_uid: if self._test_func(obj_uid): return defResult return wx.DragNone def _get_object_uid(self): if self.GetData(): obj_uid_bytes = self.data.GetData().tobytes() obj_uid_str = obj_uid_bytes.decode() if obj_uid_str: obj_uid = parse_string_to_uid(obj_uid_str) return obj_uid return None class GripyEnum(Enum): def __repr__(self): # return '{} object, name: {}, value: {}'.format(self.__class__, self.name, self.value) return str(self.value) def __eq__(self, other): if type(other) is self.__class__: return self.value is other.value return self.value is other def __lt__(self, other): if type(other) is self.__class__: return self.value < other.value return self.value < other def __le__(self, other): return self.__eq__(other) or self.__lt__(other) def __gt__(self, other): if type(other) is self.__class__: return self.value > other.value return self.value > other def __ge__(self, other): return self.__eq__(other) or self.__gt__(other) class GripyEnumBitwise(GripyEnum): def __or__(self, other): if type(other) is self.__class__: return self.value | other.value return self.value | other def __ror__(self, other): return self.__or__(other) class WellPlotState(GripyEnum): NORMAL_TOOL = 0 SELECTION_TOOL = 1 FLAGS = re.VERBOSE | re.MULTILINE | re.DOTALL WHITESPACE = re.compile(r'[ \t\n\r]*', FLAGS) WHITESPACE_STR = ' \t\n\r' NUMBER_RE = re.compile( r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?', (re.VERBOSE | re.MULTILINE | re.DOTALL) ) class GripyJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, wx.Point): return 'wx.Point' + str(obj) elif isinstance(obj, wx.Size): return 'wx.Size' + str(obj) elif isinstance(obj, GripyEnum): return str(obj.value) elif callable(obj): return get_string_from_function(obj) try: return str(obj) except: return super(GripyJSONDecoder, self).default(self, obj) def clean_path_str(path): # path = path.replace('\\' ,'/') path = path.encode('ascii', 'ignore') # in order to save unicode characters path = path.encode('string-escape') return path def write_json_file(py_object, fullfilename): fullfilename = clean_path_str(fullfilename) fullfilename = os.path.normpath(fullfilename) directory = os.path.dirname(fullfilename) if not os.path.exists(directory): os.makedirs(directory) msg = 'App.app_utils.write_json_file has created directory: {}'.format(directory) # log.debug(msg) print(msg) f = open(fullfilename, 'w') f.write(json.dumps(py_object, indent=4, cls=GripyJSONEncoder)) f.close() class GripyJSONDecoder(json.JSONDecoder): def decode(self, s, _w=WHITESPACE.match): self.scan_once = gripy_make_scanner(self) return super(GripyJSONDecoder, self).decode(s, _w) def gripy_make_scanner(context): parse_object = context.parse_object parse_array = context.parse_array parse_string = context.parse_string match_number = NUMBER_RE.match # encoding = context.encoding strict = context.strict parse_float = context.parse_float parse_int = context.parse_int parse_constant = context.parse_constant object_hook = context.object_hook object_pairs_hook = context.object_pairs_hook def _scan_once(string, idx): try: nextchar = string[idx] except IndexError: raise StopIteration if nextchar == '"': if string[idx:idx + 10] == '"wx.Point(': return GripyJSONParser((string, idx + 10), _scan_once, wx.Point) elif string[idx:idx + 9] == '"wx.Size(': return GripyJSONParser((string, idx + 9), _scan_once, wx.Size) return parse_string(string, idx + 1, strict) elif nextchar == '{': return parse_object((string, idx + 1), strict, _scan_once, object_hook, object_pairs_hook) elif nextchar == '[': return parse_array((string, idx + 1), _scan_once) elif nextchar == 'n' and string[idx:idx + 4] == 'null': return None, idx + 4 elif nextchar == 't' and string[idx:idx + 4] == 'true': return True, idx + 4 elif nextchar == 'f' and string[idx:idx + 5] == 'false': return False, idx + 5 m = match_number(string, idx) if m is not None: integer, frac, exp = m.groups() if frac or exp: res = parse_float(integer + (frac or '') + (exp or '')) else: res = parse_int(integer) return res, m.end() elif nextchar == 'N' and string[idx:idx + 3] == 'NaN': return parse_constant('NaN'), idx + 3 elif nextchar == 'I' and string[idx:idx + 8] == 'Infinity': return parse_constant('Infinity'), idx + 8 elif nextchar == '-' and string[idx:idx + 9] == '-Infinity': return parse_constant('-Infinity'), idx + 9 else: raise StopIteration return _scan_once def GripyJSONParser(s_and_end, scan_once, _class, _w=WHITESPACE.match, _ws=WHITESPACE_STR): s, end = s_and_end values = [] nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] # Look-ahead for trivial empty array if nextchar == ']': return values, end + 1 _append = values.append while True: try: value, end = scan_once(s, end) except StopIteration: raise ValueError("Expecting object {}, {}".format(s, end)) _append(value) nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] end += 1 if nextchar == ')' and s[end:end + 1] == '"': end += 1 break elif nextchar != ',': raise ValueError("Expecting ',' delimiter {}, {}".format(s, end)) try: if s[end] in _ws: end += 1 if s[end] in _ws: end = _w(s, end + 1).end() except IndexError: pass return _class(int(values[0]), int(values[1])), end def read_json_file(full_filename): # print ('\nread_json_file:', fullfilename, type(fullfilename)) # fullfilename = fullfilename.replace('\\' ,'/') # fullfilename = fullfilename.encode('ascii', 'ignore') # in order to save unicode characters # fullfilename = fullfilename.encode('string-escape') json_file = open(full_filename, 'r') state = json.load(json_file, cls=GripyJSONDecoder) json_file.close() return state def parse_string_to_uid(obj_uid_string): """ Parse a uid String (which may contains non uid characters like " and \) to a uid tuple in a format (tid, oid). Parameters ---------- obj_uid_string : str The uid String. Returns ------- tuple A pair (tid, oid) which can be a Gripy object identifier. """ try: # print ('parse_string_to_uid:', obj_uid_string) left_index = obj_uid_string.find('(') right_index = obj_uid_string.rfind(')') if left_index == -1 or right_index == -1: return None elif right_index < left_index: return None obj_uid_string = obj_uid_string[left_index + 1:right_index] tid, oid = obj_uid_string.split(',') tid = tid.strip('\'\" ') oid = int(oid.strip('\'\" ')) return tid, oid except: raise def get_wx_colour_from_seq_string(seq_str): # tuple or list if seq_str.startswith('(') or seq_str.startswith('['): seq_str = seq_str[1:-1] val = tuple([int(c.strip()) for c in seq_str.split(',')]) color = wx.Colour(val) print('_get_wx_colour:', color, color.GetAsString(wx.C2S_HTML_SYNTAX)) return color return None # Have colormaps separated into categories: # http://matplotlib.org/examples/color/colormaps_reference.html """ # MPL 1.4/1.5 COLORS MPL_CATS_CMAPS = [('Perceptually Uniform Sequential', [ 'viridis', 'plasma', 'inferno', 'magma']), ('Sequential', [ 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), ('Sequential (2)', [ 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper']), ('Diverging', [ 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), ('Qualitative', [ 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c']), ('Miscellaneous', [ 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])] """ # MPL 2.0 COLORS MPL_CATS_CMAPS = [ ('Perceptually Uniform Sequential', ['viridis', 'inferno', 'plasma', 'magma'] ), ('Sequential', ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd' ] ), ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool', 'copper', 'gist_heat', 'gray', 'hot', 'pink', 'spring', 'summer', 'winter' ] ), ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral', 'seismic' ] ), ('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c' ] ), ('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'gist_ncar', 'nipy_spectral', 'jet', 'rainbow', 'gist_rainbow', 'hsv', 'flag', 'prism' ] ) ] # MPL_COLORMAPS = [value for (key, values) in MPL_CATS_CMAPS for value in values] MPL_COLORMAPS = sorted(cmap_d) """ MPL_COLORMAPS = ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBu_r', 'PuBuGn', 'PuBuGn_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGn_r', 'YlGnBu', 'YlGnBu_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'winter', 'winter_r'] """ ############################################################################### ############################################################################### MPL_COLORS = collections.OrderedDict() MPL_COLORS['Black'] = None MPL_COLORS['Maroon'] = None MPL_COLORS['Green'] = wx.Colour(0, 100, 0) # Dark Green MPL_COLORS['Olive'] = wx.Colour(128, 128, 0) MPL_COLORS['Navy'] = None MPL_COLORS['Purple'] = None MPL_COLORS['Teal'] = wx.Colour(0, 128, 128) MPL_COLORS['Gray'] = None MPL_COLORS['Silver'] = wx.Colour(192, 192, 192) MPL_COLORS['Red'] = None MPL_COLORS['Lime'] = wx.Colour(0, 255, 0) # Green MPL_COLORS['Yellow'] = None MPL_COLORS['Blue'] = None MPL_COLORS['Fuchsia'] = wx.Colour(255, 0, 255) MPL_COLORS['Aqua'] = wx.Colour(0, 255, 255) MPL_COLORS['White'] = None MPL_COLORS['SkyBlue'] = wx.Colour(135, 206, 235) MPL_COLORS['LightGray'] = wx.Colour(211, 211, 211) MPL_COLORS['DarkGray'] = wx.Colour(169, 169, 169) MPL_COLORS['SlateGray'] = wx.Colour(112, 128, 144) MPL_COLORS['DimGray'] = wx.Colour(105, 105, 105) MPL_COLORS['BlueViolet'] = wx.Colour(138, 43, 226) MPL_COLORS['DarkViolet'] = wx.Colour(148, 0, 211) MPL_COLORS['Magenta'] = None MPL_COLORS['DeepPink'] = wx.Colour(148, 0, 211) MPL_COLORS['Brown'] = None MPL_COLORS['Crimson'] = wx.Colour(220, 20, 60) MPL_COLORS['Firebrick'] = None MPL_COLORS['DarkRed'] = wx.Colour(139, 0, 0) MPL_COLORS['DarkSlateGray'] = wx.Colour(47, 79, 79) MPL_COLORS['DarkSlateBlue'] = wx.Colour(72, 61, 139) MPL_COLORS['Wheat'] = None MPL_COLORS['BurlyWood'] = wx.Colour(222, 184, 135) MPL_COLORS['Tan'] = None MPL_COLORS['Gold'] = None MPL_COLORS['Orange'] = None MPL_COLORS['DarkOrange'] = wx.Colour(255, 140, 0) MPL_COLORS['Coral'] = None MPL_COLORS['DarkKhaki'] = wx.Colour(189, 183, 107) MPL_COLORS['GoldenRod'] = None MPL_COLORS['DarkGoldenrod'] = wx.Colour(184, 134, 11) MPL_COLORS['Chocolate'] = wx.Colour(210, 105, 30) MPL_COLORS['Sienna'] = None MPL_COLORS['SaddleBrown'] = wx.Colour(139, 69, 19) MPL_COLORS['GreenYellow'] = wx.Colour(173, 255, 47) MPL_COLORS['Chartreuse'] = wx.Colour(127, 255, 0) MPL_COLORS['SpringGreen'] = wx.Colour(0, 255, 127) MPL_COLORS['MediumSpringGreen'] = wx.Colour(0, 250, 154) MPL_COLORS['MediumAquamarine'] = wx.Colour(102, 205, 170) MPL_COLORS['LimeGreen'] = wx.Colour(50, 205, 50) MPL_COLORS['LightSeaGreen'] = wx.Colour(32, 178, 170) MPL_COLORS['MediumSeaGreen'] = wx.Colour(60, 179, 113) MPL_COLORS['DarkSeaGreen'] = wx.Colour(143, 188, 143) MPL_COLORS['SeaGreen'] = wx.Colour(46, 139, 87) MPL_COLORS['ForestGreen'] = wx.Colour(34, 139, 34) MPL_COLORS['DarkOliveGreen'] = wx.Colour(85, 107, 47) MPL_COLORS['DarkGreen'] = wx.Colour(1, 50, 32) MPL_COLORS['LightCyan'] = wx.Colour(224, 255, 255) MPL_COLORS['Thistle'] = None MPL_COLORS['PowderBlue'] = wx.Colour(176, 224, 230) MPL_COLORS['LightSteelBlue'] = wx.Colour(176, 196, 222) MPL_COLORS['LightSkyBlue'] = wx.Colour(135, 206, 250) MPL_COLORS['MediumTurquoise'] = wx.Colour(72, 209, 204) MPL_COLORS['Turquoise'] = None MPL_COLORS['DarkTurquoise'] = wx.Colour(0, 206, 209) MPL_COLORS['DeepSkyBlue'] = wx.Colour(0, 191, 255) MPL_COLORS['DodgerBlue'] = wx.Colour(30, 144, 255) MPL_COLORS['CornflowerBlue'] = wx.Colour(100, 149, 237) MPL_COLORS['CadetBlue'] = wx.Colour(95, 158, 160) MPL_COLORS['DarkCyan'] = wx.Colour(0, 139, 139) MPL_COLORS['SteelBlue'] = wx.Colour(70, 130, 180) MPL_COLORS['RoyalBlue'] = wx.Colour(65, 105, 225) MPL_COLORS['SlateBlue'] = wx.Colour(106, 90, 205) MPL_COLORS['DarkBlue'] = wx.Colour(0, 0, 139) MPL_COLORS['MediumBlue'] = wx.Colour(0, 0, 205) MPL_COLORS['SandyBrown'] = wx.Colour(244, 164, 96) MPL_COLORS['DarkSalmon'] = wx.Colour(233, 150, 122) MPL_COLORS['Salmon'] = None MPL_COLORS['Tomato'] = wx.Colour(255, 99, 71) MPL_COLORS['Violet'] = wx.Colour(238, 130, 238) MPL_COLORS['HotPink'] = wx.Colour(255, 105, 180) MPL_COLORS['RosyBrown'] = wx.Colour(188, 143, 143) MPL_COLORS['MediumVioletRed'] = wx.Colour(199, 21, 133) MPL_COLORS['DarkMagenta'] = wx.Colour(139, 0, 139) MPL_COLORS['DarkOrchid'] = wx.Colour(153, 50, 204) MPL_COLORS['Indigo'] = wx.Colour(75, 0, 130) MPL_COLORS['MidnightBlue'] = wx.Colour(25, 25, 112) MPL_COLORS['MediumSlateBlue'] = wx.Colour(123, 104, 238) MPL_COLORS['MediumPurple'] = wx.Colour(147, 112, 219) MPL_COLORS['MediumOrchid'] = wx.Colour(186, 85, 211) MPL_COLORS = collections.OrderedDict(sorted(MPL_COLORS.items())) ############################################################################### ############################################################################### # Based on https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html # 10/September/2019 - Adriano Santana MPL_LINESTYLES = collections.OrderedDict() MPL_LINESTYLES['Solid'] = (0, ()) MPL_LINESTYLES['Dotted'] = (0, (1, 1)) MPL_LINESTYLES['Loosely dotted'] = (0, (1, 10)) MPL_LINESTYLES['Densely dotted'] = (0, (1, 1)) MPL_LINESTYLES['Dashed'] = (0, (5, 5)) MPL_LINESTYLES['Loosely dashed'] = (0, (5, 10)) MPL_LINESTYLES['Densely dashed'] = (0, (5, 1)) MPL_LINESTYLES['Dashdotted'] = (0, (3, 5, 1, 5)) MPL_LINESTYLES['Loosely dashdotted'] = (0, (3, 10, 1, 10)) MPL_LINESTYLES['Densely dashdotted'] = (0, (3, 1, 1, 1)) MPL_LINESTYLES['Dashdotdotted'] = (0, (3, 5, 1, 5, 1, 5)) MPL_LINESTYLES['Loosely dashdotdotted'] = (0, (3, 10, 1, 10, 1, 10)) MPL_LINESTYLES['Densely dashdotdotted'] = (0, (3, 1, 1, 1, 1, 1))
apache-2.0
woutdenolf/spectrocrunch
spectrocrunch/visualization/tests/test_scene.py
1
2667
# -*- coding: utf-8 -*- import unittest import matplotlib.pyplot as plt import numpy as np from .. import scene from ...patch.pint import ureg class test_scene(unittest.TestCase): def test_images(self): n0, n1 = 5, 10 img = np.arange(n0 * n1).reshape(n0, n1) unit0 = ureg.mm unit1 = ureg.micrometer s1 = scene.Scene(unit0=unit0, unit1=unit1) s2 = scene.Scene(unit0=unit0, unit1=unit1) s2.transpose(True) # s2.flipx(increasing=True) s2.axlabels = ["dim0", "dim1"] s2.cmap = plt.get_cmap("gray") o1 = scene.Image( img, lim0=s1.q0([8, 8 + n0 - 1]), lim1=s1.q1([10 + n1 - 1, 10]) ) s1.register(o1) s2.register(o1) p0 = sorted(o1.datarange(0, border=False)) p1 = sorted(o1.datarange(1, border=False)) o = scene.Polyline([p0[0], p0[1], p0[1], p0[0]], [p1[0], p1[0], p1[1], p1[1]]) s1.register(o) s2.register(o) o.set_setting("scatter", True) o2 = scene.Image( img, lim0=s1.q0([-2, -2 + n0 - 1]), lim1=s1.q1([-1, -1 + n1 - 1]) ) s1.register(o2) s2.register(o2) o.set_setting("scatter", True) p0 = sorted(o2.datarange(0, border=False)) p1 = sorted(o2.datarange(1, border=False)) o = scene.Text( [p0[0], p0[1], p0[1], p0[0]], [p1[0], p1[0], p1[1], p1[1]], labels=[1, 2, 3, 4], ) s1.register(o) s2.register(o) f, ax = plt.subplots() s1.setaxes(ax) f, ax = plt.subplots() s2.setaxes(ax) # Update scene 1 s1.updateview() # Shift image, axes scaling and update scene 2 o1.lim[0] = s1.q0([9, 9 + n0 - 1]) s2.setdatarange(0, s1.q0([0, 1])) s2.setdatarange(1, s1.q1([0, 1])) s2.updateview() # plt.pause(0.01) # Update scene 1 s1.updateview() # Reset axes of scene 1 f, ax = plt.subplots() s1.setaxes(ax) # Shift image, axes offset, different normalization and update scene 1 o1.lim[0] = s1.q0([9, 9 + n0 - 1]) s1.set_settings({"cnorm": "power", "cnormargs": (0.1,)}) s1.updateview() # plt.pause(0.01) # plt.show() def test_suite(): """Test suite including all test suites""" testSuite = unittest.TestSuite() testSuite.addTest(test_scene("test_images")) return testSuite if __name__ == "__main__": import sys mysuite = test_suite() runner = unittest.TextTestRunner() if not runner.run(mysuite).wasSuccessful(): sys.exit(1)
mit
adybbroe/atrain_match
atrain_match/reshaped_files_scr/plot_ctth_boxplots_mlvl2_temperature_pressure_height.py
1
16002
"""Read all matched data and make some plotting """ import os import re from glob import glob import numpy as np from matchobject_io import (readCaliopImagerMatchObj, CalipsoImagerTrackObject) from plot_kuipers_on_area_util import (PerformancePlottingObject, ppsMatch_Imager_CalipsoObject) import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size': 16}) from utils.get_flag_info import get_calipso_clouds_of_type_i from utils.get_flag_info import (get_semi_opaque_info_pps2014, get_calipso_high_clouds, get_calipso_medium_clouds, get_calipso_low_clouds) from my_dir import ADIR def make_boxplot(caObj, name, month="xx", modis_lvl2=False, use_m2_pix=True): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) height_c = 1000*caObj.calipso.all_arrays['layer_top_altitude'][:,0] cloud_elevation = 1000*caObj.calipso.all_arrays['layer_top_altitude'][:,0]-caObj.calipso.all_arrays['elevation'] if modis_lvl2: height_imager = caObj.modis.all_arrays['height'] else: height_imager = caObj.imager.all_arrays['imager_ctth_m_above_seasurface'] if height_imager is None: height_imager = caObj.imager.all_arrays['ctth_height']+caObj.calipso.all_arrays['elevation'] use = np.logical_and(height_imager >-1, height_c>=0) use = np.logical_and(height_imager <45000,use) USE_ONLY_PIXELS_WHERE_PPS_AND_MODIS_C6_HAVE_VALUES=use_m2_pix if USE_ONLY_PIXELS_WHERE_PPS_AND_MODIS_C6_HAVE_VALUES: height_mlvl2 = caObj.modis.all_arrays['height'] height_pps = caObj.imager.all_arrays['imager_ctth_m_above_seasurface'] use = np.logical_and(use, height_mlvl2>-1) use = np.logical_and(use, height_mlvl2<45000) use = np.logical_and(use, height_pps>-1) use = np.logical_and(use, height_pps<45000) thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = height_imager - height_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) MAE = np.mean(abias[c_all]) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-500,500, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-1000,1000, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-1500,1500, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),2000,15000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-15000, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,2,3,4,5]: plt.plot(np.arange(0,8), y_val*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), -10*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-14000,8000) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title("%s MAE = %3.0f"%(name,MAE)) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_%s_5_95_filt.png"%(name)) elevation_zero = np.logical_and(use,caObj.calipso.all_arrays['elevation']>5000) low_clouds = height_c<2500 medium_clouds = np.logical_and(height_c>=2500, height_c<=5000) high_clouds = height_c>5000 low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=50) ax.fill_between(np.arange(0,8),-500,500, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-1000,1000, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-1500,1500, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),2000,15000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-15000, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,2,3,4,5]: plt.plot(np.arange(0,8), y_val*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), -10*1000 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high], bias[elevation_zero]],whis=[5, 95],sym='', labels=["low <2.5km","medium","high>5km", "ground>5km"], showmeans=True, patch_artist=True) ax.set_ylim(-8000,8000) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title("Calipso %s \nHeight bias comparison MAE= %3.0f"%(name, MAE)) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_hkm_%s_5_95_filt.png"%(name)) def make_boxplot_temperature(caObj, name, modis_lvl2=False): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) temp_c = caObj.calipso.all_arrays['layer_top_temperature'][:,0] +273.15 if modis_lvl2: temp_pps = caObj.modis.all_arrays['temperature'] else: temp_pps = caObj.imager.all_arrays['ctth_temperature'] if modis_lvl2: height_pps = caObj.modis.all_arrays['height'] else: height_pps = caObj.imager.all_arrays['ctth_height'] thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) use = np.logical_and(temp_pps >100, caObj.calipso.all_arrays['layer_top_altitude'][:,0]>=0) use = np.logical_and(height_pps <45000,use) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = temp_pps - temp_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-2.5,2.5, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-5,5, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-7.5,7.5, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),10,150, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-20,-10, facecolor='red', alpha=0.2) for y_val in [-5,-4,-3,-2,-1,1,2,3,4,5]: plt.plot(np.arange(0,8), y_val*20 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-20,100) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title(name) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_temperature_%s_5_95_filt.png"%(name)) def make_boxplot_pressure(caObj, name, modis_lvl2=False): low_clouds = get_calipso_low_clouds(caObj) high_clouds = get_calipso_high_clouds(caObj) medium_clouds = get_calipso_medium_clouds(caObj) pressure_c = caObj.calipso.all_arrays['layer_top_pressure'][:,0] if modis_lvl2: pressure_pps = caObj.modis.all_arrays['pressure'] else: pressure_pps = 0.01*caObj.imager.all_arrays['ctth_pressure'] if modis_lvl2: height_pps = caObj.modis.all_arrays['height'] else: height_pps = caObj.imager.all_arrays['ctth_height'] thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10, caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0) thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin) thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin) use = np.logical_and(pressure_pps >0, caObj.calipso.all_arrays['layer_top_altitude'][:,0]>=0) low = np.logical_and(low_clouds,use) medium = np.logical_and(medium_clouds,use) high = np.logical_and(high_clouds,use) c_all = np.logical_or(high,np.logical_or(low,medium)) high_very_thin = np.logical_and(high, very_thin) high_thin = np.logical_and(high, np.logical_and(~very_thin,thin)) high_thick = np.logical_and(high, ~thin) #print "thin, thick high", np.sum(high_thin), np.sum(high_thick) bias = pressure_pps - pressure_c abias = np.abs(bias) #abias[abias>2000]=2000 print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high])) c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium)) number_of = np.sum(c_all) #print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of) from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) fig = plt.figure(figsize = (6,9)) ax = fig.add_subplot(111) plt.xticks(rotation=70) ax.fill_between(np.arange(0,8),-50,50, facecolor='green', alpha=0.6) ax.fill_between(np.arange(0,8),-100,100, facecolor='green', alpha=0.4) ax.fill_between(np.arange(0,8),-150,150, facecolor='green', alpha=0.2) ax.fill_between(np.arange(0,8),200,2000, facecolor='red', alpha=0.2) ax.fill_between(np.arange(0,8),-2000,-200, facecolor='red', alpha=0.2) for y_val in [-6,-4,-2,2,4,6,8,-8]: plt.plot(np.arange(0,8), y_val*100 + 0*np.arange(0,8),':k', alpha=0.4) plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4) bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='', labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True) ax.set_ylim(-1000,800) for box in bplot['boxes']: box.set_facecolor('0.9') plt.title(name) plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_pressure_%s_5_95_filt.png"%(name)) def investigate_nn_ctth_modis_lvl2(): #november ROOT_DIR_MODIS_nn_imager = ( ADIR + "/DATA_MISC/reshaped_files/" "global_modis_14th_created20170324/Reshaped_Files_merged/eos2/1km/2010/%s/*h5") ROOT_DIR_MODIS_old = ( ADIR + "/DATA_MISC/reshaped_files/" "global_modis_14th_created20161108/Reshaped_Files/merged/*%s*h5") for month in [ "06", "09", "01"]: for ROOT_DIR, name in zip( [ROOT_DIR_MODIS_nn_imager, ROOT_DIR_MODIS_nn_imager, ROOT_DIR_MODIS_old], ["modis_nnIMAGER", "modis_lvl2_C6", "modis_CTTHold"]): name = "%s_%s"%(name, month) print ROOT_DIR files = glob(ROOT_DIR%(month)) caObj = CalipsoImagerTrackObject() for filename in files: #print filename caObj += readCaliopImagerMatchObj(filename) modis_lvl2 = False if "modis_lvl2" in name: modis_lvl2 = True use_m2_pix=True if "old" in name: use_m2_pix=False make_boxplot(caObj, name, month = month, modis_lvl2=modis_lvl2, use_m2_pix=use_m2_pix) make_boxplot_pressure(caObj, name, modis_lvl2=modis_lvl2) make_boxplot_temperature(caObj, name, modis_lvl2=modis_lvl2) if __name__ == "__main__": investigate_nn_ctth_modis_lvl2()
gpl-3.0
afruizc/microsoft_malware_challenge
src/models/first_model/get_conf_matrix.py
2
2842
""" This is a script that is used to generate a confussion matrix for a classification method. This uses 10-k cross_validation with in order to provide sensible resutls and not overfit. """ __author__ = "Andres Ruiz" __license__ = "Apache" __email__ = "afruizc __thingy__ cs unm edu" import numpy as np from sklearn.cross_validation import KFold from sklearn.metrics import confusion_matrix, accuracy_score, log_loss import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import svm_bow def plot_confusion_matrix(cm, title='Confusion matrix', normalized=True, cmap=plt.cm.Oranges, save_file=""): """ Displays the confussion matrix indicated by `cm`. If argument `normalized` is Ture, then the matrix is normalized. Optionally the image can be saved to a file Arguments: ---------- `cm`: The confusion matrix to be displayed. `title`: The title for the window. `normalized`: If True, normalizes the matrix before showing it. `cmap`: Colormap to use. `save_file`: If string different than empty, the resulting image is stored in such file. """ if normalized: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') if save_file: plt.savefig(save_file) def get_indices(data, indices): result = [] for i in indices: result.append(data[i]) return result def main(): e = svm_bow.Executor() e.load_data() e.config_model() fold = KFold(len(e.train['data']), n_folds=10) conf_mat_avg = np.zeros((9, 9)) c = 0 for train, test in fold: X_train = get_indices(e.train['data'], train) X_test = get_indices(e.train['data'], test) y_train = get_indices(e.train['target'], train) y_test = get_indices(e.train['target'], test) c += 1 print("Fitting run {}.".format(c)) model = e.param_tunning.fit(X_train, y_train) print("Predicting...") y_pred = model.predict(X_test) y_pred_prob = model.predict_proba(X_test) conf_matrix = confusion_matrix(y_test, y_pred) accruacy = accuracy_score(y_test, y_pred) loss = log_loss(y_test, y_pred_prob) plot_confusion_matrix(conf_matrix, save_file='fold_{}.png'.format(c)) np.savetxt('conf_matrix_fold{}'.format(c), conf_matrix) print("Fold %d. Accuracy: %lf Loss: %lf" % (c, accruacy, loss)) conf_mat_avg += conf_matrix np.savetxt('conf_matrix.txt', conf_mat_avg) conf_mat_avg /= 10.0 plot_confusion_matrix(conf_mat_avg, save_file='final_cm.png') if __name__ == '__main__': main()
apache-2.0
hmtai6/universe_NeonRace-v0
DQN_breakout/DQN.py
1
9601
import argparse import logging import sys import gc import cv2 import matplotlib.pyplot as plt import gym import universe # register the universe environments from universe import wrappers from collections import deque from skimage.color import rgb2gray from skimage.transform import resize import numpy as np import tensorflow as tf import time import gym, time, random, threading from keras.models import * from keras.layers import * from keras import backend as K from keras.models import load_model LEARNING_RATE = 0.005 MOMENTUM = 0.2 MIN_GRAD = 0.0001 ENV_NAME = 'break_out' SAVE_SUMMARY_PATH = './logs' SAVE_NETWORK_PATH = './network' LOAD_NETWOROK = False INITIAL_REPLAY_SIZE = 200000 # Nb steps for memory, before training NUM_REPLAY_MEMORY = 400000 # Number of replay memory the agent uses for training TRAIN_INTERVAL = 1000 GAMMA = 0.99 # Discount factor STATE_LENGTH = 4 # Number of most recent frames to produce the input to the network FRAME_WIDTH = 84 FRAME_HEIGHT = 84 class DQN: def __init__(self, input_shape, nb_actions, init_epsilon=1.0, final_epsilon=0.1, exploration_steps=1000000): self.input_shape = input_shape self.nb_actions = nb_actions self.final_epsilon = final_epsilon self.epsilon = init_epsilon self.epsilon_step = (init_epsilon - final_epsilon) / exploration_steps self.t = 0 # Parameters used for summary self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode = 0 # create replay memory self.replay_memory = deque() # create network self.state, self.q_vals, self.network = self._build_network() q_network_weights = self.network.trainable_weights # create target network self.state_t, self.q_vals_t, self.network_t = self._build_network() q_network_weights_t = self.network_t.trainable_weights # define copy operation self.update_target_network = [q_network_weights_t[i].assign(q_network_weights[i]) for i in range(len(q_network_weights_t))] # Define loss and gradient update operation self.a, self.y, self.loss, self.grads_update = self._build_train_op(q_network_weights) self.sess = tf.InteractiveSession() self.saver = tf.train.Saver(q_network_weights) self.summary_placeholders, self.update_ops, self.summary_op = self._build_summary() self.summary_writer = tf.summary.FileWriter(SAVE_SUMMARY_PATH, self.sess.graph) if not os.path.exists(SAVE_NETWORK_PATH): os.makedirs(SAVE_NETWORK_PATH) self.sess.run(tf.global_variables_initializer()) if LOAD_NETWOROK: self._load_netowrk() self.sess.run(self.update_target_network) def _build_network(self): model = Sequential() model.add(Conv2D(32, 8, strides=(4, 4), activation='relu', input_shape=[self.input_shape[0], self.input_shape[1], self.input_shape[2]])) model.add(Conv2D(64, 4, strides=(2, 2), activation='relu')) model.add(Conv2D(64, 3, strides=(1, 1), activation='relu')) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(self.nb_actions)) state = tf.placeholder(tf.float32, [None, self.input_shape[0], self.input_shape[1], self.input_shape[2]]) q_vals = model(state) return state, q_vals, model def _build_train_op(self, network_weights): a = tf.placeholder(tf.int64, [None]) y = tf.placeholder(tf.float32, [None]) # convert into to one hot a_one_hot = tf.one_hot(a, self.nb_actions, 1.0, 0.) q_value = tf.reduce_sum(tf.multiply(self.q_vals, a_one_hot), reduction_indices=1) # clip the error error = tf.abs(y - q_value) clipped = tf.clip_by_value(error, 0.0, 1.0) linear = error - clipped loss = tf.reduce_mean(0.5 * tf.square(clipped) + linear) rms_optimizer = tf.train.RMSPropOptimizer(LEARNING_RATE, momentum=MOMENTUM, epsilon=MIN_GRAD) grads_update = rms_optimizer.minimize(loss, var_list=network_weights) return a, y, loss, grads_update def get_initial_state(self, observation, last_observation): processed_observation = np.maximum(observation, last_observation) processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255) state = [processed_observation for _ in range(STATE_LENGTH)] return np.stack(state, axis=0) def _build_summary(self): # Parameters used for summary self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode = 0 episode_total_reward = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Total Reward/Episode', episode_total_reward) episode_avg_max_q = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Average Max Q/Episode', episode_avg_max_q) episode_duration = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Duration/Episode', episode_duration) episode_avg_loss = tf.Variable(0.) tf.summary.scalar(ENV_NAME + '/Average Loss/Episode', episode_avg_loss) summary_vars = [episode_total_reward, episode_avg_max_q, episode_duration, episode_avg_loss] summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))] update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))] summary_op = tf.summary.merge_all() return summary_placeholders, update_ops, summary_op def load_network(self): checkpoint = tf.train.get_checkpoint_state(SAVE_NETWORK_PATH) if checkpoint and checkpoint.model_checkpoint_path: self.saver.restore(self.sess, checkpoint.model_checkpoint_path) print('Successfully loaded: ' + checkpoint.model_checkpoint_path) else: print('Training new network...') def get_action_test(self, state): return np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]})) def get_action(self, state): if self.epsilon >= random.random() or self.t < INITIAL_REPLAY_SIZE: action = random.randrange(self.nb_actions) else: action = np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]})) # Anneal epsilon linearly over time if self.epsilon > self.final_epsilon and self.t >= INITIAL_REPLAY_SIZE: self.epsilon -= self.epsilon_step return action def _train(self): s_batch = [] a_batch = [] r_batch = [] s__batch = [] t_batch = [] y_batch = [] # sample from memory minibatch = random.sample(self.replay_memory, BATCH_SIZE) for data in minibatch: s_batch.append(data[0]) a_batch.append(data[1]) r_batch.append(data[2]) s__batch.append(data[3]) t_batch.append(data[4]) # bool to int t_batch = np.array(t_batch) + 0 next_actions_batch = np.argmax(self.q_vals.eval(feed_dict={self.s: s__batch}), axis=1) target_q_values_batch = self.q_vals_t.eval(feed_dict={self.s_t: s__batch}) for i in range(len(minibatch)): y_batch.append(r_batch[i] + (1 - t_batch[i]) * GAMMA * target_q_values_batch[i][next_actions_batch[i]]) loss, _ = self.sess.run([self.loss, self.grads_update], feed_dict={ self.s: np.float32(np.array(s_batch) / 255.0), self.a: a_batch, self.y: y_batch }) self.total_loss += loss def add_memory(self, s, a, r, t, s_): next_state = np.append(s[1:, :, :], s_, axis=0) # clip reward into -1,1 reward = np.clip(r, -1, 1) # add into replay memory self.replay_memory.append((s, a, next_state, t)) if len(self.replay_memory) > NUM_REPLAY_MEMORY : self.replay_memory.popleft() if self.t > INITIAL_REPLAY_SIZE: # train network if self.t % TRAIN_INTERVAL == 0: self._train() # update target network if self.t % TARGET_UPDATE_INTERVAL == 0: self.sess.run(self.update_target_network) # save network if self.t % SAVE_INTERVAL == 0: s_path = self.saver.save(self.sess, SAVE_NETWORK_PATH, global_step=self.t) print('saved network') self.total_reward += reward self.total_q_max += np.max(self.q_vals.eval(feed_dict={self.s: [np.float32(s / 255.0)]})) self.duration += 1 if t: # write summary if self.t >= INITIAL_REPLAY_SIZE: stats = [self.total_reward, self.total_q_max/float(self.duration), self.duration, self.total_loss/ (float(self.duration)/ float(TRAIN_INTERVAL))] for i in range(len(stats)): self.sess.run(self.update_ops[i], feed_dict={self.summary_placeholders[i]: float(stats[i])}) summary_str = self.sess.run(self.summary_op) self.summary_writer.add_summary(summary_str, self.episode + 1) self.total_reward = 0 self.total_q_max = 0 self.total_loss = 0 self.duration = 0 self.episode += 1 self.t += 1 return next_state
mit
libAtoms/matscipy
examples/electrochemistry/pnp_batch/cell_1d/stern_layer_sweep/pnp_plot.py
2
6741
# positional args # datadir, figfile, param, param_label import os.path, re, sys import numpy as np from glob import glob from cycler import cycler from itertools import cycle from itertools import groupby import matplotlib.pyplot as plt # Ensure variable is defined try: datadir except NameError: try: datadir = sys.argv[1] except: datadir = 'data' try: figfile except NameError: try: figfile = sys.argv[2] except: figfile = 'fig.png' try: param except NameError: try: param = sys.argv[3] except: param = 'c' try: param_unit except NameError: try: param_label = sys.argv[4] except: param_label = 'c (\mathrm{mM})' try: glob_pattern except NameError: glob_pattern = os.path.join(datadir, 'NaCl*.txt') def right_align_legend(leg): hp = leg._legend_box.get_children()[1] for vp in hp.get_children(): for row in vp.get_children(): row.set_width(100) # need to adapt this manually row.mode= "expand" row.align="right" # sort file names as normal humans expect # https://stackoverflow.com/questions/2669059/how-to-sort-alpha-numeric-set-in-python scientific_number_regex = '([-+]?[\d]+\.?[\d]*(?:[Ee][-+]?[\d]+)?)' def alpha_num_order(x): """Sort the given iterable in the way that humans expect.""" def convert(text): try: ret = float(text) # if text.isdigit() else text except: ret = text return ret return [ convert(c) for c in re.split(scientific_number_regex, x) ] dat_files = sorted(glob(glob_pattern),key=alpha_num_order) N = len(dat_files) # number of data sets M = 2 # number of species # matplotlib settings SMALL_SIZE = 8 MEDIUM_SIZE = 12 BIGGER_SIZE = 16 # plt.rc('axes', prop_cycle=default_cycler) plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure titlex plt.rcParams["figure.figsize"] = (16,10) # the standard figure size plt.rcParams["lines.linewidth"] = 3 plt.rcParams["lines.markersize"] = 14 plt.rcParams["lines.markeredgewidth"]=1 # line styles # https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html # linestyle_str = [ # ('solid', 'solid'), # Same as (0, ()) or '-' # ('dotted', 'dotted'), # Same as (0, (1, 1)) or '.' # ('dashed', 'dashed'), # Same as '--' # ('dashdot', 'dashdot')] # Same as '-.' linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] # color maps for potential and concentration plots cmap_u = plt.get_cmap('Reds') cmap_c = [plt.get_cmap('Oranges'), plt.get_cmap('Blues')] # general line style cycler line_cycler = cycler( linestyle = [ s for _,s in linestyle_tuple ] ) # potential anc concentration cyclers u_cycler = cycler( color = cmap_u( np.linspace(0.4,0.8,N) ) ) u_cycler = len(line_cycler)*u_cycler + len(u_cycler)*line_cycler c_cyclers = [ cycler( color = cmap( np.linspace(0.4,0.8,N) ) ) for cmap in cmap_c ] c_cyclers = [ len(line_cycler)*c_cycler + len(c_cycler)*line_cycler for c_cycler in c_cyclers ] # https://matplotlib.org/3.1.1/tutorials/intermediate/constrainedlayout_guide.html fig, (ax1,ax2,ax3) = plt.subplots( nrows=1, ncols=3, figsize=[24,7], constrained_layout=True) ax1.set_xlabel('z (nm)') ax1.set_ylabel('potential (V)') ax2.set_xlabel('z (nm)') ax2.set_ylabel('concentration (mM)') ax3.set_xlabel('z (nm)') ax3.set_ylabel('concentration (mM)') # ax1.axvline(x=pnp.lambda_D()*1e9, label='Debye Length', color='grey', linestyle=':') species_label = [ '$[\mathrm{Na}^+], ' + param_label + '$', '$[\mathrm{Cl}^-], ' + param_label + '$'] c_regex = re.compile(r'{}_{}'.format(param,scientific_number_regex)) c_graph_handles = [ [] for _ in range(M) ] for f, u_style, c_styles in zip(dat_files,u_cycler,zip(*c_cyclers)): print("Processing {:s}".format(f)) # extract nominal concentration from file name nominal_c = float( c_regex.search(f).group(1) ) dat = np.loadtxt(f,unpack=True) x = dat[0,:] u = dat[1,:] c = dat[2:,:] c_label = '{:> 4.2g}'.format(nominal_c) # potential ax1.plot(x*1e9, u, marker=None, label=c_label, linewidth=1, **u_style) for i in range(c.shape[0]): # concentration ax2.plot(x*1e9, c[i], marker='', label=c_label, linewidth=2, **c_styles[i]) # semilog concentration c_graph_handles[i].extend( ax3.semilogy(x*1e9, c[i], marker='', label=c_label, linewidth=2, **c_styles[i]) ) # legend placement # https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot u_legend = ax1.legend(loc='center right', title='potential, ${}$'.format(param_label), bbox_to_anchor=(-0.2,0.5) ) first_c_legend = ax3.legend(handles=c_graph_handles[0], title=species_label[0], loc='upper left', bbox_to_anchor=(1.00, 1.02) ) second_c_legend = ax3.legend(handles=c_graph_handles[1], title=species_label[1], loc='lower left', bbox_to_anchor=(1.00,-0.02) ) ax3.add_artist(first_c_legend) # add automatically removed first legend again c_legends = [ first_c_legend, second_c_legend ] legends = [ u_legend, *c_legends ] for l in legends: right_align_legend(l) # https://matplotlib.org/3.1.1/tutorials/intermediate/constrainedlayout_guide.html for l in legends: l.set_in_layout(False) # trigger a draw so that constrained_layout is executed once # before we turn it off when printing.... fig.canvas.draw() # we want the legend included in the bbox_inches='tight' calcs. for l in legends: l.set_in_layout(True) # we don't want the layout to change at this point. fig.set_constrained_layout(False) # fig.tight_layout(pad=3.0, w_pad=2.0, h_pad=1.0) # plt.show() fig.savefig(figfile, bbox_inches='tight', dpi=100)
gpl-2.0
evanthebouncy/nnhmm
uai_network/draw.py
7
2929
import numpy as np import matplotlib.pylab as plt import multiprocessing as mp from matplotlib import figure from data import * FIG = plt.figure() def draw_coord(coord, name, lab=[1.0, 0.0]): color = 1.0 if lab[0] > lab[1] else -1.0 ret = np.zeros(shape=[L,L,1]) coord_x, coord_y = coord coord_x_idx = np.argmax(coord_x) coord_y_idx = np.argmax(coord_y) ret[coord_x_idx][coord_y_idx][0] = color draw(ret, name) def draw(m, name, extra=None): FIG.clf() matrix = m orig_shape = np.shape(matrix) # lose the channel shape in the end of orig_shape new_shape = orig_shape[:-1] matrix = np.reshape(matrix, new_shape) ax = FIG.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray) # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() if extra != None: greens, reds = extra grn_x, grn_y, = greens red_x, red_y = reds plt.scatter(x=grn_x, y=grn_y, c='g', s=40) plt.scatter(x=red_x, y=red_y, c='r', s=40) # # put a blue dot at (10, 20) # plt.scatter([10], [20]) # # put a red dot, size 40, at 2 locations: # plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40) # # plt.plot() plt.savefig(name) def draw_orig(img, name): ret = np.reshape(img, [L,L,1]) draw(ret, name) def draw_allob(img, name, ob_prefix): ret = np.zeros([L,L,1]) for ii in range(L): for jj in range(L): labb = img[ii][jj][0] - img[ii][jj][1] ret[ii][jj][0] = labb grn_x = [] grn_y = [] red_x = [] red_y = [] for obob in ob_prefix: ob_c, labb = obob if labb[0] > labb[1]: grn_x.append(ob_c[0]) grn_y.append(ob_c[1]) else: red_x.append(ob_c[0]) red_y.append(ob_c[1]) draw(ret, name, ((grn_y, grn_x), (red_y, red_x))) def draw_obs(obs, name): ret_shape = [L, L, 1] ret = np.zeros(shape=ret_shape) for ob, lab in obs: ii, jj = ob labb = 1.0 if lab[0] > lab[1] else -1.0 # labb = lab[0] ret[ii][jj][0] = labb draw(ret, name) def draw_annotate(x_cords, y_cords, anns, name): FIG.clf() y = x_cords z = y_cords n = anns fig = FIG ax = fig.add_subplot(1,1,1) ax.set_xlim([0,L]) ax.set_ylim([0,L]) ax.set_ylim(ax.get_ylim()[::-1]) ax.scatter(z, y) for i, txt in enumerate(n): ax.annotate(txt, (z[i],y[i])) fig.savefig(name) def draw_obs_trace(obs, name): x_coords = [] y_coords = [] anno = [] for i, ob in enumerate(obs): ob_coord, ob_outcome = ob x_coords.append(ob_coord[0]) y_coords.append(ob_coord[1]) anno.append("O"+str(i)+str(int(ob_outcome[0]))) draw_annotate(x_coords, y_coords, anno, name) def draw_all_preds(all_preds, name): ret_shape = [L, L, 1] ret = np.zeros(shape=ret_shape) for qq, labb in all_preds: i, j = qq # ret[i][j][0] = 1.0 if labb[0] > labb[1] else 0.0 # ret[i][j][0] = labb[0] ret[i][j][0] = labb[0] draw(ret, name)
mit
droter/trading-with-python
lib/backtest.py
74
7381
#------------------------------------------------------------------------------- # Name: backtest # Purpose: perform routine backtesting tasks. # This module should be useable as a stand-alone library outide of the TWP package. # # Author: Jev Kuznetsov # # Created: 03/07/2014 # Copyright: (c) Jev Kuznetsov 2013 # Licence: BSD #------------------------------------------------------------------------------- import pandas as pd import matplotlib.pyplot as plt import sys import numpy as np def tradeBracket(price,entryBar,upper=None, lower=None, timeout=None): ''' trade a bracket on price series, return price delta and exit bar # Input ------ price : numpy array of price values entryBar: entry bar number, *determines entry price* upper : high stop lower : low stop timeout : max number of periods to hold Returns exit price and number of bars held ''' assert isinstance(price, np.ndarray) , 'price must be a numpy array' # create list of exit indices and add max trade duration. Exits are relative to entry bar if timeout: # set trade length to timeout or series length exits = [min(timeout,len(price)-entryBar-1)] else: exits = [len(price)-entryBar-1] p = price[entryBar:entryBar+exits[0]+1] # subseries of price # extend exits list with conditional exits # check upper bracket if upper: assert upper>p[0] , 'Upper bracket must be higher than entry price ' idx = np.where(p>upper)[0] # find where price is higher than the upper bracket if idx.any(): exits.append(idx[0]) # append first occurence # same for lower bracket if lower: assert lower<p[0] , 'Lower bracket must be lower than entry price ' idx = np.where(p<lower)[0] if idx.any(): exits.append(idx[0]) exitBar = min(exits) # choose first exit return p[exitBar], exitBar class Backtest(object): """ Backtest class, simple vectorized one. Works with pandas objects. """ def __init__(self,price, signal, signalType='capital',initialCash = 0, roundShares=True): """ Arguments: *price* Series with instrument price. *signal* Series with capital to invest (long+,short-) or number of shares. *sitnalType* capital to bet or number of shares 'capital' mode is default. *initialCash* starting cash. *roundShares* round off number of shares to integers """ #TODO: add auto rebalancing # check for correct input assert signalType in ['capital','shares'], "Wrong signal type provided, must be 'capital' or 'shares'" #save internal settings to a dict self.settings = {'signalType':signalType} # first thing to do is to clean up the signal, removing nans and duplicate entries or exits self.signal = signal.ffill().fillna(0) # now find dates with a trade tradeIdx = self.signal.diff().fillna(0) !=0 # days with trades are set to True if signalType == 'shares': self.trades = self.signal[tradeIdx] # selected rows where tradeDir changes value. trades are in Shares elif signalType =='capital': self.trades = (self.signal[tradeIdx]/price[tradeIdx]) if roundShares: self.trades = self.trades.round() # now create internal data structure self.data = pd.DataFrame(index=price.index , columns = ['price','shares','value','cash','pnl']) self.data['price'] = price self.data['shares'] = self.trades.reindex(self.data.index).ffill().fillna(0) self.data['value'] = self.data['shares'] * self.data['price'] delta = self.data['shares'].diff() # shares bought sold self.data['cash'] = (-delta*self.data['price']).fillna(0).cumsum()+initialCash self.data['pnl'] = self.data['cash']+self.data['value']-initialCash @property def sharpe(self): ''' return annualized sharpe ratio of the pnl ''' pnl = (self.data['pnl'].diff()).shift(-1)[self.data['shares']!=0] # use only days with position. return sharpe(pnl) # need the diff here as sharpe works on daily returns. @property def pnl(self): '''easy access to pnl data column ''' return self.data['pnl'] def plotTrades(self): """ visualise trades on the price chart long entry : green triangle up short entry : red triangle down exit : black circle """ l = ['price'] p = self.data['price'] p.plot(style='x-') # ---plot markers # this works, but I rather prefer colored markers for each day of position rather than entry-exit signals # indices = {'g^': self.trades[self.trades > 0].index , # 'ko':self.trades[self.trades == 0].index, # 'rv':self.trades[self.trades < 0].index} # # # for style, idx in indices.iteritems(): # if len(idx) > 0: # p[idx].plot(style=style) # --- plot trades #colored line for long positions idx = (self.data['shares'] > 0) | (self.data['shares'] > 0).shift(1) if idx.any(): p[idx].plot(style='go') l.append('long') #colored line for short positions idx = (self.data['shares'] < 0) | (self.data['shares'] < 0).shift(1) if idx.any(): p[idx].plot(style='ro') l.append('short') plt.xlim([p.index[0],p.index[-1]]) # show full axis plt.legend(l,loc='best') plt.title('trades') class ProgressBar: def __init__(self, iterations): self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) def animate(self, iteration): print '\r',self, sys.stdout.flush() self.update_iteration(iteration + 1) def update_iteration(self, elapsed_iter): self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0) self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations) def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = '%d%%' % percent_done self.prog_bar = self.prog_bar[0:pct_place] + \ (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std()
bsd-3-clause
Upward-Spiral-Science/claritycontrol
code/scripts/roi_analysis.py
1
2744
#!/usr/bin/python #-*- coding:utf-8 -*- __author__ = 'david' from __builtin__ import * import gc import numpy as np from skimage.feature import greycomatrix, greycoprops import matplotlib as mpl mpl.use('TkAgg') # Solve runtime issue import matplotlib.pyplot as plt ## Fake imge and label volumes to fast test functionality def loadImg(): return np.random.random_sample((100,100,100)) def loadAtlas(): atlas_volume = np.zeros((100,100,100),dtype=np.uint32) atlas_volume[10:50,10:50,10:50]=np.ones((40,40,40),dtype=np.uint32)*1 atlas_volume[50:90,10:50,10:50]=np.ones((40,40,40),dtype=np.uint32)*2 atlas_volume[10:50,50:90,10:50]=np.ones((40,40,40),dtype=np.uint32)*3 atlas_volume[50:90,50:90,10:50]=np.ones((40,40,40),dtype=np.uint32)*4 atlas_volume[10:50,10:50,50:90]=np.ones((40,40,40),dtype=np.uint32)*5 atlas_volume[50:90,10:50,50:90]=np.ones((40,40,40),dtype=np.uint32)*6 atlas_volume[10:50,50:90,50:90]=np.ones((40,40,40),dtype=np.uint32)*7 atlas_volume[50:90,50:90,50:90]=np.ones((40,40,40),dtype=np.uint32)*8 return atlas_volume ## END ## True data # path = "~/Workspaces/claritycontrol/code/data/raw/" # token = "Fear199" # pathname = path+token+".img" # # img_volume = nib.load(pathname).get_data()[:,:,:,0] ## END ## get atlas values atlas_volume = loadAtlas() print atlas_volume.shape atlas_values, atlas_count = np.unique(atlas_volume,return_counts=True) atlas_values = atlas_values[1:] # remove background ## get img img_volume = loadImg() print img_volume.shape class_id = 0 # Fear, Control, Cocaine subject_id = 199 ## normalize volume Z-standardization img_volume = (img_volume-np.mean(img_volume))/np.std(img_volume) ## prepare results matrix columns = ['class_id', 'subject_id', 'roi', 'mean', 'std', 'energy', 'entropy', 'correlation', 'contrast', 'variance', 'sumMean', 'inertial', 'clusterShade', 'clusterTendency', 'homogeneity', 'maxProbability', 'inverseVariance'] features = np.zeros((len(atlas_values), len(columns)), dtype=np.float32) ## compute GLCM and properties for roi_id in range(len(atlas_values)): features[roi_id, 0] = class_id features[roi_id, 1] = subject_id features[roi_id, 2] = atlas_values[roi_id] ## mask img and get roi block mask_volume = (atlas_volume == atlas_values[roi_id]) xs, ys, zs = mask_volume.nonzero() roi_block = np.multiply(img_volume, mask_volume)[min(xs):max(xs), min(ys):max(ys), min(zs):max(zs)] del mask_volume # memory collect ## compute mean and std features[roi_id, 3] = np.mean(roi_block[roi_block != 0]) features[roi_id, 4] = np.std(roi_block[roi_block != 0]) ## compute GLCM and properties # features[roi_id, 5] = 0 # features[roi_id, 6] = 0
apache-2.0
kostajaitachi/shogun
examples/undocumented/python_modular/graphical/regression_lars.py
26
3327
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt from modshogun import RegressionLabels, RealFeatures from modshogun import LeastAngleRegression, LinearRidgeRegression, LeastSquaresRegression from modshogun import MeanSquaredError # we compare LASSO with ordinary least-squares (OLE) # in the ideal case, the MSE of OLE should coincide # with LASSO at the end of the path # # if OLE is unstable, we may use RidgeRegression (with # a small regularization coefficient) to simulate OLE use_ridge = False np.random.seed(1024) n = 200 ntrain = 100 p = 7 correlation = 0.6 mean = np.zeros(p) cov = correlation*np.ones((p,p)) + (1-correlation)*np.eye(p) Xall = np.random.multivariate_normal(mean, cov, n) # model is the linear combination of the first three variables plus noise yall = 2*Xall[:,0] + 5*Xall[:,1] + -3*Xall[:,2] + 0.5*np.random.randn(n) X = Xall[0:ntrain,:] y = yall[0:ntrain] Xtest = Xall[ntrain:,:] ytest = yall[ntrain:] # preprocess data for i in xrange(p): X[:,i] -= np.mean(X[:,i]) X[:,i] /= np.linalg.norm(X[:,i]) y -= np.mean(y) # train LASSO LeastAngleRegression = LeastAngleRegression() LeastAngleRegression.set_labels(RegressionLabels(y)) LeastAngleRegression.train(RealFeatures(X.T)) # train ordinary LSR if use_ridge: lsr = LinearRidgeRegression(0.01, RealFeatures(X.T), Labels(y)) lsr.train() else: lsr = LeastSquaresRegression() lsr.set_labels(RegressionLabels(y)) lsr.train(RealFeatures(X.T)) # gather LASSO path path = np.zeros((p, LeastAngleRegression.get_path_size())) for i in xrange(path.shape[1]): path[:,i] = LeastAngleRegression.get_w(i) evaluator = MeanSquaredError() # apply on training data mse_train = np.zeros(LeastAngleRegression.get_path_size()) for i in xrange(mse_train.shape[0]): LeastAngleRegression.switch_w(i) ypred = LeastAngleRegression.apply(RealFeatures(X.T)) mse_train[i] = evaluator.evaluate(ypred, RegressionLabels(y)) ypred = lsr.apply(RealFeatures(X.T)) mse_train_lsr = evaluator.evaluate(ypred, RegressionLabels(y)) # apply on test data mse_test = np.zeros(LeastAngleRegression.get_path_size()) for i in xrange(mse_test.shape[0]): LeastAngleRegression.switch_w(i) ypred = LeastAngleRegression.apply(RealFeatures(Xtest.T)) mse_test[i] = evaluator.evaluate(ypred, RegressionLabels(y)) ypred = lsr.apply(RealFeatures(Xtest.T)) mse_test_lsr = evaluator.evaluate(ypred, RegressionLabels(y)) fig = plt.figure() ax_path = fig.add_subplot(1,2,1) plt.plot(xrange(path.shape[1]), path.T, '.-') plt.legend(['%d' % (x+1) for x in xrange(path.shape[0])]) plt.xlabel('iteration') plt.title('LASSO path') ax_tr = fig.add_subplot(2,2,2) plt.plot(range(mse_train.shape[0])[1:], mse_train[1:], 'k.-') plt.plot(range(mse_train.shape[0])[1:], np.zeros(mse_train.shape[0])[1:] + mse_train_lsr, 'r-') plt.legend(('LASSO', 'LeastSquares')) plt.xlabel('# of non-zero variables') plt.ylabel('MSE') plt.title('MSE on training data') ax_tt = fig.add_subplot(2,2,4) plt.plot(range(mse_test.shape[0])[1:], mse_test[1:], 'k.-') plt.plot(range(mse_test.shape[0])[1:], np.zeros(mse_test.shape[0])[1:] + mse_test_lsr, 'r-') plt.legend(('LASSO', 'LeastSquares'), loc='lower right') plt.xlabel('# of non-zero variables') plt.ylabel('MSE') plt.title('MSE on test data') plt.show()
gpl-3.0
kmiernik/Pyspectr
bin/spectrum_fitter.py
1
6663
#!/usr/bin/env python3 """ K. Miernik 2013 k.a.miernik@gmail.com GPL v3 Spectrum fitting code """ import argparse import math import numpy import os import sys import time import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from lmfit import minimize, Parameters, report_errors from Pyspectr.hisfile import HisFile as HisFile from Pyspectr.peak_fitter import PeakFitter as PeakFitter from Pyspectr.exceptions import GeneralError as GeneralError class SpectrumParser: def __init__(self, file_name): self.base_name, ext = os.path.splitext(file_name) if len(ext) > 0 and ext in (".gz", ".his", ".tgz"): self.file_type = 'his' self.data_file = HisFile(file_name) elif len(ext) > 0 and ext in ".txt": self.file_type = 'txt' self.data_file = numpy.loadtxt(file_name) else: raise GeneralError( 'Files other than txt, his, tgz and gz are not supported') def parse(self, spectrum, show, pause): spectra_ids = spectrum.get('id') id_list = [] if self.file_type == 'his': for element in spectra_ids.split(','): element = element.split('-') if len(element) > 1: new_elements = [] for i in range(int(element[0]), int(element[1]) + 1): id_list.append(i) else: id_list.append(int(element[0])) elif self.file_type == 'txt': if spectra_ids != '': raise GeneralError('Spectrum id not supported for txt files') else: id_list.append('') peaks = spectrum.findall('peak') x_min = int(spectrum.get('min')) x_max = int(spectrum.get('max')) smin = spectrum.get('smin') smax = spectrum.get('smax') for spectrum_id in id_list: plot_name = '{}_{}'.format(self.base_name, spectrum_id) PF = PeakFitter(peaks, spectrum.get('baseline'), plot_name) if self.file_type == 'txt': data_x = self.data_file[x_min:x_max, 0] data_y = self.data_file[x_min:x_max, 1] if self.data_file.shape[1] == 2: data_dy = [] for y in data_y: dy = numpy.sqrt(y) if y > 0 else 1.0 data_dy.append(dy) data_dy = numpy.array(data_dy) else: data_dy = self.data_file[x_min:x_max, 2] for iy, y in enumerate(data_dy): if y <= 0: data_dy[iy] = 1.0 elif self.file_type == 'his': data = self.data_file.load_histogram(spectrum_id) if data[0] != 1: raise GeneralError('Only 1D histograms are supported') data_x = data[1][x_min:x_max] data_y = data[3][x_min:x_max] data_dy = [] for y in data_y: dy = numpy.sqrt(y) if y > 0 else 1.0 data_dy.append(dy) data_dy = numpy.array(data_dy) if smin is not None and smax is not None: width = [float(smin), float(smax)] else: width = None fit_result = PF.fit(data_x, data_y, data_dy, width=width) if show == 'plot' or show == 'svg': plt.clf() plt.xlabel('Channel') plt.ylabel('Counts') plt.plot(data_x, data_y, linestyle='steps-mid') plt.plot(data_x, fit_result['baseline'], linestyle='--') plt.plot(fit_result['x_axis'], fit_result['fit'], linewidth=1.0) if show == 'svg': svg_name = 'fit_{0}_{1}_{2}'.format(plot_name, int(data_x[0]), int(data_x[-1])) svg_name = svg_name.replace('.', '').\ replace('/', '') + '.svg' plt.savefig(svg_name) else: plt.show() plt.draw() time.sleep(pause) elif show == 'quiet': pass for i, peak in enumerate(peaks): if peak.get('ignore') == 'True': continue x0 = PF.params['x{}'.format(i)].value dx = PF.params['x{}'.format(i)].stderr A = PF.params['A{}'.format(i)].value dA = PF.params['A{}'.format(i)].stderr s = PF.params['s{}'.format(i)].value E = peaks[i].get('E') name = peaks[i].get('name') if name is None: name = "" Area = PF.find_area(data_x, i) print('{:>8} {:>8} {:>8.2f} {:>8.2f}'.\ format(name, E, x0, dx), '{:>8.1f} {:>8.1f} {:>8.3f} {:>8.1f}'.\ format(A, dA, s, Area)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='') parser.add_argument('config', nargs=1, help='Config files') parser.add_argument('--pause', '-p', nargs=1, type=float, default=[0.5], help='Pause time in seconds') out_group = parser.add_mutually_exclusive_group() out_group.add_argument('--plot', action='store_true', help='Plot window during fitting') out_group.add_argument('--svg', action='store_true', help='SVG files saved during fitting') out_group.add_argument('--quiet', action='store_true', help='No output during fitting') args = parser.parse_args() show = 'plot' if args.svg: show = 'svg' elif args.quiet: show = 'quiet' try: tree = ET.parse(args.config[0]) except (xml.parsers.expat.ExpatError, xml.etree.ElementTree.ParseError) as err: print("File '{0}' parsing error: {1}".format( args.config[0], err)) exit() root = tree.getroot() for data_file in root.findall('data_file'): SP = SpectrumParser(data_file.get('name')) print('# File: ', data_file.get('name')) print('# {: ^8} {:^7} {:^8} {:^8} {:^8} {:^8} {:^8} {:^8}' .format('Name', 'E', 'x0', 'dx', 'A', 'dA', 's', 'Area')) for spectrum in data_file.findall('spectrum'): SP.parse(spectrum, show, args.pause[0])
gpl-3.0
wesleybowman/karsten
project/rawADCPclass.py
1
4107
from __future__ import division import numpy as np import sys sys.path.append('/home/wesley/github/UTide/') from utide import ut_solv, ut_reconstr #from shortest_element_path import shortest_element_path #import matplotlib.pyplot as plt #import matplotlib.tri as Tri #import matplotlib.ticker as ticker #import seaborn import scipy.io as sio import h5py from os import path class Struct: def __init__(self, **entries): self.__dict__.update(entries) class rawADCP: def __init__(self, filename): self.QC = ['raw data'] self.load(filename) self.Params_Stn4_SWNSreport(filename) self.load_rbrdata() ## set options self.options = {} self.options['showPA'] = 1 self.options['showRBRavg'] = 1 ## save a flow file in BPformat #save_FlowFile_BPFormat(fileinfo,adcp,rbr,saveparams,options) def load(self, filename): try: self.mat = sio.loadmat(filename, struct_as_record=False, squeeze_me=True) self.adcp = self.mat['adcp'] except NotImplementedError: self.mat = h5py.File(filename) self.adcp = self.mat['adcp'] #self.adcp = Struct(**self.mat['adcp']) def Params_Stn4_SWNSreport(self, filename): fname = filename.split('/') filebase = fname[-1].split('_')[0] self.fileinfo = {} self.fileinfo['datadir'] = path.join(*fname[:-1]) + '/' self.fileinfo['ADCP'] = filebase + '_raw' self.fileinfo['outdir'] = path.join(*fname[:-1]) + '/' self.fileinfo['flowfile'] = filebase + '_Flow' self.fileinfo['rbr']= 'station4_grandPassageII_RBRSN_011857.mat' self.fileinfo['paramfile']= 'Params_Stn4_SWNSreport' #%% ADCP parameters self.saveparams = {} self.saveparams['tmin'] = 209 self.saveparams['tmax'] = 240 self.saveparams['zmin'] = 0 self.saveparams['zmax'] = 20 self.saveparams['approxdepth'] = 15.5 self.saveparams['flooddir'] = 0 self.saveparams['declination'] = -17.25 self.saveparams['lat'] = 44.2605 self.saveparams['lon'] = -66.3354 self.saveparams['dabADCP'] = 0.5 self.saveparams['dabPS'] = -0.6 self.saveparams['rbr_hr_offset'] = 3 def load_rbrdata(self): rbrFile = self.fileinfo['datadir'] + self.fileinfo['rbr'] try: rbrMat = sio.loadmat(rbrFile, struct_as_record=False, squeeze_me=True) except NotImplementedError: rbrMat = h5py.File(rbrFile) rbr = rbrMat['rbr'] rbrout = {} rbrout['mtime'] = rbr.yd rbrout['temp'] = rbr.temperature rbrout['pres'] = rbr.pressure rbrout['depth'] = rbr.depth rbrout['mtime'] = rbr.yd self.rbr = rbrout if __name__ == '__main__': #filename = 'GP-120726-BPd_raw.mat' filename = '140703-EcoEII_database/data/GP-120726-BPd_raw.mat' data = rawADCP(filename) #stn = 'GP-120726-BPd'; #%% File information #fileinfo.datadir = '../data/'; %path to raw data files #fileinfo.ADCP = [stn '_raw']; %name of ADCP file #fileinfo.outdir = '../data/'; %path to output directory #fileinfo.flowfile = [stn,'_Flow']; %name of output file with Flow data #fileinfo.rbr = ['station4_grandPassageII_RBRSN_011857.mat']; #fileinfo.paramfile = mfilename; # #%% ADCP parameters #saveparams.tmin = 209; %tmin (year day) #saveparams.tmax = 240; %tmax (year day) #saveparams.zmin = 0; %minimum z to include in saves file #saveparams.zmax = 20; #saveparams.approxdepth = 15.5; %Approximate depth #saveparams.flooddir= 0; %Flood direction (relative to true north, CW is positive) #saveparams.declination = -17.25;%Declination angle #saveparams.lat = 44.2605; %latitude #saveparams.lon = -66.3354; %longitude #saveparams.dabADCP = 0.5; %depth above bottom of ADCP #saveparams.dabPS = -0.6; %depth above bottom of pressure sensor #saveparams.rbr_hr_offset = 3; % hour offset to convert rbr time to UTC
mit
runt18/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colors.py
1
31702
""" A module for converting numbers or color arguments to *RGB* or *RGBA* *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of :class:`Normalize` or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which is used to generate all the built-in colormap instances, but is also useful for making custom colormaps, and :class:`ListedColormap`, which is used for generating a custom colormap from a list of color specifications. The module also provides a single instance, *colorConverter*, of the :class:`ColorConverter` class providing methods for converting single color specifications or sequences of them to *RGB* or *RGBA*. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter - b : blue - g : green - r : red - c : cyan - m : magenta - y : yellow - k : black - w : white Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:: color = '0.75' For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B* are in the range [0,1]. Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse' are supported. """ import re import numpy as np from numpy import ma import matplotlib.cbook as cbook parts = np.__version__.split('.') NP_MAJOR, NP_MINOR = map(int, parts[:2]) # true if clip supports the out kwarg NP_CLIP_OUT = NP_MAJOR>=1 and NP_MINOR>=2 cnames = { 'aliceblue' : '#F0F8FF', 'antiquewhite' : '#FAEBD7', 'aqua' : '#00FFFF', 'aquamarine' : '#7FFFD4', 'azure' : '#F0FFFF', 'beige' : '#F5F5DC', 'bisque' : '#FFE4C4', 'black' : '#000000', 'blanchedalmond' : '#FFEBCD', 'blue' : '#0000FF', 'blueviolet' : '#8A2BE2', 'brown' : '#A52A2A', 'burlywood' : '#DEB887', 'cadetblue' : '#5F9EA0', 'chartreuse' : '#7FFF00', 'chocolate' : '#D2691E', 'coral' : '#FF7F50', 'cornflowerblue' : '#6495ED', 'cornsilk' : '#FFF8DC', 'crimson' : '#DC143C', 'cyan' : '#00FFFF', 'darkblue' : '#00008B', 'darkcyan' : '#008B8B', 'darkgoldenrod' : '#B8860B', 'darkgray' : '#A9A9A9', 'darkgreen' : '#006400', 'darkkhaki' : '#BDB76B', 'darkmagenta' : '#8B008B', 'darkolivegreen' : '#556B2F', 'darkorange' : '#FF8C00', 'darkorchid' : '#9932CC', 'darkred' : '#8B0000', 'darksalmon' : '#E9967A', 'darkseagreen' : '#8FBC8F', 'darkslateblue' : '#483D8B', 'darkslategray' : '#2F4F4F', 'darkturquoise' : '#00CED1', 'darkviolet' : '#9400D3', 'deeppink' : '#FF1493', 'deepskyblue' : '#00BFFF', 'dimgray' : '#696969', 'dodgerblue' : '#1E90FF', 'firebrick' : '#B22222', 'floralwhite' : '#FFFAF0', 'forestgreen' : '#228B22', 'fuchsia' : '#FF00FF', 'gainsboro' : '#DCDCDC', 'ghostwhite' : '#F8F8FF', 'gold' : '#FFD700', 'goldenrod' : '#DAA520', 'gray' : '#808080', 'green' : '#008000', 'greenyellow' : '#ADFF2F', 'honeydew' : '#F0FFF0', 'hotpink' : '#FF69B4', 'indianred' : '#CD5C5C', 'indigo' : '#4B0082', 'ivory' : '#FFFFF0', 'khaki' : '#F0E68C', 'lavender' : '#E6E6FA', 'lavenderblush' : '#FFF0F5', 'lawngreen' : '#7CFC00', 'lemonchiffon' : '#FFFACD', 'lightblue' : '#ADD8E6', 'lightcoral' : '#F08080', 'lightcyan' : '#E0FFFF', 'lightgoldenrodyellow' : '#FAFAD2', 'lightgreen' : '#90EE90', 'lightgrey' : '#D3D3D3', 'lightpink' : '#FFB6C1', 'lightsalmon' : '#FFA07A', 'lightseagreen' : '#20B2AA', 'lightskyblue' : '#87CEFA', 'lightslategray' : '#778899', 'lightsteelblue' : '#B0C4DE', 'lightyellow' : '#FFFFE0', 'lime' : '#00FF00', 'limegreen' : '#32CD32', 'linen' : '#FAF0E6', 'magenta' : '#FF00FF', 'maroon' : '#800000', 'mediumaquamarine' : '#66CDAA', 'mediumblue' : '#0000CD', 'mediumorchid' : '#BA55D3', 'mediumpurple' : '#9370DB', 'mediumseagreen' : '#3CB371', 'mediumslateblue' : '#7B68EE', 'mediumspringgreen' : '#00FA9A', 'mediumturquoise' : '#48D1CC', 'mediumvioletred' : '#C71585', 'midnightblue' : '#191970', 'mintcream' : '#F5FFFA', 'mistyrose' : '#FFE4E1', 'moccasin' : '#FFE4B5', 'navajowhite' : '#FFDEAD', 'navy' : '#000080', 'oldlace' : '#FDF5E6', 'olive' : '#808000', 'olivedrab' : '#6B8E23', 'orange' : '#FFA500', 'orangered' : '#FF4500', 'orchid' : '#DA70D6', 'palegoldenrod' : '#EEE8AA', 'palegreen' : '#98FB98', 'palevioletred' : '#AFEEEE', 'papayawhip' : '#FFEFD5', 'peachpuff' : '#FFDAB9', 'peru' : '#CD853F', 'pink' : '#FFC0CB', 'plum' : '#DDA0DD', 'powderblue' : '#B0E0E6', 'purple' : '#800080', 'red' : '#FF0000', 'rosybrown' : '#BC8F8F', 'royalblue' : '#4169E1', 'saddlebrown' : '#8B4513', 'salmon' : '#FA8072', 'sandybrown' : '#FAA460', 'seagreen' : '#2E8B57', 'seashell' : '#FFF5EE', 'sienna' : '#A0522D', 'silver' : '#C0C0C0', 'skyblue' : '#87CEEB', 'slateblue' : '#6A5ACD', 'slategray' : '#708090', 'snow' : '#FFFAFA', 'springgreen' : '#00FF7F', 'steelblue' : '#4682B4', 'tan' : '#D2B48C', 'teal' : '#008080', 'thistle' : '#D8BFD8', 'tomato' : '#FF6347', 'turquoise' : '#40E0D0', 'violet' : '#EE82EE', 'wheat' : '#F5DEB3', 'white' : '#FFFFFF', 'whitesmoke' : '#F5F5F5', 'yellow' : '#FFFF00', 'yellowgreen' : '#9ACD32', } # add british equivs for k, v in cnames.items(): if k.find('gray')>=0: k = k.replace('gray', 'grey') cnames[k] = v def is_color_like(c): 'Return *True* if *c* can be converted to *RGB*' try: colorConverter.to_rgb(c) return True except ValueError: return False def rgb2hex(rgb): 'Given a len 3 rgb tuple of 0-1 floats, return the hex string' return '#{0:02x}{1:02x}{2:02x}'.format(*tuple([round(val*255) for val in rgb])) hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z") def hex2color(s): """ Take a hex string *s* and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725, 0.93725) """ if not isinstance(s, basestring): raise TypeError('hex2color requires a string argument') if hexColorPattern.match(s) is None: raise ValueError('invalid hex color string "{0!s}"'.format(s)) return tuple([int(n, 16)/255.0 for n in (s[1:3], s[3:5], s[5:7])]) class ColorConverter: """ Provides methods for converting color specifications to *RGB* or *RGBA* Caching is used for more efficient conversion upon repeated calls with the same argument. Ordinarily only the single instance instantiated in this module, *colorConverter*, is needed. """ colors = { 'b' : (0.0, 0.0, 1.0), 'g' : (0.0, 0.5, 0.0), 'r' : (1.0, 0.0, 0.0), 'c' : (0.0, 0.75, 0.75), 'm' : (0.75, 0, 0.75), 'y' : (0.75, 0.75, 0), 'k' : (0.0, 0.0, 0.0), 'w' : (1.0, 1.0, 1.0), } cache = {} def to_rgb(self, arg): """ Returns an *RGB* tuple of three floats from 0-1. *arg* can be an *RGB* or *RGBA* sequence or a string in any of several forms: 1) a letter from the set 'rgbcmykw' 2) a hex color string, like '#00FFFF' 3) a standard name, like 'aqua' 4) a float, like '0.4', indicating gray on a 0-1 scale if *arg* is *RGBA*, the *A* will simply be discarded. """ try: return self.cache[arg] except KeyError: pass except TypeError: # could be unhashable rgb seq arg = tuple(arg) try: return self.cache[arg] except KeyError: pass except TypeError: raise ValueError( 'to_rgb: arg "{0!s}" is unhashable even inside a tuple'.format(str(arg))) try: if cbook.is_string_like(arg): color = self.colors.get(arg, None) if color is None: str1 = cnames.get(arg, arg) if str1.startswith('#'): color = hex2color(str1) else: fl = float(arg) if fl < 0 or fl > 1: raise ValueError( 'gray (string) must be in range 0-1') color = tuple([fl]*3) elif cbook.iterable(arg): if len(arg) > 4 or len(arg) < 3: raise ValueError( 'sequence length is {0:d}; must be 3 or 4'.format(len(arg))) color = tuple(arg[:3]) if [x for x in color if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbg sequence outside 0-1 range') else: raise ValueError('cannot convert argument to rgb sequence') self.cache[arg] = color except (KeyError, ValueError, TypeError), exc: raise ValueError('to_rgb: Invalid rgb arg "{0!s}"\n{1!s}'.format(str(arg), exc)) # Error messages could be improved by handling TypeError # separately; but this should be rare and not too hard # for the user to figure out as-is. return color def to_rgba(self, arg, alpha=None): """ Returns an *RGBA* tuple of four floats from 0-1. For acceptable values of *arg*, see :meth:`to_rgb`. If *arg* is an *RGBA* sequence and *alpha* is not *None*, *alpha* will replace the original *A*. """ try: if not cbook.is_string_like(arg) and cbook.iterable(arg): if len(arg) == 4: if [x for x in arg if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbga sequence outside 0-1 range') if alpha is None: return tuple(arg) if alpha < 0.0 or alpha > 1.0: raise ValueError("alpha must be in range 0-1") return arg[0], arg[1], arg[2], arg[3] * alpha r,g,b = arg[:3] if [x for x in (r,g,b) if (float(x) < 0) or (x > 1)]: raise ValueError('number in rbg sequence outside 0-1 range') else: r,g,b = self.to_rgb(arg) if alpha is None: alpha = 1.0 return r,g,b,alpha except (TypeError, ValueError), exc: raise ValueError('to_rgba: Invalid rgba arg "{0!s}"\n{1!s}'.format(str(arg), exc)) def to_rgba_array(self, c, alpha=None): """ Returns a numpy array of *RGBA* tuples. Accepts a single mpl color spec or a sequence of specs. Special case to handle "no color": if *c* is "none" (case-insensitive), then an empty array will be returned. Same for an empty list. """ try: if c.lower() == 'none': return np.zeros((0,4), dtype=np.float_) except AttributeError: pass if len(c) == 0: return np.zeros((0,4), dtype=np.float_) try: result = np.array([self.to_rgba(c, alpha)], dtype=np.float_) except ValueError: if isinstance(c, np.ndarray): if c.ndim != 2 and c.dtype.kind not in 'SU': raise ValueError("Color array must be two-dimensional") result = np.zeros((len(c), 4)) for i, cc in enumerate(c): result[i] = self.to_rgba(cc, alpha) # change in place return np.asarray(result, np.float_) colorConverter = ColorConverter() def makeMappingArray(N, data): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ try: adata = np.array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if np.sometrue(np.sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = np.zeros((N,), np.float) xind = np.arange(float(N)) ind = np.searchsorted(x, xind)[1:-1] lut[1:-1] = ( ((xind[1:-1] - x[ind-1]) / (x[ind] - x[ind-1])) * (y0[ind] - y1[ind-1]) + y1[ind-1]) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it np.clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut class Colormap: """Base class for all scalar to rgb mappings Important methods: * :meth:`set_bad` * :meth:`set_under` * :meth:`set_over` """ def __init__(self, name, N=256): """ Public class attributes: :attr:`N` : number of rgb quantization levels :attr:`name` : name of colormap """ self.name = name self.N = N self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = N self._i_over = N+1 self._i_bad = N+2 self._isinit = False def __call__(self, X, alpha=1.0, bytes=False): """ *X* is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). If the X-values are integers, then they are used as indices into the array. If they are floating point, then they must be in the interval (0.0, 1.0). Alpha must be a scalar. If bytes is False, the rgba values will be floats on a 0-1 scale; if True, they will be uint8, 0-255. """ if not self._isinit: self._init() alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) self._lut[:-3, -1] = alpha mask_bad = None if not cbook.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = ma.asarray(X) xa = xma.filled(0) mask_bad = ma.getmask(xma) if xa.dtype.char in np.typecodes['Float']: np.putmask(xa, xa==1.0, 0.9999999) #Treat 1.0 as slightly less than 1. # The following clip is fast, and prevents possible # conversion of large positive values to negative integers. if NP_CLIP_OUT: np.clip(xa * self.N, -1, self.N, out=xa) else: xa = np.clip(xa * self.N, -1, self.N) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. np.putmask(xa, xa>self.N-1, self._i_over) np.putmask(xa, xa<0, self._i_under) if mask_bad is not None and mask_bad.shape == xa.shape: np.putmask(xa, mask_bad, self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut rgba = np.empty(shape=xa.shape+(4,), dtype=lut.dtype) lut.take(xa, axis=0, mode='clip', out=rgba) # twice as fast as lut[xa]; # using the clip or wrap mode and providing an # output array speeds it up a little more. if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba def set_bad(self, color = 'k', alpha = 1.0): '''Set color to be used for masked values. ''' self._rgba_bad = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color = 'k', alpha = 1.0): '''Set color to be used for low out-of-range values. Requires norm.clip = False ''' self._rgba_under = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color = 'k', alpha = 1.0): '''Set color to be used for high out-of-range values. Requires norm.clip = False ''' self._rgba_over = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N-1] self._lut[self._i_bad] = self._rgba_bad def _init(): '''Generate the lookup table, self._lut''' raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.alltrue(self._lut[:,0] == self._lut[:,1]) and np.alltrue(self._lut[:,0] == self._lut[:,2])) class LinearSegmentedColormap(Colormap): """Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256): """Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. .. seealso:: :func:`makeMappingArray` """ self.monochrome = False # True only if all colors in map are identical; # needed for contouring. Colormap.__init__(self, name, N) self._segmentdata = segmentdata def _init(self): self._lut = np.ones((self.N + 3, 4), np.float) self._lut[:-3, 0] = makeMappingArray(self.N, self._segmentdata['red']) self._lut[:-3, 1] = makeMappingArray(self.N, self._segmentdata['green']) self._lut[:-3, 2] = makeMappingArray(self.N, self._segmentdata['blue']) self._isinit = True self._set_extremes() class ListedColormap(Colormap): """Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. """ def __init__(self, colors, name = 'from_list', N = None): """ Make a colormap from a list of colors. *colors* a list of matplotlib color specifications, or an equivalent Nx3 floating point array (*N* rgb values) *name* a string to identify the colormap *N* the number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ self.colors = colors self.monochrome = False # True only if all colors in map are identical; # needed for contouring. if N is None: N = len(self.colors) else: if cbook.is_string_like(self.colors): self.colors = [self.colors] * N self.monochrome = True elif cbook.iterable(self.colors): self.colors = list(self.colors) # in case it was a tuple if len(self.colors) == 1: self.monochrome = True if len(self.colors) < N: self.colors = list(self.colors) * N del(self.colors[N:]) else: try: gray = float(self.colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): rgb = np.array([colorConverter.to_rgb(c) for c in self.colors], np.float) self._lut = np.zeros((self.N + 3, 4), np.float) self._lut[:-3, :-1] = rgb self._lut[:-3, -1] = 1 self._isinit = True self._set_extremes() class Normalize: """ Normalize a given value to the 0-1 range """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = vmin self.vmax = vmax self.clip = clip def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (val-vmin) * (1.0/(vmax-vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' self.vmin = ma.minimum(A) self.vmax = ma.maximum(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None: self.vmin = ma.minimum(A) if self.vmax is None: self.vmax = ma.maximum(A) def scaled(self): 'return true if vmin and vmax set' return (self.vmin is not None and self.vmax is not None) class LogNorm(Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin<=0: raise ValueError("values must all be positive") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin * ma.power((vmax/vmin), val) else: return vmin * pow((vmax/vmin), value) class BoundaryNorm(Normalize): ''' Generate a colormap index based on discrete intervals. Unlike :class:`Normalize` or :class:`LogNorm`, :class:`BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. ''' def __init__(self, boundaries, ncolors, clip=False): ''' *boundaries* a monotonically increasing sequence *ncolors* number of colors in the colormap to be used If:: b[i] <= v < b[i+1] then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1. Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices by :meth:`Colormap.__call__` . ''' self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N-1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax+1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx>=b] = i if self._interp: iret = (iret * (float(self.Ncmap-1)/(self.N-2))).astype(np.int16) iret[xx<self.vmin] = -1 iret[xx>=self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret def inverse(self, value): return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): ''' Dummy replacement for Normalize, for the case where we want to use indices directly in a :class:`~matplotlib.cm.ScalarMappable` . ''' def __call__(self, value, clip=None): return value def inverse(self, value): return value # compatibility with earlier class names that violated convention: normalize = Normalize no_norm = NoNorm
agpl-3.0
smunaut/gnuradio
gr-filter/examples/fir_filter_ccc.py
6
4023
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = blocks.vector_sink_c() self.vsnk_out = blocks.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
xzturn/tensorflow
tensorflow/lite/micro/examples/micro_speech/apollo3/compare_1k.py
9
5012
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugging script for checking calculation values.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import struct import matplotlib.pyplot as plt import numpy as np # import soundfile as sf def new_data_to_array(fn, datatype='int16'): """Converts file information to an in-memory array.""" vals = [] with open(fn) as f: for n, line in enumerate(f): if n != 0: vals.extend([int(v, 16) for v in line.split()]) b = ''.join(map(chr, vals)) if datatype == 'int8': typestr = 'b' arraylen = int(len(b)) elif datatype == 'int16': typestr = 'h' arraylen = int(len(b) // 2) elif datatype == 'int32': typestr = 'i' arraylen = int(len(b) // 4) if datatype == 'uint8': typestr = 'B' arraylen = int(len(b)) elif datatype == 'uint16': typestr = 'H' arraylen = int(len(b) // 2) elif datatype == 'uint32': typestr = 'I' arraylen = int(len(b) // 4) y = np.array(struct.unpack('<' + typestr * arraylen, b)) return y # x is the fixed-point input in Qm.n format def to_float(x, n): return x.astype(float) * 2**(-n) micro_windowed_input = new_data_to_array( 'micro_windowed_input.txt', datatype='int32') cmsis_windowed_input = new_data_to_array( 'cmsis_windowed_input.txt', datatype='int16') micro_dft = new_data_to_array('micro_dft.txt', datatype='int32') cmsis_dft = new_data_to_array('cmsis_dft.txt', datatype='int16') py_dft = np.fft.rfft(to_float(cmsis_windowed_input, 15), n=512) py_result = np.empty((2 * py_dft.size), dtype=np.float) py_result[0::2] = np.real(py_dft) py_result[1::2] = np.imag(py_dft) micro_power = new_data_to_array('micro_power.txt', datatype='int32') cmsis_power = new_data_to_array('cmsis_power.txt', datatype='int16') py_power = np.square(np.abs(py_dft)) micro_power_avg = new_data_to_array('micro_power_avg.txt', datatype='uint8') cmsis_power_avg = new_data_to_array('cmsis_power_avg.txt', datatype='uint8') plt.figure(1) plt.subplot(311) plt.plot(micro_windowed_input, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_windowed_input, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_windowed_input, 30), label='Micro to float') plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS to float') plt.legend() plt.figure(2) plt.subplot(311) plt.plot(micro_dft, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_dft, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_dft, 22), label='Micro to float') # CMSIS result has 6 fractionanl bits (not 7) due to documentation error (see # README.md) plt.plot(to_float(cmsis_dft, 6), label='CMSIS to float') plt.plot(py_result, label='Python result') plt.legend() plt.figure(3) plt.subplot(311) plt.plot(micro_power, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_power[0:256], label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_power, 22), label='Micro to float') plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS to float') plt.plot(py_power, label='Python result') plt.legend() plt.figure(4) plt.plot(micro_power_avg, label='Micro fixed') plt.plot(cmsis_power_avg, label='CMSIS fixed') plt.legend() plt.show() # t = np.arange(16000.*0.03)/16000. # # Factor of 10 because micro preprocessing overflows otherwise # sin1k = 0.1*np.sin(2*np.pi*1000*t) # # plt.figure(1) # plt.subplot(511) # plt.plot(sin1k) # plt.title('Input sine') # # plt.subplot(512) # plt.plot(to_float(micro_windowed_input, 30), label='Micro-Lite') # plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS') # plt.title('Windowed sine') # plt.legend(loc='center right') # # plt.subplot(513) # plt.plot(to_float(micro_dft, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_dft, 6), label='CMSIS') # plt.title('FFT') # plt.legend(loc='center') # # plt.subplot(514) # plt.plot(to_float(micro_power, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS') # plt.title('|FFT|^2') # plt.legend(loc='center right') # # plt.subplot(515) # plt.plot(micro_power_avg, label='Micro-Lite') # plt.plot(cmsis_power_avg, label='CMSIS') # plt.title('Averaged |FFT|^2') # plt.legend(loc='center right') # # plt.tight_layout(pad=0, w_pad=0.2, h_pad=0.2) # # plt.show() #
apache-2.0
djgagne/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
natasasdj/OpenWPM
analysis/05_images_pixels.py
2
6264
import os import sqlite3 import pandas as pd from matplotlib.colors import LogNorm import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from statsmodels.distributions.empirical_distribution import ECDF def thousands(x, pos): if x>=1e9: return '%dB' % (x*1e-9) elif x>=1e6: return '%dM' % (x*1e-6) elif x>=1e3: return '%dK' % (x*1e-3) else: return x formatter = FuncFormatter(thousands) res_dir = res_dir = '/home/nsarafij/project/OpenWPM/analysis/results/' db = res_dir + 'images.sqlite' conn = sqlite3.connect(db) query = 'SELECT * FROM Images' df = pd.read_sql_query(query,conn) df['pixels']=map(int,df['pixels']) df['pixels'].max() #178,560,000 df['pixels'].isnull().sum() #2,797,214 df['pixels'].isnull().sum()/float(df.shape[0])*100 #8.8% pixels = df['pixels'].fillna(-1).map(int) def ecdf_for_plot(sample): #x = np.linspace(min(sample), max(sample)) print "sample: ",type(sample) x = sample.sort_values(ascending = False) ecdf = ECDF(x) # print ecdf print "ecdf: ",type(ecdf) y = ecdf(x) #print y print "y: ", type(y) return (x,y) fig_dir = '/home/nsarafij/project/OpenWPM/analysis/figs_10k/' (x,y) = ecdf_for_plot(pixels) plt.figure() plt.step(x,y) plt.title('CDF of the total number of pixels') plt.xlabel('total number of pixels') plt.grid(True) plt.xscale('symlog') plt.savefig(os.path.join(fig_dir,'04a_pix_distr.png')) plt.show() grouped = df.groupby('pixels') s_pix_count = grouped.size() s_pix_count_=s_pix_count/float(df.shape[0])*100 df_pix_count = pd.DataFrame(s_pix_count,columns=['count']) # count of total number of pixels fig,ax=plt.subplots() plt.scatter(s_pix_count.index,s_pix_count,marker='.',color='darkblue') #s_pix_count_lim = s_pix_count[s_pix_count > 0.0001*df.shape[0]] #plt.scatter(s_pix_count_lim.index,s_pix_count_lim, marker='.',color='lightblue') plt.xscale('symlog') plt.yscale('log') plt.xlabel('total number of pixels') plt.ylabel('number of images') plt.xlim([-1,1e8]) plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_count.png',format='png') fig.savefig(fig_dir + 'pix_count.eps',format='eps') fig,ax=plt.subplots() plt.scatter(s_pix_count_.index,s_pix_count_,marker='.',color='darkblue') plt.xlabel('total number of pixels') plt.ylabel('percentage of total number of images') plt.xscale('symlog') plt.yscale('log') plt.xlim([-1,1e8]) plt.ylim([1e-6,1e2]) plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_perc.png',format='png') fig.savefig(fig_dir + 'pix_perc.eps',format='eps') # Top 20 size counts of images s_pix_count_sort = s_pix_count.sort_values(ascending=False) s_pix_perc_sort = s_pix_count_sort/float(df.shape[0])*100 x=range(1,21) labels = map(str,[ int(a) for a in list(s_pix_count_sort.index[0:20]) ]) fig, ax = plt.subplots() plt.bar(x,s_pix_count_sort.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('count') plt.xlabel('total number of pixels') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_count_top20.png',format='png') fig.savefig(fig_dir + 'pix_count_top20.eps',format='eps') x=range(1,21) labels = map(str,[ int(a) for a in list(s_pix_perc_sort.index[0:20]) ]) fig, ax = plt.subplots() plt.bar(x,s_pix_perc_sort.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('percentage of total number of images') plt.xlabel('total number of pixels') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_perc_top20.png',format='png') fig.savefig(fig_dir + 'pix_perc_top20.eps',format='eps') #s=df['size'][df['size']!=df['cont_length']] #l=s.tolist() #df['pixels'].fillna(value=-100,inplace=True) ''' grouped = df.groupby(['pixels','type']) s_pix_type_count = grouped.size() df_pix_type_count = pd.DataFrame(s_type_count,columns=['count']) ''' # scatter plot no of pixels vs size with the color showing count of a pixel-size pair grouped = df.groupby(['pixels','size']) pix_size_count = grouped.size().sort_values() pixels = pix_size_count.index.get_level_values(level='pixels') size = pix_size_count.index.get_level_values(level='size') fig,ax=plt.subplots() plt.scatter(pixels,size,c=pix_size_count,cmap="Reds", norm=LogNorm(),edgecolors='none') cbar = plt.colorbar() cbar.set_label('count of images') plt.grid(True) plt.xscale('symlog') plt.yscale('symlog') plt.xlim([-1,1e8]) plt.ylim([-1,1e8]) plt.xlabel('total no of pixels') plt.ylabel('file size [bytes]') #plt.show() fig.savefig(fig_dir + 'pix_size_count.png',format='png') fig.savefig(fig_dir + 'pix_size_count.eps',format='eps') fig,ax=plt.subplots() plt.scatter(pixels,size,c=pix_size_count/float(df.shape[0])*100,cmap="Reds", norm=LogNorm(),edgecolors='none') cbar = plt.colorbar() cbar.set_label('percentage of total number of images') plt.grid(True) plt.xscale('symlog') plt.yscale('symlog') plt.xlim([-1,1e8]) plt.ylim([-1,1e8]) plt.xlabel('total no of pixels') plt.ylabel('file size [bytes]') #plt.show() fig.savefig(fig_dir + 'pix_size_perc.png',format='png') fig.savefig(fig_dir + 'pix_size_perc.eps',format='eps') # top 20 pixel size count pix_size_count.sort_values(ascending = False,inplace = True) x=range(1,21) labels = map(str,[(int(a),int(b)) for (a,b) in pix_size_count.index[0:20]]) fig, ax = plt.subplots() plt.bar(x,pix_size_count.iloc[0:20],align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('count') plt.xlabel('total number of pixels, file size [bytes]') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_size_count_top20.png',format='png') fig.savefig(fig_dir + 'pix_size_count_top20.eps',format='eps') fig, ax = plt.subplots() plt.bar(x,pix_size_count.iloc[0:20]/float(df.shape[0])*100,align='center', label ='all') plt.xticks(x, labels,rotation=70) plt.ylabel('percentage of total number of images') plt.xlabel('total number of pixels, file size [bytes]') ax.yaxis.set_major_formatter(formatter) fig.tight_layout() plt.grid(True) plt.show() fig.savefig(fig_dir + 'pix_size_perc_top20.png',format='png') fig.savefig(fig_dir + 'pix_size_perc_top20.eps',format='eps')
gpl-3.0
semiautomaticgit/SemiAutomaticClassificationPlugin
semiautomaticclassificationplugin.py
1
86616
# -*- coding: utf-8 -*- ''' /************************************************************************************************************************** SemiAutomaticClassificationPlugin The Semi-Automatic Classification Plugin for QGIS allows for the supervised classification of remote sensing images, providing tools for the download, the preprocessing and postprocessing of images. ------------------- begin : 2012-12-29 copyright : (C) 2012-2021 by Luca Congedo email : ing.congedoluca@gmail.com **************************************************************************************************************************/ /************************************************************************************************************************** * * This file is part of Semi-Automatic Classification Plugin * * Semi-Automatic Classification Plugin is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software Foundation, * version 3 of the License. * * Semi-Automatic Classification Plugin is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * Semi-Automatic Classification Plugin. If not, see <http://www.gnu.org/licenses/>. * **************************************************************************************************************************/ ''' global PluginCheck PluginCheck = 'Yes' import os import sys try: from .core import config as cfg except: PluginCheck = 'No' # try importing different path from PyQt5.QtCore import QSettings rK = QSettings() mPythonSettings = rK.value(cfg.regPythonModulesPathSettings, str(cfg.PythonModulesPathSettings)) if len(mPythonSettings) > 0: for ppS in mPythonSettings.split(';'): if len(ppS) > 0: sys.path.insert(1, ppS) import platform import inspect import shutil import time import datetime import subprocess import numpy as np import urllib import requests import ssl import smtplib import gc from http.cookiejar import CookieJar import itertools import zipfile import tarfile import base64 import random import re import xml.etree.cElementTree as ET from xml.dom import minidom import json import hashlib import ctypes import shlex from collections import Counter import multiprocessing as mp try: mp.set_start_method('spawn') except: pass from multiprocessing import Pool, Manager # Import the PyQt libraries from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QObject, QFileInfo, QSettings, QDir, QDate, QVariant, pyqtSignal from PyQt5.QtWidgets import QApplication, QTreeWidgetItem from PyQt5.QtNetwork import QNetworkRequest # Import the QGIS libraries import qgis.core as qgisCore import qgis.gui as qgisGui import qgis.utils as qgisUtils from osgeo import gdal from osgeo import ogr from osgeo import osr # Initialize Qt ui from .ui.resources_rc import * from .ui.ui_semiautomaticclassificationplugin import Ui_SemiAutomaticClassificationPlugin from .ui.ui_semiautomaticclassificationplugin_welcome import Ui_SCP_Welcome from .ui.semiautomaticclassificationplugindialog import SemiAutomaticClassificationPluginDialog from .ui.semiautomaticclassificationplugindialog import SpectralSignatureDialog from .ui.semiautomaticclassificationplugindialog import WelcomeDialog from .ui.semiautomaticclassificationplugindialog import ScatterPlotDialog from .ui.semiautomaticclassificationplugindialog import DockClassDialog # Import plugin version from .__init__ import version as semiautomaticclassVersion # required by other modules cfg.QObjectSCP = QObject cfg.pyqtSignalSCP = pyqtSignal if PluginCheck == 'Yes': try: from .core.messages import Messages as msgs from .core.utils import Utils from .core.signature_importer import Signature_Importer from .maininterface.downloadproductpointer import DownloadProductPointer from .maininterface.downloadproducts import DownloadProducts from .spectralsignature.spectralsignatureplot import SpectralSignaturePlot from .spectralsignature.scatter_plot import Scatter_Plot from .dock.manualroi import ManualROI from .dock.regionroi import RegionROI from .dock.scpdock import SCPDock from .dock.classificationpreview import ClassificationPreview from .maininterface.multipleroiTab import MultipleROITab from .spectralsignature.usgs_spectral_lib import USGS_Spectral_Lib from .maininterface.landsatTab import LandsatTab from .maininterface.asterTab import ASTERTab from .maininterface.modisTab import MODISTab from .maininterface.sentinel1Tab import Sentinel1Tab from .maininterface.sentinel2Tab import Sentinel2Tab from .maininterface.sentinel3Tab import Sentinel3Tab from .maininterface.GOESTab import GOESTab from .maininterface.accuracy import Accuracy from .maininterface.crossclassificationTab import CrossClassification from .maininterface.bandcombination import BandCombination from .maininterface.splitTab import SplitTab from .maininterface.reprojectrasterbands import ReprojectRasterBands from .maininterface.pcaTab import PcaTab from .maininterface.clusteringTab import ClusteringTab from .maininterface.classSignatureTab import ClassSignatureTab from .maininterface.zonalStatRasterTab import ZonalStatRasterTab from .maininterface.vectortorasterTab import VectorToRasterTab from .maininterface.bandsetTab import BandsetTab from .maininterface.algorithmWeightTab import AlgWeightTab from .maininterface.signatureThresholdTab import SigThresholdTab from .maininterface.LCSignatureThresholdTab import LCSigThresholdTab from .maininterface.rgblistTab import RGBListTab from .maininterface.bandsetlistTab import BandSetListTab from .maininterface.LCSignaturePixel import LCSigPixel from .maininterface.LCSignaturePixel2 import LCSigPixel2 from .maininterface.bandcalcTab import BandCalcTab from .maininterface.batchTab import BatchTab from .maininterface.clipmultiplerasters import ClipMultipleRasters from .maininterface.stackrasterbands import StackRasterBands from .maininterface.mosaicbandsets import MosaicBandSets from .maininterface.cloudmasking import CloudMasking from .maininterface.spectraldistancebandsets import SpectralDistanceBandsets from .maininterface.randomForestTab import ClassRandomForestTab from .maininterface.editraster import EditRaster from .maininterface.sieveTab import SieveRaster from .maininterface.erosionTab import ErosionRaster from .maininterface.dilationTab import DilationRaster from .maininterface.neighborpixelsTab import NeighborPixels from .maininterface.clipmultiplerasterspointer import ClipMultiplerastersPointer from .maininterface.landcoverchange import LandCoverChange from .maininterface.classreportTab import ClassReportTab from .maininterface.classificationTab import ClassificationTab from .maininterface.classtovectorTab import ClassToVectorTab from .maininterface.reclassificationTab import ReclassificationTab from .maininterface.settings import Settings from .core.input import Input from .ui.ui_utils import Ui_Utils except: PluginCheck = 'No' qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) try: import scipy.stats.distributions as statdistr from scipy.spatial.distance import cdist from scipy import signal from scipy.ndimage import label from scipy.cluster.vq import vq, kmeans, whiten cfg.scipyCheck = 'Yes' except: cfg.scipyCheck = 'No' try: from matplotlib.ticker import MaxNLocator import matplotlib.pyplot as mplplt import matplotlib.colors as mplcolors cfg.matplotlibCheck = 'Yes' except Exception as err: cfg.testMatplotlibV = err cfg.matplotlibCheck = 'No' class SemiAutomaticClassificationPlugin: def __init__(self, iface): try: cfg.osSCP = os cfg.sysSCP = sys cfg.platformSCP = platform cfg.shutilSCP = shutil cfg.inspectSCP = inspect cfg.timeSCP = time cfg.datetimeSCP = datetime cfg.subprocessSCP = subprocess cfg.urllibSCP = urllib cfg.requestsSCP = requests cfg.itertoolsSCP = itertools cfg.zipfileSCP = zipfile cfg.tarfileSCP = tarfile cfg.base64SCP = base64 cfg.randomSCP = random cfg.QtCoreSCP = QtCore cfg.QtGuiSCP = QtGui cfg.QtWidgetsSCP = QtWidgets cfg.QTreeWidgetItemSCP = QTreeWidgetItem cfg.QNetworkRequestSCP = QNetworkRequest cfg.QtSCP = Qt cfg.QVariantSCP = QVariant cfg.QFileInfoSCP = QFileInfo cfg.QSettingsSCP = QSettings cfg.QDirSCP = QDir cfg.QDateSCP = QDate cfg.qgisCoreSCP = qgisCore cfg.qgisGuiSCP = qgisGui cfg.gdalSCP = gdal cfg.ogrSCP = ogr cfg.osrSCP = osr cfg.sslSCP = ssl cfg.smtplibSCP = smtplib cfg.CookieJarSCP = CookieJar cfg.gcSCP = gc cfg.reSCP = re cfg.ETSCP = ET cfg.minidomSCP = minidom cfg.jsonSCP = json cfg.hashlibSCP = hashlib cfg.ctypesSCP = ctypes cfg.shlexSCP = shlex cfg.counterSCP = Counter cfg.multiPSCP = mp cfg.poolSCP = Pool cfg.MultiManagerSCP = Manager except: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) return try: cfg.np = np except: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Numpy installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) try: if cfg.scipyCheck == 'Yes': cfg.statdistrSCP = statdistr cfg.cdistSCP = cdist cfg.signalSCP = signal cfg.labelSCP = label cfg.vqSCP = vq cfg.kmeansSCP = kmeans cfg.whitenSCP = whiten if cfg.matplotlibCheck == 'Yes': cfg.MaxNLocatorSCP = MaxNLocator cfg.mplpltSCP = mplplt cfg.mplcolorsSCP = mplcolors except: pass if cfg.scipyCheck == 'No': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Scipy installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) if cfg.matplotlibCheck == 'No': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Error. Check Python Matplotlib installation for the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Critical) if PluginCheck == 'Yes': # reference to QGIS interface cfg.iface = iface # reference to map canvas cfg.cnvs = iface.mapCanvas() # create the dialog cfg.dlg = SemiAutomaticClassificationPluginDialog() # reference to ui cfg.ui = cfg.dlg.ui # class dock dialog cfg.dockclassdlg = DockClassDialog(cfg.iface.mainWindow(), cfg.iface) # reference dock class ui cfg.uidc = cfg.dockclassdlg.ui # welcome dialog cfg.welcomedlg = WelcomeDialog() # spectral signature plot dialog cfg.spectralplotdlg = SpectralSignatureDialog() cfg.uisp = cfg.spectralplotdlg.ui # scatter plot dialog cfg.scatterplotdlg = ScatterPlotDialog() cfg.uiscp = cfg.scatterplotdlg.ui cfg.mx = msgs(cfg.iface) cfg.utls = Utils() cfg.SCPD = SCPDock() cfg.classPrev = ClassificationPreview(cfg.cnvs) cfg.spSigPlot = SpectralSignaturePlot() cfg.scaPlT = Scatter_Plot() cfg.multiROI = MultipleROITab() cfg.usgsLib = USGS_Spectral_Lib() cfg.acc = Accuracy() cfg.crossC = CrossClassification() cfg.bsComb = BandCombination() cfg.splitT = SplitTab() cfg.rprjRstBndsT = ReprojectRasterBands() cfg.pcaT = PcaTab() cfg.clusteringT = ClusteringTab() cfg.classSigT = ClassSignatureTab() cfg.znlSttRstT = ZonalStatRasterTab() cfg.vctRstrT = VectorToRasterTab() cfg.bst = BandsetTab() cfg.algWT = AlgWeightTab() cfg.signT = SigThresholdTab() cfg.LCSignT = LCSigThresholdTab() cfg.RGBLT = RGBListTab() cfg.bstLT = BandSetListTab() cfg.bCalc = BandCalcTab() cfg.batchT= BatchTab() cfg.clipMulti = ClipMultipleRasters() cfg.stackRstr = StackRasterBands() cfg.mosaicBS = MosaicBandSets() cfg.cloudMsk = CloudMasking() cfg.spclDstBS = SpectralDistanceBandsets() cfg.rndmFrst = ClassRandomForestTab() cfg.editRstr = EditRaster() cfg.sieveRstr = SieveRaster() cfg.ersnRstr = ErosionRaster() cfg.dltnRstr = DilationRaster() cfg.clssNghbr = NeighborPixels() cfg.downProd = DownloadProducts() cfg.landsatT = LandsatTab() cfg.ASTERT = ASTERTab() cfg.MODIST = MODISTab() cfg.sentinel1T = Sentinel1Tab() cfg.sentinel2T = Sentinel2Tab() cfg.sentinel3T = Sentinel3Tab() cfg.goesT = GOESTab() cfg.landCC = LandCoverChange() cfg.classRep = ClassReportTab() cfg.classTab = ClassificationTab() cfg.classVect = ClassToVectorTab() cfg.reclassification = ReclassificationTab() cfg.sigImport = Signature_Importer() cfg.mnlROI = ManualROI(cfg.cnvs) cfg.regionROI = RegionROI(cfg.cnvs) cfg.dwnlPrdPnt = DownloadProductPointer(cfg.cnvs) cfg.clipMultiP = ClipMultiplerastersPointer(cfg.cnvs) cfg.LCSPixel = LCSigPixel(cfg.cnvs) cfg.LCSPixel2 = LCSigPixel2(cfg.cnvs) cfg.sets = Settings() cfg.uiUtls = Ui_Utils() cfg.ipt = Input() # connect when map is clicked cfg.mnlROI.rightClicked.connect(cfg.SCPD.clckR) cfg.mnlROI.leftClicked.connect(cfg.SCPD.clckL) cfg.mnlROI.moved.connect(cfg.SCPD.movedPointer) cfg.regionROI.ROIleftClicked.connect(cfg.SCPD.pointerClickROI) cfg.regionROI.ROIrightClicked.connect(cfg.SCPD.pointerRightClickROI) cfg.regionROI.moved.connect(cfg.SCPD.movedPointer) cfg.clipMultiP.leftClicked.connect(cfg.clipMulti.pointerLeftClick) cfg.clipMultiP.rightClicked.connect(cfg.clipMulti.pointerRightClick) cfg.dwnlPrdPnt.leftClicked.connect(cfg.downProd.pointerLeftClick) cfg.dwnlPrdPnt.rightClicked.connect(cfg.downProd.pointerRightClick) cfg.classPrev.leftClicked.connect(cfg.SCPD.pointerClickPreview) cfg.classPrev.rightClicked.connect(cfg.SCPD.pointerRightClickPreview) cfg.LCSPixel.MaprightClicked.connect(cfg.LCSignT.pointerLeftClick) cfg.LCSPixel.MapleftClicked.connect(cfg.LCSignT.pointerLeftClick) cfg.LCSPixel2.MaprightClicked.connect(cfg.spSigPlot.pointerLeftClick) cfg.LCSPixel2.MapleftClicked.connect(cfg.spSigPlot.pointerLeftClick) # system variables cfg.utls.findSystemSpecs() cfg.utls.readVariables() # set font try: f, s, i = cfg.utls.readQGISVariableFont() font = cfg.QtGuiSCP.QFont() font.setFamily(f) font.setPointSize(int(s)) cfg.dlg.setFont(font) cfg.ui.menu_treeWidget.setFont(font) except: pass # initialize plugin directory cfg.plgnDir = cfg.QFileInfoSCP(cfg.qgisCoreSCP.QgsApplication.qgisUserDatabaseFilePath()).path() + '/python/plugins/' + str(__name__).split('.')[0] # locale name lclNm = cfg.QSettingsSCP().value('locale/userLocale')[0:2] self.registryKeys() if len(cfg.PythonPathSettings) > 0: mp.set_executable(cfg.PythonPathSettings) # temporary directory tmpDir = cfg.utls.getTempDirectory() cfg.ui.temp_directory_label.setText(tmpDir) # log file path cfg.logFile = cfg.tmpDir.replace('//', '/') + '/__0semiautomaticclass.log' # locale lclPth = '' if cfg.QFileInfoSCP(cfg.plgnDir).exists(): lclPth = cfg.plgnDir + '/i18n/semiautomaticclassificationplugin_' + lclNm + '.qm' if cfg.QFileInfoSCP(lclPth).exists(): trnsltr = cfg.QtCoreSCP.QTranslator() trnsltr.load(lclPth) if cfg.QtCoreSCP.qVersion() > '4.3.3': cfg.QtCoreSCP.QCoreApplication.installTranslator(trnsltr) # info cfg.sysSCPInfo = str(' SemiAutomaticClass ' + semiautomaticclassVersion() + ' - QGIS v. ' + str(cfg.QGISVer) + ' L:' + lclNm + ' - OS ' + str(cfg.sysSCPNm) + ' - 64bit =' + cfg.sysSCP64bit) # multiprocess Windows if cfg.sysSCPNm == 'Windows': mp.set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe')) # Mac OS elif cfg.sysSCPNm == 'Darwin': dPref = os.environ['PATH'].split(':') for flPref in dPref: flPrefPy = os.path.join(flPref, 'python3') # first test if os.path.isfile(flPrefPy): mp.set_executable(flPrefPy) cfg.sysSCPInfo = cfg.sysSCPInfo + ' - python path =' + flPrefPy # second test if 'library' in flPref.lower(): if os.path.isfile(flPrefPy): mp.set_executable(flPrefPy) cfg.sysSCPInfo = cfg.sysSCPInfo + ' - python path =' + flPrefPy break # GDAL config try: cfg.gdalSCP.SetConfigOption('GDAL_NUM_THREADS', str(cfg.threads)) cfg.gdalSCP.SetCacheMax(int(cfg.RAMValue * 0.3 * 1000000)) cfg.gdalSCP.SetConfigOption('GDAL_DISABLE_READDIR_ON_OPEN', 'TRUE') cfg.gdalSCP.SetConfigOption('GDAL_CACHEMAX', '4') cfg.gdalSCP.SetConfigOption('VSI_CACHE', 'FALSE') except: pass # read registry keys def registryKeys(self): ''' registry keys ''' cfg.firstInstallVal = cfg.utls.readRegistryKeys(cfg.regFirstInstall, cfg.firstInstallVal) cfg.logSetVal = cfg.utls.readRegistryKeys(cfg.regLogKey, cfg.logSetVal) cfg.downNewsVal = cfg.utls.readRegistryKeys(cfg.downNewsKey, cfg.downNewsVal) cfg.vrtRstProjVal = cfg.utls.readRegistryKeys(cfg.vrtRstProjKey, cfg.vrtRstProjVal) cfg.ROIClrVal = cfg.utls.readRegistryKeys(cfg.regROIClr, cfg.ROIClrVal) cfg.ROITrnspVal = int(cfg.utls.readRegistryKeys(cfg.regROITransp, cfg.ROITrnspVal)) cfg.outTempRastFormat = cfg.utls.readRegistryKeys(cfg.regTempRasterFormat, str(cfg.outTempRastFormat)) cfg.rasterCompression = cfg.utls.readRegistryKeys(cfg.regRasterCompression, str(cfg.rasterCompression)) cfg.parallelWritingCheck = cfg.utls.readRegistryKeys(cfg.regparallelWritingCheck, str(cfg.parallelWritingCheck)) cfg.RAMValue = int(cfg.utls.readRegistryKeys(cfg.regRAMValue, str(cfg.RAMValue))) cfg.threads = int(cfg.utls.readRegistryKeys(cfg.regThreadsValue, str(cfg.threads))) cfg.gdalPath = cfg.utls.readRegistryKeys(cfg.regGDALPathSettings, str(cfg.gdalPath)) cfg.PythonPathSettings = cfg.utls.readRegistryKeys(cfg.regPythonPathSettings, str(cfg.PythonPathSettings)) cfg.PythonModulesPathSettings = cfg.utls.readRegistryKeys(cfg.regPythonModulesPathSettings, str(cfg.PythonModulesPathSettings)) cfg.tmpDir = cfg.utls.readRegistryKeys(cfg.regTmpDir, cfg.tmpDir) cfg.fldID_class = cfg.utls.readRegistryKeys(cfg.regIDFieldName, cfg.fldID_class) cfg.fldMacroID_class = cfg.utls.readRegistryKeys(cfg.regMacroIDFieldName, cfg.fldMacroID_class) cfg.macroclassCheck = cfg.utls.readRegistryKeys(cfg.regConsiderMacroclass, cfg.macroclassCheck) cfg.sentinelAlternativeSearch = cfg.utls.readRegistryKeys(cfg.regSentinelAlternativeSearch, cfg.sentinelAlternativeSearch) cfg.LCsignatureCheckBox = cfg.utls.readRegistryKeys(cfg.regLCSignature, cfg.LCsignatureCheckBox) cfg.fldROI_info = cfg.utls.readRegistryKeys(cfg.regInfoFieldName, cfg.fldROI_info) cfg.fldROIMC_info = cfg.utls.readRegistryKeys(cfg.regMCInfoFieldName, cfg.fldROIMC_info) cfg.variableName = cfg.utls.readRegistryKeys(cfg.regVariableName, cfg.variableName) cfg.vectorVariableName = cfg.utls.readRegistryKeys(cfg.regVectorVariableName, cfg.vectorVariableName) cfg.SMTPCheck = cfg.utls.readRegistryKeys(cfg.regSMTPCheck, cfg.SMTPCheck) cfg.SMTPServer = cfg.utls.readRegistryKeys(cfg.regSMTPServer, cfg.SMTPServer) cfg.SMTPtoEmails = cfg.utls.readRegistryKeys(cfg.regSMTPtoEmails, cfg.SMTPtoEmails) cfg.SMTPUser = cfg.utls.readRegistryKeys(cfg.regSMTPUser, cfg.SMTPUser) cfg.SMTPPassword = cfg.utls.readRegistryKeys(cfg.regSMTPPassword, cfg.SMTPPassword) cfg.USGSUser = cfg.utls.readRegistryKeys(cfg.regUSGSUser, cfg.USGSUser) cfg.USGSPass = cfg.utls.readRegistryKeys(cfg.regUSGSPass, cfg.USGSPass) cfg.USGSUserASTER = cfg.utls.readRegistryKeys(cfg.regUSGSUserASTER, cfg.USGSUserASTER) cfg.USGSPassASTER = cfg.utls.readRegistryKeys(cfg.regUSGSPassASTER, cfg.USGSPassASTER) cfg.SciHubUser = cfg.utls.readRegistryKeys(cfg.regSciHubUser, cfg.SciHubUser) cfg.SciHubService = cfg.utls.readRegistryKeys(cfg.regSciHubService, cfg.SciHubService) cfg.SciHubPass = cfg.utls.readRegistryKeys(cfg.regSciHubPass, cfg.SciHubPass) cfg.sigPLRoundCharList = cfg.roundCharList cfg.scatPlRoundCharList = cfg.roundCharList cfg.grpNm = cfg.utls.readRegistryKeys(cfg.regGroupName, cfg.grpNm) cfg.rasterDataType = cfg.utls.readRegistryKeys(cfg.regRasterDataType, cfg.rasterDataType) cfg.expressionListBC = cfg.utls.readRegistryKeys(cfg.regExpressionListBC, cfg.expressionListBC) cfg.soundVal = cfg.utls.readRegistryKeys(cfg.regSound, cfg.soundVal) cfg.windowSizeW = cfg.utls.readRegistryKeys(cfg.regWindowSizeW, cfg.windowSizeW) cfg.windowSizeH = cfg.utls.readRegistryKeys(cfg.regWindowSizeH, cfg.windowSizeH) cfg.splitterSizeS = cfg.utls.readRegistryKeys(cfg.regSplitterSizeS, cfg.splitterSizeS) def initGui(self): if PluginCheck == 'Yes': try: cfg.iface.addDockWidget(cfg.QtSCP.LeftDockWidgetArea, cfg.dockclassdlg) except: msg = '' try: import scipy.stats.distributions as statdistr except: msg = 'SciPy' try: from matplotlib.ticker import MaxNLocator except: msg = 'Matplotlib' try: import numpy as np except: msg = 'NumPy' try: from osgeo import gdal except: msg = 'Gdal' if len(msg) > 0: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Semi-Automatic Classification Plugin possible missing dependecies: ' + msg), level=qgisCore.Qgis.Info) else: qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please restart QGIS for installing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info) return from .modules.modules import Modules cfg.SCPModules = Modules() cfg.SCPModules.loading() cfg.ipt.loadInputToolbar() cfg.algName = cfg.algMinDist cfg.ui.algorithm_combo.setCurrentIndex(0) # vector to raster type of conversion cfg.ui.conversion_type_combo.addItem(cfg.convCenterPixels) cfg.ui.conversion_type_combo.addItem(cfg.convAllPixelsTouch) cfg.centerOfPixels = cfg.ui.conversion_type_combo.itemText(0) ''' menu ''' cfg.ipt.loadMenu() # set plugin version cfg.ui.plugin_version_label.setText(semiautomaticclassVersion()) cfg.uidc.plugin_version_label2.setText('SCP ' + semiautomaticclassVersion()) # row height cfg.ui.download_images_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.tableWidget_band_calc.verticalHeader().setDefaultSectionSize(24) cfg.ui.landsat_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.sentinel_2_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.sentinel_2_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.ASTER_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.ASTER_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.MODIS_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.MODIS_tableWidget, [[0, 400], [1, 200], [2, 60]]) cfg.ui.LCS_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.signature_threshold_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.point_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.ui.log_tableWidget.verticalHeader().setDefaultSectionSize(24) cfg.utls.setColumnWidthList(cfg.ui.log_tableWidget, [[0, 100], [1, 200], [2, 800]]) # spectral signature plot list cfg.utls.insertTableColumn(cfg.uisp.signature_list_plot_tableWidget, 6, cfg.tableColString, None, 'Yes') cfg.utls.sortTableColumn(cfg.uisp.signature_list_plot_tableWidget, 3) cfg.utls.setColumnWidthList(cfg.uisp.signature_list_plot_tableWidget, [[0, 30], [1, 40], [2, 100], [3, 40], [4, 100], [5, 30]]) try: cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(2, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(4, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass cfg.SCPD.clearTree() # passwords cfg.ui.smtp_password_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_usgs_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_usgs_lineEdit_2.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) cfg.ui.password_scihub_lineEdit.setEchoMode(cfg.QtWidgetsSCP.QLineEdit.Password) # scatter plot list cfg.utls.insertTableColumn(cfg.uiscp.scatter_list_plot_tableWidget, 6, cfg.tableColString, None, 'Yes') cfg.utls.sortTableColumn(cfg.uiscp.scatter_list_plot_tableWidget, 3) cfg.utls.setColumnWidthList(cfg.uiscp.scatter_list_plot_tableWidget, [[0, 30], [1, 40], [2, 100], [3, 40], [4, 100], [5, 30]]) try: cfg.uiscp.scatter_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(2, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.uiscp.scatter_list_plot_tableWidget.horizontalHeader().setSectionResizeMode(4, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass # signature threshold cfg.utls.insertTableColumn(cfg.ui.signature_threshold_tableWidget, 7, cfg.tableColString, None, 'Yes') cfg.utls.setColumnWidthList(cfg.ui.signature_threshold_tableWidget, [[4, 100], [5, 100], [6, 100]]) try: cfg.ui.signature_threshold_tableWidget.horizontalHeader().setSectionResizeMode(1, cfg.QtWidgetsSCP.QHeaderView.Stretch) cfg.ui.signature_threshold_tableWidget.horizontalHeader().setSectionResizeMode(3, cfg.QtWidgetsSCP.QHeaderView.Stretch) except: pass # product download tab cfg.utls.setColumnWidthList(cfg.ui.download_images_tableWidget, [[0, 100], [1, 400]]) # USGS spectral lbrary cfg.usgsLib.addSpectralLibraryToCombo(cfg.usgs_lib_list) cfg.usgs_C1p = cfg.plgnDir + '/' + cfg.usgs_C1p cfg.usgs_C2p = cfg.plgnDir + '/' + cfg.usgs_C2p cfg.usgs_C3p = cfg.plgnDir + '/' + cfg.usgs_C3p cfg.usgs_C4p = cfg.plgnDir + '/' + cfg.usgs_C4p cfg.usgs_C5p = cfg.plgnDir + '/' + cfg.usgs_C5p cfg.usgs_C6p = cfg.plgnDir + '/' + cfg.usgs_C6p cfg.usgs_C7p = cfg.plgnDir + '/' + cfg.usgs_C7p # band calc expression cfg.bCalc.createExpressionList(cfg.expressionListBC) cfg.batchT.addFunctionsToTable(cfg.functionNames) cfg.bst.addSatelliteToCombo(cfg.satWlList) cfg.downProd.addSatelliteToCombo(cfg.downProductList) cfg.scaPlT.addColormapToCombo(cfg.scatterColorMap) cfg.bst.addUnitToCombo(cfg.unitList) cfg.SCPD.previewSize() # set log state if cfg.logSetVal == 'Yes': cfg.ui.log_checkBox.setCheckState(2) cfg.mx.msg19() elif cfg.logSetVal == 'No': cfg.ui.log_checkBox.setCheckState(0) # set download news state cfg.ui.download_news_checkBox.setCheckState(int(cfg.downNewsVal)) # set download news state cfg.ui.virtual_raster_load_checkBox.setCheckState(int(cfg.vrtRstProjVal)) # set raster format if cfg.outTempRastFormat == 'VRT': cfg.ui.virtual_raster_checkBox.setCheckState(2) elif cfg.outTempRastFormat == 'GTiff': cfg.ui.virtual_raster_checkBox.setCheckState(0) # set raster compression if cfg.rasterCompression == 'Yes': cfg.ui.raster_compression_checkBox.setCheckState(2) elif cfg.rasterCompression == 'No': cfg.ui.raster_compression_checkBox.setCheckState(0) # set raster compression if cfg.parallelWritingCheck == 'Yes': cfg.ui.parallel_writing_checkBox.setCheckState(2) elif cfg.parallelWritingCheck == 'No': cfg.ui.parallel_writing_checkBox.setCheckState(0) # set SMTP checkbox state cfg.ui.smtp_checkBox.setCheckState(int(cfg.SMTPCheck)) # set sound state cfg.ui.sound_checkBox.setCheckState(int(cfg.soundVal)) # connect to project loaded cfg.qgisCoreSCP.QgsProject.instance().readProject.connect(self.projectLoaded) cfg.qgisCoreSCP.QgsProject.instance().projectSaved.connect(self.projectSaved) cfg.iface.newProjectCreated.connect(self.newProjectLoaded) #cfg.qgisCoreSCP.QgsProject.instance().readMapLayer.connect(self.test) #cfg.qgisCoreSCP.QgsProject.instance().layerLoaded.connect(self.test) ''' Help tab ''' cfg.utls.makeDirectory(cfg.tmpDir + '/_images/') cfg.ui.help_textBrowser.setSearchPaths([cfg.tmpDir]) ''' Docks ''' # set ROI color cfg.ui.change_color_Button.setStyleSheet('background-color :' + cfg.ROIClrVal) # set ROI transparency cfg.ui.transparency_Slider.setValue(cfg.ROITrnspVal) # set RAM value cfg.ui.RAM_spinBox.setValue(cfg.RAMValue) # set CPU value cfg.ui.CPU_spinBox.setValue(cfg.threads) # macroclass checkbox if cfg.macroclassCheck == 'No': cfg.ui.macroclass_checkBox.setCheckState(0) cfg.ui.class_checkBox.blockSignals(True) cfg.ui.class_checkBox.setCheckState(2) cfg.ui.class_checkBox.blockSignals(False) elif cfg.macroclassCheck == 'Yes': cfg.ui.macroclass_checkBox.setCheckState(2) cfg.ui.class_checkBox.blockSignals(True) cfg.ui.class_checkBox.setCheckState(0) cfg.ui.class_checkBox.blockSignals(False) # macroclass checkbox if cfg.macroclassCheckRF == 'No': cfg.ui.macroclass_checkBox_rf.setCheckState(0) cfg.ui.class_checkBox_rf.blockSignals(True) cfg.ui.class_checkBox_rf.setCheckState(2) cfg.ui.class_checkBox_rf.blockSignals(False) elif cfg.macroclassCheckRF == 'Yes': cfg.ui.macroclass_checkBox_rf.setCheckState(2) cfg.ui.class_checkBox_rf.blockSignals(True) cfg.ui.class_checkBox_rf.setCheckState(0) cfg.ui.class_checkBox_rf.blockSignals(False) # LC signature checkbox if cfg.LCsignatureCheckBox == 'No': cfg.ui.LC_signature_checkBox.setCheckState(0) elif cfg.LCsignatureCheckBox == 'Yes': cfg.ui.LC_signature_checkBox.setCheckState(2) try: # set SMTP server cfg.ui.smtp_server_lineEdit.setText(cfg.SMTPServer) # set SMTP to emails cfg.ui.to_email_lineEdit.setText(cfg.SMTPtoEmails) # set SMTP user and password cfg.ui.smtp_user_lineEdit.setText(cfg.SMTPUser) if cfg.SMTPPassword is not None: SMTPPsw = cfg.utls.decryptPassword(cfg.SMTPPassword[2:-1]) cfg.ui.smtp_password_lineEdit.setText(str(SMTPPsw)[2:-1]) cfg.SMTPPassword = str(SMTPPsw)[2:-1] # set USGS user and password cfg.ui.user_usgs_lineEdit.setText(cfg.USGSUser) if cfg.USGSPass is not None: USGSPsw = cfg.utls.decryptPassword(cfg.USGSPass[2:-1]) cfg.ui.password_usgs_lineEdit.setText(str(USGSPsw)[2:-1]) cfg.ui.user_usgs_lineEdit_2.setText(cfg.USGSUserASTER) if cfg.USGSPassASTER is not None: USGSPsw2 = cfg.utls.decryptPassword(cfg.USGSPassASTER[2:-1]) cfg.ui.password_usgs_lineEdit_2.setText(str(USGSPsw2)[2:-1]) # set SciHub user and password cfg.ui.sentinel_service_lineEdit.setText(cfg.SciHubService) cfg.ui.user_scihub_lineEdit.setText(cfg.SciHubUser) if cfg.SciHubPass is not None: sciHubPsw = cfg.utls.decryptPassword(cfg.SciHubPass[2:-1]) cfg.ui.password_scihub_lineEdit.setText(str(sciHubPsw)[2:-1]) except Exception as err: # logger cfg.utls.logCondition(str(__name__) + '-' + (cfg.inspectSCP.stack()[0][3])+ ' ' + cfg.utls.lineOfCode(), ' ERROR exception: ' + str(err)) cfg.ui.sentinel2_alternative_search_checkBox.blockSignals(True) cfg.ui.sentinel2_alternative_search_checkBox.setCheckState(int(cfg.sentinelAlternativeSearch)) cfg.ui.sentinel2_alternative_search_checkBox.blockSignals(False) ''' SCP tab ''' cfg.ui.SCP_tabs.currentChanged.connect(cfg.ipt.SCPTabChanged) cfg.ui.main_tabWidget.currentChanged.connect(cfg.ipt.mainTabChanged) # hide tabs cfg.ui.SCP_tabs.setStyleSheet('QTabBar::tab {padding: 0px; max-height: 0px;}') # set window size cfg.dlg.resize(int(cfg.windowSizeW), int(cfg.windowSizeH)) cfg.ui.widget.setMinimumSize(cfg.QtCoreSCP.QSize(50, 0)) cfg.ui.widget.setMaximumSize(cfg.QtCoreSCP.QSize(400, 16777215)) cfg.ui.splitter.setSizes(eval(cfg.splitterSizeS)) cfg.ui.splitter.splitterMoved.connect(cfg.ipt.movedSplitter) cfg.ui.menu_treeWidget.itemSelectionChanged.connect(cfg.ipt.menuIndex) cfg.ui.f_filter_lineEdit.textChanged.connect(cfg.ipt.filterTree) ''' Multiple ROI tab ''' # connect to add point cfg.ui.add_point_pushButton.clicked.connect(cfg.multiROI.addPointToTable) # connect to create random points cfg.ui.add_random_point_pushButton.clicked.connect(cfg.multiROI.createRandomPoint) # connect to remove point cfg.ui.remove_point_pushButton.clicked.connect(cfg.multiROI.removePointFromTable) # connect to save point ROIs cfg.ui.save_point_rois_pushButton.clicked.connect(cfg.multiROI.createROIfromPoint) # connect to import points cfg.ui.import_point_list_pushButton.clicked.connect(cfg.multiROI.importPoints) # connect to export point list cfg.ui.export_point_list_pushButton.clicked.connect(cfg.multiROI.exportPointList) # connect the signature calculation checkBox 2 cfg.ui.signature_checkBox2.stateChanged.connect(cfg.multiROI.signatureCheckbox2) # connect to text changed cfg.ui.stratified_lineEdit.textChanged.connect(cfg.multiROI.textChanged) ''' Import spectral signature tab ''' # connect the import library cfg.ui.open_library_pushButton.clicked.connect(cfg.SCPD.openLibraryFile) # connect the open shapefile cfg.ui.open_shapefile_pushButton.clicked.connect(cfg.sigImport.openShapefileI) # connect the import shapefile cfg.ui.import_shapefile_pushButton.clicked.connect(cfg.utls.importShapefile) # connect the chapter changed cfg.ui.usgs_chapter_comboBox.currentIndexChanged.connect(cfg.usgsLib.chapterChanged) # connect the library changed cfg.ui.usgs_library_comboBox.currentIndexChanged.connect(cfg.usgsLib.libraryChanged) # connect the close library cfg.ui.add_usgs_library_pushButton.clicked.connect(cfg.usgsLib.addSignatureToList) ''' Export spectral signature tab ''' # connect to export signature to SCP file cfg.ui.export_SCP_pushButton.clicked.connect(cfg.SCPD.exportSignatureFile) cfg.ui.export_SHP_pushButton.clicked.connect(cfg.SCPD.exportSignatureShapefile) # connect to export signature to CSV cfg.ui.export_CSV_library_toolButton.clicked.connect(cfg.SCPD.exportToCSVLibrary) ''' Algorithm weight tab ''' cfg.ui.reset_weights_pushButton.clicked.connect(cfg.algWT.resetWeights) cfg.ui.set_weight_value_pushButton.clicked.connect(cfg.algWT.setWeights) ''' Signature threshold tab ''' # edited cell cfg.ui.signature_threshold_tableWidget.cellChanged.connect(cfg.signT.editedThresholdTable) cfg.ui.reset_threshold_pushButton.clicked.connect(cfg.signT.resetThresholds) cfg.ui.automatic_threshold_pushButton.clicked.connect(cfg.signT.setAllWeightsVariance) cfg.ui.set_threshold_value_pushButton.clicked.connect(cfg.signT.setThresholds) cfg.ui.signature_threshold_tableWidget.horizontalHeader().sectionClicked.connect(cfg.signT.orderedTable) ''' LC Signature threshold tab ''' cfg.ui.LCS_tableWidget.cellChanged.connect(cfg.LCSignT.editedThresholdTable) cfg.ui.LCS_tableWidget.horizontalHeader().sectionClicked.connect(cfg.LCSignT.orderedTable) cfg.ui.automatic_threshold_pushButton_2.clicked.connect(cfg.LCSignT.setAllWeightsVariance) # connect to activate pointer cfg.ui.LCS_pointerButton.clicked.connect(cfg.LCSignT.pointerActive) cfg.ui.LCS_ROI_button.clicked.connect(cfg.LCSignT.ROIThreshold) cfg.ui.set_min_max_Button.clicked.connect(cfg.LCSignT.setMinimumMaximum) # connect the include signature checkBox cfg.ui.LCS_include_checkBox.stateChanged.connect(cfg.LCSignT.includeCheckbox) cfg.ui.LCS_cut_checkBox.stateChanged.connect(cfg.LCSignT.cutCheckbox) # add to spectral signature plot cfg.ui.signature_spectral_plot_toolButton_2.clicked.connect(cfg.LCSignT.addSignatureToSpectralPlot) ''' RGB List tab ''' cfg.ui.RGB_tableWidget.cellChanged.connect(cfg.RGBLT.editedTable) cfg.ui.add_RGB_pushButton.clicked.connect(cfg.RGBLT.addRGBToTable) cfg.ui.remove_RGB_toolButton.clicked.connect(cfg.RGBLT.removeRGBFromTable) cfg.ui.sort_by_name_toolButton_2.clicked.connect(cfg.RGBLT.sortRGBName) cfg.ui.clear_RGB_list_toolButton.clicked.connect(cfg.RGBLT.clearTableAction) cfg.ui.move_up_toolButton_3.clicked.connect(cfg.RGBLT.moveUpRGB) cfg.ui.move_down_toolButton_3.clicked.connect(cfg.RGBLT.moveDownRGB) cfg.ui.all_RGB_list_toolButton.clicked.connect(cfg.RGBLT.allRGBListAction) cfg.ui.export_RGB_List_toolButton.clicked.connect(cfg.RGBLT.exportRGBList) cfg.ui.import_RGB_List_toolButton.clicked.connect(cfg.RGBLT.importRGB) ''' Band set List tab ''' cfg.ui.add_bandset_pushButton.clicked.connect(cfg.bstLT.addBandSetToTable) cfg.ui.rgb_toolButton.clicked.connect(cfg.bstLT.displayRGB) cfg.ui.remove_bandset_toolButton.clicked.connect(cfg.bstLT.removeBandSetFromTable) cfg.ui.move_up_toolButton_4.clicked.connect(cfg.bstLT.moveUpBandset) cfg.ui.move_down_toolButton_4.clicked.connect(cfg.bstLT.moveDownBandset) # connect to double click cfg.ui.band_set_list_tableWidget.doubleClicked.connect(cfg.bstLT.doubleClick) cfg.ui.export_bandset_List_toolButton.clicked.connect(cfg.bstLT.exportList) cfg.ui.import_bandset_List_toolButton.clicked.connect(cfg.bstLT.importList) # connect to filter cfg.ui.band_set_filter_lineEdit.textChanged.connect(cfg.bstLT.filterTable) ''' Download product tab ''' # connect to find images button cfg.ui.find_images_toolButton.clicked.connect(cfg.downProd.findImages) cfg.ui.selectUL_toolButton_3.clicked.connect(cfg.downProd.pointerActive) # connect to display button cfg.ui.toolButton_display.clicked.connect(cfg.downProd.displayImages) cfg.ui.toolButton_OSM.clicked.connect(cfg.downProd.displayOSM) cfg.ui.remove_image_toolButton.clicked.connect(cfg.downProd.removeImageFromTable) cfg.ui.clear_table_toolButton.clicked.connect(cfg.downProd.clearTable) cfg.ui.download_images_Button.clicked.connect(cfg.downProd.downloadImages) cfg.ui.export_links_Button.clicked.connect(cfg.downProd.exportLinks) cfg.ui.import_table_pushButton.clicked.connect(cfg.downProd.importTableText) cfg.ui.export_table_pushButton.clicked.connect(cfg.downProd.exportTableText) cfg.ui.check_toolButton.clicked.connect(cfg.downProd.checkAllBands) cfg.ui.show_area_radioButton_2.clicked.connect(cfg.downProd.showHideArea) cfg.ui.remember_user_checkBox_2.stateChanged.connect(cfg.downProd.rememberUserCheckbox) cfg.ui.user_usgs_lineEdit.editingFinished.connect(cfg.downProd.rememberUser) cfg.ui.password_usgs_lineEdit.editingFinished.connect(cfg.downProd.rememberUser) cfg.ui.reset_sentinel_service_toolButton.clicked.connect(cfg.downProd.resetService) cfg.ui.remember_user_checkBox.stateChanged.connect(cfg.downProd.rememberUserCheckboxSentinel2) cfg.ui.sentinel2_alternative_search_checkBox.stateChanged.connect(cfg.downProd.alternativeCheckboxSentinel2) cfg.ui.user_scihub_lineEdit.editingFinished.connect(cfg.downProd.rememberUserSentinel2) cfg.ui.password_scihub_lineEdit.editingFinished.connect(cfg.downProd.rememberUserSentinel2) cfg.ui.sentinel_service_lineEdit.editingFinished.connect(cfg.downProd.rememberService) cfg.ui.check_toolButton_2.clicked.connect(cfg.downProd.checkAllBandsSentinel2) cfg.ui.check_toolButton_3.clicked.connect(cfg.downProd.checkAllBandsSentinel3) cfg.ui.check_toolButton_4.clicked.connect(cfg.downProd.checkAllBandsGOES) cfg.ui.remember_user_checkBox_3.stateChanged.connect(cfg.downProd.rememberUserCheckboxEarthdata) cfg.ui.user_usgs_lineEdit_2.editingFinished.connect(cfg.downProd.rememberUserEarthdata) cfg.ui.password_usgs_lineEdit_2.editingFinished.connect(cfg.downProd.rememberUserEarthdata) cfg.ui.download_images_tableWidget.itemSelectionChanged.connect(cfg.downProd.tableClick) # connect to filter cfg.ui.products_filter_lineEdit.textChanged.connect(cfg.downProd.filterTable) ''' Classification dock ''' # button band set cfg.uidc.bandset_toolButton.clicked.connect(cfg.utls.bandSetTab) cfg.uidc.band_processing_toolButton.clicked.connect(cfg.utls.bandProcessingTab) cfg.uidc.preprocessing_toolButton_2.clicked.connect(cfg.utls.preProcessingTab) cfg.uidc.postprocessing_toolButton_2.clicked.connect(cfg.utls.postProcessingTab) cfg.uidc.bandcalc_toolButton_2.clicked.connect(cfg.utls.bandCalcTab) cfg.uidc.download_images_toolButton_2.clicked.connect(cfg.utls.selectTabDownloadImages) cfg.uidc.basic_tools_toolButton.clicked.connect(cfg.utls.basicToolsTab) cfg.uidc.batch_toolButton.clicked.connect(cfg.utls.batchTab) cfg.uidc.userguide_toolButton_2.clicked.connect(cfg.ipt.quickGuide) cfg.uidc.help_toolButton_2.clicked.connect(cfg.ipt.askHelp) cfg.uidc.support_toolButton.clicked.connect(cfg.ipt.supportSCP) cfg.uidc.tabWidget_dock.currentChanged.connect(cfg.ipt.dockTabChanged) # button new input cfg.uidc.button_new_input.clicked.connect(cfg.SCPD.createInput) # button reset cfg.uidc.button_reset_input.clicked.connect(cfg.SCPD.resetInput) # connect to save to shapefile cfg.uidc.button_Save_ROI.clicked.connect(cfg.SCPD.saveROItoShapefile) # connect to undo save ROI cfg.uidc.undo_save_Button.clicked.connect(cfg.SCPD.undoSaveROI) cfg.uidc.redo_save_Button.clicked.connect(cfg.SCPD.redoSaveROI) # connect the signature calculation checkBox cfg.uidc.signature_checkBox.stateChanged.connect(cfg.SCPD.signatureCheckbox) cfg.uidc.scatterPlot_toolButton.clicked.connect(cfg.SCPD.addROIToScatterPlot) # connect the save input checkBox cfg.uidc.save_input_checkBox.stateChanged.connect(cfg.SCPD.saveInputCheckbox) # connect to open training file cfg.uidc.trainingFile_toolButton.clicked.connect(cfg.SCPD.openTrainingFile) # connect to export signature list file cfg.uidc.export_signature_list_toolButton.clicked.connect(cfg.utls.exportSignaturesTab) # connect to import library file cfg.uidc.import_library_toolButton.clicked.connect(cfg.utls.importSignaturesTab) # add to spectral signature plot cfg.uidc.signature_spectral_plot_toolButton.clicked.connect(cfg.SCPD.addSignatureToSpectralPlot) # connect to filter cfg.uidc.ROI_filter_lineEdit.textChanged.connect(cfg.SCPD.filterTree) # connect to delete signature cfg.uidc.delete_Signature_Button.clicked.connect(cfg.SCPD.removeSelectedSignatures) # connect to merge signatures cfg.uidc.merge_signature_toolButton.clicked.connect(cfg.SCPD.mergeSelectedSignatures) cfg.uidc.calculate_signature_toolButton.clicked.connect(cfg.SCPD.calculateSignatures) # connect the ROI macroclass ID cfg.uidc.ROI_Macroclass_ID_spin.valueChanged.connect(cfg.SCPD.setROIMacroID) # connect the ROI Macroclass cfg.uidc.ROI_Macroclass_line.editingFinished.connect(cfg.SCPD.roiMacroclassInfo) # custom expression cfg.uidc.custom_index_lineEdit.editingFinished.connect(cfg.SCPD.customExpressionEdited) # connect the ROI Class ID cfg.uidc.ROI_ID_spin.valueChanged.connect(cfg.SCPD.setROIID) # connect the ROI Class cfg.uidc.ROI_Class_line.editingFinished.connect(cfg.SCPD.roiClassInfo) # connect the rapid ROI checkBox cfg.uidc.display_cursor_checkBox.stateChanged.connect(cfg.SCPD.vegetationIndexCheckbox) # connect the vegetation index combo cfg.uidc.vegetation_index_comboBox.currentIndexChanged.connect(cfg.SCPD.vegetationIndexName) # connect the rapid ROI checkBox cfg.uidc.rapid_ROI_checkBox.stateChanged.connect(cfg.SCPD.rapidROICheckbox) # connect the vegetation index display checkbox cfg.uidc.rapidROI_band_spinBox.valueChanged.connect(cfg.SCPD.rapidROIband) ''' Classification tab ''' # connect to algorithm weight button cfg.ui.algorithm_weight_button.clicked.connect(cfg.utls.algorithmBandWeightTab) # connect to threshold button cfg.ui.algorithm_threshold_button.clicked.connect(cfg.utls.signatureThresholdTab) # connect to LCS threshold button cfg.ui.LC_signature_button.clicked.connect(cfg.utls.LCSThresholdTab) # connect the algorithm combo cfg.ui.algorithm_combo.currentIndexChanged.connect(cfg.classTab.algorithmName) # connect the algorithm threshold cfg.ui.alg_threshold_SpinBox.valueChanged.connect(cfg.classTab.algorithmThreshold) # connect to run classification cfg.ui.button_classification.clicked.connect(cfg.classTab.runClassificationAction) cfg.ui.classification.clicked.connect(cfg.batchT.setFunctionButton) # connect the macroclass checkBox cfg.ui.macroclass_checkBox.stateChanged.connect(cfg.classTab.macroclassCheckbox) cfg.ui.class_checkBox.stateChanged.connect(cfg.classTab.classCheckbox) # connect the LC signature checkBox cfg.ui.LC_signature_checkBox.stateChanged.connect(cfg.classTab.LCSignature_Checkbox) # connect the mask checkBox cfg.ui.mask_checkBox.stateChanged.connect(cfg.classTab.maskCheckbox) # connect to reset qml button cfg.ui.resetQmlButton.clicked.connect(cfg.classTab.resetQmlStyle) # connect to reset mask button cfg.ui.resetMaskButton.clicked.connect(cfg.classTab.resetMask) # connect to qml button cfg.ui.qml_Button.clicked.connect(cfg.classTab.selectQmlStyle) ''' Spectral signature plot ''' # connect the sigma checkBox cfg.uisp.sigma_checkBox.stateChanged.connect(cfg.spSigPlot.sigmaCheckbox) cfg.uisp.band_lines_checkBox.stateChanged.connect(cfg.spSigPlot.refreshPlot) cfg.uisp.grid_checkBox.stateChanged.connect(cfg.spSigPlot.refreshPlot) # connect to remove signature button cfg.uisp.remove_Signature_Button.clicked.connect(cfg.spSigPlot.removeSignature) # connect to calculate spectral distances button cfg.uisp.calculate_spectral_distance_Button.clicked.connect(cfg.spSigPlot.calculateSpectralDistances) # connect to fit to axes cfg.uisp.fitToAxes_pushButton.clicked.connect(cfg.spSigPlot.fitPlotToAxes) # connect to plot spinbox cfg.uisp.plot_text_spinBox.valueChanged.connect(cfg.spSigPlot.setPlotLegendLenght) # connect to value range cfg.uisp.value_range_pushButton.clicked.connect(cfg.spSigPlot.editValueRange) cfg.uisp.set_min_max_Button.clicked.connect(cfg.spSigPlot.setMinimumMaximum) cfg.uisp.automatic_threshold_pushButton_2.clicked.connect(cfg.spSigPlot.setAllWeightsVariance) # connect to activate pointer cfg.uisp.LCS_pointerButton_2.clicked.connect(cfg.spSigPlot.pointerActive) cfg.uisp.LCS_ROI_button_2.clicked.connect(cfg.spSigPlot.ROIThreshold) # undo threshold cfg.uisp.undo_threshold_Button.clicked.connect(cfg.spSigPlot.undoThreshold) # connect the include signature checkBox cfg.uisp.LCS_include_checkBox_2.stateChanged.connect(cfg.spSigPlot.includeCheckbox) cfg.uisp.LCS_cut_checkBox_2.stateChanged.connect(cfg.spSigPlot.cutCheckbox) # connect to add to signature list cfg.uisp.add_signature_list_pushButton.clicked.connect(cfg.spSigPlot.addToSignatureList) # connect to save plot cfg.uisp.save_plot_pushButton.clicked.connect(cfg.spSigPlot.savePlot) # connect to edited cell cfg.uisp.signature_list_plot_tableWidget.cellChanged.connect(cfg.spSigPlot.editedCell) cfg.uisp.signature_list_plot_tableWidget.horizontalHeader().sectionClicked.connect(cfg.spSigPlot.orderedTable) # connect to signature plot list double click cfg.uisp.signature_list_plot_tableWidget.doubleClicked.connect(cfg.spSigPlot.signatureListDoubleClick) ''' Scatter plot tab ''' # connect to scatter plot button cfg.uiscp.scatter_ROI_Button.clicked.connect(cfg.scaPlT.scatterPlotCalc) # connect to Band X spinbox cfg.uiscp.bandX_spinBox.valueChanged.connect(cfg.scaPlT.bandXPlot) # connect to Band Y spinbox cfg.uiscp.bandY_spinBox.valueChanged.connect(cfg.scaPlT.bandYPlot) # connect double click ROI list to zoom cfg.uiscp.scatter_list_plot_tableWidget.doubleClicked.connect(cfg.scaPlT.scatterPlotDoubleClick) # connect to edited cell cfg.uiscp.scatter_list_plot_tableWidget.cellChanged.connect(cfg.scaPlT.editedCell) # connect to remove signature button cfg.uiscp.remove_Signature_Button.clicked.connect(cfg.scaPlT.removeScatter) # connect to save plot cfg.uiscp.save_plot_pushButton_2.clicked.connect(cfg.scaPlT.savePlot) # connect to fit to axes cfg.uiscp.fitToAxes_pushButton_2.clicked.connect(cfg.scaPlT.fitPlotToAxes) cfg.uiscp.plot_temp_ROI_pushButton.clicked.connect(cfg.scaPlT.addTempROIToScatterPlot) cfg.uiscp.plot_display_pushButton.clicked.connect(cfg.scaPlT.addDisplayToScatterPlot) cfg.uiscp.plot_image_pushButton.clicked.connect(cfg.scaPlT.addImageToScatterPlot) # connect to change color button cfg.uiscp.polygon_color_Button.clicked.connect(cfg.scaPlT.changePolygonColor) cfg.uiscp.plot_color_ROI_pushButton.clicked.connect(cfg.scaPlT.colorPlot) # connect to select value range cfg.uiscp.draw_polygons_pushButton.clicked.connect(cfg.scaPlT.selectRange) cfg.uiscp.remove_polygons_pushButton.clicked.connect(cfg.scaPlT.removePolygons) cfg.uiscp.show_polygon_area_pushButton.clicked.connect(cfg.scaPlT.showScatterPolygonArea) cfg.uiscp.add_signature_list_pushButton.clicked.connect(cfg.scaPlT.addToSignatureList) ''' Band set tab ''' # connect to refresh button cfg.ui.toolButton_reload_3.clicked.connect(cfg.bst.rasterBandName) # button reload cfg.ui.toolButton_reload.clicked.connect(cfg.ipt.checkRefreshRasterLayer) # connect to add file button cfg.ui.toolButton_input_raster.clicked.connect(cfg.bst.addFileToBandSetAction) # connect to add raster band button cfg.ui.add_raster_bands_Button.clicked.connect(cfg.bst.addBandToSet) # connect to select all bands button cfg.ui.select_all_bands_Button.clicked.connect(cfg.bst.selectAllBands) # connect to clear band set button cfg.ui.clear_bandset_toolButton.clicked.connect(cfg.bst.clearBandSetAction) # connect to move up band button cfg.ui.move_up_toolButton.clicked.connect(cfg.bst.moveUpBand) # connect to move down band button cfg.ui.move_down_toolButton.clicked.connect(cfg.bst.moveDownBand) # connect to sort by name button cfg.ui.sort_by_name_toolButton.clicked.connect(cfg.bst.sortBandName) # connect to remove band button cfg.ui.remove_toolButton.clicked.connect(cfg.bst.removeBand) # connect add band set cfg.ui.add_band_set_toolButton.clicked.connect(cfg.bst.addBandSetTabAction) # connect to changed tab cfg.ui.Band_set_tabWidget.currentChanged.connect(cfg.bst.tabBandSetChanged) # connect close tab cfg.ui.Band_set_tabWidget.tabCloseRequested.connect(cfg.bst.closeBandSetTab) # combo layer cfg.ui.image_raster_name_combo.currentIndexChanged.connect(cfg.bst.rasterLayerName) # connect to import band set button cfg.ui.import_bandset_toolButton.clicked.connect(cfg.bst.importBandSet) # connect to export band set button cfg.ui.export_bandset_toolButton.clicked.connect(cfg.bst.exportBandSet) # connect to satellite wavelength combo cfg.ui.wavelength_sat_combo.currentIndexChanged.connect(cfg.bst.satelliteWavelength) # connect to unit combo cfg.ui.unit_combo.currentIndexChanged.connect(cfg.bst.setBandUnit) # connect to date edit cfg.ui.bandset_dateEdit.dateChanged.connect(cfg.bst.setBandsetDate) # connect to band set process button cfg.ui.band_set_process_toolButton.clicked.connect(cfg.bst.performBandSetTools) # connect to filter cfg.ui.bands_filter_lineEdit.textChanged.connect(cfg.bst.filterTable) ''' Pre processing tab ''' ''' Clip multiple rasters ''' # connect to clip button cfg.ui.clip_Button.clicked.connect(cfg.clipMulti.clipRastersAction) cfg.ui.clip_multiple_rasters.clicked.connect(cfg.batchT.setFunctionButton) # connect to activate UL pointer cfg.ui.selectUL_toolButton.clicked.connect(cfg.clipMulti.pointerActive) # connect to refresh shape button cfg.ui.toolButton_reload_8.clicked.connect(cfg.clipMulti.refreshShapeClip) cfg.ui.show_area_radioButton_3.clicked.connect(cfg.clipMulti.showHideArea) cfg.ui.shapefile_checkBox.stateChanged.connect(cfg.clipMulti.checkboxShapeChanged) cfg.ui.temporary_ROI_checkBox.stateChanged.connect(cfg.clipMulti.checkboxTempROIChanged) # connect the shapefile combo cfg.ui.shapefile_comboBox.currentIndexChanged.connect(cfg.clipMulti.referenceLayerName) ''' Stack raster bands ''' # connect to stack button cfg.ui.stack_Button.clicked.connect(cfg.stackRstr.stackAction) cfg.ui.stack_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' Spectral change band sets ''' # connect to calculate button cfg.ui.spectral_distance_bandsets_toolButton.clicked.connect(cfg.spclDstBS.calculateDistanceAction) cfg.ui.spectral_distance.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.min_distance_radioButton_2.clicked.connect(cfg.spclDstBS.radioMinDistChanged) cfg.ui.spectral_angle_map_radioButton_2.clicked.connect(cfg.spclDstBS.radioSAMChanged) ''' Mosaic band sets ''' # connect to mosaic button cfg.ui.mosaic_bandsets_toolButton.clicked.connect(cfg.mosaicBS.mosaicAction) cfg.ui.mosaic_bandsets.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.mosaic_band_sets_lineEdit.textChanged.connect(cfg.mosaicBS.textChanged) ''' Cloud masking ''' # connect to mask button cfg.ui.cloud_mask_toolButton.clicked.connect(cfg.cloudMsk.maskAction) cfg.ui.cloud_masking.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.cloud_mask_classes_lineEdit.textChanged.connect(cfg.cloudMsk.textChanged) # connect to refresh button cfg.ui.toolButton_reload_23.clicked.connect(cfg.utls.refreshClassificationLayer) ''' ASTER tab ''' # connect to input button cfg.ui.toolButton_directoryInput_ASTER.clicked.connect(cfg.ASTERT.inputASTER) cfg.ui.ASTER_tableWidget.cellChanged.connect(cfg.ASTERT.editedCell) cfg.ui.earth_sun_dist_lineEdit_2.textChanged.connect(cfg.ASTERT.editedEarthSunDist) cfg.ui.sun_elev_lineEdit_2.textChanged.connect(cfg.ASTERT.editedSunElevation) cfg.ui.date_lineEdit_2.textChanged.connect(cfg.ASTERT.editedDate) cfg.ui.pushButton_Conversion_3.clicked.connect(cfg.ASTERT.performASTERCorrection) cfg.ui.aster_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band_2.clicked.connect(cfg.ASTERT.removeHighlightedBand) ''' MODIS tab ''' # connect to input button cfg.ui.toolButton_directoryInput_MODIS.clicked.connect(cfg.MODIST.inputMODIS) cfg.ui.MODIS_tableWidget.cellChanged.connect(cfg.MODIST.editedCell) cfg.ui.pushButton_Conversion_4.clicked.connect(cfg.MODIST.performMODISConversion) cfg.ui.modis_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band_3.clicked.connect(cfg.MODIST.removeHighlightedBand) ''' Landsat tab ''' # connect to input button cfg.ui.toolButton_directoryInput.clicked.connect(cfg.landsatT.inputLandsat) cfg.ui.toolButton_directoryInput_MTL.clicked.connect(cfg.landsatT.inputMTL) cfg.ui.pushButton_Conversion.clicked.connect(cfg.landsatT.performLandsatCorrection) cfg.ui.landsat_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.pushButton_remove_band.clicked.connect(cfg.landsatT.removeHighlightedBand) cfg.ui.landsat_tableWidget.cellChanged.connect(cfg.landsatT.editedCell) cfg.ui.earth_sun_dist_lineEdit.textChanged.connect(cfg.landsatT.editedEarthSunDist) cfg.ui.sun_elev_lineEdit.textChanged.connect(cfg.landsatT.editedSunElevation) cfg.ui.date_lineEdit.textChanged.connect(cfg.landsatT.editedDate) cfg.ui.satellite_lineEdit.textChanged.connect(cfg.landsatT.editedSatellite) ''' Sentinel-1 tab ''' # connect to input button cfg.ui.S1_toolButton_fileInput.clicked.connect(cfg.sentinel1T.inputSentinel) cfg.ui.S1_toolButton_directoryInput_xml.clicked.connect(cfg.sentinel1T.inputXML) cfg.ui.pushButton_Conversion_6.clicked.connect(cfg.sentinel1T.performSentinelConversion) cfg.ui.sentinel1_conversion.clicked.connect(cfg.batchT.setFunctionButton) ''' Sentinel-2 tab ''' # connect to input button cfg.ui.S2_toolButton_directoryInput.clicked.connect(cfg.sentinel2T.inputSentinel) cfg.ui.pushButton_Conversion_2.clicked.connect(cfg.sentinel2T.performSentinelConversion) cfg.ui.sentinel2_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.S2_satellite_lineEdit.textChanged.connect(cfg.sentinel2T.editedSatellite) cfg.ui.S2_pushButton_remove_band.clicked.connect(cfg.sentinel2T.removeHighlightedBand) cfg.ui.sentinel_2_tableWidget.cellChanged.connect(cfg.sentinel2T.editedCell) cfg.ui.S2_toolButton_directoryInput_xml2.clicked.connect(cfg.sentinel2T.inputXML2) ''' Sentinel-3 tab ''' # connect to input button cfg.ui.S3_toolButton_directoryInput.clicked.connect(cfg.sentinel3T.inputSentinel) cfg.ui.pushButton_Conversion_5.clicked.connect(cfg.sentinel3T.performSentinelConversion) cfg.ui.sentinel3_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.S3_pushButton_remove_band.clicked.connect(cfg.sentinel3T.removeHighlightedBand) ''' GOES tab ''' # connect to input button cfg.ui.GOES_toolButton_directoryInput.clicked.connect(cfg.goesT.inputGOES) cfg.ui.pushButton_Conversion_8.clicked.connect(cfg.goesT.performGOESConversion) cfg.ui.goes_conversion.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.GOES_pushButton_remove_band.clicked.connect(cfg.goesT.removeHighlightedBand) ''' Classification neighbor tab''' cfg.ui.class_neighbor_toolButton.clicked.connect(cfg.clssNghbr.classNeighborAction) cfg.ui.neighbor_pixels.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.toolButton_input_matrix.clicked.connect(cfg.clssNghbr.inputMatrixFile) ''' Reproject raster bands tab ''' # connect to refresh button cfg.ui.toolButton_reload_25.clicked.connect(cfg.rprjRstBndsT.refreshClassificationLayer) cfg.ui.use_align_raster_checkBox.stateChanged.connect(cfg.rprjRstBndsT.checkboxAlignChanged) cfg.ui.use_epsg_checkBox.stateChanged.connect(cfg.rprjRstBndsT.checkboxEPSGChanged) # connect to reproject raster button cfg.ui.reproject_Button.clicked.connect(cfg.rprjRstBndsT.reprojectRasterBands) cfg.ui.reproject_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' Split tab ''' # connect the classification combo cfg.ui.raster_name_combo.currentIndexChanged.connect(cfg.splitT.rasterLayerName) # connect to refresh button cfg.ui.toolButton_reload_9.clicked.connect(cfg.splitT.refreshClassificationLayer) # connect to split raster button cfg.ui.split_Button.clicked.connect(cfg.splitT.splitRaster) cfg.ui.split_raster_bands.clicked.connect(cfg.batchT.setFunctionButton) ''' PCA tab ''' # connect to PCA button cfg.ui.pca_Button.clicked.connect(cfg.pcaT.calculatePCAAction) cfg.ui.pca.clicked.connect(cfg.batchT.setFunctionButton) ''' K-means tab ''' # connect to kmeans button cfg.ui.kmeans_Button.clicked.connect(cfg.clusteringT.calculateClusteringAction) cfg.ui.clustering.clicked.connect(cfg.batchT.setFunctionButton) # connect the algorithm combo cfg.ui.kmean_minmax_radioButton.clicked.connect(cfg.clusteringT.radiokmean_minmaxChanged) cfg.ui.kmean_siglist_radioButton.clicked.connect(cfg.clusteringT.radiokmean_siglistChanged) cfg.ui.kmean_randomsiglist_radioButton.clicked.connect(cfg.clusteringT.radiokmean_randomsiglistChanged) cfg.ui.kmeans_radioButton.clicked.connect(cfg.clusteringT.radioKmeansChanged) cfg.ui.isodata_radioButton.clicked.connect(cfg.clusteringT.radioIsodataChanged) cfg.ui.min_distance_radioButton.clicked.connect(cfg.clusteringT.radioMinDistChanged) cfg.ui.spectral_angle_map_radioButton.clicked.connect(cfg.clusteringT.radioSAMChanged) ''' Random forest tab ''' # connect to calculate button cfg.ui.button_random_forest.clicked.connect(cfg.rndmFrst.performRandomForest) cfg.ui.random_forest.clicked.connect(cfg.batchT.setFunctionButton) # connect the macroclass checkBox cfg.ui.macroclass_checkBox_rf.stateChanged.connect(cfg.rndmFrst.macroclassCheckbox) cfg.ui.class_checkBox_rf.stateChanged.connect(cfg.rndmFrst.classCheckbox) cfg.ui.classifier_Button.clicked.connect(cfg.rndmFrst.selectRFClassifier) # connect to reset classifier cfg.ui.resetClassifierButton.clicked.connect(cfg.rndmFrst.resetRFClassifier) ''' Vector to Raster tab ''' cfg.ui.toolButton_reload_16.clicked.connect(cfg.vctRstrT.reloadVectorList) cfg.ui.toolButton_reload_17.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.convert_vector_toolButton.clicked.connect(cfg.vctRstrT.convertToRasterAction) cfg.ui.vector_to_raster.clicked.connect(cfg.batchT.setFunctionButton) cfg.ui.vector_name_combo.currentIndexChanged.connect(cfg.utls.refreshVectorFields) cfg.ui.field_checkBox.stateChanged.connect(cfg.vctRstrT.checkboxFieldChanged) cfg.ui.constant_value_checkBox.stateChanged.connect(cfg.vctRstrT.checkboxConstantValueChanged) ''' Post processing tab ''' ''' accuracy tab ''' # connect the classification combo cfg.ui.classification_name_combo.currentIndexChanged.connect(cfg.acc.classificationLayerName) # connect to refresh button cfg.ui.toolButton_reload_4.clicked.connect(cfg.utls.refreshClassificationLayer) # connect the reference combo cfg.ui.reference_name_combo.currentIndexChanged.connect(cfg.acc.referenceLayerName) # connect to refresh button cfg.ui.buttonReload_shape_4.clicked.connect(cfg.acc.refreshReferenceLayer) # connect to calculate error matrix button cfg.ui.calculateMatrix_toolButton.clicked.connect(cfg.acc.calculateErrorMatrix) cfg.ui.accuracy.clicked.connect(cfg.batchT.setFunctionButton) ''' Land cover change ''' # connect to refresh button reference classification cfg.ui.toolButton_reload_5.clicked.connect(cfg.landCC.refreshClassificationReferenceLayer) # connect to refresh button new classification cfg.ui.toolButton_reload_6.clicked.connect(cfg.landCC.refreshNewClassificationLayer) # connect the classification reference combo cfg.ui.classification_reference_name_combo.currentIndexChanged.connect(cfg.landCC.classificationReferenceLayerName) # connect the new classification combo cfg.ui.new_classification_name_combo.currentIndexChanged.connect(cfg.landCC.newClassificationLayerName) # connect the mask unchanged checkBox cfg.ui.mask_unchanged_checkBox.stateChanged.connect(cfg.landCC.maskUnchangedCheckbox) # connect to calculate land cover change button cfg.ui.calculateLandCoverChange_toolButton.clicked.connect(cfg.landCC.landCoverChangeAction) cfg.ui.land_cover_change.clicked.connect(cfg.batchT.setFunctionButton) ''' Classification report ''' # connect to refresh button cfg.ui.toolButton_reload_10.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to calculate button cfg.ui.calculateReport_toolButton.clicked.connect(cfg.classRep.calculateClassReport) cfg.ui.classification_report.clicked.connect(cfg.batchT.setFunctionButton) ''' Band set combination tab ''' # connect to calculate button cfg.ui.calculateBandSetComb_toolButton.clicked.connect(cfg.bsComb.calculateBandSetCombination) cfg.ui.band_combination.clicked.connect(cfg.batchT.setFunctionButton) ''' Cross classification tab ''' # connect the classification combo cfg.ui.classification_name_combo_2.currentIndexChanged.connect(cfg.crossC.classificationLayerName) # connect to refresh button cfg.ui.toolButton_reload_21.clicked.connect(cfg.utls.refreshClassificationLayer) # connect the reference combo cfg.ui.reference_name_combo_2.currentIndexChanged.connect(cfg.crossC.referenceLayerName) # connect to refresh button cfg.ui.buttonReload_shape_5.clicked.connect(cfg.crossC.refreshReferenceLayer) # connect to calculate error matrix button cfg.ui.calculatecrossClass_toolButton.clicked.connect(cfg.crossC.calculateCrossClassification) cfg.ui.cross_classification.clicked.connect(cfg.batchT.setFunctionButton) ''' Class signature ''' # connect to calculate signature cfg.ui.class_signature_Button.clicked.connect(cfg.classSigT.calculateClassSignatureAction) cfg.ui.class_signature.clicked.connect(cfg.batchT.setFunctionButton) # connect to refresh button cfg.ui.toolButton_reload_22.clicked.connect(cfg.utls.refreshClassificationLayer) ''' Classification to vector ''' # connect to refresh button cfg.ui.toolButton_reload_12.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to convert button cfg.ui.convert_toolButton.clicked.connect(cfg.classVect.convertClassificationToVectorAction) cfg.ui.classification_to_vector.clicked.connect(cfg.batchT.setFunctionButton) ''' Reclassification ''' # connect to refresh button cfg.ui.toolButton_reload_11.clicked.connect(cfg.utls.refreshClassificationLayer) # connect to reclassify button cfg.ui.reclassify_toolButton.clicked.connect(cfg.reclassification.reclassifyAction) cfg.ui.reclassification.clicked.connect(cfg.batchT.setFunctionButton) # connect to calculate unique values button cfg.ui.calculate_unique_values_toolButton.clicked.connect(cfg.reclassification.calculateUniqueValues) # connect to incremental new values button cfg.ui.incremental_new_values_toolButton.clicked.connect(cfg.reclassification.incrementalNewValues) # connect to add value button cfg.ui.add_value_pushButton.clicked.connect(cfg.reclassification.addRowToTable) # connect to remove point cfg.ui.remove_row_pushButton.clicked.connect(cfg.reclassification.removePointFromTable) # connect to import band set button cfg.ui.import_reclass_toolButton.clicked.connect(cfg.reclassification.importReclass) # connect to export band set button cfg.ui.export_reclass_toolButton.clicked.connect(cfg.reclassification.exportReclass) # connect to edited cell cfg.ui.reclass_values_tableWidget.cellChanged.connect(cfg.reclassification.editedCell) ''' Edit Raster tab''' # connect to set value cfg.ui.raster_set_value_toolButton.clicked.connect(cfg.editRstr.setRasterValueAction) cfg.ui.edit_raster_using_vector.clicked.connect(cfg.batchT.setFunctionButton) # connect to refresh rasters button cfg.ui.toolButton_reload_14.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.undo_edit_Button.clicked.connect(cfg.editRstr.undoEdit) # connect the expression text cfg.ui.expression_lineEdit.textChanged.connect(cfg.editRstr.textChanged) cfg.ui.use_constant_val_checkBox.stateChanged.connect(cfg.editRstr.checkboxConstantValChanged) cfg.ui.use_field_vector_checkBox.stateChanged.connect(cfg.editRstr.checkboxVectorFieldChanged) cfg.ui.use_expression_checkBox.stateChanged.connect(cfg.editRstr.checkboxUseExpressionChanged) cfg.ui.edit_val_use_ROI_radioButton.clicked.connect(cfg.editRstr.radioUseROIPolygonChanged) cfg.ui.edit_val_use_vector_radioButton.clicked.connect(cfg.editRstr.radioUseVectorChanged) cfg.ui.toolButton_reload_20.clicked.connect(cfg.editRstr.reloadVectorList) cfg.ui.vector_name_combo_2.currentIndexChanged.connect(cfg.utls.refreshVectorFields2) ''' Classification sieve tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_15.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.sieve_toolButton.clicked.connect(cfg.sieveRstr.sieveClassificationAction) cfg.ui.classification_sieve.clicked.connect(cfg.batchT.setFunctionButton) ''' Classification erosion tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_18.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.class_erosion_toolButton.clicked.connect(cfg.ersnRstr.erosionClassificationAction) cfg.ui.classification_erosion.clicked.connect(cfg.batchT.setFunctionButton) # connect the value text cfg.ui.erosion_classes_lineEdit.textChanged.connect(cfg.ersnRstr.textChanged) ''' Classification dilation tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_19.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.class_dilation_toolButton.clicked.connect(cfg.dltnRstr.dilationClassificationAction) cfg.ui.classification_dilation.clicked.connect(cfg.batchT.setFunctionButton) # connect the value text cfg.ui.dilation_classes_lineEdit.textChanged.connect(cfg.dltnRstr.textChanged) ''' Classification zonal stat tab''' # connect to refresh rasters button cfg.ui.toolButton_reload_24.clicked.connect(cfg.utls.refreshClassificationLayer) cfg.ui.buttonReload_shape_6.clicked.connect(cfg.znlSttRstT.refreshReferenceLayer) cfg.ui.zonal_stat_raster_toolButton.clicked.connect(cfg.znlSttRstT.zonalStatRasterAction) cfg.ui.zonal_stat_raster.clicked.connect(cfg.batchT.setFunctionButton) # connect the classification combo cfg.ui.classification_name_combo_5.currentIndexChanged.connect(cfg.znlSttRstT.classificationLayerName) # connect the reference combo cfg.ui.reference_name_combo_3.currentIndexChanged.connect(cfg.znlSttRstT.referenceLayerName) ''' Band Calc tab ''' # connect to refresh button cfg.ui.toolButton_reload_13.clicked.connect(cfg.bCalc.rasterBandName) # connect to calc button cfg.ui.toolButton_calculate.clicked.connect(cfg.bCalc.calculateButton) cfg.ui.band_calc.clicked.connect(cfg.batchT.setFunctionButton) # connect to import expression button cfg.ui.toolButton_import_expression.clicked.connect(cfg.bCalc.importExpressionList) # connect the expression text cfg.ui.plainTextEdit_calc.textChanged.connect(cfg.bCalc.textChanged) # connect double click table cfg.ui.tableWidget_band_calc.doubleClicked.connect(cfg.bCalc.doubleClick) # connect the intersection checkBox cfg.ui.intersection_checkBox.stateChanged.connect(cfg.bCalc.intersectionCheckbox) # connect the extent checkBox cfg.ui.extent_checkBox.stateChanged.connect(cfg.bCalc.extentCheckbox) # connect to raster type combo cfg.ui.raster_type_combo.currentIndexChanged.connect(cfg.bCalc.setRasterType) # connect to expression buttons cfg.ui.toolButton_plus.clicked.connect(cfg.bCalc.buttonPlus) cfg.ui.toolButton_minus.clicked.connect(cfg.bCalc.buttonMinus) cfg.ui.toolButton_product.clicked.connect(cfg.bCalc.buttonProduct) cfg.ui.toolButton_ratio.clicked.connect(cfg.bCalc.buttonRatio) cfg.ui.toolButton_power.clicked.connect(cfg.bCalc.buttonPower) cfg.ui.toolButton_sqrt.clicked.connect(cfg.bCalc.buttonSQRT) cfg.ui.toolButton_lbracket.clicked.connect(cfg.bCalc.buttonLbracket) cfg.ui.toolButton_rbracket.clicked.connect(cfg.bCalc.buttonRbracket) cfg.ui.toolButton_greater.clicked.connect(cfg.bCalc.buttonGreater) cfg.ui.toolButton_less.clicked.connect(cfg.bCalc.buttonLower) cfg.ui.toolButton_equal.clicked.connect(cfg.bCalc.buttonEqual) cfg.ui.toolButton_unequal.clicked.connect(cfg.bCalc.buttonUnequal) cfg.ui.band_calc_function_tableWidget.doubleClicked.connect(cfg.bCalc.setFunction) # decision rules cfg.ui.decision_rules_tableWidget.cellChanged.connect(cfg.bCalc.editedDecisionRulesTable) cfg.ui.band_calc_tabWidget.currentChanged.connect(cfg.bCalc.tabChanged) # connect to add rule cfg.ui.add_rule_toolButton.clicked.connect(cfg.bCalc.addRowToTable) cfg.ui.remove_rule_toolButton.clicked.connect(cfg.bCalc.removeHighlightedRule) # connect to clear button cfg.ui.clear_rules_toolButton.clicked.connect(cfg.bCalc.clearRulesAction) cfg.ui.export_rules_toolButton.clicked.connect(cfg.bCalc.exportRules) cfg.ui.import_rules_toolButton.clicked.connect(cfg.bCalc.importRules) cfg.ui.move_up_toolButton_2.clicked.connect(cfg.bCalc.moveUpRule) cfg.ui.move_down_toolButton_2.clicked.connect(cfg.bCalc.moveDownRule) # connect to filter cfg.ui.bandcalc_filter_lineEdit.textChanged.connect(cfg.bCalc.filterTable) ''' Batch tab ''' # connect the batch text #cfg.ui.plainTextEdit_batch.textChanged.connect(cfg.batchT.textChanged) # connect to calc button cfg.ui.toolButton_run_batch.clicked.connect(cfg.batchT.runButton) cfg.ui.check_batch.clicked.connect(cfg.batchT.textChanged) cfg.ui.clear_batch_toolButton.clicked.connect(cfg.batchT.clearBatch) cfg.ui.export_batch_toolButton.clicked.connect(cfg.batchT.exportBatch) cfg.ui.import_batch_toolButton.clicked.connect(cfg.batchT.importBatch) # connect to table double click cfg.ui.batch_tableWidget.doubleClicked.connect(cfg.batchT.setFunction) ''' Settings tab ''' # connect the ID field name line cfg.ui.ID_field_name_lineEdit.textChanged.connect(cfg.sets.IDFieldNameChange) # connect the macroclass ID field name line cfg.ui.MID_field_name_lineEdit.textChanged.connect(cfg.sets.MacroIDFieldNameChange) # connect the macroclass Info field name line cfg.ui.MCInfo_field_name_lineEdit.textChanged.connect(cfg.sets.MacroInfoFieldNameChange) # connect the Info field name line cfg.ui.Info_field_name_lineEdit.textChanged.connect(cfg.sets.InfoFieldNameChange) # connect the variable name line cfg.ui.variable_name_lineEdit.textChanged.connect(cfg.sets.VariableNameChange) # connect the group name line cfg.ui.group_name_lineEdit.textChanged.connect(cfg.sets.GroupNameChange) # connect the SMTP line cfg.ui.smtp_server_lineEdit.textChanged.connect(cfg.sets.SMTPServerChange) # connect the SMTP to emails line cfg.ui.to_email_lineEdit.textChanged.connect(cfg.sets.SMTPtoEmailsChange) # connect the SMTP user cfg.ui.smtp_user_lineEdit.editingFinished.connect(cfg.sets.rememberUser) # connect the SMTP password cfg.ui.smtp_password_lineEdit.editingFinished.connect(cfg.sets.rememberUser) # connect the SMTP checkbox cfg.ui.remeber_settings_checkBox.stateChanged.connect(cfg.sets.rememberUserCheckbox) # connect the SMTP checkBox cfg.ui.smtp_checkBox.stateChanged.connect(cfg.sets.SMTPCheckbox) # connect to reset field names button cfg.ui.reset_field_names_Button.clicked.connect(cfg.sets.resetFieldNames) # connect to reset variable name button cfg.ui.reset_variable_name_Button.clicked.connect(cfg.sets.resetVariableName) # connect to reset group name button cfg.ui.reset_group_name_Button.clicked.connect(cfg.sets.resetGroupName) # connect the log file checkBox cfg.ui.log_checkBox.stateChanged.connect(cfg.sets.logCheckbox) # connect the download news checkBox cfg.ui.download_news_checkBox.stateChanged.connect(cfg.sets.downloadNewsCheckbox) # connect the virtual raster checkBox cfg.ui.virtual_raster_load_checkBox.stateChanged.connect(cfg.sets.virtualRasterCheckbox) # connect the sound checkBox cfg.ui.sound_checkBox.stateChanged.connect(cfg.sets.soundCheckbox) # connect the virtual raster format checkBox cfg.ui.virtual_raster_checkBox.stateChanged.connect(cfg.sets.virtualRasterFormatCheckbox) # connect the raster compression checkBox cfg.ui.raster_compression_checkBox.stateChanged.connect(cfg.sets.rasterCompressionCheckbox) # connect the parallel writing checkBox cfg.ui.parallel_writing_checkBox.stateChanged.connect(cfg.sets.parallelWritingCheckbox) # connect to change temporary directory button cfg.ui.temp_directory_Button.clicked.connect(cfg.sets.changeTempDir) # connect to reset temporary directory button cfg.ui.reset_temp_directory_Button.clicked.connect(cfg.sets.resetTempDir) # connect to clear log button cfg.ui.clearLog_Button.clicked.connect(cfg.utls.clearLogFile) # connect to export log button cfg.ui.exportLog_Button.clicked.connect(cfg.sets.copyLogFile) # connect to test dependencies button cfg.ui.test_dependencies_Button.clicked.connect(cfg.sets.testDependencies) # connect to RAM spinbox cfg.ui.RAM_spinBox.valueChanged.connect(cfg.sets.RAMSettingChange) # connect to thread spinbox cfg.ui.CPU_spinBox.valueChanged.connect(cfg.sets.threadSettingChange) # connect the Python path line cfg.ui.python_path_lineEdit.textChanged.connect(cfg.sets.PythonPathSettingChange) # connect the Python modules path line cfg.ui.python_path_lineEdit_2.textChanged.connect(cfg.sets.PythonModulePathSettingChange) # connect the GDAL path line cfg.ui.gdal_path_lineEdit.textChanged.connect(cfg.sets.GDALPathSettingChange) # connect to change color button cfg.ui.change_color_Button.clicked.connect(cfg.sets.changeROIColor) # connect to change color button cfg.ui.reset_color_Button.clicked.connect(cfg.sets.resetROIStyle) # connect to transparency slider cfg.ui.transparency_Slider.valueChanged.connect(cfg.sets.changeROITransparency) # first install if cfg.firstInstallVal == 'Yes': cfg.utls.welcomeTab() cfg.utls.setQGISRegSetting(cfg.regFirstInstall, 'No') cfg.utls.findAvailableRAM() cfg.utls.findAvailableProcessors() # welcome message lWelcome = cfg.plgnDir + '/ui/welcome.html' htmlTextF = open(lWelcome, 'r') htmlText = htmlTextF.read() cfg.uidc.main_textBrowser.clear() cfg.uidc.main_textBrowser.setHtml(htmlText) htmlTextF.close() if cfg.osSCP.path.isfile(cfg.plgnDir + '/firstrun'): cfg.ipt.welcomeText('https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/changelog.html') cfg.osSCP.remove(cfg.plgnDir + '/firstrun') else: dateV = cfg.datetimeSCP.datetime.now() dStr = dateV.strftime('%Y_%m_%d') cfg.ipt.welcomeText('https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/welcome' + '_' + dStr + '.html', 'https://semiautomaticgit.github.io/SemiAutomaticClassificationPluginWelcome/welcome.html') cfg.utls.cleanOldTempDirectory() cfg.skipRegistry = False else: dockclassdlg = DockClassDialog(qgisUtils.iface.mainWindow(), qgisUtils.iface) qgisUtils.iface.removeDockWidget(dockclassdlg) # save signature list when saving project def projectSaved(self): if cfg.skipProjectSaved == 'No': if len(cfg.signIDs) > 0: cfg.SCPD.saveSignatureListToFile() if cfg.scpFlPath is not None: cfg.SCPD.saveMemToSHP(cfg.shpLay) cfg.utls.zipDirectoryInFile(cfg.scpFlPath, cfg.inptDir) cfg.downProd.saveDownloadTable() try: scpPath = cfg.utls.readProjectVariable('trainingLayer', '') name = cfg.utls.fileNameNoExt(scpPath) duplicateID = cfg.utls.layerID(name, cfg.shpLay.id()) cfg.qgisCoreSCP.QgsProject.instance().removeMapLayer(duplicateID) except: pass # reset all variables and interface def resetSCP(self): # logger cfg.utls.logToFile(str(__name__) + '-' + str(cfg.inspectSCP.stack()[0][3])+ ' ' + cfg.utls.lineOfCode(), 'LOG ACTIVE' + cfg.sysSCPInfo) cfg.scpFlPath = None cfg.ui.image_raster_name_combo.blockSignals(True) cfg.ui.Band_set_tabWidget.blockSignals(True) cfg.rasterComboEdited = 'No' cfg.projPath = cfg.qgisCoreSCP.QgsProject.instance().fileName() cfg.lastSaveDir = cfg.osSCP.path.dirname(cfg.projPath) cfg.projPath = cfg.qgisCoreSCP.QgsProject.instance().fileName() cfg.lastSaveDir = cfg.osSCP.path.dirname(cfg.projPath) cfg.signList = {} cfg.signIDs = {} cfg.spectrPlotList = {} cfg.signPlotIDs = {} cfg.scatterPlotIDs = {} cfg.scatterPlotList = {} cfg.undoIDList = {} cfg.undoSpectrPlotList = {} cfg.lstROI = None cfg.lstROI2 = None cfg.rpdROICheck = '2' cfg.vegIndexCheck = 2 cfg.sigClcCheck = 2 cfg.utls.clearTable(cfg.uisp.signature_list_plot_tableWidget) cfg.utls.clearTable(cfg.uiscp.scatter_list_plot_tableWidget) cfg.utls.clearTable(cfg.ui.signature_threshold_tableWidget) cfg.utls.clearTable(cfg.ui.download_images_tableWidget) cfg.utls.clearTable(cfg.ui.LCS_tableWidget) cfg.treeDockItm = {} cfg.treeDockMCItm = {} cfg.SCPD.clearTree() cfg.scaPlT.scatterPlotListTable(cfg.uiscp.scatter_list_plot_tableWidget) cfg.spSigPlot.refreshPlot() cfg.LCSignT.LCSignatureThresholdListTable() # reload layers in combos cfg.ipt.refreshRasterLayer() cfg.utls.refreshVectorLayer() cfg.utls.refreshClassificationLayer() cfg.utls.refreshRasterExtent() cfg.acc.refreshReferenceLayer() cfg.crossC.refreshReferenceLayer() cfg.znlSttRstT.refreshReferenceLayer() cfg.znlSttRstT.loadStatisticCombo() cfg.clssNghbr.loadStatisticCombo() cfg.landCC.refreshClassificationReferenceLayer() cfg.landCC.refreshNewClassificationLayer() # read variables cfg.utls.readVariables() # set ROI color cfg.ui.change_color_Button.setStyleSheet('background-color :' + cfg.ROIClrVal) # set ROI transparency cfg.ui.transparency_Slider.setValue(cfg.ROITrnspVal) # set RAM value cfg.ui.RAM_spinBox.setValue(cfg.RAMValue) # set CPU value cfg.ui.CPU_spinBox.setValue(cfg.threads) # rapid ROI band cfg.uidc.rapidROI_band_spinBox.setValue(int(cfg.ROIband)) # min ROI size cfg.Min_region_size_spin.setValue(int(cfg.minROISz)) # max ROI width cfg.Max_ROI_width_spin.setValue(int(cfg.maxROIWdth)) # range radius cfg.Range_radius_spin.setValue(float(cfg.rngRad)) # ROI ID field cfg.uidc.ROI_ID_spin.setValue(int(cfg.ROIID)) # ROI macro ID field cfg.uidc.ROI_Macroclass_ID_spin.setValue(int(cfg.ROIMacroID)) # preview size cfg.preview_size_spinBox.setValue(float(cfg.prvwSz)) # set ID field name line cfg.ui.ID_field_name_lineEdit.setText(cfg.fldID_class) cfg.ui.MID_field_name_lineEdit.setText(cfg.fldMacroID_class) # set Info field name line cfg.ui.Info_field_name_lineEdit.setText(cfg.fldROI_info) cfg.ui.MCInfo_field_name_lineEdit.setText(cfg.fldROIMC_info) cfg.ui.variable_name_lineEdit.setText(cfg.variableName) cfg.ui.group_name_lineEdit.setText(cfg.grpNm) # gdal path cfg.ui.gdal_path_lineEdit.setText(cfg.gdalPath) cfg.ui.python_path_lineEdit.setText(cfg.PythonPathSettings) cfg.ui.python_path_lineEdit_2.setText(cfg.PythonModulesPathSettings) # set signature calculation checkbox state try: cfg.uidc.rapid_ROI_checkBox.setCheckState(int(cfg.rpdROICheck)) except: pass # set vegetation index calculation checkbox state try: cfg.uidc.display_cursor_checkBox.setCheckState(int(cfg.vegIndexCheck)) except: pass # set signature calculation checkbox state try: cfg.uidc.signature_checkBox.setCheckState(int(cfg.sigClcCheck)) cfg.ui.signature_checkBox2.setCheckState(int(cfg.sigClcCheck)) except: pass # set save input checkbox state try: cfg.uidc.save_input_checkBox.setCheckState(int(cfg.saveInputCheck)) except: pass # load classification algorithm idAlg = cfg.ui.algorithm_combo.findText(cfg.algName) if idAlg >= 0: cfg.ui.algorithm_combo.setCurrentIndex(idAlg) else: cfg.ui.algorithm_combo.setCurrentIndex(0) cfg.algName = cfg.algMinDist # ROI info cfg.uidc.ROI_Class_line.setText(cfg.ROIInfo) cfg.uidc.ROI_Macroclass_line.setText(cfg.ROIMacroClassInfo) cfg.uidc.custom_index_lineEdit.setText(cfg.customExpression) # RGB list cfg.RGBLT.RGBListTable(cfg.RGBList) # reload raster bands in checklist cfg.bst.rasterBandName() cfg.rasterComboEdited = 'Yes' cfg.ui.image_raster_name_combo.blockSignals(False) cfg.ui.Band_set_tabWidget.blockSignals(False) # new project def newProjectLoaded(self): # clear band set t = cfg.ui.Band_set_tabWidget.count() for index in reversed(list(range(0, t))): cfg.bst.deleteBandSetTab(index) self.resetSCP() cfg.bCalc.rasterBandName() cfg.SCPD.openInput() cfg.bstLT.BandSetListTable() # read project variables def projectLoaded(self): self.resetSCP() # load product download table cfg.downProd.openDownloadTable() cfg.bCalc.rasterBandName() cfg.SCPD.openInput() cfg.bstLT.BandSetListTable() # run def run(self): # show the dialog cfg.dlg.show() # Run the dialog event loop pointer_result = cfg.dlg.exec_() # remove plugin menu and icon def unload(self): cfg.utls.createBackupFile(cfg.scpFlPath) # save window size try: cfg.utls.setQGISRegSetting(cfg.regWindowSizeW, cfg.dlg.size().width()) cfg.utls.setQGISRegSetting(cfg.regWindowSizeH, cfg.dlg.size().height()) except: pass try: qgisUtils.iface.removeDockWidget(cfg.dockclassdlg) del cfg.toolBar2 del cfg.toolBar3 cfg.menu.deleteLater() # remove temp files if cfg.tmpDir is not None and cfg.QDirSCP(cfg.tmpDir).exists(): cfg.shutilSCP.rmtree(cfg.tmpDir, True) oDir = cfg.utls.makeDirectory(str(cfg.QDirSCP.tempPath() + '/' + cfg.tempDirName)) except: if PluginCheck == 'Yes': qgisUtils.iface.messageBar().pushMessage('Semi-Automatic Classification Plugin', QApplication.translate('semiautomaticclassificationplugin', 'Please, restart QGIS for executing the Semi-Automatic Classification Plugin'), level=qgisCore.Qgis.Info)
gpl-3.0
drammock/mne-python
tutorials/stats-sensor-space/40_cluster_1samp_time_freq.py
10
5666
""" =============================================================== Non-parametric 1 sample cluster statistic on single trial power =============================================================== This script shows how to estimate significant clusters in time-frequency power estimates. It uses a non-parametric statistical procedure based on permutations and cluster level statistics. The procedure consists of: - extracting epochs - compute single trial power estimates - baseline line correct the power estimates (power ratios) - compute stats to see if ratio deviates from 1. """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import permutation_cluster_1samp_test from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters # -------------- data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' tmin, tmax, event_id = -0.3, 0.6, 1 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) # just use right temporal sensors for speed epochs.pick_channels(mne.read_vectorview_selection('Right-temporal')) evoked = epochs.average() # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly computational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 5 freqs = np.arange(8, 40, 2) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz tfr_epochs = tfr_morlet(epochs, freqs, n_cycles=4., decim=decim, average=False, return_itc=False, n_jobs=1) # Baseline power tfr_epochs.apply_baseline(mode='logratio', baseline=(-.100, 0)) # Crop in time to keep only what is between 0 and 400 ms evoked.crop(-0.1, 0.4) tfr_epochs.crop(-0.1, 0.4) epochs_power = tfr_epochs.data ############################################################################### # Define adjacency for statistics # ------------------------------- # To compute a cluster-corrected value, we need a suitable definition # for the adjacency/adjacency of our values. So we first compute the # sensor adjacency, then combine that with a grid/lattice adjacency # assumption for the time-frequency plane: sensor_adjacency, ch_names = mne.channels.find_ch_adjacency( tfr_epochs.info, 'grad') # Subselect the channels we are actually using use_idx = [ch_names.index(ch_name.replace(' ', '')) for ch_name in tfr_epochs.ch_names] sensor_adjacency = sensor_adjacency[use_idx][:, use_idx] assert sensor_adjacency.shape == \ (len(tfr_epochs.ch_names), len(tfr_epochs.ch_names)) assert epochs_power.data.shape == ( len(epochs), len(tfr_epochs.ch_names), len(tfr_epochs.freqs), len(tfr_epochs.times)) adjacency = mne.stats.combine_adjacency( sensor_adjacency, len(tfr_epochs.freqs), len(tfr_epochs.times)) # our adjacency is square with each dim matching the data size assert adjacency.shape[0] == adjacency.shape[1] == \ len(tfr_epochs.ch_names) * len(tfr_epochs.freqs) * len(tfr_epochs.times) ############################################################################### # Compute statistic # ----------------- threshold = 3. n_permutations = 50 # Warning: 50 is way too small for real-world analysis. T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_1samp_test(epochs_power, n_permutations=n_permutations, threshold=threshold, tail=0, adjacency=adjacency, out_type='mask', verbose=True) ############################################################################### # View time-frequency plots # ------------------------- evoked_data = evoked.data times = 1e3 * evoked.times plt.figure() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] # Just plot one channel's data ch_idx, f_idx, t_idx = np.unravel_index( np.nanargmax(np.abs(T_obs_plot)), epochs_power.shape[1:]) # ch_idx = tfr_epochs.ch_names.index('MEG 1332') # to show a specific one vmax = np.max(np.abs(T_obs)) vmin = -vmax plt.subplot(2, 1, 1) plt.imshow(T_obs[ch_idx], cmap=plt.cm.gray, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.imshow(T_obs_plot[ch_idx], cmap=plt.cm.RdBu_r, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title(f'Induced power ({tfr_epochs.ch_names[ch_idx]})') ax2 = plt.subplot(2, 1, 2) evoked.plot(axes=[ax2], time_unit='s') plt.show()
bsd-3-clause
pdamodaran/yellowbrick
tests/rand.py
1
3176
# tests.random # A visualizer that draws a random scatter plot for testing. # # Author: Benjamin Bengfort <bbengfort@districtdatalabs.com> # Created: Wed Mar 21 17:51:15 2018 -0400 # # ID: random.py [] benjamin@bengfort.com $ """ A visualizer that draws a random scatter plot for testing. """ ########################################################################## ## Imports ########################################################################## import numpy as np from yellowbrick.base import Visualizer from yellowbrick.style import resolve_colors from sklearn.datasets import make_blobs ########################################################################## ## Random Visualizer ########################################################################## class RandomVisualizer(Visualizer): """ Creates random scatter plots as a testing utility. Data generation uses scikit-learn make_blobs to create scatter plots that have reasonable visual features and multiple colors. Parameters ---------- ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). n_samples : int, default: 100 The number of points to generate for the scatter plot n_blobs : int or array of shape [n_centers, 2] Define the number of blobs to create or specify their centers. random_state : int, RandomState or None: Used to specify the seed of the random state to ensure tests work. """ def __init__(self, ax=None, n_samples=100, n_blobs=3, random_state=None, **kwargs): super(RandomVisualizer, self).__init__(ax=ax, **kwargs) if isinstance(random_state, (int, float)) or random_state is None: random_state = np.random.RandomState(random_state) self.set_params( n_samples=n_samples, n_blobs=n_blobs, random_state=random_state, ) def generate(self): """ Returns random data according to the visualizer specification. Returns ------- X : array of shape [n_samples, 2] 2 dimensional array of points to plot y : vector with length n_samples Center/blob each point belongs to (used for color) """ return make_blobs( self.n_samples, 2, self.n_blobs, random_state=self.random_state ) def fit(self, *args, **kwargs): X, c = self.generate() x = X[:,0] y = X[:,1] self.draw(x, y, c) return self def draw(self, x, y, c): colors = resolve_colors(self.n_blobs) for i in np.arange(self.n_blobs): mask = c==i label = "c{}".format(i) self.ax.scatter(x[mask], y[mask], label=label, c=colors[i]) return self.ax def finalize(self): self.ax.legend(frameon=True) self.ax.set_ylabel("$y$") self.ax.set_xlabel("$x$") self.ax.set_title("Random Scatter Plot") return self.ax if __name__ == '__main__': r = RandomVisualizer() r.fit() r.poof(outpath='test.png')
apache-2.0
start-jsk/jsk_apc
jsk_apc2016_common/python/jsk_apc2016_common/rbo_segmentation/evaluate.py
1
7455
from apc_data import APCDataSet, APCSample from probabilistic_segmentation import ProbabilisticSegmentationRF, ProbabilisticSegmentationBP import pickle import os import matplotlib.pyplot as plt import numpy as np import copy import rospkg def _fast_hist(a, b, n): k = (a >= 0) & (a < n) hist = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n) return hist def label_accuracy_score(label_true, label_pred, n_class): """Returns accuracy score evaluation result. - overall accuracy - mean accuracy - mean IU - fwavacc """ hist = _fast_hist(label_true.flatten(), label_pred.flatten(), n_class) acc = np.diag(hist).sum() / hist.sum().astype(np.float64) acc_cls = np.diag(hist) / hist.sum(axis=1).astype(np.float64) acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)).astype(np.float64) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / hist.sum().astype(np.float64) fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() return acc, acc_cls, mean_iu, fwavacc # previously declared in main.py def combine_datasets(datasets): samples = [] for d in datasets: samples += d.samples return APCDataSet(samples=samples) def load_datasets(dataset_names, data_path, cache_path): datasets = dict() for dataset_name in dataset_names: dataset_path = os.path.join( data_path, 'rbo_apc/{}'.format(dataset_name)) datasets[dataset_name] = APCDataSet( name=dataset_name, dataset_path=dataset_path, cache_path=cache_path, load_from_cache=True) return datasets def evaluate(bp, test_data): acc_list = [] acc_cls_list = [] mean_iu_list = [] fwavacc_list = [] for sample in test_data.samples: if len(sample.object_masks) == 0: continue pred_target = sample.object_masks.keys()[0] if pred_target == 'shelf': if len(sample.object_masks.keys()) == 1: continue pred_target = sample.object_masks.keys()[1] bp.predict(sample, pred_target) print 'done' images = [] images.append(bp.posterior_images_smooth['shelf']) objects = [] objects.append('shelf') for _object in bp.posterior_images_smooth.keys(): if _object != 'shelf': images.append(bp.posterior_images_smooth[_object]) objects.append(_object) pred = np.argmax(np.array(images), axis=0) # remove dataset that does not have complete set objects_copy = copy.copy(objects) object_masks_keys = sample.object_masks.keys() if 'shelf' in objects_copy: objects_copy.remove('shelf') if 'shelf' in object_masks_keys: object_masks_keys.remove('shelf') if set(objects_copy) != set(object_masks_keys): #print 'skip posterior_image keys ', objects_copy #print 'skip object_mask keys ', object_masks_keys continue true = np.zeros_like(pred) for i, _object in enumerate(objects): if _object != 'shelf': true[sample.object_masks[_object]] = i masked_pred = pred[sample.bin_mask] masked_true = true[sample.bin_mask] acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(masked_true, masked_pred, len(objects)) acc_list.append(acc) acc_cls_list.append(acc_cls) mean_iu_list.append(mean_iu) fwavacc_list.append(fwavacc) """ label_pred = np.zeros(pred.shape[1:]).astype(np.int64) label_true = np.zeros(pred.shape[1:]).astype(np.int64) for i in range(pred.shape[0]): label_pred[pred[i]] = i label_true[true[i]] = i label_pred_masked = label_pred[sample.bin_mask] label_true_masked = label_true[sample.bin_mask] """ return acc_list, acc_cls_list, mean_iu_list, fwavacc_list def create_dataset(dataset_path): # initialize empty dataset dataset = APCDataSet(from_pkl=False) data_file_prefixes = [] key = '.jpg' for dir_name, sub_dirs, files in os.walk(dataset_path): for f in files: if key == f[-len(key):]: data_file_prefixes.append( os.path.join(dir_name, f[:-len(key)])) print data_file_prefixes for file_prefix in data_file_prefixes: dataset.samples.append( APCSample(data_2016_prefix=file_prefix, labeled=True, is_2016=True, infer_shelf_mask=True)) return dataset ############################################################################### # prepare dataset # ############################################################################### #data_path = '/home/leus/ros/indigo/src/start-jsk/jsk_apc/jsk_apc2016_common/data' #cache_path = os.path.join(data_path, 'cache') #dataset_path = os.path.join(data_path, 'rbo_apc') rospack = rospkg.RosPack() common_path = rospack.get_path('jsk_apc2016_common') data_path = common_path + '/data/' dataset_name = 'tokyo_run/single_item_labeled' dataset_path = os.path.join(data_path, dataset_name) data = create_dataset(dataset_path) ############################################################################### # dataset # ############################################################################### train_data, test_data = data.split_simple(portion_training=0.7) ############################################################################### # all features # ############################################################################### all_features = ['color', 'height3D', 'dist2shelf'] params = { 'use_features': all_features, 'segmentation_method': "max_smooth", 'selection_method': "max_smooth", 'make_convex': True, 'do_shrinking_resegmentation': True, 'do_greedy_resegmentation': True} bp = ProbabilisticSegmentationBP(**params) bp.fit(train_data) acc_list, acc_cls_list, mean_iu_list, fwavacc_list = evaluate(bp, test_data) print 'all features acc ', np.mean(acc_list) print 'all features acc_cls ', np.mean(acc_cls_list) print 'all features mean_iu ', np.mean(mean_iu_list) print 'all features fwavcc ', np.mean(fwavacc_list) ############################################################################### # # Color only # ############################################################################### params = { 'use_features': ['color'], 'segmentation_method': "max_smooth", 'selection_method': "max_smooth", 'make_convex': True, 'do_shrinking_resegmentation': True, 'do_greedy_resegmentation': True} bp = ProbabilisticSegmentationBP(**params) bp.fit(train_data) acc_list, acc_cls_list, mean_iu_list, fwavacc_list = evaluate(bp, test_data) print 'trained only by color features acc ', np.mean(acc_list) print 'trained only by color features acc_cls ', np.mean(acc_cls_list) print 'trained only by color features mean_iu ', np.mean(mean_iu_list) print 'trained only by color features fwavcc ', np.mean(fwavacc_list)
bsd-3-clause
shashankrajput/seq2seq
seq2seq/tasks/dump_attention.py
6
4850
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Task where both the input and output sequence are plain text. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import numpy as np from matplotlib import pyplot as plt import tensorflow as tf from tensorflow import gfile from seq2seq.tasks.decode_text import _get_prediction_length from seq2seq.tasks.inference_task import InferenceTask, unbatch_dict def _get_scores(predictions_dict): """Returns the attention scores, sliced by source and target length. """ prediction_len = _get_prediction_length(predictions_dict) source_len = predictions_dict["features.source_len"] return predictions_dict["attention_scores"][:prediction_len, :source_len] def _create_figure(predictions_dict): """Creates and returns a new figure that visualizes attention scores for for a single model predictions. """ # Find out how long the predicted sequence is target_words = list(predictions_dict["predicted_tokens"]) prediction_len = _get_prediction_length(predictions_dict) # Get source words source_len = predictions_dict["features.source_len"] source_words = predictions_dict["features.source_tokens"][:source_len] # Plot fig = plt.figure(figsize=(8, 8)) plt.imshow( X=predictions_dict["attention_scores"][:prediction_len, :source_len], interpolation="nearest", cmap=plt.cm.Blues) plt.xticks(np.arange(source_len), source_words, rotation=45) plt.yticks(np.arange(prediction_len), target_words, rotation=-45) fig.tight_layout() return fig class DumpAttention(InferenceTask): """Defines inference for tasks where both the input and output sequences are plain text. Params: delimiter: Character by which tokens are delimited. Defaults to space. unk_replace: If true, enable unknown token replacement based on attention scores. unk_mapping: If `unk_replace` is true, this can be the path to a file defining a dictionary to improve UNK token replacement. Refer to the documentation for more details. dump_attention_dir: Save attention scores and plots to this directory. dump_attention_no_plot: If true, only save attention scores, not attention plots. dump_beams: Write beam search debugging information to this file. """ def __init__(self, params): super(DumpAttention, self).__init__(params) self._attention_scores_accum = [] self._idx = 0 if not self.params["output_dir"]: raise ValueError("Must specify output_dir for DumpAttention") @staticmethod def default_params(): params = {} params.update({"output_dir": "", "dump_plots": True}) return params def begin(self): super(DumpAttention, self).begin() gfile.MakeDirs(self.params["output_dir"]) def before_run(self, _run_context): fetches = {} fetches["predicted_tokens"] = self._predictions["predicted_tokens"] fetches["features.source_len"] = self._predictions["features.source_len"] fetches["features.source_tokens"] = self._predictions[ "features.source_tokens"] fetches["attention_scores"] = self._predictions["attention_scores"] return tf.train.SessionRunArgs(fetches) def after_run(self, _run_context, run_values): fetches_batch = run_values.results for fetches in unbatch_dict(fetches_batch): # Convert to unicode fetches["predicted_tokens"] = np.char.decode( fetches["predicted_tokens"].astype("S"), "utf-8") fetches["features.source_tokens"] = np.char.decode( fetches["features.source_tokens"].astype("S"), "utf-8") if self.params["dump_plots"]: output_path = os.path.join(self.params["output_dir"], "{:05d}.png".format(self._idx)) _create_figure(fetches) plt.savefig(output_path) plt.close() tf.logging.info("Wrote %s", output_path) self._idx += 1 self._attention_scores_accum.append(_get_scores(fetches)) def end(self, _session): scores_path = os.path.join(self.params["output_dir"], "attention_scores.npz") np.savez(scores_path, *self._attention_scores_accum) tf.logging.info("Wrote %s", scores_path)
apache-2.0
ldirer/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
ZENGXH/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/subplots_axes_and_figures/custom_figure_class.py
1
1517
""" =================== Custom Figure Class =================== You can pass a custom Figure constructor to figure if you want to derive from the default Figure. This simple example creates a figure with a figure title. """ import matplotlib.pyplot as plt #import figure, show from matplotlib.figure import Figure # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end class MyFigure(Figure): def __init__(self, *args, **kwargs): """ custom kwarg figtitle is a figure title """ figtitle = kwargs.pop('figtitle', 'hi mom') Figure.__init__(self, *args, **kwargs) self.text(0.5, 0.95, figtitle, ha='center') fig = plt.figure(FigureClass=MyFigure, figtitle='my title') ax = fig.add_subplot(111) ax.plot([1, 2, 3]) pltshow(plt)
mit
LiaoPan/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
atantet/ergoPack
example/numericalFP/numericalFP_Hopf.py
1
5115
import numpy as np import pylibconfig2 from scipy import sparse from scipy.sparse import linalg import matplotlib.pyplot as plt from matplotlib import cm from ergoNumAna import ChangCooper readEigVal = False #readEigVal = True def hopf(x, mu, omega): f = np.empty((2,)) f[0] = x[0] * (mu - (x[0]**2 + x[1]**2)) - omega*x[1] f[1] = x[1] * (mu - (x[0]**2 + x[1]**2)) + omega*x[0] return f # Get model omega = 1. #q = 0.5 #q = 0.75 #q = 1. #q = 1.25 #q = 1.5 #q = 1.75 #q = 2. #q = 2.25 #q = 2.5 #q = 2.75 #q = 3. #q = 3.25 #q = 3.5 #q = 3.75 q = 4. muRng = np.arange(-10, 15., 0.1) k0 = 0 #muRng = np.arange(6.6, 15., 0.1) #k0 = 166 #muRng = np.arange(-4, 2, 0.1) #k0 = 60 #muRng = np.arange(2, 8, 0.1) #k0 = 120 #muRng = np.arange(8, 15, 0.1) #k0 = 180 #muRng = np.arange(5., 10., 0.1) #k0 = 150 #muRng = np.array([8.]) #k0 = 180 # Grid definition dim = 2 nx0 = 100 #nx0 = 200 # give limits for the size of the periodic orbit # at maximum value of control parameter (when noise # effects transversally are small) xlim = np.ones((dim,)) * np.sqrt(15) * 2 # Number of eigenvalues nev = 100 tol = 1.e-6 B = np.eye(dim) * q # Get standard deviations Q = np.dot(B, B.T) # Get grid points and steps x = [] dx = np.empty((dim,)) nx = np.ones((dim,), dtype=int) * nx0 for d in np.arange(dim): x.append(np.linspace(-xlim[d], xlim[d], nx[d])) dx[d] = x[d][1] - x[d][0] N = np.prod(nx) idx = np.indices(nx).reshape(dim, -1) X = np.meshgrid(*x, indexing='ij') points = np.empty((dim, N)) for d in np.arange(dim): points[d] = X[d].flatten() alpha = 0.0 levels = 20 fs_default = 'x-large' fs_latex = 'xx-large' fs_xlabel = fs_default fs_ylabel = fs_default fs_xticklabels = fs_default fs_yticklabels = fs_default fs_legend_title = fs_default fs_legend_labels = fs_default fs_cbar_label = fs_default #figFormat = 'png' figFormat = 'eps' dpi = 300 msize = 32 bbox_inches = 'tight' plt.rc('font',**{'family':'serif'}) print 'For q = ', q for k in np.arange(muRng.shape[0]): mu = muRng[k] print 'For mu = ', mu if mu < 0: signMu = 'm' else: signMu = 'p' postfix = '_nx%d_k%03d_mu%s%02d_q%03d' \ % (nx0, k0 + k, signMu, int(round(np.abs(mu) * 10)), int(round(q * 100))) if not readEigVal: # Define drift def drift(x): return hopf(x, mu, omega) # Get discretized Fokker-Planck operator print 'Discretizing Fokker-Planck operator' FPO = ChangCooper(points, nx, dx, drift, Q) print 'Solving eigenvalue problem' (w, v) = linalg.eigs(FPO, k=nev, which='LR', tol=tol) isort = np.argsort(-w.real) w = w[isort] v = v[:, isort] rho0 = v[:, 0].real rho0 /= rho0.sum() rho0_tile = np.tile(rho0, (dim, 1)) meanPoints = (points * rho0_tile).sum(1) stdPoints = np.sqrt(((points - np.tile(meanPoints, (N, 1)).T)**2 * rho0_tile).sum(1)) print 'Mean points = ', meanPoints print 'Std points = ', stdPoints print 'Saving eigenvalues' np.savetxt('../results/numericalFP/w_hopf%s.txt' % postfix, w) np.savetxt('../results/numericalFP/statDist_hopf%s.txt' % postfix, rho0) else: print 'Reading eigenvalues' srcFile = '../results/numericalFP/w_hopf%s.txt' % postfix fp = open(srcFile, 'r') w = np.empty((nev,), dtype=complex) for ev in np.arange(nev): line = fp.readline() line = line.replace('+-', '-') w[ev] = complex(line) rho0 = np.loadtxt('../results/numericalFP/statDist_hopf%s.txt' % postfix) print 'Plotting' fig = plt.figure() #fig.set_visible(False) ax = fig.add_subplot(111) ax.scatter(w.real, w.imag, edgecolors='face') ax.set_xlim(-30, 0.1) ax.set_ylim(-10, 10) ax.text(-29, -9, r'$\mu = %.1f$' % mu, fontsize='xx-large') fig.savefig('../results/plot/numericalFP/numFP_hopf%s.%s' \ % (postfix, figFormat), bbox_inches='tight', dpi=300) fig = plt.figure() ax = fig.add_subplot(111) vect = rho0.copy() vecAlpha = vect[vect != 0] if alpha > 0: vmax = np.sort(vecAlpha)[int((1. - alpha) \ * vecAlpha.shape[0])] vect[vect > vmax] = vmax else: vmax = np.max(vect) h = ax.contourf(X[0].T, X[1].T, vect.reshape(nx), levels, cmap=cm.hot_r, vmin=0., vmax=vmax) ax.set_xlim(X[0][:, 0].min(), X[0][:, 0].max()) ax.set_ylim(X[1][0].min(), X[1][0].max()) #cbar = plt.colorbar(h) ax.set_xlabel(r'$x$', fontsize=fs_latex) ax.set_ylabel(r'$y$', fontsize=fs_latex) # plt.setp(cbar.ax.get_yticklabels(), fontsize=fs_yticklabels) plt.setp(ax.get_xticklabels(), fontsize=fs_xticklabels) plt.setp(ax.get_yticklabels(), fontsize=fs_yticklabels) ax.text(-7, -7, r'$\mu = %.1f$' % mu, fontsize='xx-large') fig.savefig('../results/plot/numericalFP/statDist_hopf%s.%s' \ % (postfix, figFormat), bbox_inches='tight', dpi=300) plt.close()
gpl-3.0
spallavolu/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
imaculate/scikit-learn
examples/preprocessing/plot_function_transformer.py
158
1993
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.show()
bsd-3-clause
Axelrod-Python/Axelrod-fingerprint
update_fingerprints.py
1
8815
""" A script to obtain the Ashlock Fingerprints of all strategies in the Axelrod library. This writes a hash of the source code of each strategy to file: db.csv. If the source code of a strategy changes **or** a new strategy is introduced then the fingerprint is regenerated for that strategy. """ import inspect import hashlib import csv import string import numpy as np import matplotlib.pyplot as plt import axelrod as axl def hash_strategy(strategy): """ Hash the source code of a strategy """ try: source_code = "".join(inspect.getsourcelines(strategy)[0]) except OSError: # Some classes are dynamically created source_code = "".join(inspect.getsourcelines(strategy.strategy)[0]) hash_object = hashlib.md5(source_code.encode("utf-8")) hashed_source = hash_object.hexdigest() return hashed_source def write_strategy_to_db(strategy, filename="db.csv", fingerprint="Ashlock"): """ Write the hash of a strategy to the db """ hashed_source = hash_strategy(strategy) with open(filename, "a") as db: try: db.write( "{},{},{}\n".format( strategy.original_name, fingerprint, hashed_source ) ) except AttributeError: db.write( "{},{},{}\n".format(strategy.name, fingerprint, hashed_source) ) def read_db(filename="db.csv"): """ Read filename and return a dictionary mapping string names to hash of source code of a strategy """ with open(filename, "r") as db: csvreader = csv.reader(db) str_to_hash = {(row[0], row[1]): row[2] for row in csvreader} return str_to_hash def create_db(filename="db.csv"): """ Creates an empty db.csv file """ with open(filename, "w"): pass def write_data_to_file(fp, filename): """ Write the fingerprint data to a file. """ columns = ["x", "y", "score"] with open(filename, "w") as f: w = csv.writer(f) w.writerow(columns) for key, value in fp.data.items(): w.writerow([key.x, key.y, value]) def obtain_fingerprint( strategy, turns, repetitions, probe=axl.TitForTat, processes=1 ): """ Obtain the fingerprint for a given strategy and save the figure to the assets dir """ fp = axl.AshlockFingerprint(strategy, probe) fp.fingerprint( turns=turns, repetitions=repetitions, progress_bar=False, processes=processes, ) plt.figure() fp.plot() try: name = strategy.original_name except AttributeError: name = strategy.name plt.tight_layout() plt.savefig( "assets/{}.png".format(format_filename(name)), bbox_inches="tight" ) write_data_to_file(fp, "assets/{}.csv".format(format_filename(name))) def obtain_transitive_fingerprint(strategy, turns, repetitions, processes=1): """ Obtain the transitive fingerprint for a given strategy and save the figure to the assets dir """ fp = axl.TransitiveFingerprint(strategy, number_of_opponents=30) fp.fingerprint( turns=turns, repetitions=repetitions, progress_bar=False, processes=processes, ) plt.figure() fp.plot() try: name = strategy.original_name except AttributeError: name = strategy.name plt.tight_layout() plt.savefig( "assets/transitive_{}.png".format(format_filename(name)), bbox_inches="tight", ) np.savetxt( "assets/transitive_{}.csv".format(format_filename(name)), fp.data ) def obtain_transitive_fingerprint_v_short( strategy, turns, repetitions, processes=1 ): """ Obtain the transitive fingerprint against short run time for a given strategy and save the figure to the assets dir """ short_run_time = [s() for s in axl.short_run_time_strategies] fp = axl.TransitiveFingerprint(strategy, opponents=short_run_time) fp.fingerprint( turns=turns, repetitions=repetitions, progress_bar=False, processes=processes, ) plt.figure() fp.plot(display_names=True) try: name = strategy.original_name except AttributeError: name = strategy.name plt.tight_layout() plt.savefig( "assets/transitive_v_short_{}.png".format(format_filename(name)), bbox_inches="tight", ) np.savetxt( "assets/transitive_v_short_{}.csv".format(format_filename(name)), fp.data, ) def format_filename(s): """ Take a string and return a valid filename constructed from the string. Uses a whitelist approach: any characters not present in valid_chars are removed. Also spaces are replaced with underscores. Note: this method may produce invalid filenames such as ``, `.` or `..` When I use this method I prepend a date string like '2009_01_15_19_46_32_' and append a file extension like '.txt', so I avoid the potential of using an invalid filename. Borrowed from https://gist.github.com/seanh/93666 """ valid_chars = "-_.() {}{}".format(string.ascii_letters, string.digits) filename = "".join(c for c in s if c in valid_chars) filename = filename.replace(" ", "_") return filename def write_markdown(strategy): """ Write a markdown section of a strategy. """ try: name = strategy.original_name except AttributeError: name = strategy.name markdown = """ ## {0} ![fingerprint of {0}](./assets/{1}.png) [data (csv)](./assets/{1}.csv) ![Transitive fingerprint of {0}](./assets/transitive_{1}.png) [data (csv)](./assets/transitive_{1}.csv) ![Transitive fingerprint of {0} against short run time](./assets/transitive_v_short_{1}.png) [data (csv)](./assets/transitive_v_short_{1}.csv) """.format( name, format_filename(name) ) return markdown def main( turns, repetitions, transitive_turns, transitive_repetitions, transitive_v_short_turns, transitive_v_short_repetitions, processes, ): """ Fingerprint all strategies, if a strategy has already been fingerprinted it does not get rerun. """ version = axl.__version__ markdown = """# Ashlock and transitive fingerprints See: [axelrod.readthedocs.io/en/latest/tutorials/further_topics/fingerprinting.html#fingerprinting](http://axelrod.readthedocs.io/en/latest/tutorials/further_topics/fingerprinting.html#fingerprinting) All strategies included from Axelrod version {}. This README.md file is autogenerated by running: ``` $ python update_fingerprints.py ``` Each individual fingerprint can be obtained by running: ```python import axelrod as axl fp = axl.AshlockFingerprint(strategy, probe) fp.fingerprint(turns={}, repetitions={}) fp.plot() ``` # Axelrod library fingerprints """.format( version, turns, repetitions ) try: db = read_db() except FileNotFoundError: create_db() db = read_db() for strategy in axl.short_run_time_strategies: name = strategy.name signature = hash_strategy(strategy) fp = "Ashlock" if (name, fp) not in db or db[name, fp] != signature: obtain_fingerprint( strategy, turns, repetitions, processes=processes ) write_strategy_to_db(strategy, fingerprint=fp) fp = "Transitive" if (name, fp) not in db or db[name, fp] != signature: obtain_transitive_fingerprint( strategy, transitive_turns, transitive_repetitions, processes=processes, ) write_strategy_to_db(strategy, fingerprint=fp) fp = "Transitive_v_short" if (name, fp) not in db or db[name, fp] != signature: obtain_transitive_fingerprint_v_short( strategy, transitive_v_short_turns, transitive_v_short_repetitions, processes=processes, ) write_strategy_to_db(strategy, fingerprint=fp) markdown += write_markdown(strategy) with open("README.md", "w") as outfile: outfile.write(markdown) if __name__ == "__main__": turns, repetitions = 200, 20 transitive_turns, transitive_repetitions = 200, 20 transitive_v_short_turns, transitive_v_short_repetitions = 200, 20 processes = 20 main( turns=turns, repetitions=repetitions, transitive_turns=transitive_turns, transitive_repetitions=transitive_repetitions, transitive_v_short_turns=transitive_v_short_turns, transitive_v_short_repetitions=transitive_v_short_repetitions, processes=processes, )
mit
hwp-kiel/opencali
src/ui/mplwidget.py
1
1403
# Python Qt4 bindings for GUI objects from PyQt4 import QtGui # import the Qt4Agg FigureCanvas object, that binds Figure to # Qt4Agg backend. It also inherits from QWidget from matplotlib.backends.backend_qt4agg \ import FigureCanvasQTAgg as FigureCanvas # Matplotlib Figure object from matplotlib.figure import Figure class MplCanvas(FigureCanvas): """Class to represent the FigureCanvas widget""" def __init__(self): # setup Matplotlib Figure and Axis self.fig = Figure() self.ax = self.fig.add_subplot(111) # initialization of the canvas FigureCanvas.__init__(self, self.fig) # we define the widget as expandable FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) # notify the system of updated policy FigureCanvas.updateGeometry(self) class MplWidget(QtGui.QWidget): """Widget defined in Qt Designer""" def __init__(self, parent = None): # initialization of Qt MainWindow widget QtGui.QWidget.__init__(self, parent) # set the canvas to the Matplotlib widget self.canvas = MplCanvas() # create a vertical box layout self.vbl = QtGui.QVBoxLayout() # add mpl widget to vertical box self.vbl.addWidget(self.canvas) # set the layout to th vertical box self.setLayout(self.vbl)
gpl-2.0
Evensgn/MNIST-learning
mnist_svm.py
1
1201
import numpy as np import matplotlib.pyplot as plt GRAY_SCALE_RANGE = 255 import pickle data_filename = 'data_deskewed.pkl' print('Loading data from file \'' + data_filename + '\' ...') with open(data_filename, 'rb') as f: train_labels = pickle.load(f) train_images = pickle.load(f) test_labels = pickle.load(f) test_images = pickle.load(f) num_pixel = pickle.load(f) print('Data loading complete.') train_images = np.array(train_images) train_images.resize(train_images.size // num_pixel, num_pixel) test_images = np.array(test_images) test_images.resize(test_images.size // num_pixel, num_pixel) test_labels = np.array(test_labels) train_labels = np.array(train_labels) ## normalization train_images = train_images / GRAY_SCALE_RANGE test_images = test_images / GRAY_SCALE_RANGE from sklearn import svm, metrics # clf = svm.SVC(gamma = 0.001) clf = svm.SVC(kernel = 'linear') clf.fit(train_images[:1000], train_labels[:1000]) prediction = clf.predict(test_images) print("Classification report for classifier %s:\n%s\n" % (clf, metrics.classification_report(test_labels, prediction))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(test_labels, prediction))
mit
dr-jpk/saltefficiency
weekly/weekly_summary_plots.py
1
8536
# -*- coding: utf-8 -*- """ Created on Mon Mar 9 10:06:20 2015 @author: jpk ToDo: automate the subsystems check. A query that checks all the subsystems in case things change in the future should prevent issues with the pis chart colours """ import sys import os import pandas as pd import pandas.io.sql as psql import MySQLdb import matplotlib.pyplot as pl import report_queries as rq import numpy as np import matplotlib.dates as mdates def priority_breakdown_pie_chart(x, ds, dirname='./logs/'): ''' make a pie chart from the dataframe ''' temp = list(x['Priority']) no_blocks = map(int, list(x['No. Blocks'])) labels = ['P'+str(temp[i])+' - ' + str(no_blocks[i]) for i in range(0,len(temp))] values = list(x['Tsec']) # set colours for the priorities colours = ['b','c','g','m','r'] fig = pl.figure(facecolor='w', figsize=[5, 5]) ax = fig.add_subplot(111) ax.set_aspect=1 pie_wedge_collection = ax.pie(values, colors=colours, pctdistance=0.8, radius = 0.95, autopct='%1.1f%%', textprops = {'fontsize':10, 'color':'w'}, wedgeprops = {'edgecolor':'white'}) ax.legend(labels=labels, frameon=False, loc=(-0.15,0.7), fontsize=8) title_txt = 'Weekly Priority Breakdown - ' + str(int(x['No. Blocks'].sum())) + ' Blocks Total' + '\n {}'.format(ds) ax.set_title(title_txt, fontsize=12) filename = dirname+'priority_breakdown_pie_chart_' +'-'.join([ds.split()[0].replace('-',''), ds.split()[2].replace('-','')])+'.png' pl.savefig(filename, dpi=100) # pl.show() def weekly_total_time_breakdown_pie_chart(x, ds, dirname='./logs/'): labels = ['Science - {}'.format(x['ScienceTime'][0]), 'Engineering - {}'.format(x['EngineeringTime'][0]), 'Weather - {}'.format(x['TimeLostToWeather'][0]), 'Problems - {}'.format(x['TimeLostToProblems'][0])] values = [int(x['Science']), int(x['Engineering']), int(x['Weather']), int(x['Problems'])] colours = ['b','c','g','r'] fig = pl.figure(facecolor='w', figsize=[5, 5]) ax = fig.add_subplot(111) ax.set_aspect=1 pie_wedge_collection = ax.pie(values, colors=colours, pctdistance=0.8, radius = 0.95, autopct='%1.1f%%', textprops = {'fontsize':10, 'color':'w'}, wedgeprops = {'edgecolor':'white'}) ax.legend(labels=labels, frameon=False, loc=(-0.15,0.8), fontsize=8) title_txt = 'Weekly Time Breakdown - {} Total\n{}'.format(x['NightLength'][0], ds) ax.set_title(title_txt, fontsize=12) filename = 'weekly_total_time_breakdown_pie_chart_' + '-'.join([ds.split()[0].replace('-',''), ds.split()[2].replace('-','')])+'.png' pl.savefig(dirname+filename, dpi=100) # pl.show() def weekly_subsystem_breakdown_pie_chart(x, y, col_dict, ds, dirname='./logs/'): subsystem = list(x['SaltSubsystem']) time = list(x['TotalTime']) labels = [subsystem[i] + ' - ' + time[i] for i in range(0,len(subsystem))] values = list(x['Time']) colours = [col_dict[i] for i in subsystem] fig = pl.figure(facecolor='w', figsize=[5, 5]) ax = fig.add_subplot(111) ax.set_aspect=1 pie_wedge_collection = ax.pie(values, colors=colours, pctdistance=0.8, radius = 0.95, autopct='%1.1f%%', textprops = {'fontsize':10, 'color':'k'}, wedgeprops = {'edgecolor':'white'}) ax.legend(labels=labels, frameon=False, loc=(-0.15,0.65), fontsize=8) title_txt = 'Weekly Problems Breakdown - {}\n{}'.format(y['TotalTime'][0], ds) ax.set_title(title_txt, fontsize=12) filename = 'weekly_subsystem_breakdown_pie_chart_'+'-'.join([ds.split()[0].replace('-',''), ds.split()[2].replace('-','')])+'.png' pl.savefig(dirname+filename, dpi=100) # pl.show() def weekly_time_breakdown(x, ds, dirname='./logs/'): ''' produce a bar stacked bar chart plot of the time breakdown per day for the past week. ''' fig = pl.figure(figsize=(10,4),facecolor='w') ax = fig.add_subplot(111) width = 0.55 ax.grid(which='major', axis='y') # science time per day s = ax.bar(x['Date'], x['Science'], width, color = 'b', edgecolor='w') # engineering time per day e = ax.bar(x['Date'], x['Engineering'], width, bottom = x['Science'], color = 'c', edgecolor='w') # weather time per day w = ax.bar(x['Date'], x['Weather'], width, bottom = x['Science'] + x['Engineering'], color = 'g', edgecolor='w') # problem time per day p = ax.bar(x['Date'], x['Problems'], width, bottom = x['Science'] + x['Engineering'] + x['Weather'], color = 'r', edgecolor='w') ax.set_ylabel('Hours', fontsize=11) ax.set_xlabel('Date', fontsize=11) fig.legend((s[0], e[0], w[0], p[0]), ('Science Time', 'Engineering Time', 'Time lost to Weather', 'Time lost to Problems'), frameon=False, fontsize=10, loc=(0.0,0.70)) title_txt = 'Weekly Time Breakdown - {}'.format(ds) ax.set_title(title_txt, fontsize=11) ax.xaxis_date() date_formatter = mdates.DateFormatter('%a \n %Y-%m-%d') ax.xaxis.set_major_formatter(date_formatter) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) fig.autofmt_xdate(rotation=0, ha = 'left') fig.subplots_adjust(left=0.22, bottom=0.20, right=0.96, top=None, wspace=None, hspace=None) pl.autoscale() filename = 'weekly_time_breakdown_'+'-'.join([ds.split()[0].replace('-',''), ds.split()[2].replace('-','')])+'.png' pl.savefig(dirname+filename, dpi=100) # pl.show() if __name__=='__main__': # set the colours for all the subsystems: subsystems_list = ['BMS', 'DOME', 'TC', 'PMAS', 'SCAM', 'TCS', 'STRUCT', 'TPC', 'HRS', 'PFIS','Proposal', 'Operations', 'ELS', 'ESKOM'] cmap = pl.cm.jet colour_map = cmap(np.linspace(0.0, 1.0, len(subsystems_list))) col_dict = {} for i in range(0, len(subsystems_list)): col_dict[subsystems_list[i]] = colour_map[i] # open mysql connection to the sdb mysql_con = MySQLdb.connect(host='sdb.cape.saao.ac.za', port=3306,user=os.environ['SDBUSER'], passwd=os.environ['SDBPASS'], db='sdb') obsdate = sys.argv[1] date = '{}-{}-{}'.format(obsdate[0:4], obsdate[4:6], obsdate[6:8]) interval = sys.argv[2] # use the connection to get the required data: _d dr_d = rq.date_range(mysql_con, date, interval=interval) wpb_d = rq.weekly_priority_breakdown(mysql_con, date, interval=interval) wtb_d = rq.weekly_time_breakdown(mysql_con, date, interval=interval) wttb_d = rq.weekly_total_time_breakdown(mysql_con, date, interval=interval) wsb_d = rq.weekly_subsystem_breakdown(mysql_con, date, interval=interval) wsbt_d = rq.weekly_subsystem_breakdown_total(mysql_con, date, interval=interval) wtb_d = rq.weekly_time_breakdown(mysql_con, date, interval=interval) date_string = '{} - {}'.format(dr_d['StartDate'][0], dr_d['EndDate'][0]) # testing the pie_chart method priority_breakdown_pie_chart(wpb_d, date_string) weekly_total_time_breakdown_pie_chart(wttb_d, date_string) weekly_subsystem_breakdown_pie_chart(wsb_d, wsbt_d, col_dict, date_string) weekly_time_breakdown(wtb_d, date_string) mysql_con.close()
bsd-3-clause
amueller/advanced_training
plots/plot_interactive_tree.py
1
2695
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.tree import DecisionTreeClassifier from sklearn.externals.six import StringIO # doctest: +SKIP from sklearn.tree import export_graphviz from scipy.misc import imread from scipy import ndimage import os import re GRAPHVIS_PATH = r"C:\Program Files (x86)\Graphviz2.38\bin" if GRAPHVIS_PATH not in os.environ['PATH']: os.environ['PATH'] += ";" + GRAPHVIS_PATH X, y = make_blobs(centers=[[0, 0], [1, 1]], random_state=61526, n_samples=50) def tree_image(tree, fout=None): try: import graphviz except ImportError: # make a hacky white plot x = np.ones((10, 10)) x[0, 0] = 0 return x dot_data = StringIO() export_graphviz(tree, out_file=dot_data, max_depth=3, impurity=False) data = dot_data.getvalue() #data = re.sub(r"gini = 0\.[0-9]+\\n", "", dot_data.getvalue()) data = re.sub(r"samples = [0-9]+\\n", "", data) data = re.sub(r"\\nsamples = [0-9]+", "", data) data = re.sub(r"value", "counts", data) graph = graphviz.Source(data, format="png") if fout is None: fout = "tmp" graph.render(fout) return imread(fout + ".png") def plot_tree(max_depth=1): fig, ax = plt.subplots(1, 2, figsize=(15, 7)) h = 0.02 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) if max_depth != 0: tree = DecisionTreeClassifier(max_depth=max_depth, random_state=1).fit(X, y) Z = tree.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] Z = Z.reshape(xx.shape) faces = tree.tree_.apply(np.c_[xx.ravel(), yy.ravel()].astype(np.float32)) faces = faces.reshape(xx.shape) border = ndimage.laplace(faces) != 0 ax[0].contourf(xx, yy, Z, alpha=.4) ax[0].scatter(xx[border], yy[border], marker='.', s=1) ax[0].set_title("max_depth = %d" % max_depth) img = tree_image(tree) if img is not None: ax[1].imshow(img) ax[1].axis("off") else: ax[1].set_visible(False) else: ax[0].set_title("data set") ax[1].set_visible(False) ax[0].scatter(X[:, 0], X[:, 1], c=np.array(['b', 'r'])[y], s=60) ax[0].set_xlim(x_min, x_max) ax[0].set_ylim(y_min, y_max) ax[0].set_xticks(()) ax[0].set_yticks(()) def plot_tree_interactive(): from IPython.html.widgets import interactive, IntSlider slider = IntSlider(min=0, max=8, step=1, value=0) return interactive(plot_tree, max_depth=slider)
bsd-2-clause
nlhepler/freetype-py3
examples/glyph-vector-2.py
1
3414
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- ''' Show how to access glyph outline description. ''' from freetype import * if __name__ == '__main__': import numpy import matplotlib.pyplot as plt from matplotlib.path import Path import matplotlib.patches as patches face = Face(b'./Vera.ttf') face.set_char_size( 32*64 ) face.load_char('g') slot = face.glyph bitmap = face.glyph.bitmap width = face.glyph.bitmap.width rows = face.glyph.bitmap.rows pitch = face.glyph.bitmap.pitch data = [] for i in range(rows): data.extend(bitmap.buffer[i*pitch:i*pitch+width]) Z = numpy.array(data,dtype=numpy.ubyte).reshape(rows, width) outline = slot.outline points = numpy.array(outline.points, dtype=[('x',float), ('y',float)]) x, y = points['x'], points['y'] figure = plt.figure(figsize=(8,10)) axis = figure.add_subplot(111) #axis.scatter(points['x'], points['y'], alpha=.25) start, end = 0, 0 VERTS, CODES = [], [] # Iterate over each contour for i in range(len(outline.contours)): end = outline.contours[i] points = outline.points[start:end+1] points.append(points[0]) tags = outline.tags[start:end+1] tags.append(tags[0]) segments = [ [points[0],], ] for j in range(1, len(points) ): segments[-1].append(points[j]) if tags[j] & (1 << 0) and j < (len(points)-1): segments.append( [points[j],] ) verts = [points[0], ] codes = [Path.MOVETO,] for segment in segments: if len(segment) == 2: verts.extend(segment[1:]) codes.extend([Path.LINETO]) elif len(segment) == 3: verts.extend(segment[1:]) codes.extend([Path.CURVE3, Path.CURVE3]) else: verts.append(segment[1]) codes.append(Path.CURVE3) for i in range(1,len(segment)-2): A,B = segment[i], segment[i+1] C = ((A[0]+B[0])/2.0, (A[1]+B[1])/2.0) verts.extend([ C, B ]) codes.extend([ Path.CURVE3, Path.CURVE3]) verts.append(segment[-1]) codes.append(Path.CURVE3) VERTS.extend(verts) CODES.extend(codes) start = end+1 # Draw glyph path = Path(VERTS, CODES) glyph = patches.PathPatch(path, fill = True, facecolor=(0.8,0.5,0.8), alpha=.25, lw=0) glyph_outline = patches.PathPatch(path, fill = False, edgecolor='black', lw=3) plt.imshow(Z, extent=[x.min(), x.max(),y.min(), y.max()], interpolation='nearest', cmap = plt.cm.gray_r, vmin=0, vmax=400) plt.xticks(numpy.linspace(x.min(), x.max(), Z.shape[1]+1), ()) plt.yticks(numpy.linspace(y.min(), y.max(), Z.shape[0]+1), ()) plt.grid(color='k', linewidth=1, linestyle='-') axis.add_patch(glyph) axis.add_patch(glyph_outline) axis.set_xlim(x.min(), x.max()) axis.set_ylim(y.min(), y.max()) plt.savefig('test.pdf') plt.show()
bsd-3-clause
willyd/fast-rcnn
tools/demo.py
22
5446
#!/usr/bin/env python # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Demo script showing detections in sample images. See README.md for installation instructions before running. """ import _init_paths from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from utils.cython_nms import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import scipy.io as sio import caffe, os, sys, cv2 import argparse CLASSES = ('__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') NETS = {'vgg16': ('VGG16', 'vgg16_fast_rcnn_iter_40000.caffemodel'), 'vgg_cnn_m_1024': ('VGG_CNN_M_1024', 'vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel'), 'caffenet': ('CaffeNet', 'caffenet_fast_rcnn_iter_40000.caffemodel')} def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() def demo(net, image_name, classes): """Detect object classes in an image using pre-computed object proposals.""" # Load pre-computed Selected Search object proposals box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '_boxes.mat') obj_proposals = sio.loadmat(box_file)['boxes'] # Load the demo image im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg') im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(net, im, obj_proposals) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls in classes: cls_ind = CLASSES.index(cls) cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] keep = np.where(cls_scores >= CONF_THRESH)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls, CONF_THRESH) vis_detections(im, cls, dets, thresh=CONF_THRESH) def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]', choices=NETS.keys(), default='vgg16') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS[args.demo_net][0], 'test.prototxt') caffemodel = os.path.join(cfg.ROOT_DIR, 'data', 'fast_rcnn_models', NETS[args.demo_net][1]) if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.\nDid you run ./data/scripts/' 'fetch_fast_rcnn_models.sh?').format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) net = caffe.Net(prototxt, caffemodel, caffe.TEST) print '\n\nLoaded network {:s}'.format(caffemodel) print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/000004.jpg' demo(net, '000004', ('car',)) print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/001551.jpg' demo(net, '001551', ('sofa', 'tvmonitor')) plt.show()
mit
clawpack/clawpack-4.x
doc/sphinx/example-acoustics-1d/setplot_2.py
2
2095
""" Single figure and axes with two items ======================================= Only the pressure q[0] is plotted. In this example the line and points are plotted in different colors by specifying a second item on the same axes. """ #-------------------------- def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ plotdata.clearfigures() # clear any old figures,axes,items data # Figure for q[0] plotfigure = plotdata.new_plotfigure(name='Pressure', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = [-.5,1.1] plotaxes.title = 'Pressure' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(name='line', plot_type='1d') plotitem.plot_var = 0 plotitem.plotstyle = '-' plotitem.color = 'b' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(name='points', plot_type='1d') plotitem.plot_var = 0 plotitem.plotstyle = 'o' plotitem.color = '#ff00ff' # any color supported by matplotlib # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html'# pointer for index page plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 1 # layout of plots plotdata.latex_framesperline = 2 # layout of plots plotdata.latex_makepdf = True # also run pdflatex? return plotdata
bsd-3-clause
spallavolu/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
chungjjang80/FRETBursts
fretbursts/tests/test_burstlib.py
1
40546
# # FRETBursts - A single-molecule FRET burst analysis toolkit. # # Copyright (C) 2014 Antonino Ingargiola <tritemio@gmail.com> # """ Module containing automated unit tests for FRETBursts. Running the tests requires `py.test`. """ from __future__ import division from builtins import range, zip from collections import namedtuple import pytest import numpy as np try: import matplotlib except ImportError: has_matplotlib = False # OK to run tests without matplotlib else: has_matplotlib = True matplotlib.use('Agg') # but if matplotlib is installed, use Agg try: import numba except ImportError: has_numba = False else: has_numba = True import fretbursts.background as bg import fretbursts.burstlib as bl import fretbursts.burstlib_ext as bext from fretbursts import loader from fretbursts import select_bursts from fretbursts.ph_sel import Ph_sel from fretbursts.phtools import phrates if has_matplotlib: import fretbursts.burst_plot as bplt # data subdir in the notebook folder DATASETS_DIR = u'notebooks/data/' def _alex_process(d): loader.alex_apply_period(d) d.calc_bg(bg.exp_fit, time_s=30, tail_min_us=300) d.burst_search(L=10, m=10, F=7) def load_dataset_1ch(process=True): fn = "0023uLRpitc_NTP_20dT_0.5GndCl.hdf5" fname = DATASETS_DIR + fn d = loader.photon_hdf5(fname) if process: _alex_process(d) return d def load_dataset_8ch(): fn = "12d_New_30p_320mW_steer_3.hdf5" fname = DATASETS_DIR + fn d = loader.photon_hdf5(fname) d.calc_bg(bg.exp_fit, time_s=30, tail_min_us=300) d.burst_search(L=10, m=10, F=7) return d def load_fake_pax(): fn = "0023uLRpitc_NTP_20dT_0.5GndCl.hdf5" fname = DATASETS_DIR + fn d = loader.photon_hdf5(fname) d.add(ALEX=False, meas_type='PAX') loader.alex_apply_period(d) d.calc_bg(bg.exp_fit, time_s=30, tail_min_us='auto') d.burst_search(L=10, m=10, F=6) return d @pytest.fixture(scope="module", params=[ load_dataset_1ch, load_dataset_8ch, ]) def data(request): load_func = request.param d = load_func() return d @pytest.fixture(scope="module") def data_8ch(request): d = load_dataset_8ch() return d @pytest.fixture(scope="module") def data_1ch(request): d = load_dataset_1ch() return d ## # List comparison functions # def list_equal(list1, list2): """Test numerical equality of all the elements in the two lists. """ return np.all([val1 == val2 for val1, val2 in zip(list1, list2)]) def list_array_equal(list1, list2): """Test numerical equality between two lists of arrays. """ return np.all([np.all(arr1 == arr2) for arr1, arr2 in zip(list1, list2)]) def list_array_allclose(list1, list2): """Test float closeness (np.allclose) between two lists of arrays. """ return np.all([np.allclose(arr1, arr2) for arr1, arr2 in zip(list1, list2)]) ## # Test functions # def test_bg_compatlayer_for_obsolete_attrs(): d = load_dataset_1ch(process=False) attrs = ('bg_dd', 'bg_ad', 'bg_da', 'bg_aa', 'rate_m', 'rate_dd', 'rate_ad', 'rate_da', 'rate_aa') for attr in attrs: with pytest.raises(RuntimeError): getattr(d, attr) _alex_process(d) for attr in attrs: assert isinstance(getattr(d, attr), list) def test_ph_times_compact(data_1ch): """Test calculation of ph_times_compact.""" def isinteger(x): return np.equal(np.mod(x, 1), 0) ich = 0 d = data_1ch ph_d = d.get_ph_times(ph_sel=Ph_sel(Dex='DAem')) ph_a = d.get_ph_times(ph_sel=Ph_sel(Aex='DAem')) ph_dc = d.get_ph_times(ph_sel=Ph_sel(Dex='DAem'), compact=True) ph_ac = d.get_ph_times(ph_sel=Ph_sel(Aex='DAem'), compact=True) # Test that the difference of ph and ph_compact is multiple of # the complementary excitation period duration Dex_void = bl._excitation_width(d._D_ON_multich[ich], d.alex_period) Aex_void = bl._excitation_width(d._A_ON_multich[ich], d.alex_period) assert isinteger((ph_d - ph_dc) / Dex_void).all() assert isinteger((ph_a - ph_ac) / Aex_void).all() # Test that alternation histogram does not have "gaps" for ph_compact bins = np.linspace(0, d.alex_period, num=101) hist_dc, _ = np.histogram(ph_dc % d.alex_period, bins=bins) hist_ac, _ = np.histogram(ph_ac % d.alex_period, bins=bins) assert (hist_dc > 0).all() assert (hist_ac > 0).all() def test_time_min_max(): """Test time_min and time_max for ALEX data.""" d = load_dataset_1ch(process=False) ich = 0 assert d.time_max == d.ph_times_t[ich].max() * d.clk_p assert d.time_min == d.ph_times_t[ich].min() * d.clk_p del d._time_max, d._time_min _alex_process(d) assert d.time_max == d.ph_times_m[ich][-1] * d.clk_p assert d.time_min == d.ph_times_m[ich][0] * d.clk_p d.delete('ph_times_m') del d._time_max, d._time_min assert d.time_max == d.mburst[0].stop[-1] * d.clk_p assert d.time_min == d.mburst[0].start[0] * d.clk_p def test_time_min_max_multispot(data_8ch): """Test time_min and time_max for multi-spot data.""" d = data_8ch assert d.time_max == max(t[-1] for t in d.ph_times_m) * d.clk_p assert d.time_min == min(t[0] for t in d.ph_times_m) * d.clk_p def test_aex_dex_ratio(data_1ch): """Test methods computing relative D and A alternation periods durations. """ d = data_1ch Dx, Ax = d.D_ON, d.A_ON a1 = d._aex_fraction() a2 = (Ax[1] - Ax[0]) / (Ax[1] - Ax[0] + Dx[1] - Dx[0]) assert a1 == a2 r1 = d._aex_dex_ratio() r2 = (Ax[1] - Ax[0]) / (Dx[1] - Dx[0]) assert r1 == r2 assert (a1 / (1 - a1)) == r1 def test_burst_size_pax(): d = load_fake_pax() aex_dex_ratio, alpha_d = d._aex_dex_ratio(), 1 - d._aex_fraction() nd, na = d.nd[0], d.na[0] nda = d.nda[0] naa = d.naa[0] - d.nar[0] * aex_dex_ratio # Test burst size during Dex b1 = d.burst_sizes_pax_ich(add_aex=False) b2 = d.burst_sizes_ich(add_naa=False) b3 = nd + na assert (b1 == b2).all() assert (b1 == b3).all() # Test naa naa2 = d.get_naa_corrected() naa3 = d._get_naa_ich() assert (naa == naa2).all() assert (naa == naa3).all() # Test add_naa b1 = d.burst_sizes_ich(add_naa=True) b2 = nd + na + naa assert (b1 == b2).all() # Test add_aex with no duty-cycle correction b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=False) b2 = nd + na + nda + d.naa[0] b3 = nd + na + nda + naa + na * aex_dex_ratio assert np.allclose(b1, b2) assert np.allclose(b1, b3) # Test add_aex with duty-cycle correction b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True) b2 = nd + na + nda + na * aex_dex_ratio + naa / alpha_d assert np.allclose(b1, b2) # Test add_aex with duty-cycle correction, donor_ref b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, donor_ref=True) b2 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, donor_ref=False) assert np.allclose(b1, b2) # Test add_aex with duty-cycle correction, gamma, beta gamma = 0.7 beta = 0.85 b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=True) b2 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=False) assert np.allclose(b1 * gamma, b2) b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=False) b2 = (gamma * (nd + nda) + na * (1 + aex_dex_ratio) + naa / (alpha_d * beta)) assert np.allclose(b1, b2) d.leakage = 0.1 nd, na = d.nd[0], d.na[0] nda = d.nda[0] naa = d.naa[0] - d.nar[0] * aex_dex_ratio # Test add_aex with duty-cycle correction, gamma, beta gamma = 0.7 beta = 0.85 b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=True) b2 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=False) assert np.allclose(b1 * gamma, b2) b1 = d.burst_sizes_pax_ich(add_aex=True, aex_corr=True, gamma=gamma, beta=beta, donor_ref=False) b2 = (gamma * (nd + nda) + na * (1 + aex_dex_ratio) + naa / (alpha_d * beta)) assert np.allclose(b1, b2) def test_bg_calc(data): """Smoke test bg_calc() and test deletion of bg fields. """ data.calc_bg(bg.exp_fit, time_s=30, tail_min_us=300) assert 'bg_auto_th_us0' not in data assert 'bg_auto_F_bg' not in data assert 'bg_th_us_user' in data data.calc_bg(bg.exp_fit, time_s=30, tail_min_us='auto', F_bg=1.7) assert 'bg_auto_th_us0' in data assert 'bg_auto_F_bg' in data assert 'bg_th_us_user' not in data data.calc_bg(bg.exp_fit, time_s=30, tail_min_us='auto', F_bg=1.7, fit_allph=False) streams = [s for s in data.ph_streams if s != Ph_sel('all')] bg_t = [np.sum(data.bg[s][ich] for s in streams) for ich in range(data.nch)] assert list_array_equal(data.bg[Ph_sel('all')], bg_t) def test_ph_streams(data): sel = [Ph_sel('all'), Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem')] if data.alternated: sel.extend([Ph_sel(Aex='Aem'), Ph_sel(Aex='Dem')]) for s in sel: assert s in data.ph_streams def test_bg_from(data): """Test the method .bg_from() for all the ph_sel combinations. """ d = data for sel in d.ph_streams: bg = d.bg_from(ph_sel=sel) assert list_array_equal(bg, d.bg[sel]) if not (data.alternated): assert list_array_equal(d.bg_from(Ph_sel('all')), d.bg_from(Ph_sel(Dex='DAem'))) return bg_dd = d.bg_from(ph_sel=Ph_sel(Dex='Dem')) bg_ad = d.bg_from(ph_sel=Ph_sel(Dex='Aem')) bg = d.bg_from(ph_sel=Ph_sel(Dex='DAem')) assert list_array_equal(bg, [b1 + b2 for b1, b2 in zip(bg_dd, bg_ad)]) bg_aa = d.bg_from(ph_sel=Ph_sel(Aex='Aem')) bg_da = d.bg_from(ph_sel=Ph_sel(Aex='Dem')) bg = d.bg_from(ph_sel=Ph_sel(Aex='DAem')) assert list_array_equal(bg, [b1 + b2 for b1, b2 in zip(bg_aa, bg_da)]) bg = d.bg_from(ph_sel=Ph_sel(Dex='Dem', Aex='Dem')) assert list_array_equal(bg, [b1 + b2 for b1, b2 in zip(bg_dd, bg_da)]) bg = d.bg_from(ph_sel=Ph_sel(Dex='Aem', Aex='Aem')) assert list_array_equal(bg, [b1 + b2 for b1, b2 in zip(bg_ad, bg_aa)]) bg = d.bg_from(ph_sel=Ph_sel(Dex='DAem')) assert list_array_equal(bg, [b1 + b2 for b1, b2 in zip(bg_dd, bg_ad)]) bg = d.bg_from(ph_sel=Ph_sel(Dex='DAem', Aex='Aem')) bg2 = [b1 + b2 + b3 for b1, b2, b3 in zip(bg_dd, bg_ad, bg_aa)] assert list_array_equal(bg, bg2) def test_iter_ph_times(data): """Test method .iter_ph_times() for all the ph_sel combinations. """ # TODO add all the ph_sel combinations like in test_bg_from() d = data assert list_array_equal(d.ph_times_m, d.iter_ph_times()) for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Dex='Dem'))): if d.alternated: assert (ph == d.ph_times_m[ich][d.D_em[ich] * d.D_ex[ich]]).all() else: assert (ph == d.ph_times_m[ich][~d.A_em[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Dex='Aem'))): if d.alternated: assert (ph == d.ph_times_m[ich][d.A_em[ich] * d.D_ex[ich]]).all() else: assert (ph == d.ph_times_m[ich][d.A_em[ich]]).all() if d.alternated: for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Aex='Dem'))): assert (ph == d.ph_times_m[ich][d.D_em[ich] * d.A_ex[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Aex='Aem'))): assert (ph == d.ph_times_m[ich][d.A_em[ich] * d.A_ex[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Dex='DAem'))): assert (ph == d.ph_times_m[ich][d.D_ex[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Aex='DAem'))): assert (ph == d.ph_times_m[ich][d.A_ex[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Dex='Dem', Aex='Dem'))): assert (ph == d.ph_times_m[ich][d.D_em[ich]]).all() for ich, ph in enumerate(d.iter_ph_times(Ph_sel(Dex='Aem', Aex='Aem'))): assert (ph == d.ph_times_m[ich][d.A_em[ich]]).all() for ich, ph in enumerate(d.iter_ph_times( Ph_sel(Dex='DAem', Aex='Aem'))): mask = d.D_ex[ich] + d.A_em[ich] * d.A_ex[ich] assert (ph == d.ph_times_m[ich][mask]).all() else: assert list_array_equal(d.iter_ph_times(), d.iter_ph_times(Ph_sel(Dex='DAem'))) def test_get_ph_times_period(data): for ich in range(data.nch): data.get_ph_times_period(0, ich=ich) data.get_ph_times_period(0, ich=ich, ph_sel=Ph_sel(Dex='Dem')) def test_iter_ph_times_period(data): d = data for ich in range(data.nch): for period, ph_period in enumerate(d.iter_ph_times_period(ich=ich)): istart, iend = d.Lim[ich][period] assert (ph_period == d.ph_times_m[ich][istart : iend + 1]).all() ph_sel = Ph_sel(Dex='Dem') mask = d.get_ph_mask(ich=ich, ph_sel=ph_sel) for period, ph_period in enumerate( d.iter_ph_times_period(ich=ich, ph_sel=ph_sel)): istart, iend = d.Lim[ich][period] ph_period_test = d.ph_times_m[ich][istart : iend + 1] ph_period_test = ph_period_test[mask[istart : iend + 1]] assert (ph_period == ph_period_test).all() def test_burst_search_py_cy(data): """Test python and cython burst search with background-dependent threshold. """ data.burst_search(pure_python=True) mburst1 = [b.copy() for b in data.mburst] num_bursts1 = data.num_bursts data.burst_search(pure_python=False) assert np.all(num_bursts1 == data.num_bursts) assert mburst1 == data.mburst data.burst_search(L=30, pure_python=True) mburst1 = [b.copy() for b in data.mburst] num_bursts1 = data.num_bursts data.burst_search(L=30, pure_python=False) assert np.all(num_bursts1 == data.num_bursts) assert mburst1 == data.mburst def test_burst_search_constant_rates(data): """Test python and cython burst search with constant threshold.""" data.burst_search(min_rate_cps=50e3, pure_python=True) assert (data.num_bursts > 0).all() mburst1 = [b.copy() for b in data.mburst] num_bursts1 = data.num_bursts data.burst_search(min_rate_cps=50e3, pure_python=False) assert (data.num_bursts > 0).all() assert np.all(num_bursts1 == data.num_bursts) assert mburst1 == data.mburst def test_burst_search_L(data): """Test burst search with different L arguments.""" data.burst_search(L=10) for bursts in data.mburst: assert (bursts.counts >= 10).all() num_bursts1 = data.num_bursts data.burst_search(L=30) for bursts in data.mburst: assert (bursts.counts >= 30).all() assert np.all(num_bursts1 > data.num_bursts) def test_burst_search_with_no_bursts(data): """Smoke test burst search when some periods have no bursts.""" # F=600 results in periods with no bursts for the us-ALEX measurement # and in no bursts at all for the multi-spot measurements data.burst_search(m=10, F=600) data.fuse_bursts(ms=1) if has_matplotlib: def test_stale_fitter_after_burst_search(data): """Test that E/S_fitter attributes are deleted on burst search.""" data.burst_search(L=10, m=10, F=7, ph_sel=Ph_sel(Dex='Dem')) bplt.dplot(data, bplt.hist_fret) # create E_fitter attribute if data.alternated: bplt.dplot(data, bplt.hist_S) # create S_fitter attribute data.burst_search(L=10, m=10, F=7, ph_sel=Ph_sel(Dex='Aem')) assert not hasattr(data, 'E_fitter') if data.alternated: assert not hasattr(data, 'S_fitter') bplt.dplot(data, bplt.hist_fret) # create E_fitter attribute if data.alternated: bplt.dplot(data, bplt.hist_S) # create S_fitter attribute data.calc_fret() assert not hasattr(data, 'E_fitter') if data.alternated: assert not hasattr(data, 'S_fitter') def test_burst_search(data): """Smoke test and bg_bs check.""" streams = [Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem')] if data.alternated: streams.extend([Ph_sel(Dex='Aem', Aex='Aem'), Ph_sel(Dex='DAem')]) for sel in streams: data.burst_search(L=10, m=10, F=7, ph_sel=sel) assert list_equal(data.bg_bs, data.bg_from(sel)) if data.alternated: data.burst_search(m=10, F=7, ph_sel=Ph_sel(Dex='DAem'), compact=True) data.burst_search(L=10, m=10, F=7) def test_burst_search_and_gate(data_1ch): """Test consistency of burst search and gate.""" d = data_1ch assert d.alternated # Smoke tests bext.burst_search_and_gate(d, F=(6, 8)) bext.burst_search_and_gate(d, m=(12, 8)) bext.burst_search_and_gate(d, min_rate_cps=(60e3, 40e3)) if d.nch > 1: mr1 = 35e3 + np.arange(d.nch) * 1e3 mr2 = 30e3 + np.arange(d.nch) * 1e3 bext.burst_search_and_gate(d, min_rate_cps=(mr1, mr2)) # Consistency test d_dex = d.copy() d_dex.burst_search(ph_sel=Ph_sel(Dex='DAem')) d_aex = d.copy() d_aex.burst_search(ph_sel=Ph_sel(Aex='Aem')) d_and = bext.burst_search_and_gate(d) for bursts_dex, bursts_aex, bursts_and, ph in zip( d_dex.mburst, d_aex.mburst, d_and.mburst, d.iter_ph_times()): ph_b_mask_dex = bl.ph_in_bursts_mask(ph.size, bursts_dex) ph_b_mask_aex = bl.ph_in_bursts_mask(ph.size, bursts_aex) ph_b_mask_and = bl.ph_in_bursts_mask(ph.size, bursts_and) assert (ph_b_mask_and == ph_b_mask_dex * ph_b_mask_aex).all() def test_mch_count_ph_num_py_c(data): na_py = bl.bslib.mch_count_ph_in_bursts_py(data.mburst, data.A_em) na_c = bl.bslib.mch_count_ph_in_bursts_c(data.mburst, data.A_em) assert list_array_equal(na_py, na_c) assert na_py[0].dtype == np.float64 def test_burst_sizes(data): """Test for .burst_sizes_ich() and burst_sizes()""" # Smoke test plain_sizes = data.burst_sizes() assert len(plain_sizes) == data.nch # Test gamma and donor_ref arguments bs1 = data.burst_sizes_ich(gamma=0.5, donor_ref=True) bs2 = data.burst_sizes_ich(gamma=0.5, donor_ref=False) assert np.allclose(bs1, bs2 / 0.5) # Test add_naa if data.alternated: bs_no_naa = data.burst_sizes_ich(add_naa=False) bs_naa = data.burst_sizes_ich(add_naa=True) assert np.allclose(bs_no_naa + data.naa[0], bs_naa) # Test beta and donor_ref arguments with gamma=1 naa1 = data.get_naa_corrected(beta=0.8, donor_ref=True) naa2 = data.get_naa_corrected(beta=0.8, donor_ref=False) assert np.allclose(naa1, naa2) # Test beta and donor_ref arguments with gamma=0.5 naa1 = data.get_naa_corrected(gamma=0.5, beta=0.8, donor_ref=True) naa2 = data.get_naa_corrected(gamma=0.5, beta=0.8, donor_ref=False) assert np.allclose(naa1 * 0.5, naa2) def test_leakage(data): """ Test setting leakage before and after burst search """ # burst search, then set leakage data.burst_search() data.leakage = 0.04 na1 = list(data.na) # set leakage, then burst search data.burst_search() na2 = list(data.na) assert list_array_equal(na1, na2) def test_gamma(data): """ Test setting gamma before and after burst search """ # burst search, then set gamma data.burst_search() E0 = list(data.E) data.gamma = 0.5 E1 = list(data.E) assert not list_array_equal(E0, E1) # burst search after setting gamma data.burst_search() E2 = list(data.E) assert list_array_equal(E1, E2) def test_dir_ex(data_1ch): """ Test setting dir_ex before and after burst search """ data = data_1ch # burst search, then set dir_ex data.burst_search() na0 = list(data.na) data.dir_ex = 0.05 na1 = list(data.na) assert not list_array_equal(na0, na1) # burst search after setting dir_ex data.burst_search() na2 = list(data.na) assert list_array_equal(na1, na2) def test_beta(data_1ch): """ Test setting beta before and after burst search """ data = data_1ch # burst search, then set beta data.burst_search() S0 = list(data.S) data.beta = 0.7 S1 = list(data.S) assert not list_array_equal(S0, S1) # burst search after setting beta data.burst_search() S2 = list(data.S) assert list_array_equal(S1, S2) def test_bursts_interface(data): d = data for b in d.mburst: assert (b.start == b.data[:, b._i_start]).all() assert (b.stop == b.data[:, b._i_stop]).all() assert (b.istart == b.data[:, b._i_istart]).all() assert (b.istop == b.data[:, b._i_istop]).all() rate = 1.*b.counts/b.width assert (b.ph_rate == rate).all() separation = b.start[1:] - b.stop[:-1] assert (b.separation == separation).all() assert (b.stop > b.start).all() def test_burst_stop_istop(data): """Test coherence between b_end() and b_iend()""" d = data for ph, bursts in zip(d.ph_times_m, d.mburst): assert (ph[bursts.istop] == bursts.stop).all() def test_monotonic_burst_start(data): """Test for monotonic burst start times.""" d = data for i in range(d.nch): assert (np.diff(d.mburst[i].start) > 0).all() def test_monotonic_burst_stop(data): """Test for monotonic burst stop times.""" d = data for bursts in d.mburst: assert (np.diff(bursts.stop) > 0).all() def test_burst_istart_iend_size(data): """Test consistency between burst istart, istop and counts (i.e. size)""" d = data for bursts in d.mburst: counts = bursts.istop - bursts.istart + 1 assert (counts == bursts.counts).all() def test_burst_recompute_times(data): """Test Bursts.recompute_times method.""" d = data for times, bursts in zip(d.ph_times_m, d.mburst): newbursts = bursts.recompute_times(times) assert newbursts == bursts def test_burst_recompute_index(data): """Test Bursts.recompute_index_* methods.""" d = data ph_sel = Ph_sel(Dex='Dem') d.burst_search(ph_sel=ph_sel, index_allph=True) d_sel = d.copy() d_sel.burst_search(ph_sel=ph_sel, index_allph=False) for times_sel, mask_sel, bursts_sel, times_allph, bursts_allph in zip( d.iter_ph_times(ph_sel=ph_sel), d.iter_ph_masks(ph_sel=ph_sel), d_sel.mburst, d.iter_ph_times(), d.mburst): assert (times_sel[bursts_sel.istart] == bursts_sel.start).all() assert (times_sel[bursts_sel.istop] == bursts_sel.stop).all() assert (times_allph[bursts_allph.istart] == bursts_allph.start).all() assert (times_allph[bursts_allph.istop] == bursts_allph.stop).all() # Test individual methods bursts_allph2 = bursts_sel.recompute_index_expand(mask_sel) assert bursts_allph2 == bursts_allph assert (times_allph[bursts_allph2.istart] == bursts_allph2.start).all() assert (times_allph[bursts_allph2.istop] == bursts_allph2.stop).all() bursts_sel2 = bursts_allph.recompute_index_reduce(times_sel) assert (times_sel[bursts_sel2.istart] == bursts_sel2.start).all() assert (times_sel[bursts_sel2.istop] == bursts_sel2.stop).all() assert bursts_sel2 == bursts_sel # Test round-trip bursts_allph3 = bursts_sel2.recompute_index_expand(mask_sel) assert bursts_allph3 == bursts_allph2 assert (times_allph[bursts_allph3.istart] == bursts_allph3.start).all() assert (times_allph[bursts_allph3.istop] == bursts_allph3.stop).all() ## This test is only used to develop alternative implementations of ## Bursts.recompute_index_reduce() and is normally disabled as it is very slow. #def test_burst_recompute_index_reduce(data): # """Test different versions of Bursts.recompute_index_reduce methods. # # This test is very slow so it's normally disabled. # """ # d = data # ph_sel = Ph_sel(Dex='Aem') # d.burst_search(ph_sel=ph_sel) # d_sel = d.copy() # d_sel.burst_search(ph_sel=ph_sel, index_allph=False) # for times_sel, bursts_sel, times_allph, bursts_allph in zip( # d.iter_ph_times(ph_sel=ph_sel), # d_sel.mburst, # d.iter_ph_times(), # d.mburst): # assert (times_allph[bursts_allph.istart] == bursts_allph.start).all() # assert (times_allph[bursts_allph.istop] == bursts_allph.stop).all() # # bursts_sel1 = bursts_allph.recompute_index_reduce(times_sel) # bursts_sel2 = bursts_allph.recompute_index_reduce2(times_sel) # assert bursts_sel1 == bursts_sel2 # assert bursts_sel == bursts_sel1 def test_phrates_mtuple(data): d = data m = 10 max_num_ph = 20001 for ph in d.iter_ph_times(): phc = ph[:max_num_ph] rates = phrates.mtuple_rates(phc, m) delays = phrates.mtuple_delays(phc, m) t_rates = 0.5 * (phc[m-1:] + phc[:-m+1]) assert phrates.mtuple_rates_max(phc, m) == rates.max() assert phrates.mtuple_delays_min(phc, m) == delays.min() assert phrates.default_c == 1 assert (rates == (m - 1 - phrates.default_c) / delays).all() assert (phrates.mtuple_rates_t(phc, m) == t_rates).all() if has_numba: def test_phrates_kde(data): d = data tau = 5000 # 5000 * 12.5ns = 6.25 us for ph in d.iter_ph_times(): # Test consistency of kde_laplace_nph and (kde_laplace, kde_rect) rates = phrates.kde_laplace(ph, tau) nrect = phrates.kde_rect(ph, tau*10) ratesl, nph = phrates.nb.kde_laplace_nph(ph, tau) assert (rates == ratesl).all() assert (nph == nrect).all() # Test consistency of kde_laplace and _kde_laplace_self_numba ratesl2, nph2 = phrates.nb.kde_laplace_self_numba(ph, tau) assert (nph2 == nrect).all() assert (ratesl2 == rates).all() # Smoke test laplace, gaussian, rect with time_axis ratesl = phrates.kde_laplace(ph, tau, time_axis=ph+1) assert ((ratesl >= 0) * (ratesl < 5e6)).all() ratesg = phrates.kde_gaussian(ph, tau, time_axis=ph+1) assert ((ratesg >= 0) * (ratesg < 5e6)).all() ratesr = phrates.kde_rect(ph, tau, time_axis=ph+1) assert ((ratesr >= 0) * (ratesr < 5e6)).all() def test_phrates_kde_cy(data): d = data tau = 5000 # 5000 * 12.5ns = 6.25 us for ph in d.iter_ph_times(): # Test consistency of kde_laplace_nph and (kde_laplace, kde_rect) ratesg = phrates.nb.kde_gaussian_numba(ph, tau) ratesl = phrates.nb.kde_laplace_numba(ph, tau) ratesr = phrates.nb.kde_rect_numba(ph, tau) ratesgc = phrates.cy.kde_gaussian_cy(ph, tau) rateslc = phrates.cy.kde_laplace_cy(ph, tau) ratesrc = phrates.cy.kde_rect_cy(ph, tau) assert (ratesg == ratesgc).all() assert (ratesl == rateslc).all() assert (ratesr == ratesrc).all() def test_burst_ph_data_functions(data): """Tests the functions that iterate or operate on per-burst "ph-data". """ d = data for bursts, ph, mask in zip(d.mburst, d.iter_ph_times(), d.iter_ph_masks(Ph_sel(Dex='Dem'))): bstart = bursts.start bend = bursts.stop for i, (start, stop) in enumerate(bl.iter_bursts_start_stop(bursts)): assert ph[start] == bstart[i] assert ph[stop-1] == bend[i] for i, burst_ph in enumerate(bl.iter_bursts_ph(ph, bursts)): assert burst_ph[0] == bstart[i] assert burst_ph[-1] == bend[i] for i, burst_ph in enumerate(bl.iter_bursts_ph(ph, bursts, mask=mask)): if burst_ph.size > 0: assert burst_ph[0] >= bstart[i] assert burst_ph[-1] <= bend[i] stats = bl.burst_ph_stats(ph, bursts, mask=mask) assert (stats[~np.isnan(stats)] >= bstart[~np.isnan(stats)]).all() assert (stats[~np.isnan(stats)] <= bend[~np.isnan(stats)]).all() bistart = bursts.istart biend = bursts.istop bursts_mask = bl.ph_in_bursts_mask(ph.size, bursts) for i, (start, stop) in enumerate(bl.iter_bursts_start_stop(bursts)): assert bursts_mask[start:stop].all() if start > 0: if i > 0 and biend[i-1] < bistart[i] - 1: assert not bursts_mask[start - 1] if stop < ph.size: if i < bistart.size-1 and bistart[i+1] > biend[i] + 1: assert not bursts_mask[stop] def test_ph_in_bursts_ich(data): """Tests the ph_in_bursts_ich method. """ d = data for ich in range(d.nch): ph_in_bursts = d.ph_in_bursts_ich(ich) ph_in_bursts_dd = d.ph_in_bursts_ich(ich, ph_sel=Ph_sel(Dex='Dem')) assert ph_in_bursts_dd.size < ph_in_bursts.size def test_burst_fuse(data): """Test 2 independent implementations of fuse_bursts for consistency. """ d = data for bursts in d.mburst: new_mbursti = bl.fuse_bursts_iter(bursts, ms=1) new_mburstd = bl.fuse_bursts_direct(bursts, ms=1) assert new_mbursti == new_mburstd def test_burst_fuse_0ms(data): """Test that after fusing with ms=0 the sum of bursts sizes is that same as the number of ph in bursts (via burst selection). """ d = data if d.nch == 8: d.burst_search(L=10, m=10, F=7, computefret=False) d.mburst[1] = bl.bslib.Bursts.empty() # Make one channel with no bursts d._calc_burst_period() d.calc_fret(count_ph=True) df = d.fuse_bursts(ms=0) for ich, bursts in enumerate(df.mburst): mask = bl.ph_in_bursts_mask(df.ph_data_sizes[ich], bursts) assert mask.sum() == bursts.counts.sum() df.calc_fret(count_ph=True) assert len(df.mburst) == len(d.mburst) assert len(df.mburst) == d.nch def test_burst_fuse_separation(data): """Test that after fusing bursts the minimum separation is equal to the threshold used during fusing. """ d = data fuse_ms = 2 df = d.fuse_bursts(ms=fuse_ms) for bursts in df.mburst: separation = bursts.separation * df.clk_p if bursts.num_bursts > 0: assert separation.min() >= fuse_ms * 1e-3 def test_calc_sbr(data): """Smoke test Data.calc_sbr()""" data.calc_sbr() def test_calc_max_rate(data): """Smoke test for Data.calc_max_rate()""" data.calc_max_rate(m=10) if data.alternated: data.calc_max_rate(m=10, ph_sel=Ph_sel(Dex='DAem'), compact=True) def test_burst_data(data): """Test for bext.burst_data()""" bext.burst_data(data, include_bg=True, include_ph_index=True) bext.burst_data(data, include_bg=False, include_ph_index=True) bext.burst_data(data, include_bg=True, include_ph_index=False) bext.burst_data(data, include_bg=False, include_ph_index=False) def test_print_burst_stats(data): """Smoke test for burstlib.print_burst_stats()""" bl.print_burst_stats(data) def test_expand(data): """Test method `expand()` for `Data()`.""" d = data for ich, bursts in enumerate(d.mburst): if bursts.num_bursts == 0: continue # if no bursts skip this ch nd, na, bg_d, bg_a, width = d.expand(ich, width=True) width2 = bursts.width * d.clk_p period = d.bp[ich] bg_d2 = d.bg_from(Ph_sel(Dex='Dem'))[ich][period] * width2 bg_a2 = d.bg_from(Ph_sel(Dex='Aem'))[ich][period] * width2 assert (width == width2).all() assert (nd == d.nd[ich]).all() and (na == d.na[ich]).all() assert (bg_d == bg_d2).all() and (bg_a == bg_a2).all() def test_burst_data_ich(data): """Test method `Data.burst_data_ich()`.""" d = data for ich, bursts in enumerate(d.mburst): if bursts.num_bursts == 0: continue # if no bursts skip this ch burst_dict = d.burst_data_ich(ich=ich) assert (burst_dict['size_raw'] == bursts.counts).all() assert (burst_dict['t_start'] == bursts.start * d.clk_p).all() assert (burst_dict['t_stop'] == bursts.stop * d.clk_p).all() assert (burst_dict['i_start'] == bursts.istart).all() assert (burst_dict['i_stop'] == bursts.istop).all() assert (burst_dict['bg_period'] == d.bp[ich]).all() nd, na, bg_d, bg_a, width = d.expand(ich, width=True) width_ms = width * 1e3 assert (width_ms == burst_dict['width_ms']).all() assert (nd == burst_dict['nd']).all() assert (na == burst_dict['na']).all() assert (bg_d == burst_dict['bg_dd']).all() assert (bg_a == burst_dict['bg_ad']).all() if d.alternated: period = d.bp[ich] bg_da = d.bg_from(Ph_sel(Aex='Dem'))[ich][period] * width bg_aa = d.bg_from(Ph_sel(Aex='Aem'))[ich][period] * width assert (bg_da == burst_dict['bg_da']).all() assert (bg_aa == burst_dict['bg_aa']).all() def test_burst_corrections(data): """Test background and bleed-through corrections.""" d = data d.calc_ph_num(alex_all=True) d.corrections() leakage = d.get_leakage_array() for ich, bursts in enumerate(d.mburst): if bursts.num_bursts == 0: continue # if no bursts skip this ch nd, na, bg_d, bg_a, width = d.expand(ich, width=True) burst_size_raw = bursts.counts lk = leakage[ich] if d.alternated: nda, naa = d.nda[ich], d.naa[ich] period = d.bp[ich] bg_da = d.bg_from(Ph_sel(Aex='Dem'))[ich][period]*width bg_aa = d.bg_from(Ph_sel(Aex='Aem'))[ich][period]*width burst_size_raw2 = (nd + na + bg_d + bg_a + lk*nd + nda + naa + bg_da + bg_aa) assert np.allclose(burst_size_raw, burst_size_raw2) else: burst_size_raw2 = nd + na + bg_d + bg_a + lk*nd assert np.allclose(burst_size_raw, burst_size_raw2) def test_burst_search_consistency(data): """Test consistency of burst data array """ d = data for mb, ph in zip(d.mburst, d.iter_ph_times()): tot_size = mb.counts istart, istop = mb.istart, mb.istop assert np.all(tot_size == istop - istart + 1) start, stop, width = mb.start, mb.stop, mb.width assert np.all(width == stop - start) df = d.fuse_bursts(ms=0) for mb, ph in zip(df.mburst, df.iter_ph_times()): tot_size = mb.counts istart, istop = mb.istart, mb.istop assert np.all(tot_size == istop - istart + 1) start, stop, width = mb.start, mb.stop, mb.width assert np.all(width == stop - start) df = d.fuse_bursts(ms=1) for mb, ph in zip(df.mburst, df.iter_ph_times()): tot_size = mb.counts istart, istop = mb.istart, mb.istop assert np.all(tot_size <= istop - istart + 1) start, stop, width = mb.start, mb.stop, mb.width assert np.all(width <= stop - start) def test_E_and_S_with_corrections(data): d = data gamma = 0.5 beta = 0.7 d.gamma = gamma d.beta = beta for i, (E, nd, na) in enumerate(zip(d.E, d.nd, d.na)): assert (E == na / (nd * gamma + na)).all() if d.alternated: naa = d.naa[i] if 'PAX' in data.meas_type: naa = d.naa[i] - d.nar[i] assert (d.S[i] == (gamma * nd + na) / (gamma * nd + na + naa / beta)).all() def test_burst_size_da(data): """Test that nd + na with no corrections is equal to b_size(mburst). """ d = data d.calc_ph_num(alex_all=True) if d.alternated: for mb, nd, na, naa, nda in zip(d.mburst, d.nd, d.na, d.naa, d.nda): tot_size = mb.counts tot_size2 = nd + na + naa + nda assert np.allclose(tot_size, tot_size2) else: for mb, nd, na in zip(d.mburst, d.nd, d.na): tot_size = mb.counts assert (tot_size == nd + na).all() def test_burst_selection(data): """Smoke test for burst selection methods. """ d = data d.select_bursts(select_bursts.size, th1=20, th2=100, add_naa=True) d.select_bursts(select_bursts.size, th1=20, th2=100, gamma=0.5) M1 = d.select_bursts_mask(select_bursts.consecutive, th1=1e-3, th2=1e4, kind='first') M2 = d.select_bursts_mask(select_bursts.consecutive, th1=1e-3, th2=1e4, kind='second') Mb = d.select_bursts_mask(select_bursts.consecutive, th1=1e-3, th2=1e4, kind='both') Mb2 = [m1 + m2 for m1, m2 in zip(M1, M2)] assert list_array_equal(Mb, Mb2) def test_burst_selection_nocorrections(data): """Test burst selection with uncorrected bursts. """ d = data d.burst_search(computefret=False) d.calc_fret(count_ph=True, corrections=False) ds1 = d.select_bursts(select_bursts.size, th1=20, th2=100, computefret=False) ds2 = d.select_bursts(select_bursts.size, th1=20, th2=100) ds2.calc_ph_num() ds2.calc_fret(corrections=False) assert list_array_equal(ds1.nd, ds2.nd) assert list_array_equal(ds1.na, ds2.na) assert list_array_equal(ds1.E, ds2.E) if d.alternated: assert list_array_equal(ds1.naa, ds2.naa) assert list_array_equal(ds1.E, ds2.E) def test_burst_selection_ranges(data): """Test selection functions having a min-max range. """ d = data d.burst_search() d.calc_max_rate(m=10, ph_sel=Ph_sel(Dex='DAem')) Range = namedtuple('Range', ['min', 'max', 'getter']) sel_functions = dict( E=Range(0.5, 1, None), nd=Range(30, 40, None), na=Range(30, 40, None), time=Range(1, 61, lambda d, ich: d.mburst[ich].start * d.clk_p), width=Range(0.5, 1.5, lambda d, ich: d.mburst[ich].width * d.clk_p*1e3), peak_phrate=Range(50e3, 150e3, lambda d, ich: d.max_rate[ich])) if d.alternated: sel_functions.update(naa=Range(30, 40, None), S=Range(0.3, 0.7, None)) for func_name, range_ in sel_functions.items(): func = getattr(select_bursts, func_name) getter = range_.getter if getter is None: getter = lambda d, ich: d[func_name][ich] ds = d.select_bursts(func, args=(range_.min, range_.max)) for ich in range(d.nch): selected = getter(ds, ich) assert ((selected >= range_.min) * (selected <= range_.max)).all() def test_join_data(data): """Smoke test for bext.join_data() function. """ d = data dj = bext.join_data([d, d.copy()]) assert (dj.num_bursts == 2 * d.num_bursts).all() for bursts in dj.mburst: assert (np.diff(bursts.start) > 0).all() def test_collapse(data_8ch): """Test the .collapse() method that joins the ch. """ d = data_8ch dc1 = d.collapse() bursts1 = dc1.mburst[0] bursts2 = bl.bslib.Bursts.merge(d.mburst, sort=True) assert bursts1 == bursts2 bursts2 = bl.bslib.Bursts.merge(d.mburst, sort=False) indexsort_stop = bursts2.stop.argsort() bursts3 = bursts2[indexsort_stop] indexsort_start = bursts3.start.argsort() bursts4 = bursts3[indexsort_start] assert bursts1 == bursts4 indexsort = np.lexsort((bursts2.stop, bursts2.start)) for name in d.burst_fields: if name not in d or name == 'mburst': continue newfield = np.hstack(d[name])[indexsort] assert np.allclose(dc1[name][0], newfield) dc2 = d.collapse(update_gamma=False) for name in d.burst_fields: if name not in d: continue if name == 'mburst': assert dc1.mburst[0] == dc2.mburst[0] else: assert np.allclose(dc1[name][0], dc2[name][0]) if __name__ == '__main__': pytest.main("-x -v fretbursts/tests/test_burstlib.py")
gpl-2.0
gerddie/nipype
nipype/algorithms/rapidart.py
9
30137
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ The rapidart module provides routines for artifact detection and region of interest analysis. These functions include: * ArtifactDetect: performs artifact detection on functional images * StimulusCorrelation: determines correlation between stimuli schedule and movement/intensity parameters Change directory to provide relative paths for doctests >>> import os >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) >>> datadir = os.path.realpath(os.path.join(filepath, '../testing/data')) >>> os.chdir(datadir) """ import os from copy import deepcopy from warnings import warn from nibabel import load, funcs, Nifti1Image import numpy as np from scipy import signal import scipy.io as sio from nipype.external import six from ..interfaces.base import (BaseInterface, traits, InputMultiPath, OutputMultiPath, TraitedSpec, File, BaseInterfaceInputSpec, isdefined) from ..utils.filemanip import filename_to_list, save_json, split_filename from ..utils.misc import find_indices from .. import logging, config iflogger = logging.getLogger('interface') def _get_affine_matrix(params, source): """Return affine matrix given a set of translation and rotation parameters params : np.array (upto 12 long) in native package format source : the package that generated the parameters supports SPM, AFNI, FSFAST, FSL, NIPY """ if source == 'FSL': params = params[[3, 4, 5, 0, 1, 2]] elif source in ('AFNI', 'FSFAST'): params = params[np.asarray([4, 5, 3, 1, 2, 0]) + (len(params) > 6)] params[3:] = params[3:] * np.pi / 180. if source == 'NIPY': # nipy does not store typical euler angles, use nipy to convert from nipy.algorithms.registration import to_matrix44 return to_matrix44(params) #process for FSL, SPM, AFNI and FSFAST rotfunc = lambda x: np.array([[np.cos(x), np.sin(x)], [-np.sin(x), np.cos(x)]]) q = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) if len(params) < 12: params = np.hstack((params, q[len(params):])) params.shape = (len(params),) # Translation T = np.eye(4) T[0:3, -1] = params[0:3] # Rotation Rx = np.eye(4) Rx[1:3, 1:3] = rotfunc(params[3]) Ry = np.eye(4) Ry[(0, 0, 2, 2), (0, 2, 0, 2)] = rotfunc(params[4]).ravel() Rz = np.eye(4) Rz[0:2, 0:2] = rotfunc(params[5]) # Scaling S = np.eye(4) S[0:3, 0:3] = np.diag(params[6:9]) # Shear Sh = np.eye(4) Sh[(0, 0, 1), (1, 2, 2)] = params[9:12] if source in ('AFNI', 'FSFAST'): return np.dot(T, np.dot(Ry, np.dot(Rx, np.dot(Rz, np.dot(S, Sh))))) return np.dot(T, np.dot(Rx, np.dot(Ry, np.dot(Rz, np.dot(S, Sh))))) def _calc_norm(mc, use_differences, source, brain_pts=None): """Calculates the maximum overall displacement of the midpoints of the faces of a cube due to translation and rotation. Parameters ---------- mc : motion parameter estimates [3 translation, 3 rotation (radians)] use_differences : boolean brain_pts : [4 x n_points] of coordinates Returns ------- norm : at each time point displacement : euclidean distance (mm) of displacement at each coordinate """ if brain_pts is None: respos = np.diag([70, 70, 75]) resneg = np.diag([-70, -110, -45]) all_pts = np.vstack((np.hstack((respos, resneg)), np.ones((1, 6)))) displacement = None else: all_pts = brain_pts n_pts = all_pts.size - all_pts.shape[1] newpos = np.zeros((mc.shape[0], n_pts)) if brain_pts is not None: displacement = np.zeros((mc.shape[0], n_pts / 3)) for i in range(mc.shape[0]): affine = _get_affine_matrix(mc[i, :], source) newpos[i, :] = np.dot(affine, all_pts)[0:3, :].ravel() if brain_pts is not None: displacement[i, :] = \ np.sqrt(np.sum(np.power(np.reshape(newpos[i, :], (3, all_pts.shape[1])) - all_pts[0:3, :], 2), axis=0)) # np.savez('displacement.npz', newpos=newpos, pts=all_pts) normdata = np.zeros(mc.shape[0]) if use_differences: newpos = np.concatenate((np.zeros((1, n_pts)), np.diff(newpos, n=1, axis=0)), axis=0) for i in range(newpos.shape[0]): normdata[i] = \ np.max(np.sqrt(np.sum(np.reshape(np.power(np.abs(newpos[i, :]), 2), (3, all_pts.shape[1])), axis=0))) else: newpos = np.abs(signal.detrend(newpos, axis=0, type='constant')) normdata = np.sqrt(np.mean(np.power(newpos, 2), axis=1)) return normdata, displacement def _nanmean(a, axis=None): """Return the mean excluding items that are nan >>> a = [1, 2, np.nan] >>> _nanmean(a) 1.5 """ if axis: return np.nansum(a, axis) / np.sum(1 - np.isnan(a), axis) else: return np.nansum(a) / np.sum(1 - np.isnan(a)) class ArtifactDetectInputSpec(BaseInterfaceInputSpec): realigned_files = InputMultiPath(File(exists=True), desc="Names of realigned functional data files", mandatory=True) realignment_parameters = InputMultiPath(File(exists=True), mandatory=True, desc=("Names of realignment parameters" "corresponding to the functional data files")) parameter_source = traits.Enum("SPM", "FSL", "AFNI", "NiPy", "FSFAST", desc="Source of movement parameters", mandatory=True) use_differences = traits.ListBool([True, False], minlen=2, maxlen=2, usedefault=True, desc=("Use differences between successive motion (first element)" "and intensity paramter (second element) estimates in order" "to determine outliers. (default is [True, False])")) use_norm = traits.Bool(True, requires=['norm_threshold'], desc=("Uses a composite of the motion parameters in " "order to determine outliers."), usedefault=True) norm_threshold = traits.Float(desc=("Threshold to use to detect motion-rela" "ted outliers when composite motion is " "being used"), mandatory=True, xor=['rotation_threshold', 'translation_threshold']) rotation_threshold = traits.Float(mandatory=True, xor=['norm_threshold'], desc=("Threshold (in radians) to use to detect rotation-related " "outliers")) translation_threshold = traits.Float(mandatory=True, xor=['norm_threshold'], desc=("Threshold (in mm) to use to detect translation-related " "outliers")) zintensity_threshold = traits.Float(mandatory=True, desc=("Intensity Z-threshold use to detection images that deviate " "from the mean")) mask_type = traits.Enum('spm_global', 'file', 'thresh', desc=("Type of mask that should be used to mask the functional " "data. *spm_global* uses an spm_global like calculation to " "determine the brain mask. *file* specifies a brain mask " "file (should be an image file consisting of 0s and 1s). " "*thresh* specifies a threshold to use. By default all voxels" "are used, unless one of these mask types are defined."), mandatory=True) mask_file = File(exists=True, desc="Mask file to be used if mask_type is 'file'.") mask_threshold = traits.Float(desc=("Mask threshold to be used if mask_type" " is 'thresh'.")) intersect_mask = traits.Bool(True, desc=("Intersect the masks when computed from " "spm_global.")) save_plot = traits.Bool(True, desc="save plots containing outliers", usedefault=True) plot_type = traits.Enum('png', 'svg', 'eps', 'pdf', desc="file type of the outlier plot", usedefault=True) bound_by_brainmask = traits.Bool(False, desc=("use the brain mask to " "determine bounding box" "for composite norm (works" "for SPM and Nipy - currently" "inaccurate for FSL, AFNI"), usedefault=True) global_threshold = traits.Float(8.0, desc=("use this threshold when mask " "type equal's spm_global"), usedefault=True) class ArtifactDetectOutputSpec(TraitedSpec): outlier_files = OutputMultiPath(File(exists=True), desc=("One file for each functional run containing a list of " "0-based indices corresponding to outlier volumes")) intensity_files = OutputMultiPath(File(exists=True), desc=("One file for each functional run containing the global " "intensity values determined from the brainmask")) norm_files = OutputMultiPath(File, desc=("One file for each functional run containing the composite " "norm")) statistic_files = OutputMultiPath(File(exists=True), desc=("One file for each functional run containing information " "about the different types of artifacts and if design info is" " provided then details of stimulus correlated motion and a " "listing or artifacts by event type.")) plot_files = OutputMultiPath(File, desc=("One image file for each functional run containing the " "detected outliers")) mask_files = OutputMultiPath(File, desc=("One image file for each functional run containing the mask" "used for global signal calculation")) displacement_files = OutputMultiPath(File, desc=("One image file for each functional run containing the voxel" "displacement timeseries")) class ArtifactDetect(BaseInterface): """Detects outliers in a functional imaging series Uses intensity and motion parameters to infer outliers. If `use_norm` is True, it computes the movement of the center of each face a cuboid centered around the head and returns the maximal movement across the centers. Examples -------- >>> ad = ArtifactDetect() >>> ad.inputs.realigned_files = 'functional.nii' >>> ad.inputs.realignment_parameters = 'functional.par' >>> ad.inputs.parameter_source = 'FSL' >>> ad.inputs.norm_threshold = 1 >>> ad.inputs.use_differences = [True, False] >>> ad.inputs.zintensity_threshold = 3 >>> ad.run() # doctest: +SKIP """ input_spec = ArtifactDetectInputSpec output_spec = ArtifactDetectOutputSpec def __init__(self, **inputs): super(ArtifactDetect, self).__init__(**inputs) def _get_output_filenames(self, motionfile, output_dir): """Generate output files based on motion filenames Parameters ---------- motionfile: file/string Filename for motion parameter file output_dir: string output directory in which the files will be generated """ if isinstance(motionfile, six.string_types): infile = motionfile elif isinstance(motionfile, list): infile = motionfile[0] else: raise Exception("Unknown type of file") _, filename, ext = split_filename(infile) artifactfile = os.path.join(output_dir, ''.join(('art.', filename, '_outliers.txt'))) intensityfile = os.path.join(output_dir, ''.join(('global_intensity.', filename, '.txt'))) statsfile = os.path.join(output_dir, ''.join(('stats.', filename, '.txt'))) normfile = os.path.join(output_dir, ''.join(('norm.', filename, '.txt'))) plotfile = os.path.join(output_dir, ''.join(('plot.', filename, '.', self.inputs.plot_type))) displacementfile = os.path.join(output_dir, ''.join(('disp.', filename, ext))) maskfile = os.path.join(output_dir, ''.join(('mask.', filename, ext))) return (artifactfile, intensityfile, statsfile, normfile, plotfile, displacementfile, maskfile) def _list_outputs(self): outputs = self._outputs().get() outputs['outlier_files'] = [] outputs['intensity_files'] = [] outputs['statistic_files'] = [] outputs['mask_files'] = [] if isdefined(self.inputs.use_norm) and self.inputs.use_norm: outputs['norm_files'] = [] if self.inputs.bound_by_brainmask: outputs['displacement_files'] = [] if isdefined(self.inputs.save_plot) and self.inputs.save_plot: outputs['plot_files'] = [] for i, f in enumerate(filename_to_list(self.inputs.realigned_files)): (outlierfile, intensityfile, statsfile, normfile, plotfile, displacementfile, maskfile) = \ self._get_output_filenames(f, os.getcwd()) outputs['outlier_files'].insert(i, outlierfile) outputs['intensity_files'].insert(i, intensityfile) outputs['statistic_files'].insert(i, statsfile) outputs['mask_files'].insert(i, maskfile) if isdefined(self.inputs.use_norm) and self.inputs.use_norm: outputs['norm_files'].insert(i, normfile) if self.inputs.bound_by_brainmask: outputs['displacement_files'].insert(i, displacementfile) if isdefined(self.inputs.save_plot) and self.inputs.save_plot: outputs['plot_files'].insert(i, plotfile) return outputs def _plot_outliers_with_wave(self, wave, outliers, name): import matplotlib.pyplot as plt plt.plot(wave) plt.ylim([wave.min(), wave.max()]) plt.xlim([0, len(wave) - 1]) if len(outliers): plt.plot(np.tile(outliers[:, None], (1, 2)).T, np.tile([wave.min(), wave.max()], (len(outliers), 1)).T, 'r') plt.xlabel('Scans - 0-based') plt.ylabel(name) def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None): """ Core routine for detecting outliers """ if not cwd: cwd = os.getcwd() # read in functional image if isinstance(imgfile, six.string_types): nim = load(imgfile) elif isinstance(imgfile, list): if len(imgfile) == 1: nim = load(imgfile[0]) else: images = [load(f) for f in imgfile] nim = funcs.concat_images(images) # compute global intensity signal (x, y, z, timepoints) = nim.get_shape() data = nim.get_data() affine = nim.get_affine() g = np.zeros((timepoints, 1)) masktype = self.inputs.mask_type if masktype == 'spm_global': # spm_global like calculation iflogger.debug('art: using spm global') intersect_mask = self.inputs.intersect_mask if intersect_mask: mask = np.ones((x, y, z), dtype=bool) for t0 in range(timepoints): vol = data[:, :, :, t0] # Use an SPM like approach mask_tmp = vol > \ (_nanmean(vol) / self.inputs.global_threshold) mask = mask * mask_tmp for t0 in range(timepoints): vol = data[:, :, :, t0] g[t0] = _nanmean(vol[mask]) if len(find_indices(mask)) < (np.prod((x, y, z)) / 10): intersect_mask = False g = np.zeros((timepoints, 1)) if not intersect_mask: iflogger.info('not intersect_mask is True') mask = np.zeros((x, y, z, timepoints)) for t0 in range(timepoints): vol = data[:, :, :, t0] mask_tmp = vol > \ (_nanmean(vol) / self.inputs.global_threshold) mask[:, :, :, t0] = mask_tmp g[t0] = np.nansum(vol * mask_tmp)/np.nansum(mask_tmp) elif masktype == 'file': # uses a mask image to determine intensity maskimg = load(self.inputs.mask_file) mask = maskimg.get_data() affine = maskimg.get_affine() mask = mask > 0.5 for t0 in range(timepoints): vol = data[:, :, :, t0] g[t0] = _nanmean(vol[mask]) elif masktype == 'thresh': # uses a fixed signal threshold for t0 in range(timepoints): vol = data[:, :, :, t0] mask = vol > self.inputs.mask_threshold g[t0] = _nanmean(vol[mask]) else: mask = np.ones((x, y, z)) g = _nanmean(data[mask > 0, :], 1) # compute normalized intensity values gz = signal.detrend(g, axis=0) # detrend the signal if self.inputs.use_differences[1]: gz = np.concatenate((np.zeros((1, 1)), np.diff(gz, n=1, axis=0)), axis=0) gz = (gz - np.mean(gz)) / np.std(gz) # normalize the detrended signal iidx = find_indices(abs(gz) > self.inputs.zintensity_threshold) # read in motion parameters mc_in = np.loadtxt(motionfile) mc = deepcopy(mc_in) (artifactfile, intensityfile, statsfile, normfile, plotfile, displacementfile, maskfile) = self._get_output_filenames(imgfile, cwd) mask_img = Nifti1Image(mask.astype(np.uint8), affine) mask_img.to_filename(maskfile) if self.inputs.use_norm: brain_pts = None if self.inputs.bound_by_brainmask: voxel_coords = np.nonzero(mask) coords = np.vstack((voxel_coords[0], np.vstack((voxel_coords[1], voxel_coords[2])))).T brain_pts = np.dot(affine, np.hstack((coords, np.ones((coords.shape[0], 1)))).T) # calculate the norm of the motion parameters normval, displacement = _calc_norm(mc, self.inputs.use_differences[0], self.inputs.parameter_source, brain_pts=brain_pts) tidx = find_indices(normval > self.inputs.norm_threshold) ridx = find_indices(normval < 0) if displacement is not None: dmap = np.zeros((x, y, z, timepoints), dtype=np.float) for i in range(timepoints): dmap[voxel_coords[0], voxel_coords[1], voxel_coords[2], i] = displacement[i, :] dimg = Nifti1Image(dmap, affine) dimg.to_filename(displacementfile) else: if self.inputs.use_differences[0]: mc = np.concatenate((np.zeros((1, 6)), np.diff(mc_in, n=1, axis=0)), axis=0) traval = mc[:, 0:3] # translation parameters (mm) rotval = mc[:, 3:6] # rotation parameters (rad) tidx = find_indices(np.sum(abs(traval) > self.inputs.translation_threshold, 1) > 0) ridx = find_indices(np.sum(abs(rotval) > self.inputs.rotation_threshold, 1) > 0) outliers = np.unique(np.union1d(iidx, np.union1d(tidx, ridx))) # write output to outputfile np.savetxt(artifactfile, outliers, fmt='%d', delimiter=' ') np.savetxt(intensityfile, g, fmt='%.2f', delimiter=' ') if self.inputs.use_norm: np.savetxt(normfile, normval, fmt='%.4f', delimiter=' ') if isdefined(self.inputs.save_plot) and self.inputs.save_plot: import matplotlib matplotlib.use(config.get("execution", "matplotlib_backend")) import matplotlib.pyplot as plt fig = plt.figure() if isdefined(self.inputs.use_norm) and self.inputs.use_norm: plt.subplot(211) else: plt.subplot(311) self._plot_outliers_with_wave(gz, iidx, 'Intensity') if isdefined(self.inputs.use_norm) and self.inputs.use_norm: plt.subplot(212) self._plot_outliers_with_wave(normval, np.union1d(tidx, ridx), 'Norm (mm)') else: diff = '' if self.inputs.use_differences[0]: diff = 'diff' plt.subplot(312) self._plot_outliers_with_wave(traval, tidx, 'Translation (mm)' + diff) plt.subplot(313) self._plot_outliers_with_wave(rotval, ridx, 'Rotation (rad)' + diff) plt.savefig(plotfile) plt.close(fig) motion_outliers = np.union1d(tidx, ridx) stats = [{'motion_file': motionfile, 'functional_file': imgfile}, {'common_outliers': len(np.intersect1d(iidx, motion_outliers)), 'intensity_outliers': len(np.setdiff1d(iidx, motion_outliers)), 'motion_outliers': len(np.setdiff1d(motion_outliers, iidx)), }, {'motion': [{'using differences': self.inputs.use_differences[0]}, {'mean': np.mean(mc_in, axis=0).tolist(), 'min': np.min(mc_in, axis=0).tolist(), 'max': np.max(mc_in, axis=0).tolist(), 'std': np.std(mc_in, axis=0).tolist()}, ]}, {'intensity': [{'using differences': self.inputs.use_differences[1]}, {'mean': np.mean(gz, axis=0).tolist(), 'min': np.min(gz, axis=0).tolist(), 'max': np.max(gz, axis=0).tolist(), 'std': np.std(gz, axis=0).tolist()}, ]}, ] if self.inputs.use_norm: stats.insert(3, {'motion_norm': {'mean': np.mean(normval, axis=0).tolist(), 'min': np.min(normval, axis=0).tolist(), 'max': np.max(normval, axis=0).tolist(), 'std': np.std(normval, axis=0).tolist(), }}) save_json(statsfile, stats) def _run_interface(self, runtime): """Execute this module. """ funcfilelist = filename_to_list(self.inputs.realigned_files) motparamlist = filename_to_list(self.inputs.realignment_parameters) for i, imgf in enumerate(funcfilelist): self._detect_outliers_core(imgf, motparamlist[i], i, cwd=os.getcwd()) return runtime class StimCorrInputSpec(BaseInterfaceInputSpec): realignment_parameters = InputMultiPath(File(exists=True), mandatory=True, desc=('Names of realignment parameters corresponding to the functional ' 'data files')) intensity_values = InputMultiPath(File(exists=True), mandatory=True, desc='Name of file containing intensity values') spm_mat_file = File(exists=True, mandatory=True, desc='SPM mat file (use pre-estimate SPM.mat file)') concatenated_design = traits.Bool(mandatory=True, desc='state if the design matrix contains concatenated sessions') class StimCorrOutputSpec(TraitedSpec): stimcorr_files = OutputMultiPath(File(exists=True), desc='List of files containing correlation values') class StimulusCorrelation(BaseInterface): """Determines if stimuli are correlated with motion or intensity parameters. Currently this class supports an SPM generated design matrix and requires intensity parameters. This implies that one must run :ref:`ArtifactDetect <nipype.algorithms.rapidart.ArtifactDetect>` and :ref:`Level1Design <nipype.interfaces.spm.model.Level1Design>` prior to running this or provide an SPM.mat file and intensity parameters through some other means. Examples -------- >>> sc = StimulusCorrelation() >>> sc.inputs.realignment_parameters = 'functional.par' >>> sc.inputs.intensity_values = 'functional.rms' >>> sc.inputs.spm_mat_file = 'SPM.mat' >>> sc.inputs.concatenated_design = False >>> sc.run() # doctest: +SKIP """ input_spec = StimCorrInputSpec output_spec = StimCorrOutputSpec def _get_output_filenames(self, motionfile, output_dir): """Generate output files based on motion filenames Parameters ---------- motionfile: file/string Filename for motion parameter file output_dir: string output directory in which the files will be generated """ (_, filename) = os.path.split(motionfile) (filename, _) = os.path.splitext(filename) corrfile = os.path.join(output_dir, ''.join(('qa.', filename, '_stimcorr.txt'))) return corrfile def _stimcorr_core(self, motionfile, intensityfile, designmatrix, cwd=None): """ Core routine for determining stimulus correlation """ if not cwd: cwd = os.getcwd() # read in motion parameters mc_in = np.loadtxt(motionfile) g_in = np.loadtxt(intensityfile) g_in.shape = g_in.shape[0], 1 dcol = designmatrix.shape[1] mccol = mc_in.shape[1] concat_matrix = np.hstack((np.hstack((designmatrix, mc_in)), g_in)) cm = np.corrcoef(concat_matrix, rowvar=0) corrfile = self._get_output_filenames(motionfile, cwd) # write output to outputfile file = open(corrfile, 'w') file.write("Stats for:\n") file.write("Stimulus correlated motion:\n%s\n" % motionfile) for i in range(dcol): file.write("SCM.%d:" % i) for v in cm[i, dcol + np.arange(mccol)]: file.write(" %.2f" % v) file.write('\n') file.write("Stimulus correlated intensity:\n%s\n" % intensityfile) for i in range(dcol): file.write("SCI.%d: %.2f\n" % (i, cm[i, -1])) file.close() def _get_spm_submatrix(self, spmmat, sessidx, rows=None): """ Parameters ---------- spmmat: scipy matlab object full SPM.mat file loaded into a scipy object sessidx: int index to session that needs to be extracted. """ designmatrix = spmmat['SPM'][0][0].xX[0][0].X U = spmmat['SPM'][0][0].Sess[0][sessidx].U[0] if rows is None: rows = spmmat['SPM'][0][0].Sess[0][sessidx].row[0] - 1 cols = spmmat['SPM'][0][0].Sess[0][sessidx].col[0][range(len(U))] - 1 outmatrix = designmatrix.take(rows.tolist(), axis=0).take(cols.tolist(), axis=1) return outmatrix def _run_interface(self, runtime): """Execute this module. """ motparamlist = self.inputs.realignment_parameters intensityfiles = self.inputs.intensity_values spmmat = sio.loadmat(self.inputs.spm_mat_file, struct_as_record=False) nrows = [] for i in range(len(motparamlist)): sessidx = i rows = None if self.inputs.concatenated_design: sessidx = 0 mc_in = np.loadtxt(motparamlist[i]) rows = np.sum(nrows) + np.arange(mc_in.shape[0]) nrows.append(mc_in.shape[0]) matrix = self._get_spm_submatrix(spmmat, sessidx, rows) self._stimcorr_core(motparamlist[i], intensityfiles[i], matrix, os.getcwd()) return runtime def _list_outputs(self): outputs = self._outputs().get() files = [] for i, f in enumerate(self.inputs.realignment_parameters): files.insert(i, self._get_output_filenames(f, os.getcwd())) if files: outputs['stimcorr_files'] = files return outputs
bsd-3-clause
alesaccoia/TF_SoundClassification
as_sound/exec/train_vad_ann_5FCL_classifier.py
1
1585
import numpy as np import as_classification.ann_models import as_sound.features.extractFeatures as ef import as_classification.utilities import os import matplotlib.pyplot as plt # ------------------------------- # CREATE MODEL # ------------------------------- model = as_classification.ann_models.ANN_5FCL() model.initialize(15,2) # ------------------------------- # READ AUDIO FILES # ------------------------------- speech_data = ef.computeSupervectorForFile(os.path.dirname(os.path.realpath(__file__)) + '/data/Speech.wav', 8000, 2048, 2049) noise_data = ef.computeSupervectorForFile(os.path.dirname(os.path.realpath(__file__)) + '/data/Noise.wav', 8000, 2048, 2049) whole_data = np.hstack((speech_data, noise_data)) whole_data = np.swapaxes(whole_data,0,1) whole_labels = np.zeros((whole_data.shape[0], 2)) whole_labels[:speech_data.shape[1],0] = 1 whole_labels[speech_data.shape[1]:,1] = 1 training_data = {"labels": whole_labels, "data": whole_data} training_data, test_data = as_classification.utilities.divideTrainingData(training_data, 0.6) # ------------------------------- # TRAIN # ------------------------------- model.train(training_data, test_data, 10, 20, 100) model.saveCheckpoint(os.path.dirname(os.path.realpath(__file__)) + '/data/vadModel_ANN_5FCL.chkp') #xp = np.arange(0,prediction.shape[0]) #plt.plot(xp, test_data[:,14], '-b', label='RMS') #plt.plot(xp, prediction[:,0], '-r', label='ANN Output') #plt.legend(loc='upper left') #plt.show() #feat = as_sound.features.extractFeatures.computeSupervector(normalized_data)
mit
JsNoNo/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
254
2795
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the cross-validated scores for the each parameters set # explored by the grid search print(grid_search.grid_scores_) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
trachelr/mne-python
mne/time_frequency/tfr.py
2
48373
"""A module which implements the time frequency estimation. Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM """ # Authors : Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Hari Bharadwaj <hari@nmr.mgh.harvard.edu> # # License : BSD (3-clause) import warnings from math import sqrt from copy import deepcopy import numpy as np from scipy import linalg from scipy.fftpack import fftn, ifftn from ..fixes import partial from ..baseline import rescale from ..parallel import parallel_func from ..utils import logger, verbose, _time_mask from ..channels.channels import ContainsMixin, UpdateChannelsMixin from ..io.pick import pick_info, pick_types from ..utils import check_fname from .multitaper import dpss_windows from .._hdf5 import write_hdf5, read_hdf5 def _get_data(inst, return_itc): """Get data from Epochs or Evoked instance as epochs x ch x time""" from ..epochs import _BaseEpochs from ..evoked import Evoked if not isinstance(inst, (_BaseEpochs, Evoked)): raise TypeError('inst must be Epochs or Evoked') if isinstance(inst, _BaseEpochs): data = inst.get_data() else: if return_itc: raise ValueError('return_itc must be False for evoked data') data = inst.data[np.newaxis, ...].copy() return data def morlet(sfreq, freqs, n_cycles=7, sigma=None, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency freqs : array frequency range of interest (1 x Frequencies) n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. sigma : float, (optional) It controls the width of the wavelet ie its temporal resolution. If sigma is None the temporal resolution is adapted with the frequency like for all wavelet transform. The higher the frequency the shorter is the wavelet. If sigma is fixed the temporal resolution is fixed like for the short time Fourier transform and the number of oscillations increases with the frequency. zero_mean : bool Make sure the wavelet is zero mean Returns ------- Ws : list of array Wavelets time series See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ Ws = list() n_cycles = np.atleast_1d(n_cycles) if (n_cycles.size != 1) and (n_cycles.size != len(freqs)): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] # fixed or scale-dependent window if sigma is None: sigma_t = this_n_cycles / (2.0 * np.pi * f) else: sigma_t = this_n_cycles / (2.0 * np.pi * sigma) # this scaling factor is proportional to (Tallon-Baudry 98): # (sigma_t*sqrt(pi))^(-1/2); t = np.arange(0., 5. * sigma_t, 1.0 / sfreq) t = np.r_[-t[::-1], t[1:]] oscillation = np.exp(2.0 * 1j * np.pi * f * t) gaussian_enveloppe = np.exp(-t ** 2 / (2.0 * sigma_t ** 2)) if zero_mean: # to make it zero mean real_offset = np.exp(- 2 * (np.pi * f * sigma_t) ** 2) oscillation -= real_offset W = oscillation * gaussian_enveloppe W /= sqrt(0.5) * linalg.norm(W.ravel()) Ws.append(W) return Ws def _dpss_wavelet(sfreq, freqs, n_cycles=7, time_bandwidth=4.0, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. Defaults to 7. time_bandwidth : float, (optional) Time x Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0, giving 3 good tapers. Returns ------- Ws : list of array Wavelets time series """ Ws = list() if time_bandwidth < 2.0: raise ValueError("time_bandwidth should be >= 2.0 for good tapers") n_taps = int(np.floor(time_bandwidth - 1)) n_cycles = np.atleast_1d(n_cycles) if n_cycles.size != 1 and n_cycles.size != len(freqs): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for m in range(n_taps): Wm = list() for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] t_win = this_n_cycles / float(f) t = np.arange(0., t_win, 1.0 / sfreq) # Making sure wavelets are centered before tapering oscillation = np.exp(2.0 * 1j * np.pi * f * (t - t_win / 2.)) # Get dpss tapers tapers, conc = dpss_windows(t.shape[0], time_bandwidth / 2., n_taps) Wk = oscillation * tapers[m] if zero_mean: # to make it zero mean real_offset = Wk.mean() Wk -= real_offset Wk /= sqrt(0.5) * linalg.norm(Wk.ravel()) Wm.append(Wk) Ws.append(Wm) return Ws def _centered(arr, newsize): """Aux Function to center data""" # Return the center newsize portion of the array. newsize = np.asarray(newsize) currsize = np.array(arr.shape) startind = (currsize - newsize) // 2 endind = startind + newsize myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def _cwt_fft(X, Ws, mode="same"): """Compute cwt with fft based convolutions Return a generator over signals. """ X = np.asarray(X) # Precompute wavelets for given frequency range to save time n_signals, n_times = X.shape n_freqs = len(Ws) Ws_max_size = max(W.size for W in Ws) size = n_times + Ws_max_size - 1 # Always use 2**n-sized FFT fsize = 2 ** int(np.ceil(np.log2(size))) # precompute FFTs of Ws fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128) for i, W in enumerate(Ws): if len(W) > n_times: raise ValueError('Wavelet is too long for such a short signal. ' 'Reduce the number of cycles.') fft_Ws[i] = fftn(W, [fsize]) for k, x in enumerate(X): if mode == "full": tfr = np.zeros((n_freqs, fsize), dtype=np.complex128) elif mode == "same" or mode == "valid": tfr = np.zeros((n_freqs, n_times), dtype=np.complex128) fft_x = fftn(x, [fsize]) for i, W in enumerate(Ws): ret = ifftn(fft_x * fft_Ws[i])[:n_times + W.size - 1] if mode == "valid": sz = abs(W.size - n_times) + 1 offset = (n_times - sz) / 2 tfr[i, offset:(offset + sz)] = _centered(ret, sz) else: tfr[i, :] = _centered(ret, n_times) yield tfr def _cwt_convolve(X, Ws, mode='same'): """Compute time freq decomposition with temporal convolutions Return a generator over signals. """ X = np.asarray(X) n_signals, n_times = X.shape n_freqs = len(Ws) # Compute convolutions for x in X: tfr = np.zeros((n_freqs, n_times), dtype=np.complex128) for i, W in enumerate(Ws): ret = np.convolve(x, W, mode=mode) if len(W) > len(x): raise ValueError('Wavelet is too long for such a short ' 'signal. Reduce the number of cycles.') if mode == "valid": sz = abs(W.size - n_times) + 1 offset = (n_times - sz) / 2 tfr[i, offset:(offset + sz)] = ret else: tfr[i] = ret yield tfr def cwt_morlet(X, sfreq, freqs, use_fft=True, n_cycles=7.0, zero_mean=False): """Compute time freq decomposition with Morlet wavelets This function operates directly on numpy arrays. Consider using `tfr_morlet` to process `Epochs` or `Evoked` instances. Parameters ---------- X : array of shape [n_signals, n_times] signals (one per line) sfreq : float sampling Frequency freqs : array Array of frequencies of interest use_fft : bool Compute convolution with FFT or temoral convolution. n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. zero_mean : bool Make sure the wavelets are zero mean. Returns ------- tfr : 3D array Time Frequency Decompositions (n_signals x n_frequencies x n_times) See Also -------- tfr.cwt : Compute time-frequency decomposition with user-provided wavelets """ mode = 'same' # mode = "valid" n_signals, n_times = X.shape n_frequencies = len(freqs) # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, freqs, n_cycles=n_cycles, zero_mean=zero_mean) if use_fft: coefs = _cwt_fft(X, Ws, mode) else: coefs = _cwt_convolve(X, Ws, mode) tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr return tfrs def cwt(X, Ws, use_fft=True, mode='same', decim=1): """Compute time freq decomposition with continuous wavelet transform Parameters ---------- X : array of shape [n_signals, n_times] signals (one per line) Ws : list of array Wavelets time series use_fft : bool Use FFT for convolutions mode : 'same' | 'valid' | 'full' Convention for convolution decim : int Temporal decimation factor Returns ------- tfr : 3D array Time Frequency Decompositions (n_signals x n_frequencies x n_times) See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ n_signals, n_times = X[:, ::decim].shape n_frequencies = len(Ws) if use_fft: coefs = _cwt_fft(X, Ws, mode) else: coefs = _cwt_convolve(X, Ws, mode) tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr[..., ::decim] return tfrs def _time_frequency(X, Ws, use_fft, decim): """Aux of time_frequency for parallel computing over channels """ n_epochs, n_times = X.shape n_times = n_times // decim + bool(n_times % decim) n_frequencies = len(Ws) psd = np.zeros((n_frequencies, n_times)) # PSD plf = np.zeros((n_frequencies, n_times), np.complex) # phase lock mode = 'same' if use_fft: tfrs = _cwt_fft(X, Ws, mode) else: tfrs = _cwt_convolve(X, Ws, mode) for tfr in tfrs: tfr = tfr[:, ::decim] tfr_abs = np.abs(tfr) psd += tfr_abs ** 2 plf += tfr / tfr_abs psd /= n_epochs plf = np.abs(plf) / n_epochs return psd, plf @verbose def single_trial_power(data, sfreq, frequencies, use_fft=True, n_cycles=7, baseline=None, baseline_mode='ratio', times=None, decim=1, n_jobs=1, zero_mean=False, verbose=None): """Compute time-frequency power on single epochs Parameters ---------- data : array of shape [n_epochs, n_channels, n_times] The epochs sfreq : float Sampling rate frequencies : array-like The frequencies use_fft : bool Use the FFT for convolutions or not. n_cycles : float | array of float Number of cycles in the Morlet wavelet. Fixed number or one per frequency. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. baseline_mode : None | 'ratio' | 'zscore' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) times : array Required to define baseline decim : int Temporal decimation factor n_jobs : int The number of epochs to process at the same time zero_mean : bool Make sure the wavelets are zero mean. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : 4D array Power estimate (Epochs x Channels x Frequencies x Timepoints). """ mode = 'same' n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, ::decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) parallel, my_cwt, _ = parallel_func(cwt, n_jobs) logger.info("Computing time-frequency power on single epochs...") power = np.empty((n_epochs, n_channels, n_frequencies, n_times), dtype=np.float) # Package arguments for `cwt` here to minimize omissions where only one of # the two calls below is updated with new function arguments. cwt_kw = dict(Ws=Ws, use_fft=use_fft, mode=mode, decim=decim) if n_jobs == 1: for k, e in enumerate(data): x = cwt(e, **cwt_kw) power[k] = (x * x.conj()).real else: # Precompute tf decompositions in parallel tfrs = parallel(my_cwt(e, **cwt_kw) for e in data) for k, tfr in enumerate(tfrs): power[k] = (tfr * tfr.conj()).real # Run baseline correction. Be sure to decimate the times array as well if # needed. if times is not None: times = times[::decim] power = rescale(power, times, baseline, baseline_mode, copy=False) return power def _induced_power_cwt(data, sfreq, frequencies, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=False): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with Morlet wavelets Parameters ---------- data : array 3D array of shape [n_epochs, n_channels, n_times] sfreq : float sampling Frequency frequencies : array Array of frequencies of interest use_fft : bool Compute transform with fft based convolutions or temporal convolutions. n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. decim: int Temporal decimation factor n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. zero_mean : bool Make sure the wavelets are zero mean. Returns ------- power : 2D array Induced power (Channels x Frequencies x Timepoints). Squared amplitude of time-frequency coefficients. phase_lock : 2D array Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints) """ n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, ::decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) psd = np.empty((n_channels, n_frequencies, n_times)) plf = np.empty((n_channels, n_frequencies, n_times)) # Separate to save memory for n_jobs=1 parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) psd_plf = parallel(my_time_frequency(data[:, c, :], Ws, use_fft, decim) for c in range(n_channels)) for c, (psd_c, plf_c) in enumerate(psd_plf): psd[c, :, :], plf[c, :, :] = psd_c, plf_c return psd, plf def _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB): """Aux Function to prepare tfr computation""" from ..viz.utils import _setup_vmin_vmax if mode is not None and baseline is not None: logger.info("Applying baseline correction '%s' during %s" % (mode, baseline)) data = rescale(data.copy(), times, baseline, mode) # crop time itmin, itmax = None, None idx = np.where(_time_mask(times, tmin, tmax))[0] if tmin is not None: itmin = idx[0] if tmax is not None: itmax = idx[-1] + 1 times = times[itmin:itmax] # crop freqs ifmin, ifmax = None, None idx = np.where(_time_mask(freqs, fmin, fmax))[0] if fmin is not None: ifmin = idx[0] if fmax is not None: ifmax = idx[-1] + 1 freqs = freqs[ifmin:ifmax] # crop data data = data[:, ifmin:ifmax, itmin:itmax] times *= 1e3 if dB: data = 10 * np.log10((data * data.conj()).real) vmin, vmax = _setup_vmin_vmax(data, vmin, vmax) return data, times, freqs, vmin, vmax class AverageTFR(ContainsMixin, UpdateChannelsMixin): """Container for Time-Frequency data Can for example store induced power at sensor level or intertrial coherence. Parameters ---------- info : Info The measurement info. data : ndarray, shape (n_channels, n_freqs, n_times) The data. times : ndarray, shape (n_times,) The time values in seconds. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. nave : int The number of averaged TFRs. comment : str | None Comment on the data, e.g., the experimental condition. Defaults to None. method : str | None Comment on the method used to compute the data, e.g., morlet wavelet. Defaults to None. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- ch_names : list The names of the channels. """ @verbose def __init__(self, info, data, times, freqs, nave, comment=None, method=None, verbose=None): self.info = info if data.ndim != 3: raise ValueError('data should be 3d. Got %d.' % data.ndim) n_channels, n_freqs, n_times = data.shape if n_channels != len(info['chs']): raise ValueError("Number of channels and data size don't match" " (%d != %d)." % (n_channels, len(info['chs']))) if n_freqs != len(freqs): raise ValueError("Number of frequencies and data size don't match" " (%d != %d)." % (n_freqs, len(freqs))) if n_times != len(times): raise ValueError("Number of times and data size don't match" " (%d != %d)." % (n_times, len(times))) self.data = data self.times = times self.freqs = freqs self.nave = nave self.comment = comment self.method = method @property def ch_names(self): return self.info['ch_names'] def crop(self, tmin=None, tmax=None, copy=False): """Crop data to a given time interval Parameters ---------- tmin : float | None Start time of selection in seconds. tmax : float | None End time of selection in seconds. copy : bool If False epochs is cropped in place. """ inst = self if not copy else self.copy() mask = _time_mask(inst.times, tmin, tmax) inst.times = inst.times[mask] inst.data = inst.data[..., mask] return inst @verbose def plot(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, cmap='RdBu_r', dB=False, colorbar=True, show=True, title=None, axes=None, verbose=None): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot. For user defined axes, the colorbar cannot be drawn. Defaults to True. show : bool Call pyplot.show() at the end. title : str | None String for title. Defaults to None (blank/no title). axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channels. If instance of Axes, there must be only one channel plotted. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr import matplotlib.pyplot as plt times, freqs = self.times.copy(), self.freqs.copy() data = self.data[picks] data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB) tmin, tmax = times[0], times[-1] if isinstance(axes, plt.Axes): axes = [axes] if isinstance(axes, list) and len(axes) != len(picks): raise RuntimeError('There must be an axes for each picked ' 'channel.') if colorbar: logger.warning('Cannot draw colorbar for user defined axes.') for idx in range(len(data)): if axes is None: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes[idx] fig = ax.get_figure() _imshow_tfr(ax, 0, tmin, tmax, vmin, vmax, ylim=None, tfr=data[idx: idx + 1], freq=freqs, x_label='Time (ms)', y_label='Frequency (Hz)', colorbar=False, picker=False, cmap=cmap) if title: fig.suptitle(title) if show: plt.show() return fig def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, layout=None, cmap='RdBu_r', title=None, dB=False, colorbar=True, layout_scale=0.945, show=True, border='none', fig_facecolor='k', font_color='w'): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. If None all available channels are displayed. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. layout : Layout | None Layout instance specifying sensor positions. If possible, the correct layout is inferred from the data. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. title : str Title of the figure. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot layout_scale : float Scaling factor for adjusting the relative size of the layout on the canvas. show : bool Call pyplot.show() at the end. border : str matplotlib borders style to be used for each sensor plot. fig_facecolor : str | obj The figure face color. Defaults to black. font_color: str | obj The color of tick labels in the colorbar. Defaults to white. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr, _plot_topo import matplotlib.pyplot as plt times = self.times.copy() freqs = self.freqs data = self.data info = self.info if picks is not None: data = data[picks] info = pick_info(info, picks) data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB) if layout is None: from mne import find_layout layout = find_layout(self.info) imshow = partial(_imshow_tfr, tfr=data, freq=freqs, cmap=cmap) fig = _plot_topo(info=info, times=times, show_func=imshow, layout=layout, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, layout_scale=layout_scale, title=title, border=border, x_label='Time (ms)', y_label='Frequency (Hz)', fig_facecolor=fig_facecolor, font_color=font_color) if show: plt.show() return fig def _check_compat(self, tfr): """checks that self and tfr have the same time-frequency ranges""" assert np.all(tfr.times == self.times) assert np.all(tfr.freqs == self.freqs) def __add__(self, tfr): self._check_compat(tfr) out = self.copy() out.data += tfr.data return out def __iadd__(self, tfr): self._check_compat(tfr) self.data += tfr.data return self def __sub__(self, tfr): self._check_compat(tfr) out = self.copy() out.data -= tfr.data return out def __isub__(self, tfr): self._check_compat(tfr) self.data -= tfr.data return self def copy(self): """Return a copy of the instance.""" return deepcopy(self) def __repr__(self): s = "time : [%f, %f]" % (self.times[0], self.times[-1]) s += ", freq : [%f, %f]" % (self.freqs[0], self.freqs[-1]) s += ", nave : %d" % self.nave s += ', channels : %d' % self.data.shape[0] return "<AverageTFR | %s>" % s def apply_baseline(self, baseline, mode='mean'): """Baseline correct the data Parameters ---------- baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. """ self.data = rescale(self.data, self.times, baseline, mode, copy=False) def plot_topomap(self, tmin=None, tmax=None, fmin=None, fmax=None, ch_type=None, baseline=None, mode='mean', layout=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=True, unit=None, res=64, size=2, cbar_fmt='%1.1e', show_names=False, title=None, axes=None, show=True, outlines='head', head_pos=None): """Plot topographic maps of time-frequency intervals of TFR data Parameters ---------- tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. layout : None | Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. vmin : float | callable The value specfying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). vmax : float | callable The value specfying the upper bound of the color range. If None, the maximum absolute value is used. If vmin is None, but vmax is not, defaults to np.min(data). If callable, the output equals vmax(data). cmap : matplotlib colormap Colormap. For magnetometers and eeg defaults to 'RdBu_r', else 'Reds'. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. unit : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If `mask` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. axes : instance of Axes | None The axes to plot to. If None the axes is defined automatically. show : bool Call pyplot.show() at the end. outlines : 'head' | dict | None The outlines to be drawn. If 'head', a head scheme will be drawn. If dict, each key refers to a tuple of x and y positions. The values in 'mask_pos' will serve as image mask. If None, nothing will be drawn. Defaults to 'head'. If dict, the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Moreover, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). head_pos : dict | None If None (default), the sensors are positioned such that they span the head circle. If dict, can have entries 'center' (tuple) and 'scale' (tuple) for what the center and scale of the head should be relative to the electrode locations. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz import plot_tfr_topomap return plot_tfr_topomap(self, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, ch_type=ch_type, baseline=baseline, mode=mode, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, unit=unit, res=res, size=size, cbar_fmt=cbar_fmt, show_names=show_names, title=title, axes=axes, show=show, outlines=outlines, head_pos=head_pos) def save(self, fname, overwrite=False): """Save TFR object to hdf5 file Parameters ---------- fname : str The file name, which should end with -tfr.h5 . overwrite : bool If True, overwrite file (if it exists). Defaults to false """ write_tfrs(fname, self, overwrite=overwrite) def _prepare_write_tfr(tfr, condition): """Aux function""" return (condition, dict(times=tfr.times, freqs=tfr.freqs, data=tfr.data, info=tfr.info, nave=tfr.nave, comment=tfr.comment, method=tfr.method)) def write_tfrs(fname, tfr, overwrite=False): """Write a TFR dataset to hdf5. Parameters ---------- fname : string The file name, which should end with -tfr.h5 tfr : AverageTFR instance, or list of AverageTFR instances The TFR dataset, or list of TFR datasets, to save in one file. Note. If .comment is not None, a name will be generated on the fly, based on the order in which the TFR objects are passed overwrite : bool If True, overwrite file (if it exists). Defaults to False. See Also -------- read_tfrs Notes ----- .. versionadded:: 0.9.0 """ out = [] if not isinstance(tfr, (list, tuple)): tfr = [tfr] for ii, tfr_ in enumerate(tfr): comment = ii if tfr_.comment is None else tfr_.comment out.append(_prepare_write_tfr(tfr_, condition=comment)) write_hdf5(fname, out, overwrite=overwrite) def read_tfrs(fname, condition=None): """ Read TFR datasets from hdf5 file. Parameters ---------- fname : string The file name, which should end with -tfr.h5 . condition : int or str | list of int or str | None The condition to load. If None, all conditions will be returned. Defaults to None. See Also -------- write_tfrs Returns ------- tfrs : list of instances of AverageTFR | instance of AverageTFR Depending on `condition` either the TFR object or a list of multiple TFR objects. Notes ----- .. versionadded:: 0.9.0 """ check_fname(fname, 'tfr', ('-tfr.h5',)) logger.info('Reading %s ...' % fname) tfr_data = read_hdf5(fname) if condition is not None: tfr_dict = dict(tfr_data) if condition not in tfr_dict: keys = ['%s' % k for k in tfr_dict] raise ValueError('Cannot find condition ("{0}") in this file. ' 'I can give you "{1}""' .format(condition, " or ".join(keys))) out = AverageTFR(**tfr_dict[condition]) else: out = [AverageTFR(**d) for d in list(zip(*tfr_data))[1]] return out def tfr_morlet(inst, freqs, n_cycles, use_fft=False, return_itc=True, decim=1, n_jobs=1): """Compute Time-Frequency Representation (TFR) using Morlet wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. use_fft : bool The fft based convolution or not. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Must be ``False`` for evoked data. decim : int The decimation factor on the time axis. To reduce memory usage. n_jobs : int The number of jobs to run in parallel. Returns ------- power : instance of AverageTFR The averaged power. itc : instance of AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell """ data = _get_data(inst, return_itc) picks = pick_types(inst.info, meg=True, eeg=True) info = pick_info(inst.info, picks) data = data[:, picks, :] power, itc = _induced_power_cwt(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, n_jobs=n_jobs, use_fft=use_fft, decim=decim, zero_mean=True) times = inst.times[::decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='morlet-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='morlet-itc')) return out @verbose def _induced_power_mtm(data, sfreq, frequencies, time_bandwidth=4.0, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=True, verbose=None): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with DPSS wavelets Parameters ---------- data : np.ndarray, shape (n_epochs, n_channels, n_times) The input data. sfreq : float sampling Frequency frequencies : np.ndarray, shape (n_frequencies,) Array of frequencies of interest time_bandwidth : float Time x (Full) Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0 (3 tapers). use_fft : bool Compute transform with fft based convolutions or temporal convolutions. Defaults to True. n_cycles : float | np.ndarray shape (n_frequencies,) Number of cycles. Fixed number or one per frequency. Defaults to 7. decim: int Temporal decimation factor. Defaults to 1. n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. Defaults to 1. zero_mean : bool Make sure the wavelets are zero mean. Defaults to True. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : np.ndarray, shape (n_channels, n_frequencies, n_times) Induced power. Squared amplitude of time-frequency coefficients. itc : np.ndarray, shape (n_channels, n_frequencies, n_times) Phase locking value. """ n_epochs, n_channels, n_times = data[:, :, ::decim].shape logger.info('Data is %d trials and %d channels', n_epochs, n_channels) n_frequencies = len(frequencies) logger.info('Multitaper time-frequency analysis for %d frequencies', n_frequencies) # Precompute wavelets for given frequency range to save time Ws = _dpss_wavelet(sfreq, frequencies, n_cycles=n_cycles, time_bandwidth=time_bandwidth, zero_mean=zero_mean) n_taps = len(Ws) logger.info('Using %d tapers', n_taps) n_times_wavelets = Ws[0][0].shape[0] if n_times <= n_times_wavelets: warnings.warn("Time windows are as long or longer than the epoch. " "Consider reducing n_cycles.") psd = np.zeros((n_channels, n_frequencies, n_times)) itc = np.zeros((n_channels, n_frequencies, n_times)) parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) for m in range(n_taps): psd_itc = parallel(my_time_frequency(data[:, c, :], Ws[m], use_fft, decim) for c in range(n_channels)) for c, (psd_c, itc_c) in enumerate(psd_itc): psd[c, :, :] += psd_c itc[c, :, :] += itc_c psd /= n_taps itc /= n_taps return psd, itc def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0, use_fft=True, return_itc=True, decim=1, n_jobs=1): """Compute Time-Frequency Representation (TFR) using DPSS wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. The time-window length is thus T = n_cycles / freq. time_bandwidth : float, (optional) Time x (Full) Bandwidth product. Should be >= 2.0. Choose this along with n_cycles to get desired frequency resolution. The number of good tapers (least leakage from far away frequencies) is chosen automatically based on this to floor(time_bandwidth - 1). Default is 4.0 (3 good tapers). E.g., With freq = 20 Hz and n_cycles = 10, we get time = 0.5 s. If time_bandwidth = 4., then frequency smoothing is (4 / time) = 8 Hz. use_fft : bool The fft based convolution or not. Defaults to True. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Defaults to True. decim : int The decimation factor on the time axis. To reduce memory usage. Note than this is brute force decimation, no anti-aliasing is done. Defaults to 1. n_jobs : int The number of jobs to run in parallel. Defaults to 1. Returns ------- power : AverageTFR The averaged power. itc : AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell Notes ----- .. versionadded:: 0.9.0 """ data = _get_data(inst, return_itc) picks = pick_types(inst.info, meg=True, eeg=True) info = pick_info(inst.info, picks) data = data[:, picks, :] power, itc = _induced_power_mtm(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, use_fft=use_fft, decim=decim, n_jobs=n_jobs, zero_mean=True, verbose='INFO') times = inst.times[::decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='mutlitaper-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='mutlitaper-itc')) return out
bsd-3-clause
Peratham/tensorlib
doc/sphinxext/gen_rst.py
11
38957
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess from textwrap import dedent # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename) as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_single_localization_001.png': (1, 250), 'plot_multiple_localization_001.png': (1, 250), 'plot_overfeat_layer1_filters_001.png': (1, 250), 'plot_mnist_generator_001.png': (1, 250), 'plot_asirra_dataset_001.png': (1, 250), } def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ lines = open(filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery", "Please check your example's layout", " and make sure it's correct") else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ width: 0px; overflow: hidden; } </style> Examples ======== .. _examples-index: """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for dir in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, dir)): generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) lines = open(example_file).readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif ((tok_type == 'STRING') and check_docstring): erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer"> <div class="docstringWrapper"> """) out.append('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html <p>%s </p></div> </div> """ % (ref_name, snippet)) return ''.join(out) def generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not dir == '.': target_dir = os.path.join(root_dir, dir) src_dir = os.path.join(example_dir, dir) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(dir, 'images', 'thumb')): os.makedirs(os.path.join(dir, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(dir, dir, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (dir, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', dir) ex_file.write(_thumbnail_div(dir, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, fname[:-3] + '.png') time_elapsed = 0 time_m = 0 time_s = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. plt.figure(fig_mngr.num) plt.savefig(image_path % fig_mngr.num) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/dev/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to # _build/html/dev/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, fname[:-3] + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, fname[:-2] + 'rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation example_code_obj = identify_names(open(example_file).read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" try: if exception is not None: return print('Embedding documentation hyperlinks in examples..') # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) doc_resolvers['matplotlib'] = SphinxDocLinkResolver( 'http://matplotlib.org') doc_resolvers['numpy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/numpy-1.6.0') doc_resolvers['scipy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/scipy-0.11.0/reference') example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue link = doc_resolvers[this_module].resolve(cobj, full_fname) if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding due to a URL Error: \n") print(e.args) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e129.py
2
5359
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, SubsampleLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer from lasagne.updates import adagrad, nesterov_momentum from functools import partial import os from neuralnilm.source import standardise from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for LSTM e110 * Back to Uniform(5) for LSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single LSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs """ def exp_a(name): source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[20, 20, 20, 20, 20], max_input_power=None, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1500, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=1.0), layers_config=[ { 'type': BLSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(25), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ], layer_changes={ 2001: { 'remove_from': -3, 'new_layers': [ { 'type': BLSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] }, 4001: { 'remove_from': -3, 'new_layers': [ { 'type': BLSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] } } ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=5000) except KeyboardInterrupt: break except TrainingError as e: print("EXCEPTION:", e) if __name__ == "__main__": main()
mit
zak-k/iris
lib/iris/tests/test_quickplot.py
4
7721
# (C) British Crown Copyright 2010 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Tests the high-level plotting interface. """ from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # import iris tests first so that some things can be initialised before importing anything else import iris.tests as tests import iris.tests.test_plot as test_plot import iris # Run tests in no graphics mode if matplotlib is not available. if tests.MPL_AVAILABLE: import matplotlib.pyplot as plt import iris.plot as iplt import iris.quickplot as qplt # Caches _load_theta so subsequent calls are faster def cache(fn, cache={}): def inner(*args, **kwargs): key = "result" if not cache: cache[key] = fn(*args, **kwargs) return cache[key] return inner @cache def _load_theta(): path = tests.get_data_path(('PP', 'COLPEX', 'theta_and_orog_subset.pp')) theta = iris.load_cube(path, 'air_potential_temperature') # Improve the unit theta.units = 'K' return theta @tests.skip_data @tests.skip_plot class TestQuickplotCoordinatesGiven(test_plot.TestPlotCoordinatesGiven): def setUp(self): tests.GraphicsTest.setUp(self) filename = tests.get_data_path(('PP', 'COLPEX', 'theta_and_orog_subset.pp')) self.cube = test_plot.load_cube_once(filename, 'air_potential_temperature') self.draw_module = iris.quickplot self.contourf = test_plot.LambdaStr('iris.quickplot.contourf', lambda cube, *args, **kwargs: iris.quickplot.contourf(cube, *args, **kwargs)) self.contour = test_plot.LambdaStr('iris.quickplot.contour', lambda cube, *args, **kwargs: iris.quickplot.contour(cube, *args, **kwargs)) self.points = test_plot.LambdaStr('iris.quickplot.points', lambda cube, *args, **kwargs: iris.quickplot.points(cube, c=cube.data, *args, **kwargs)) self.plot = test_plot.LambdaStr('iris.quickplot.plot', lambda cube, *args, **kwargs: iris.quickplot.plot(cube, *args, **kwargs)) self.results = {'yx': ( [self.contourf, ['grid_latitude', 'grid_longitude']], [self.contourf, ['grid_longitude', 'grid_latitude']], [self.contour, ['grid_latitude', 'grid_longitude']], [self.contour, ['grid_longitude', 'grid_latitude']], [self.points, ['grid_latitude', 'grid_longitude']], [self.points, ['grid_longitude', 'grid_latitude']], ), 'zx': ( [self.contourf, ['model_level_number', 'grid_longitude']], [self.contourf, ['grid_longitude', 'model_level_number']], [self.contour, ['model_level_number', 'grid_longitude']], [self.contour, ['grid_longitude', 'model_level_number']], [self.points, ['model_level_number', 'grid_longitude']], [self.points, ['grid_longitude', 'model_level_number']], ), 'tx': ( [self.contourf, ['time', 'grid_longitude']], [self.contourf, ['grid_longitude', 'time']], [self.contour, ['time', 'grid_longitude']], [self.contour, ['grid_longitude', 'time']], [self.points, ['time', 'grid_longitude']], [self.points, ['grid_longitude', 'time']], ), 'x': ( [self.plot, ['grid_longitude']], ), 'y': ( [self.plot, ['grid_latitude']], ), } @tests.skip_data @tests.skip_plot class TestLabels(tests.GraphicsTest): def setUp(self): super(TestLabels, self).setUp() self.theta = _load_theta() def _slice(self, coords): """Returns the first cube containing the requested coordinates.""" for cube in self.theta.slices(coords): break return cube def _small(self): # Use a restricted size so we can make out the detail cube = self._slice(['model_level_number', 'grid_longitude']) return cube[:5, :5] def test_contour(self): qplt.contour(self._small()) self.check_graphic() qplt.contourf(self._small(), coords=['model_level_number', 'grid_longitude']) self.check_graphic() def test_contourf(self): qplt.contourf(self._small()) cube = self._small() iplt.orography_at_points(cube) self.check_graphic() qplt.contourf(self._small(), coords=['model_level_number', 'grid_longitude']) self.check_graphic() qplt.contourf(self._small(), coords=['grid_longitude', 'model_level_number']) self.check_graphic() def test_contourf_nameless(self): cube = self._small() cube.standard_name = None qplt.contourf(cube, coords=['grid_longitude', 'model_level_number']) self.check_graphic() def test_pcolor(self): qplt.pcolor(self._small()) self.check_graphic() def test_pcolormesh(self): qplt.pcolormesh(self._small()) #cube = self._small() #iplt.orography_at_bounds(cube) self.check_graphic() def test_map(self): cube = self._slice(['grid_latitude', 'grid_longitude']) qplt.contour(cube) self.check_graphic() # check that the result of adding 360 to the data is *almost* identically the same result lon = cube.coord('grid_longitude') lon.points = lon.points + 360 qplt.contour(cube) self.check_graphic() def test_alignment(self): cube = self._small() qplt.contourf(cube) #qplt.outline(cube) qplt.points(cube) self.check_graphic() @tests.skip_data @tests.skip_plot class TestTimeReferenceUnitsLabels(tests.GraphicsTest): def setUp(self): super(TestTimeReferenceUnitsLabels, self).setUp() path = tests.get_data_path(('PP', 'aPProt1', 'rotatedMHtimecube.pp')) self.cube = iris.load_cube(path)[:, 0, 0] def test_reference_time_units(self): # units should not be displayed for a reference time qplt.plot(self.cube.coord('time'), self.cube) plt.gcf().autofmt_xdate() self.check_graphic() def test_not_reference_time_units(self): # units should be displayed for other time coordinates qplt.plot(self.cube.coord('forecast_period'), self.cube) self.check_graphic() if __name__ == "__main__": tests.main()
gpl-3.0
waynenilsen/statsmodels
statsmodels/sandbox/examples/ex_kaplan_meier.py
33
2838
#An example for the Kaplan-Meier estimator from __future__ import print_function from statsmodels.compat.python import lrange import statsmodels.api as sm import matplotlib.pyplot as plt import numpy as np from statsmodels.sandbox.survival2 import KaplanMeier #Getting the strike data as an array dta = sm.datasets.strikes.load() print('basic data') print('\n') dta = list(dta.values()[-1]) print(dta[lrange(5),:]) print('\n') #Create the KaplanMeier object and fit the model km = KaplanMeier(dta,0) km.fit() #show the results km.plot() print('basic model') print('\n') km.summary() print('\n') #Mutiple survival curves km2 = KaplanMeier(dta,0,exog=1) km2.fit() print('more than one curve') print('\n') km2.summary() print('\n') km2.plot() #with censoring censoring = np.ones_like(dta[:,0]) censoring[dta[:,0] > 80] = 0 dta = np.c_[dta,censoring] print('with censoring') print('\n') print(dta[lrange(5),:]) print('\n') km3 = KaplanMeier(dta,0,exog=1,censoring=2) km3.fit() km3.summary() print('\n') km3.plot() #Test for difference of survival curves log_rank = km3.test_diff([0.0645,-0.03957]) print('log rank test') print('\n') print(log_rank) print('\n') #The zeroth element of log_rank is the chi-square test statistic #for the difference between the survival curves for exog = 0.0645 #and exog = -0.03957, the index one element is the degrees of freedom for #the test, and the index two element is the p-value for the test wilcoxon = km3.test_diff([0.0645,-0.03957], rho=1) print('Wilcoxon') print('\n') print(wilcoxon) print('\n') #Same info as log_rank, but for Peto and Peto modification to the #Gehan-Wilcoxon test #User specified functions for tests #A wider range of rates can be accessed by using the 'weight' parameter #for the test_diff method #For example, if the desire weights are S(t)*(1-S(t)), where S(t) is a pooled #estimate for the survival function, this could be computed by doing def weights(t): #must accept one arguement, even though it is not used here s = KaplanMeier(dta,0,censoring=2) s.fit() s = s.results[0][0] s = s * (1 - s) return s #KaplanMeier provides an array of times to the weighting function #internally, so the weighting function must accept one arguement test = km3.test_diff([0.0645,-0.03957], weight=weights) print('user specified weights') print('\n') print(test) print('\n') #Groups with nan names #These can be handled by passing the data to KaplanMeier as an array of strings groups = np.ones_like(dta[:,1]) groups = groups.astype('S4') groups[dta[:,1] > 0] = 'high' groups[dta[:,1] <= 0] = 'low' dta = dta.astype('S4') dta[:,1] = groups print('with nan group names') print('\n') print(dta[lrange(5),:]) print('\n') km4 = KaplanMeier(dta,0,exog=1,censoring=2) km4.fit() km4.summary() print('\n') km4.plot() #show all the plots plt.show()
bsd-3-clause
rubennj/pvlib-python
docs/sphinx/sphinxext/numpydoc/docscrape_sphinx.py
41
9437
from __future__ import division, absolute_import, print_function import sys, re, inspect, textwrap, pydoc import sphinx import collections from .docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self): out = [] if self['Returns']: out += self._str_field_list('Returns') out += [''] for param, param_type, desc in self['Returns']: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None if param_obj and (pydoc.getdoc(param_obj) or not desc): # Referenced object has a docstring autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::'] if self.class_members_toctree: out += [' :toctree:'] out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns() for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, collections.Callable): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
bgris/ODL_bgris
lib/python3.5/site-packages/matplotlib/patches.py
6
148732
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import map, zip import math import matplotlib as mpl import numpy as np import matplotlib.cbook as cbook import matplotlib.artist as artist from matplotlib.artist import allow_rasterization import matplotlib.colors as colors from matplotlib import docstring import matplotlib.transforms as transforms from matplotlib.path import Path import matplotlib.lines as mlines from matplotlib.bezier import split_bezier_intersecting_with_closedpath from matplotlib.bezier import get_intersection, inside_circle, get_parallels from matplotlib.bezier import make_wedged_bezier2 from matplotlib.bezier import split_path_inout, get_cos_sin from matplotlib.bezier import make_path_regular, concatenate_paths # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object definition docstring.interpd.update(Patch=""" ================= ============================================== Property Description ================= ============================================== alpha float animated [True | False] antialiased or aa [True | False] capstyle ['butt' | 'round' | 'projecting'] clip_box a matplotlib.transform.Bbox instance clip_on [True | False] edgecolor or ec any matplotlib color facecolor or fc any matplotlib color figure a matplotlib.figure.Figure instance fill [True | False] hatch unknown joinstyle ['miter' | 'round' | 'bevel'] label any string linewidth or lw float lod [True | False] transform a matplotlib.transform transformation instance visible [True | False] zorder any number ================= ============================================== """) _patch_alias_map = { 'antialiased': ['aa'], 'edgecolor': ['ec'], 'facecolor': ['fc'], 'linewidth': ['lw'], 'linestyle': ['ls'] } class Patch(artist.Artist): """ A patch is a 2D artist with a face color and an edge color. If any of *edgecolor*, *facecolor*, *linewidth*, or *antialiased* are *None*, they default to their rc params setting. """ zorder = 1 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') # Whether to draw an edge by default. Set on a # subclass-by-subclass basis. _edge_default = False def __str__(self): return str(self.__class__).split('.')[-1] def __init__(self, edgecolor=None, facecolor=None, color=None, linewidth=None, linestyle=None, antialiased=None, hatch=None, fill=True, capstyle=None, joinstyle=None, **kwargs): """ The following kwarg properties are supported %(Patch)s """ artist.Artist.__init__(self) if linewidth is None: linewidth = mpl.rcParams['patch.linewidth'] if linestyle is None: linestyle = "solid" if capstyle is None: capstyle = 'butt' if joinstyle is None: joinstyle = 'miter' if antialiased is None: antialiased = mpl.rcParams['patch.antialiased'] self._fill = True # needed for set_facecolor call if color is not None: if (edgecolor is not None or facecolor is not None): import warnings warnings.warn("Setting the 'color' property will override" "the edgecolor or facecolor properties. ") self.set_color(color) else: self.set_edgecolor(edgecolor) self.set_facecolor(facecolor) # unscaled dashes. Needed to scale dash patterns by lw self._us_dashes = None self._linewidth = 0 self.set_fill(fill) self.set_linestyle(linestyle) self.set_linewidth(linewidth) self.set_antialiased(antialiased) self.set_hatch(hatch) self.set_capstyle(capstyle) self.set_joinstyle(joinstyle) self._combined_transform = transforms.IdentityTransform() if len(kwargs): self.update(kwargs) def get_verts(self): """ Return a copy of the vertices used in this patch If the patch contains Bezier curves, the curves will be interpolated by line segments. To access the curves as curves, use :meth:`get_path`. """ trans = self.get_transform() path = self.get_path() polygons = path.to_polygons(trans) if len(polygons): return polygons[0] return [] def _process_radius(self, radius): if radius is not None: return radius if cbook.is_numlike(self._picker): _radius = self._picker else: if self.get_edgecolor()[3] == 0: _radius = 0 else: _radius = self.get_linewidth() return _radius def contains(self, mouseevent, radius=None): """Test whether the mouse event occurred in the patch. Returns T/F, {} """ if six.callable(self._contains): return self._contains(self, mouseevent) radius = self._process_radius(radius) inside = self.get_path().contains_point( (mouseevent.x, mouseevent.y), self.get_transform(), radius) return inside, {} def contains_point(self, point, radius=None): """ Returns *True* if the given point is inside the path (transformed with its transform attribute). """ radius = self._process_radius(radius) return self.get_path().contains_point(point, self.get_transform(), radius) def update_from(self, other): """ Updates this :class:`Patch` from the properties of *other*. """ artist.Artist.update_from(self, other) # For some properties we don't need or don't want to go through the # getters/setters, so we just copy them directly. self._edgecolor = other._edgecolor self._facecolor = other._facecolor self._fill = other._fill self._hatch = other._hatch # copy the unscaled dash pattern self._us_dashes = other._us_dashes self.set_linewidth(other._linewidth) # also sets dash properties self.set_transform(other.get_data_transform()) def get_extents(self): """ Return a :class:`~matplotlib.transforms.Bbox` object defining the axis-aligned extents of the :class:`Patch`. """ return self.get_path().get_extents(self.get_transform()) def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the :class:`Patch`. """ return self.get_patch_transform() + artist.Artist.get_transform(self) def get_data_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance which maps data coordinates to physical coordinates. """ return artist.Artist.get_transform(self) def get_patch_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance which takes patch coordinates to data coordinates. For example, one may define a patch of a circle which represents a radius of 5 by providing coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate) by 5. """ return transforms.IdentityTransform() def get_antialiased(self): """ Returns True if the :class:`Patch` is to be drawn with antialiasing. """ return self._antialiased get_aa = get_antialiased def get_edgecolor(self): """ Return the edge color of the :class:`Patch`. """ return self._edgecolor get_ec = get_edgecolor def get_facecolor(self): """ Return the face color of the :class:`Patch`. """ return self._facecolor get_fc = get_facecolor def get_linewidth(self): """ Return the line width in points. """ return self._linewidth get_lw = get_linewidth def get_linestyle(self): """ Return the linestyle. Will be one of ['solid' | 'dashed' | 'dashdot' | 'dotted'] """ return self._linestyle get_ls = get_linestyle def set_antialiased(self, aa): """ Set whether to use antialiased rendering ACCEPTS: [True | False] or None for default """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiased = aa self.stale = True def set_aa(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def _set_edgecolor(self, color): if color is None: if (mpl.rcParams['patch.force_edgecolor'] or not self._fill or self._edge_default): color = mpl.rcParams['patch.edgecolor'] else: color = 'none' self._edgecolor = colors.to_rgba(color, self._alpha) self.stale = True def set_edgecolor(self, color): """ Set the patch edge color ACCEPTS: mpl color spec, None, 'none', or 'auto' """ self._original_edgecolor = color self._set_edgecolor(color) def set_ec(self, color): """alias for set_edgecolor""" return self.set_edgecolor(color) def _set_facecolor(self, color): if color is None: color = mpl.rcParams['patch.facecolor'] alpha = self._alpha if self._fill else 0 self._facecolor = colors.to_rgba(color, alpha) self.stale = True def set_facecolor(self, color): """ Set the patch face color ACCEPTS: mpl color spec, or None for default, or 'none' for no color """ self._original_facecolor = color self._set_facecolor(color) def set_fc(self, color): """alias for set_facecolor""" return self.set_facecolor(color) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color spec .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` For setting the edge or face color individually. """ self.set_facecolor(c) self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparency of the patch. ACCEPTS: float or None """ if alpha is not None: try: float(alpha) except TypeError: raise TypeError('alpha must be a float or None') artist.Artist.set_alpha(self, alpha) self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) # stale is already True def set_linewidth(self, w): """ Set the patch linewidth in points ACCEPTS: float or None for default """ if w is None: w = mpl.rcParams['patch.linewidth'] if w is None: w = mpl.rcParams['axes.linewidth'] self._linewidth = float(w) # scale the dash pattern by the linewidth offset, ls = self._us_dashes self._dashoffset, self._dashes = mlines._scale_dashes( offset, ls, self._linewidth) self.stale = True def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the patch linestyle =========================== ================= linestyle description =========================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line =========================== ================= Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq), where ``onoffseq`` is an even length tuple of on and off ink in points. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``] Parameters ---------- ls : { '-', '--', '-.', ':'} and more see description The line style. """ if ls is None: ls = "solid" self._linestyle = ls # get the unscalled dash pattern offset, ls = self._us_dashes = mlines._get_dash_pattern(ls) # scale the dash pattern by the linewidth self._dashoffset, self._dashes = mlines._scale_dashes( offset, ls, self._linewidth) self.stale = True def set_ls(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_fill(self, b): """ Set whether to fill the patch ACCEPTS: [True | False] """ self._fill = bool(b) self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) self.stale = True def get_fill(self): 'return whether fill is set' return self._fill # Make fill a property so as to preserve the long-standing # but somewhat inconsistent behavior in which fill was an # attribute. fill = property(get_fill, set_fill) def set_capstyle(self, s): """ Set the patch capstyle ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._capstyle = s self.stale = True def get_capstyle(self): "Return the current capstyle" return self._capstyle def set_joinstyle(self, s): """ Set the patch joinstyle ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._joinstyle = s self.stale = True def get_joinstyle(self): "Return the current joinstyle" return self._joinstyle def set_hatch(self, hatch): """ Set the hatching pattern *hatch* can be one of:: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars Letters can be combined, in which case all the specified hatchings are done. If same letter repeats, it increases the density of hatching of that pattern. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. ACCEPTS: ['/' | '\\\\' | '|' | '-' | '+' | 'x' | 'o' | 'O' | '.' | '*'] """ self._hatch = hatch self.stale = True def get_hatch(self): 'Return the current hatching pattern' return self._hatch @allow_rasterization def draw(self, renderer): 'Draw the :class:`Patch` to the given *renderer*.' if not self.get_visible(): return renderer.open_group('patch', self.get_gid()) gc = renderer.new_gc() gc.set_foreground(self._edgecolor, isRGBA=True) lw = self._linewidth if self._edgecolor[3] == 0: lw = 0 gc.set_linewidth(lw) gc.set_dashes(0, self._dashes) gc.set_capstyle(self._capstyle) gc.set_joinstyle(self._joinstyle) gc.set_antialiased(self._antialiased) self._set_gc_clip(gc) gc.set_url(self._url) gc.set_snap(self.get_snap()) rgbFace = self._facecolor if rgbFace[3] == 0: rgbFace = None # (some?) renderers expect this as no-fill signal gc.set_alpha(self._alpha) if self._hatch: gc.set_hatch(self._hatch) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) path = self.get_path() transform = self.get_transform() tpath = transform.transform_path_non_affine(path) affine = transform.get_affine() if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) renderer.draw_path(gc, tpath, affine, rgbFace) gc.restore() renderer.close_group('patch') self.stale = False def get_path(self): """ Return the path of this patch """ raise NotImplementedError('Derived must override') def get_window_extent(self, renderer=None): return self.get_path().get_extents(self.get_transform()) patchdoc = artist.kwdoc(Patch) for k in ('Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow', 'FancyArrow', 'YAArrow', 'CirclePolygon', 'Ellipse', 'Arc', 'FancyBboxPatch', 'Patch'): docstring.interpd.update({k: patchdoc}) # define Patch.__init__ docstring after the class has been added to interpd docstring.dedent_interpd(Patch.__init__) class Shadow(Patch): def __str__(self): return "Shadow(%s)" % (str(self.patch)) @docstring.dedent_interpd def __init__(self, patch, ox, oy, props=None, **kwargs): """ Create a shadow of the given *patch* offset by *ox*, *oy*. *props*, if not *None*, is a patch property update dictionary. If *None*, the shadow will have have the same color as the face, but darkened. kwargs are %(Patch)s """ Patch.__init__(self) self.patch = patch self.props = props self._ox, self._oy = ox, oy self._shadow_transform = transforms.Affine2D() self._update() def _update(self): self.update_from(self.patch) if self.props is not None: self.update(self.props) else: r, g, b, a = colors.to_rgba(self.patch.get_facecolor()) rho = 0.3 r = rho * r g = rho * g b = rho * b self.set_facecolor((r, g, b, 0.5)) self.set_edgecolor((r, g, b, 0.5)) self.set_alpha(0.5) def _update_transform(self, renderer): ox = renderer.points_to_pixels(self._ox) oy = renderer.points_to_pixels(self._oy) self._shadow_transform.clear().translate(ox, oy) def _get_ox(self): return self._ox def _set_ox(self, ox): self._ox = ox def _get_oy(self): return self._oy def _set_oy(self, oy): self._oy = oy def get_path(self): return self.patch.get_path() def get_patch_transform(self): return self.patch.get_patch_transform() + self._shadow_transform def draw(self, renderer): self._update_transform(renderer) Patch.draw(self, renderer) class Rectangle(Patch): """ Draw a rectangle with lower left at *xy* = (*x*, *y*) with specified *width* and *height*. """ def __str__(self): return self.__class__.__name__ \ + "(%g,%g;%gx%g)" % (self._x, self._y, self._width, self._height) @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0.0, **kwargs): """ *angle* rotation in degrees (anti-clockwise) *fill* is a boolean indicating whether to fill the rectangle Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._x = float(xy[0]) self._y = float(xy[1]) self._width = float(width) self._height = float(height) self._angle = float(angle) # Note: This cannot be calculated until this is added to an Axes self._rect_transform = transforms.IdentityTransform() def get_path(self): """ Return the vertices of the rectangle """ return Path.unit_rectangle() def _update_patch_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This maxes it very important to call the accessor method and not directly access the transformation member variable. """ x = self.convert_xunits(self._x) y = self.convert_yunits(self._y) width = self.convert_xunits(self._width) height = self.convert_yunits(self._height) bbox = transforms.Bbox.from_bounds(x, y, width, height) rot_trans = transforms.Affine2D() rot_trans.rotate_deg_around(x, y, self._angle) self._rect_transform = transforms.BboxTransformTo(bbox) self._rect_transform += rot_trans def get_patch_transform(self): self._update_patch_transform() return self._rect_transform def get_x(self): "Return the left coord of the rectangle" return self._x def get_y(self): "Return the bottom coord of the rectangle" return self._y def get_xy(self): "Return the left and bottom coords of the rectangle" return self._x, self._y def get_width(self): "Return the width of the rectangle" return self._width def get_height(self): "Return the height of the rectangle" return self._height def set_x(self, x): """ Set the left coord of the rectangle ACCEPTS: float """ self._x = x self.stale = True def set_y(self, y): """ Set the bottom coord of the rectangle ACCEPTS: float """ self._y = y self.stale = True def set_xy(self, xy): """ Set the left and bottom coords of the rectangle ACCEPTS: 2-item sequence """ self._x, self._y = xy self.stale = True def set_width(self, w): """ Set the width rectangle ACCEPTS: float """ self._width = w self.stale = True def set_height(self, h): """ Set the width rectangle ACCEPTS: float """ self._height = h self.stale = True def set_bounds(self, *args): """ Set the bounds of the rectangle: l,b,w,h ACCEPTS: (left, bottom, width, height) """ if len(args) == 0: l, b, w, h = args[0] else: l, b, w, h = args self._x = l self._y = b self._width = w self._height = h self.stale = True def get_bbox(self): return transforms.Bbox.from_bounds(self._x, self._y, self._width, self._height) xy = property(get_xy, set_xy) class RegularPolygon(Patch): """ A regular polygon patch. """ def __str__(self): return "Poly%d(%g,%g)" % (self._numVertices, self._xy[0], self._xy[1]) @docstring.dedent_interpd def __init__(self, xy, numVertices, radius=5, orientation=0, **kwargs): """ Constructor arguments: *xy* A length 2 tuple (*x*, *y*) of the center. *numVertices* the number of vertices. *radius* The distance from the center to each of the vertices. *orientation* rotates the polygon (in radians). Valid kwargs are: %(Patch)s """ self._xy = xy self._numVertices = numVertices self._orientation = orientation self._radius = radius self._path = Path.unit_regular_polygon(numVertices) self._poly_transform = transforms.Affine2D() self._update_transform() Patch.__init__(self, **kwargs) def _update_transform(self): self._poly_transform.clear() \ .scale(self.radius) \ .rotate(self.orientation) \ .translate(*self.xy) def _get_xy(self): return self._xy def _set_xy(self, xy): self._xy = xy self._update_transform() xy = property(_get_xy, _set_xy) def _get_orientation(self): return self._orientation def _set_orientation(self, orientation): self._orientation = orientation self._update_transform() orientation = property(_get_orientation, _set_orientation) def _get_radius(self): return self._radius def _set_radius(self, radius): self._radius = radius self._update_transform() radius = property(_get_radius, _set_radius) def _get_numvertices(self): return self._numVertices def _set_numvertices(self, numVertices): self._numVertices = numVertices numvertices = property(_get_numvertices, _set_numvertices) def get_path(self): return self._path def get_patch_transform(self): self._update_transform() return self._poly_transform class PathPatch(Patch): """ A general polycurve path patch. """ _edge_default = True def __str__(self): return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0]) @docstring.dedent_interpd def __init__(self, path, **kwargs): """ *path* is a :class:`matplotlib.path.Path` object. Valid kwargs are: %(Patch)s .. seealso:: :class:`Patch` For additional kwargs """ Patch.__init__(self, **kwargs) self._path = path def get_path(self): return self._path class Polygon(Patch): """ A general polygon patch. """ def __str__(self): return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0]) @docstring.dedent_interpd def __init__(self, xy, closed=True, **kwargs): """ *xy* is a numpy array with shape Nx2. If *closed* is *True*, the polygon will be closed so the starting and ending points are the same. Valid kwargs are: %(Patch)s .. seealso:: :class:`Patch` For additional kwargs """ Patch.__init__(self, **kwargs) self._closed = closed self.set_xy(xy) def get_path(self): """ Get the path of the polygon Returns ------- path : Path The :class:`~matplotlib.path.Path` object for the polygon """ return self._path def get_closed(self): """ Returns if the polygon is closed Returns ------- closed : bool If the path is closed """ return self._closed def set_closed(self, closed): """ Set if the polygon is closed Parameters ---------- closed : bool True if the polygon is closed """ if self._closed == bool(closed): return self._closed = bool(closed) self.set_xy(self.get_xy()) self.stale = True def get_xy(self): """ Get the vertices of the path Returns ------- vertices : numpy array The coordinates of the vertices as a Nx2 ndarray. """ return self._path.vertices def set_xy(self, xy): """ Set the vertices of the polygon Parameters ---------- xy : numpy array or iterable of pairs The coordinates of the vertices as a Nx2 ndarray or iterable of pairs. """ xy = np.asarray(xy) if self._closed: if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) else: if len(xy) > 2 and (xy[0] == xy[-1]).all(): xy = xy[:-1] self._path = Path(xy, closed=self._closed) self.stale = True _get_xy = get_xy _set_xy = set_xy xy = property( get_xy, set_xy, None, """Set/get the vertices of the polygon. This property is provided for backward compatibility with matplotlib 0.91.x only. New code should use :meth:`~matplotlib.patches.Polygon.get_xy` and :meth:`~matplotlib.patches.Polygon.set_xy` instead.""") class Wedge(Patch): """ Wedge shaped patch. """ def __str__(self): return "Wedge(%g,%g)" % (self.theta1, self.theta2) @docstring.dedent_interpd def __init__(self, center, r, theta1, theta2, width=None, **kwargs): """ Draw a wedge centered at *x*, *y* center with radius *r* that sweeps *theta1* to *theta2* (in degrees). If *width* is given, then a partial wedge is drawn from inner radius *r* - *width* to outer radius *r*. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self.center = center self.r, self.width = r, width self.theta1, self.theta2 = theta1, theta2 self._patch_transform = transforms.IdentityTransform() self._recompute_path() def _recompute_path(self): # Inner and outer rings are connected unless the annulus is complete if abs((self.theta2 - self.theta1) - 360) <= 1e-12: theta1, theta2 = 0, 360 connector = Path.MOVETO else: theta1, theta2 = self.theta1, self.theta2 connector = Path.LINETO # Form the outer ring arc = Path.arc(theta1, theta2) if self.width is not None: # Partial annulus needs to draw the outer ring # followed by a reversed and scaled inner ring v1 = arc.vertices v2 = arc.vertices[::-1] * float(self.r - self.width) / self.r v = np.vstack([v1, v2, v1[0, :], (0, 0)]) c = np.hstack([arc.codes, arc.codes, connector, Path.CLOSEPOLY]) c[len(arc.codes)] = connector else: # Wedge doesn't need an inner ring v = np.vstack([arc.vertices, [(0, 0), arc.vertices[0, :], (0, 0)]]) c = np.hstack([arc.codes, [connector, connector, Path.CLOSEPOLY]]) # Shift and scale the wedge to the final location. v *= self.r v += np.asarray(self.center) self._path = Path(v, c) def set_center(self, center): self._path = None self.center = center self.stale = True def set_radius(self, radius): self._path = None self.r = radius self.stale = True def set_theta1(self, theta1): self._path = None self.theta1 = theta1 self.stale = True def set_theta2(self, theta2): self._path = None self.theta2 = theta2 self.stale = True def set_width(self, width): self._path = None self.width = width self.stale = True def get_path(self): if self._path is None: self._recompute_path() return self._path # COVERAGE NOTE: Not used internally or from examples class Arrow(Patch): """ An arrow patch. """ def __str__(self): return "Arrow()" _path = Path([ [0.0, 0.1], [0.0, -0.1], [0.8, -0.1], [0.8, -0.3], [1.0, 0.0], [0.8, 0.3], [0.8, 0.1], [0.0, 0.1]], closed=True) @docstring.dedent_interpd def __init__(self, x, y, dx, dy, width=1.0, **kwargs): """ Draws an arrow, starting at (*x*, *y*), direction and length given by (*dx*, *dy*) the width of the arrow is scaled by *width*. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) L = np.hypot(dx, dy) if L != 0: cx = float(dx) / L sx = float(dy) / L else: # Account for division by zero cx, sx = 0, 1 trans1 = transforms.Affine2D().scale(L, width) trans2 = transforms.Affine2D.from_values(cx, sx, -sx, cx, 0.0, 0.0) trans3 = transforms.Affine2D().translate(x, y) trans = trans1 + trans2 + trans3 self._patch_transform = trans.frozen() def get_path(self): return self._path def get_patch_transform(self): return self._patch_transform class FancyArrow(Polygon): """ Like Arrow, but lets you set head width and head height independently. """ _edge_default = True def __str__(self): return "FancyArrow()" @docstring.dedent_interpd def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False, head_width=None, head_length=None, shape='full', overhang=0, head_starts_at_zero=False, **kwargs): """ Constructor arguments *width*: float (default: 0.001) width of full arrow tail *length_includes_head*: [True | False] (default: False) True if head is to be counted in calculating the length. *head_width*: float or None (default: 3*width) total width of the full arrow head *head_length*: float or None (default: 1.5 * head_width) length of arrow head *shape*: ['full', 'left', 'right'] (default: 'full') draw the left-half, right-half, or full arrow *overhang*: float (default: 0) fraction that the arrow is swept back (0 overhang means triangular shape). Can be negative or greater than one. *head_starts_at_zero*: [True | False] (default: False) if True, the head starts being drawn at coordinate 0 instead of ending at coordinate 0. Other valid kwargs (inherited from :class:`Patch`) are: %(Patch)s """ if head_width is None: head_width = 3 * width if head_length is None: head_length = 1.5 * head_width distance = np.hypot(dx, dy) if length_includes_head: length = distance else: length = distance + head_length if not length: verts = [] # display nothing if empty else: # start by drawing horizontal arrow, point at (0,0) hw, hl, hs, lw = head_width, head_length, overhang, width left_half_arrow = np.array([ [0.0, 0.0], # tip [-hl, -hw / 2.0], # leftmost [-hl * (1 - hs), -lw / 2.0], # meets stem [-length, -lw / 2.0], # bottom left [-length, 0], ]) # if we're not including the head, shift up by head length if not length_includes_head: left_half_arrow += [head_length, 0] # if the head starts at 0, shift up by another head length if head_starts_at_zero: left_half_arrow += [head_length / 2.0, 0] # figure out the shape, and complete accordingly if shape == 'left': coords = left_half_arrow else: right_half_arrow = left_half_arrow * [1, -1] if shape == 'right': coords = right_half_arrow elif shape == 'full': # The half-arrows contain the midpoint of the stem, # which we can omit from the full arrow. Including it # twice caused a problem with xpdf. coords = np.concatenate([left_half_arrow[:-2], right_half_arrow[-2::-1]]) else: raise ValueError("Got unknown shape: %s" % shape) if distance != 0: cx = float(dx) / distance sx = float(dy) / distance else: #Account for division by zero cx, sx = 0, 1 M = np.array([[cx, sx], [-sx, cx]]) verts = np.dot(coords, M) + (x + dx, y + dy) Polygon.__init__(self, list(map(tuple, verts)), closed=True, **kwargs) docstring.interpd.update({"FancyArrow": FancyArrow.__init__.__doc__}) docstring.interpd.update({"FancyArrow": FancyArrow.__init__.__doc__}) class YAArrow(Patch): """ Yet another arrow class. This is an arrow that is defined in display space and has a tip at *x1*, *y1* and a base at *x2*, *y2*. """ def __str__(self): return "YAArrow()" @docstring.dedent_interpd def __init__(self, figure, xytip, xybase, width=4, frac=0.1, headwidth=12, **kwargs): """ Constructor arguments: *xytip* (*x*, *y*) location of arrow tip *xybase* (*x*, *y*) location the arrow base mid point *figure* The :class:`~matplotlib.figure.Figure` instance (fig.dpi) *width* The width of the arrow in points *frac* The fraction of the arrow length occupied by the head *headwidth* The width of the base of the arrow head in points Valid kwargs are: %(Patch)s """ self.xytip = xytip self.xybase = xybase self.width = width self.frac = frac self.headwidth = headwidth Patch.__init__(self, **kwargs) # Set self.figure after Patch.__init__, since it sets self.figure to # None self.figure = figure def get_path(self): # Since this is dpi dependent, we need to recompute the path # every time. # the base vertices x1, y1 = self.xytip x2, y2 = self.xybase k1 = self.width * self.figure.dpi / 72. / 2. k2 = self.headwidth * self.figure.dpi / 72. / 2. xb1, yb1, xb2, yb2 = self.getpoints(x1, y1, x2, y2, k1) # a point on the segment 20% of the distance from the tip to the base theta = math.atan2(y2 - y1, x2 - x1) r = math.sqrt((y2 - y1) ** 2. + (x2 - x1) ** 2.) xm = x1 + self.frac * r * math.cos(theta) ym = y1 + self.frac * r * math.sin(theta) xc1, yc1, xc2, yc2 = self.getpoints(x1, y1, xm, ym, k1) xd1, yd1, xd2, yd2 = self.getpoints(x1, y1, xm, ym, k2) xs = self.convert_xunits([xb1, xb2, xc2, xd2, x1, xd1, xc1, xb1]) ys = self.convert_yunits([yb1, yb2, yc2, yd2, y1, yd1, yc1, yb1]) return Path(list(zip(xs, ys)), closed=True) def get_patch_transform(self): return transforms.IdentityTransform() def getpoints(self, x1, y1, x2, y2, k): """ For line segment defined by (*x1*, *y1*) and (*x2*, *y2*) return the points on the line that is perpendicular to the line and intersects (*x2*, *y2*) and the distance from (*x2*, *y2*) of the returned points is *k*. """ x1, y1, x2, y2, k = list(map(float, (x1, y1, x2, y2, k))) if y2 - y1 == 0: return x2, y2 + k, x2, y2 - k elif x2 - x1 == 0: return x2 + k, y2, x2 - k, y2 m = (y2 - y1) / (x2 - x1) pm = -1. / m a = 1 b = -2 * y2 c = y2 ** 2. - k ** 2. * pm ** 2. / (1. + pm ** 2.) y3a = (-b + math.sqrt(b ** 2. - 4 * a * c)) / (2. * a) x3a = (y3a - y2) / pm + x2 y3b = (-b - math.sqrt(b ** 2. - 4 * a * c)) / (2. * a) x3b = (y3b - y2) / pm + x2 return x3a, y3a, x3b, y3b class CirclePolygon(RegularPolygon): """ A polygon-approximation of a circle patch. """ def __str__(self): return "CirclePolygon(%d,%d)" % self.center @docstring.dedent_interpd def __init__(self, xy, radius=5, resolution=20, # the number of vertices ** kwargs): """ Create a circle at *xy* = (*x*, *y*) with given *radius*. This circle is approximated by a regular polygon with *resolution* sides. For a smoother circle drawn with splines, see :class:`~matplotlib.patches.Circle`. Valid kwargs are: %(Patch)s """ RegularPolygon.__init__(self, xy, resolution, radius, orientation=0, **kwargs) class Ellipse(Patch): """ A scale-free ellipse. """ def __str__(self): return "Ellipse(%s,%s;%sx%s)" % (self.center[0], self.center[1], self.width, self.height) @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0.0, **kwargs): """ *xy* center of ellipse *width* total length (diameter) of horizontal axis *height* total length (diameter) of vertical axis *angle* rotation in degrees (anti-clockwise) Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self.center = xy self.width, self.height = width, height self.angle = angle self._path = Path.unit_circle() # Note: This cannot be calculated until this is added to an Axes self._patch_transform = transforms.IdentityTransform() def _recompute_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This maxes it very important to call the accessor method and not directly access the transformation member variable. """ center = (self.convert_xunits(self.center[0]), self.convert_yunits(self.center[1])) width = self.convert_xunits(self.width) height = self.convert_yunits(self.height) self._patch_transform = transforms.Affine2D() \ .scale(width * 0.5, height * 0.5) \ .rotate_deg(self.angle) \ .translate(*center) def get_path(self): """ Return the vertices of the rectangle """ return self._path def get_patch_transform(self): self._recompute_transform() return self._patch_transform class Circle(Ellipse): """ A circle patch. """ def __str__(self): return "Circle((%g,%g),r=%g)" % (self.center[0], self.center[1], self.radius) @docstring.dedent_interpd def __init__(self, xy, radius=5, **kwargs): """ Create true circle at center *xy* = (*x*, *y*) with given *radius*. Unlike :class:`~matplotlib.patches.CirclePolygon` which is a polygonal approximation, this uses Bézier splines and is much closer to a scale-free circle. Valid kwargs are: %(Patch)s """ Ellipse.__init__(self, xy, radius * 2, radius * 2, **kwargs) self.radius = radius def set_radius(self, radius): """ Set the radius of the circle ACCEPTS: float """ self.width = self.height = 2 * radius self.stale = True def get_radius(self): 'return the radius of the circle' return self.width / 2. radius = property(get_radius, set_radius) class Arc(Ellipse): """ An elliptical arc. Because it performs various optimizations, it can not be filled. The arc must be used in an :class:`~matplotlib.axes.Axes` instance---it can not be added directly to a :class:`~matplotlib.figure.Figure`---because it is optimized to only render the segments that are inside the axes bounding box with high resolution. """ def __str__(self): return "Arc(%s,%s;%sx%s)" % (self.center[0], self.center[1], self.width, self.height) @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs): """ The following args are supported: *xy* center of ellipse *width* length of horizontal axis *height* length of vertical axis *angle* rotation in degrees (anti-clockwise) *theta1* starting angle of the arc in degrees *theta2* ending angle of the arc in degrees If *theta1* and *theta2* are not provided, the arc will form a complete ellipse. Valid kwargs are: %(Patch)s """ fill = kwargs.setdefault('fill', False) if fill: raise ValueError("Arc objects can not be filled") Ellipse.__init__(self, xy, width, height, angle, **kwargs) self.theta1 = theta1 self.theta2 = theta2 self._path = Path.arc(self.theta1, self.theta2) @allow_rasterization def draw(self, renderer): """ Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The error of this approximation is 1.89818e-6, according to this unverified source: Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines. http://www.tinaja.com/glib/ellipse4.pdf There is a use case where very large ellipses must be drawn with very high accuracy, and it is too expensive to render the entire ellipse with enough segments (either splines or line segments). Therefore, in the case where either radius of the ellipse is large enough that the error of the spline approximation will be visible (greater than one pixel offset from the ideal), a different technique is used. In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed number of spline segments (8). The algorithm proceeds as follows: 1. The points where the ellipse intersects the axes bounding box are located. (This is done be performing an inverse transformation on the axes bbox such that it is relative to the unit circle -- this makes the intersection calculation much easier than doing rotated ellipse intersection directly). This uses the "line intersecting a circle" algorithm from: Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs. London: Springer-Verlag, 2005. 2. The angles of each of the intersection points are calculated. 3. Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-segments between the pairs of vertices are drawn using the bezier arc approximation technique implemented in :meth:`matplotlib.path.Path.arc`. """ if not hasattr(self, 'axes'): raise RuntimeError('Arcs can only be used in Axes instances') self._recompute_transform() # Get the width and height in pixels width = self.convert_xunits(self.width) height = self.convert_yunits(self.height) width, height = self.get_transform().transform_point( (width, height)) inv_error = (1.0 / 1.89818e-6) * 0.5 if width < inv_error and height < inv_error: # self._path = Path.arc(self.theta1, self.theta2) return Patch.draw(self, renderer) def iter_circle_intersect_on_line(x0, y0, x1, y1): dx = x1 - x0 dy = y1 - y0 dr2 = dx * dx + dy * dy D = x0 * y1 - x1 * y0 D2 = D * D discrim = dr2 - D2 # Single (tangential) intersection if discrim == 0.0: x = (D * dy) / dr2 y = (-D * dx) / dr2 yield x, y elif discrim > 0.0: # The definition of "sign" here is different from # np.sign: we never want to get 0.0 if dy < 0.0: sign_dy = -1.0 else: sign_dy = 1.0 sqrt_discrim = np.sqrt(discrim) for sign in (1., -1.): x = (D * dy + sign * sign_dy * dx * sqrt_discrim) / dr2 y = (-D * dx + sign * np.abs(dy) * sqrt_discrim) / dr2 yield x, y def iter_circle_intersect_on_line_seg(x0, y0, x1, y1): epsilon = 1e-9 if x1 < x0: x0e, x1e = x1, x0 else: x0e, x1e = x0, x1 if y1 < y0: y0e, y1e = y1, y0 else: y0e, y1e = y0, y1 x0e -= epsilon y0e -= epsilon x1e += epsilon y1e += epsilon for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1): if x >= x0e and x <= x1e and y >= y0e and y <= y1e: yield x, y # Transforms the axes box_path so that it is relative to the unit # circle in the same way that it is relative to the desired # ellipse. box_path = Path.unit_rectangle() box_path_transform = transforms.BboxTransformTo(self.axes.bbox) + \ self.get_transform().inverted() box_path = box_path.transformed(box_path_transform) PI = np.pi TWOPI = PI * 2.0 RAD2DEG = 180.0 / PI DEG2RAD = PI / 180.0 theta1 = self.theta1 theta2 = self.theta2 thetas = {} # For each of the point pairs, there is a line segment for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]): x0, y0 = p0 x1, y1 = p1 for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1): theta = np.arccos(x) if y < 0: theta = TWOPI - theta # Convert radians to angles theta *= RAD2DEG if theta > theta1 and theta < theta2: thetas[theta] = None thetas = list(six.iterkeys(thetas)) thetas.sort() thetas.append(theta2) last_theta = theta1 theta1_rad = theta1 * DEG2RAD inside = box_path.contains_point((np.cos(theta1_rad), np.sin(theta1_rad))) # save original path path_original = self._path for theta in thetas: if inside: Path.arc(last_theta, theta, 8) Patch.draw(self, renderer) inside = False else: inside = True last_theta = theta # restore original path self._path = path_original def bbox_artist(artist, renderer, props=None, fill=True): """ This is a debug function to draw a rectangle around the bounding box returned by :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist, to test whether the artist is returning the correct bbox. *props* is a dict of rectangle props with the additional property 'pad' that sets the padding around the bbox in points. """ if props is None: props = {} props = props.copy() # don't want to alter the pad externally pad = props.pop('pad', 4) pad = renderer.points_to_pixels(pad) bbox = artist.get_window_extent(renderer) l, b, w, h = bbox.bounds l -= pad / 2. b -= pad / 2. w += pad h += pad r = Rectangle(xy=(l, b), width=w, height=h, fill=fill, ) r.set_transform(transforms.IdentityTransform()) r.set_clip_on(False) r.update(props) r.draw(renderer) def draw_bbox(bbox, renderer, color='k', trans=None): """ This is a debug function to draw a rectangle around the bounding box returned by :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist, to test whether the artist is returning the correct bbox. """ l, b, w, h = bbox.bounds r = Rectangle(xy=(l, b), width=w, height=h, edgecolor=color, fill=False, ) if trans is not None: r.set_transform(trans) r.set_clip_on(False) r.draw(renderer) def _pprint_table(_table, leadingspace=2): """ Given the list of list of strings, return a string of REST table format. """ if leadingspace: pad = ' ' * leadingspace else: pad = '' columns = [[] for cell in _table[0]] for row in _table: for column, cell in zip(columns, row): column.append(cell) col_len = [max([len(cell) for cell in column]) for column in columns] lines = [] table_formatstr = pad + ' '.join([('=' * cl) for cl in col_len]) lines.append('') lines.append(table_formatstr) lines.append(pad + ' '.join([cell.ljust(cl) for cell, cl in zip(_table[0], col_len)])) lines.append(table_formatstr) lines.extend([(pad + ' '.join([cell.ljust(cl) for cell, cl in zip(row, col_len)])) for row in _table[1:]]) lines.append(table_formatstr) lines.append('') return "\n".join(lines) def _pprint_styles(_styles): """ A helper function for the _Style class. Given the dictionary of (stylename : styleclass), return a formatted string listing all the styles. Used to update the documentation. """ names, attrss, clss = [], [], [] import inspect _table = [["Class", "Name", "Attrs"]] for name, cls in sorted(_styles.items()): if six.PY2: args, varargs, varkw, defaults = inspect.getargspec(cls.__init__) else: (args, varargs, varkw, defaults, kwonlyargs, kwonlydefs, annotations) = inspect.getfullargspec(cls.__init__) if defaults: args = [(argname, argdefault) for argname, argdefault in zip(args[1:], defaults)] else: args = None if args is None: argstr = 'None' else: argstr = ",".join([("%s=%s" % (an, av)) for an, av in args]) # adding ``quotes`` since - and | have special meaning in reST _table.append([cls.__name__, "``%s``" % name, argstr]) return _pprint_table(_table) def _simpleprint_styles(_styles): """ A helper function for the _Style class. Given the dictionary of (stylename : styleclass), return a string rep of the list of keys. Used to update the documentation. """ styles = "[ \'" styles += "\' | \'".join(str(i) for i in sorted(_styles.keys())) styles += "\' ]" return styles class _Style(object): """ A base class for the Styles. It is meant to be a container class, where actual styles are declared as subclass of it, and it provides some helper functions. """ def __new__(self, stylename, **kw): """ return the instance of the subclass with the given style name. """ # the "class" should have the _style_list attribute, which is # a dictionary of stylname, style class paie. _list = stylename.replace(" ", "").split(",") _name = _list[0].lower() try: _cls = self._style_list[_name] except KeyError: raise ValueError("Unknown style : %s" % stylename) try: _args_pair = [cs.split("=") for cs in _list[1:]] _args = dict([(k, float(v)) for k, v in _args_pair]) except ValueError: raise ValueError("Incorrect style argument : %s" % stylename) _args.update(kw) return _cls(**_args) @classmethod def get_styles(klass): """ A class method which returns a dictionary of available styles. """ return klass._style_list @classmethod def pprint_styles(klass): """ A class method which returns a string of the available styles. """ return _pprint_styles(klass._style_list) @classmethod def register(klass, name, style): """ Register a new style. """ if not issubclass(style, klass._Base): raise ValueError("%s must be a subclass of %s" % (style, klass._Base)) klass._style_list[name] = style class BoxStyle(_Style): """ :class:`BoxStyle` is a container class which defines several boxstyle classes, which are used for :class:`FancyBboxPatch`. A style object can be created as:: BoxStyle.Round(pad=0.2) or:: BoxStyle("Round", pad=0.2) or:: BoxStyle("Round, pad=0.2") Following boxstyle classes are defined. %(AvailableBoxstyles)s An instance of any boxstyle class is an callable object, whose call signature is:: __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.) and returns a :class:`Path` instance. *x0*, *y0*, *width* and *height* specify the location and size of the box to be drawn. *mutation_scale* determines the overall size of the mutation (by which I mean the transformation of the rectangle to the fancy box). *mutation_aspect* determines the aspect-ratio of the mutation. .. plot:: mpl_examples/pylab_examples/fancybox_demo2.py """ _style_list = {} class _Base(object): """ :class:`BBoxTransmuterBase` and its derivatives are used to make a fancy box around a given rectangle. The :meth:`__call__` method returns the :class:`~matplotlib.path.Path` of the fancy box. This class is not an artist and actual drawing of the fancy box is done by the :class:`FancyBboxPatch` class. """ # The derived classes are required to be able to be initialized # w/o arguments, i.e., all its argument (except self) must have # the default values. def __init__(self): """ initializtion. """ super(BoxStyle._Base, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): """ The transmute method is a very core of the :class:`BboxTransmuter` class and must be overriden in the subclasses. It receives the location and size of the rectangle, and the mutation_size, with which the amount of padding and etc. will be scaled. It returns a :class:`~matplotlib.path.Path` instance. """ raise NotImplementedError('Derived must override') def __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.): """ Given the location and size of the box, return the path of the box around it. - *x0*, *y0*, *width*, *height* : location and size of the box - *mutation_size* : a reference scale for the mutation. - *aspect_ratio* : aspect-ration for the mutation. """ # The __call__ method is a thin wrapper around the transmute method # and take care of the aspect. if aspect_ratio is not None: # Squeeze the given height by the aspect_ratio y0, height = y0 / aspect_ratio, height / aspect_ratio # call transmute method with squeezed height. path = self.transmute(x0, y0, width, height, mutation_size) vertices, codes = path.vertices, path.codes # Restore the height vertices[:, 1] = vertices[:, 1] * aspect_ratio return Path(vertices, codes) else: return self.transmute(x0, y0, width, height, mutation_size) def __reduce__(self): # because we have decided to nest thes classes, we need to # add some more information to allow instance pickling. import matplotlib.cbook as cbook return (cbook._NestedClassGetter(), (BoxStyle, self.__class__.__name__), self.__dict__ ) class Square(_Base): """ A simple square box. """ def __init__(self, pad=0.3): """ *pad* amount of padding """ self.pad = pad super(BoxStyle.Square, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): pad = mutation_size * self.pad # width and height with padding added. width, height = width + 2*pad, height + 2*pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height vertices = [(x0, y0), (x1, y0), (x1, y1), (x0, y1), (x0, y0)] codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY] return Path(vertices, codes) _style_list["square"] = Square class Circle(_Base): """A simple circle box.""" def __init__(self, pad=0.3): """ Parameters ---------- pad : float The amount of padding around the original box. """ self.pad = pad super(BoxStyle.Circle, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): pad = mutation_size * self.pad width, height = width + 2 * pad, height + 2 * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, return Path.circle((x0 + width/2., y0 + height/2.), (max([width, height]) / 2.)) _style_list["circle"] = Circle class LArrow(_Base): """ (left) Arrow Box """ def __init__(self, pad=0.3): self.pad = pad super(BoxStyle.LArrow, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # width and height with padding added. width, height = width + 2. * pad, height + 2. * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height dx = (y1 - y0) / 2. dxx = dx * .5 # adjust x0. 1.4 <- sqrt(2) x0 = x0 + pad / 1.4 cp = [(x0 + dxx, y0), (x1, y0), (x1, y1), (x0 + dxx, y1), (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx), (x0 + dxx, y0 - dxx), # arrow (x0 + dxx, y0), (x0 + dxx, y0)] com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] path = Path(cp, com) return path _style_list["larrow"] = LArrow class RArrow(LArrow): """ (right) Arrow Box """ def __init__(self, pad=0.3): super(BoxStyle.RArrow, self).__init__(pad) def transmute(self, x0, y0, width, height, mutation_size): p = BoxStyle.LArrow.transmute(self, x0, y0, width, height, mutation_size) p.vertices[:, 0] = 2 * x0 + width - p.vertices[:, 0] return p _style_list["rarrow"] = RArrow class DArrow(_Base): """ (Double) Arrow Box """ # This source is copied from LArrow, # modified to add a right arrow to the bbox. def __init__(self, pad=0.3): self.pad = pad super(BoxStyle.DArrow, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # width and height with padding added. # The width is padded by the arrows, so we don't need to pad it. height = height + 2. * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad x1, y1 = x0 + width, y0 + height dx = (y1 - y0)/2. dxx = dx * .5 # adjust x0. 1.4 <- sqrt(2) x0 = x0 + pad / 1.4 cp = [(x0 + dxx, y0), (x1, y0), # bot-segment (x1, y0 - dxx), (x1 + dx + dxx, y0 + dx), (x1, y1 + dxx), # right-arrow (x1, y1), (x0 + dxx, y1), # top-segment (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx), (x0 + dxx, y0 - dxx), # left-arrow (x0 + dxx, y0), (x0 + dxx, y0)] # close-poly com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] path = Path(cp, com) return path _style_list['darrow'] = DArrow class Round(_Base): """ A box with round corners. """ def __init__(self, pad=0.3, rounding_size=None): """ *pad* amount of padding *rounding_size* rounding radius of corners. *pad* if None """ self.pad = pad self.rounding_size = rounding_size super(BoxStyle.Round, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # size of the roudning corner if self.rounding_size: dr = mutation_size * self.rounding_size else: dr = pad width, height = width + 2. * pad, height + 2. * pad x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height # Round corners are implemented as quadratic bezier. e.g., # [(x0, y0-dr), (x0, y0), (x0+dr, y0)] for lower left corner. cp = [(x0 + dr, y0), (x1 - dr, y0), (x1, y0), (x1, y0 + dr), (x1, y1 - dr), (x1, y1), (x1 - dr, y1), (x0 + dr, y1), (x0, y1), (x0, y1 - dr), (x0, y0 + dr), (x0, y0), (x0 + dr, y0), (x0 + dr, y0)] com = [Path.MOVETO, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY] path = Path(cp, com) return path _style_list["round"] = Round class Round4(_Base): """ Another box with round edges. """ def __init__(self, pad=0.3, rounding_size=None): """ *pad* amount of padding *rounding_size* rounding size of edges. *pad* if None """ self.pad = pad self.rounding_size = rounding_size super(BoxStyle.Round4, self).__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # roudning size. Use a half of the pad if not set. if self.rounding_size: dr = mutation_size * self.rounding_size else: dr = pad / 2. width, height = (width + 2. * pad - 2 * dr, height + 2. * pad - 2 * dr) x0, y0 = x0 - pad + dr, y0 - pad + dr, x1, y1 = x0 + width, y0 + height cp = [(x0, y0), (x0 + dr, y0 - dr), (x1 - dr, y0 - dr), (x1, y0), (x1 + dr, y0 + dr), (x1 + dr, y1 - dr), (x1, y1), (x1 - dr, y1 + dr), (x0 + dr, y1 + dr), (x0, y1), (x0 - dr, y1 - dr), (x0 - dr, y0 + dr), (x0, y0), (x0, y0)] com = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CLOSEPOLY] path = Path(cp, com) return path _style_list["round4"] = Round4 class Sawtooth(_Base): """ A sawtooth box. """ def __init__(self, pad=0.3, tooth_size=None): """ *pad* amount of padding *tooth_size* size of the sawtooth. pad* if None """ self.pad = pad self.tooth_size = tooth_size super(BoxStyle.Sawtooth, self).__init__() def _get_sawtooth_vertices(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # size of sawtooth if self.tooth_size is None: tooth_size = self.pad * .5 * mutation_size else: tooth_size = self.tooth_size * mutation_size tooth_size2 = tooth_size / 2. width, height = (width + 2. * pad - tooth_size, height + 2. * pad - tooth_size) # the sizes of the vertical and horizontal sawtooth are # separately adjusted to fit the given box size. dsx_n = int(np.round((width - tooth_size) / (tooth_size * 2))) * 2 dsx = (width - tooth_size) / dsx_n dsy_n = int(np.round((height - tooth_size) / (tooth_size * 2))) * 2 dsy = (height - tooth_size) / dsy_n x0, y0 = x0 - pad + tooth_size2, y0 - pad + tooth_size2 x1, y1 = x0 + width, y0 + height bottom_saw_x = [x0] + \ [x0 + tooth_size2 + dsx * .5 * i for i in range(dsx_n * 2)] + \ [x1 - tooth_size2] bottom_saw_y = [y0] + \ [y0 - tooth_size2, y0, y0 + tooth_size2, y0] * dsx_n + \ [y0 - tooth_size2] right_saw_x = [x1] + \ [x1 + tooth_size2, x1, x1 - tooth_size2, x1] * dsx_n + \ [x1 + tooth_size2] right_saw_y = [y0] + \ [y0 + tooth_size2 + dsy * .5 * i for i in range(dsy_n * 2)] + \ [y1 - tooth_size2] top_saw_x = [x1] + \ [x1 - tooth_size2 - dsx * .5 * i for i in range(dsx_n * 2)] + \ [x0 + tooth_size2] top_saw_y = [y1] + \ [y1 + tooth_size2, y1, y1 - tooth_size2, y1] * dsx_n + \ [y1 + tooth_size2] left_saw_x = [x0] + \ [x0 - tooth_size2, x0, x0 + tooth_size2, x0] * dsy_n + \ [x0 - tooth_size2] left_saw_y = [y1] + \ [y1 - tooth_size2 - dsy * .5 * i for i in range(dsy_n * 2)] + \ [y0 + tooth_size2] saw_vertices = (list(zip(bottom_saw_x, bottom_saw_y)) + list(zip(right_saw_x, right_saw_y)) + list(zip(top_saw_x, top_saw_y)) + list(zip(left_saw_x, left_saw_y)) + [(bottom_saw_x[0], bottom_saw_y[0])]) return saw_vertices def transmute(self, x0, y0, width, height, mutation_size): saw_vertices = self._get_sawtooth_vertices(x0, y0, width, height, mutation_size) path = Path(saw_vertices, closed=True) return path _style_list["sawtooth"] = Sawtooth class Roundtooth(Sawtooth): """A rounded tooth box.""" def __init__(self, pad=0.3, tooth_size=None): """ *pad* amount of padding *tooth_size* size of the sawtooth. pad* if None """ super(BoxStyle.Roundtooth, self).__init__(pad, tooth_size) def transmute(self, x0, y0, width, height, mutation_size): saw_vertices = self._get_sawtooth_vertices(x0, y0, width, height, mutation_size) # Add a trailing vertex to allow us to close the polygon correctly saw_vertices = np.concatenate([np.array(saw_vertices), [saw_vertices[0]]], axis=0) codes = ([Path.MOVETO] + [Path.CURVE3, Path.CURVE3] * ((len(saw_vertices)-1)//2) + [Path.CLOSEPOLY]) return Path(saw_vertices, codes) _style_list["roundtooth"] = Roundtooth if __doc__: # __doc__ could be None if -OO optimization is enabled __doc__ = cbook.dedent(__doc__) % \ {"AvailableBoxstyles": _pprint_styles(_style_list)} docstring.interpd.update( AvailableBoxstyles=_pprint_styles(BoxStyle._style_list), ListBoxstyles=_simpleprint_styles(BoxStyle._style_list)) class FancyBboxPatch(Patch): """ Draw a fancy box around a rectangle with lower left at *xy*=(*x*, *y*) with specified width and height. :class:`FancyBboxPatch` class is similar to :class:`Rectangle` class, but it draws a fancy box around the rectangle. The transformation of the rectangle box to the fancy box is delegated to the :class:`BoxTransmuterBase` and its derived classes. """ _edge_default = True def __str__(self): return self.__class__.__name__ \ + "(%g,%g;%gx%g)" % (self._x, self._y, self._width, self._height) @docstring.dedent_interpd def __init__(self, xy, width, height, boxstyle="round", bbox_transmuter=None, mutation_scale=1., mutation_aspect=None, **kwargs): """ *xy* = lower left corner *width*, *height* *boxstyle* determines what kind of fancy box will be drawn. It can be a string of the style name with a comma separated attribute, or an instance of :class:`BoxStyle`. Following box styles are available. %(AvailableBoxstyles)s *mutation_scale* : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1. *mutation_aspect* : The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it. default=None. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._x = xy[0] self._y = xy[1] self._width = width self._height = height if boxstyle == "custom": if bbox_transmuter is None: raise ValueError("bbox_transmuter argument is needed with " "custom boxstyle") self._bbox_transmuter = bbox_transmuter else: self.set_boxstyle(boxstyle) self._mutation_scale = mutation_scale self._mutation_aspect = mutation_aspect self.stale = True @docstring.dedent_interpd def set_boxstyle(self, boxstyle=None, **kw): """ Set the box style. *boxstyle* can be a string with boxstyle name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords:: set_boxstyle("round,pad=0.2") set_boxstyle("round", pad=0.2) Old attrs simply are forgotten. Without argument (or with *boxstyle* = None), it returns available box styles. The following boxstyles are available: %(AvailableBoxstyles)s ACCEPTS: %(ListBoxstyles)s """ if boxstyle is None: return BoxStyle.pprint_styles() if isinstance(boxstyle, BoxStyle._Base): self._bbox_transmuter = boxstyle elif six.callable(boxstyle): self._bbox_transmuter = boxstyle else: self._bbox_transmuter = BoxStyle(boxstyle, **kw) self.stale = True def set_mutation_scale(self, scale): """ Set the mutation scale. ACCEPTS: float """ self._mutation_scale = scale self.stale = True def get_mutation_scale(self): """ Return the mutation scale. """ return self._mutation_scale def set_mutation_aspect(self, aspect): """ Set the aspect ratio of the bbox mutation. ACCEPTS: float """ self._mutation_aspect = aspect self.stale = True def get_mutation_aspect(self): """ Return the aspect ratio of the bbox mutation. """ return self._mutation_aspect def get_boxstyle(self): "Return the boxstyle object" return self._bbox_transmuter def get_path(self): """ Return the mutated path of the rectangle """ _path = self.get_boxstyle()(self._x, self._y, self._width, self._height, self.get_mutation_scale(), self.get_mutation_aspect()) return _path # Following methods are borrowed from the Rectangle class. def get_x(self): "Return the left coord of the rectangle" return self._x def get_y(self): "Return the bottom coord of the rectangle" return self._y def get_width(self): "Return the width of the rectangle" return self._width def get_height(self): "Return the height of the rectangle" return self._height def set_x(self, x): """ Set the left coord of the rectangle ACCEPTS: float """ self._x = x self.stale = True def set_y(self, y): """ Set the bottom coord of the rectangle ACCEPTS: float """ self._y = y self.stale = True def set_width(self, w): """ Set the width rectangle ACCEPTS: float """ self._width = w self.stale = True def set_height(self, h): """ Set the width rectangle ACCEPTS: float """ self._height = h self.stale = True def set_bounds(self, *args): """ Set the bounds of the rectangle: l,b,w,h ACCEPTS: (left, bottom, width, height) """ if len(args) == 0: l, b, w, h = args[0] else: l, b, w, h = args self._x = l self._y = b self._width = w self._height = h self.stale = True def get_bbox(self): return transforms.Bbox.from_bounds(self._x, self._y, self._width, self._height) class ConnectionStyle(_Style): """ :class:`ConnectionStyle` is a container class which defines several connectionstyle classes, which is used to create a path between two points. These are mainly used with :class:`FancyArrowPatch`. A connectionstyle object can be either created as:: ConnectionStyle.Arc3(rad=0.2) or:: ConnectionStyle("Arc3", rad=0.2) or:: ConnectionStyle("Arc3, rad=0.2") The following classes are defined %(AvailableConnectorstyles)s An instance of any connection style class is an callable object, whose call signature is:: __call__(self, posA, posB, patchA=None, patchB=None, shrinkA=2., shrinkB=2.) and it returns a :class:`Path` instance. *posA* and *posB* are tuples of x,y coordinates of the two points to be connected. *patchA* (or *patchB*) is given, the returned path is clipped so that it start (or end) from the boundary of the patch. The path is further shrunk by *shrinkA* (or *shrinkB*) which is given in points. """ _style_list = {} class _Base(object): """ A base class for connectionstyle classes. The subclass needs to implement a *connect* method whose call signature is:: connect(posA, posB) where posA and posB are tuples of x, y coordinates to be connected. The method needs to return a path connecting two points. This base class defines a __call__ method, and a few helper methods. """ class SimpleEvent: def __init__(self, xy): self.x, self.y = xy def _clip(self, path, patchA, patchB): """ Clip the path to the boundary of the patchA and patchB. The starting point of the path needed to be inside of the patchA and the end point inside the patch B. The *contains* methods of each patch object is utilized to test if the point is inside the path. """ if patchA: def insideA(xy_display): xy_event = ConnectionStyle._Base.SimpleEvent(xy_display) return patchA.contains(xy_event)[0] try: left, right = split_path_inout(path, insideA) except ValueError: right = path path = right if patchB: def insideB(xy_display): xy_event = ConnectionStyle._Base.SimpleEvent(xy_display) return patchB.contains(xy_event)[0] try: left, right = split_path_inout(path, insideB) except ValueError: left = path path = left return path def _shrink(self, path, shrinkA, shrinkB): """ Shrink the path by fixed size (in points) with shrinkA and shrinkB """ if shrinkA: x, y = path.vertices[0] insideA = inside_circle(x, y, shrinkA) try: left, right = split_path_inout(path, insideA) path = right except ValueError: pass if shrinkB: x, y = path.vertices[-1] insideB = inside_circle(x, y, shrinkB) try: left, right = split_path_inout(path, insideB) path = left except ValueError: pass return path def __call__(self, posA, posB, shrinkA=2., shrinkB=2., patchA=None, patchB=None): """ Calls the *connect* method to create a path between *posA* and *posB*. The path is clipped and shrunken. """ path = self.connect(posA, posB) clipped_path = self._clip(path, patchA, patchB) shrunk_path = self._shrink(clipped_path, shrinkA, shrinkB) return shrunk_path def __reduce__(self): # because we have decided to nest these classes, we need to # add some more information to allow instance pickling. import matplotlib.cbook as cbook return (cbook._NestedClassGetter(), (ConnectionStyle, self.__class__.__name__), self.__dict__ ) class Arc3(_Base): """ Creates a simple quadratic bezier curve between two points. The curve is created so that the middle contol points (C1) is located at the same distance from the start (C0) and end points(C2) and the distance of the C1 to the line connecting C0-C2 is *rad* times the distance of C0-C2. """ def __init__(self, rad=0.): """ *rad* curvature of the curve. """ self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2. dx, dy = x2 - x1, y2 - y1 f = self.rad cx, cy = x12 + f * dy, y12 - f * dx vertices = [(x1, y1), (cx, cy), (x2, y2)] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] return Path(vertices, codes) _style_list["arc3"] = Arc3 class Angle3(_Base): """ Creates a simple quadratic bezier curve between two points. The middle control points is placed at the intersecting point of two lines which crosses the start (or end) point and has a angle of angleA (or angleB). """ def __init__(self, angleA=90, angleB=0): """ *angleA* starting angle of the path *angleB* ending angle of the path """ self.angleA = angleA self.angleB = angleB def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB cosA, sinA = (math.cos(self.angleA / 180. * math.pi), math.sin(self.angleA / 180. * math.pi)) cosB, sinB = (math.cos(self.angleB / 180. * math.pi), math.sin(self.angleB / 180. * math.pi)) cx, cy = get_intersection(x1, y1, cosA, sinA, x2, y2, cosB, sinB) vertices = [(x1, y1), (cx, cy), (x2, y2)] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] return Path(vertices, codes) _style_list["angle3"] = Angle3 class Angle(_Base): """ Creates a picewise continuous quadratic bezier path between two points. The path has a one passing-through point placed at the intersecting point of two lines which crosses the start (or end) point and has a angle of angleA (or angleB). The connecting edges are rounded with *rad*. """ def __init__(self, angleA=90, angleB=0, rad=0.): """ *angleA* starting angle of the path *angleB* ending angle of the path *rad* rounding radius of the edge """ self.angleA = angleA self.angleB = angleB self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB cosA, sinA = (math.cos(self.angleA / 180. * math.pi), math.sin(self.angleA / 180. * math.pi)) cosB, sinB = (math.cos(self.angleB / 180. * math.pi), math.sin(self.angleB / 180. * math.pi)) cx, cy = get_intersection(x1, y1, cosA, sinA, x2, y2, cosB, sinB) vertices = [(x1, y1)] codes = [Path.MOVETO] if self.rad == 0.: vertices.append((cx, cy)) codes.append(Path.LINETO) else: dx1, dy1 = x1 - cx, y1 - cy d1 = (dx1 ** 2 + dy1 ** 2) ** .5 f1 = self.rad / d1 dx2, dy2 = x2 - cx, y2 - cy d2 = (dx2 ** 2 + dy2 ** 2) ** .5 f2 = self.rad / d2 vertices.extend([(cx + dx1 * f1, cy + dy1 * f1), (cx, cy), (cx + dx2 * f2, cy + dy2 * f2)]) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) vertices.append((x2, y2)) codes.append(Path.LINETO) return Path(vertices, codes) _style_list["angle"] = Angle class Arc(_Base): """ Creates a picewise continuous quadratic bezier path between two points. The path can have two passing-through points, a point placed at the distance of armA and angle of angleA from point A, another point with respect to point B. The edges are rounded with *rad*. """ def __init__(self, angleA=0, angleB=0, armA=None, armB=None, rad=0.): """ *angleA* : starting angle of the path *angleB* : ending angle of the path *armA* : length of the starting arm *armB* : length of the ending arm *rad* : rounding radius of the edges """ self.angleA = angleA self.angleB = angleB self.armA = armA self.armB = armB self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB vertices = [(x1, y1)] rounded = [] codes = [Path.MOVETO] if self.armA: cosA = math.cos(self.angleA / 180. * math.pi) sinA = math.sin(self.angleA / 180. * math.pi) # x_armA, y_armB d = self.armA - self.rad rounded.append((x1 + d * cosA, y1 + d * sinA)) d = self.armA rounded.append((x1 + d * cosA, y1 + d * sinA)) if self.armB: cosB = math.cos(self.angleB / 180. * math.pi) sinB = math.sin(self.angleB / 180. * math.pi) x_armB, y_armB = x2 + self.armB * cosB, y2 + self.armB * sinB if rounded: xp, yp = rounded[-1] dx, dy = x_armB - xp, y_armB - yp dd = (dx * dx + dy * dy) ** .5 rounded.append((xp + self.rad * dx / dd, yp + self.rad * dy / dd)) vertices.extend(rounded) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) else: xp, yp = vertices[-1] dx, dy = x_armB - xp, y_armB - yp dd = (dx * dx + dy * dy) ** .5 d = dd - self.rad rounded = [(xp + d * dx / dd, yp + d * dy / dd), (x_armB, y_armB)] if rounded: xp, yp = rounded[-1] dx, dy = x2 - xp, y2 - yp dd = (dx * dx + dy * dy) ** .5 rounded.append((xp + self.rad * dx / dd, yp + self.rad * dy / dd)) vertices.extend(rounded) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) vertices.append((x2, y2)) codes.append(Path.LINETO) return Path(vertices, codes) _style_list["arc"] = Arc class Bar(_Base): """ A line with *angle* between A and B with *armA* and *armB*. One of the arms is extended so that they are connected in a right angle. The length of armA is determined by (*armA* + *fraction* x AB distance). Same for armB. """ def __init__(self, armA=0., armB=0., fraction=0.3, angle=None): """ Parameters ---------- armA : float minimum length of armA armB : float minimum length of armB fraction : float a fraction of the distance between two points that will be added to armA and armB. angle : float or None angle of the connecting line (if None, parallel to A and B) """ self.armA = armA self.armB = armB self.fraction = fraction self.angle = angle def connect(self, posA, posB): x1, y1 = posA x20, y20 = x2, y2 = posB x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2. theta1 = math.atan2(y2 - y1, x2 - x1) dx, dy = x2 - x1, y2 - y1 dd = (dx * dx + dy * dy) ** .5 ddx, ddy = dx / dd, dy / dd armA, armB = self.armA, self.armB if self.angle is not None: #angle = self.angle % 180. #if angle < 0. or angle > 180.: # angle #theta0 = (self.angle%180.)/180.*math.pi theta0 = self.angle / 180. * math.pi #theta0 = (((self.angle+90)%180.) - 90.)/180.*math.pi dtheta = theta1 - theta0 dl = dd * math.sin(dtheta) dL = dd * math.cos(dtheta) #x2, y2 = x2 + dl*ddy, y2 - dl*ddx x2, y2 = x1 + dL * math.cos(theta0), y1 + dL * math.sin(theta0) armB = armB - dl # update dx, dy = x2 - x1, y2 - y1 dd2 = (dx * dx + dy * dy) ** .5 ddx, ddy = dx / dd2, dy / dd2 else: dl = 0. #if armA > armB: # armB = armA + dl #else: # armA = armB - dl arm = max(armA, armB) f = self.fraction * dd + arm #fB = self.fraction*dd + armB cx1, cy1 = x1 + f * ddy, y1 - f * ddx cx2, cy2 = x2 + f * ddy, y2 - f * ddx vertices = [(x1, y1), (cx1, cy1), (cx2, cy2), (x20, y20)] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] return Path(vertices, codes) _style_list["bar"] = Bar if __doc__: __doc__ = cbook.dedent(__doc__) % \ {"AvailableConnectorstyles": _pprint_styles(_style_list)} def _point_along_a_line(x0, y0, x1, y1, d): """ find a point along a line connecting (x0, y0) -- (x1, y1) whose distance from (x0, y0) is d. """ dx, dy = x0 - x1, y0 - y1 ff = d / (dx * dx + dy * dy) ** .5 x2, y2 = x0 - ff * dx, y0 - ff * dy return x2, y2 class ArrowStyle(_Style): """ :class:`ArrowStyle` is a container class which defines several arrowstyle classes, which is used to create an arrow path along a given path. These are mainly used with :class:`FancyArrowPatch`. A arrowstyle object can be either created as:: ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4) or:: ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4) or:: ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4") The following classes are defined %(AvailableArrowstyles)s An instance of any arrow style class is a callable object, whose call signature is:: __call__(self, path, mutation_size, linewidth, aspect_ratio=1.) and it returns a tuple of a :class:`Path` instance and a boolean value. *path* is a :class:`Path` instance along which the arrow will be drawn. *mutation_size* and *aspect_ratio* have the same meaning as in :class:`BoxStyle`. *linewidth* is a line width to be stroked. This is meant to be used to correct the location of the head so that it does not overshoot the destination point, but not all classes support it. .. plot:: mpl_examples/pylab_examples/fancyarrow_demo.py """ _style_list = {} class _Base(object): """ Arrow Transmuter Base class ArrowTransmuterBase and its derivatives are used to make a fancy arrow around a given path. The __call__ method returns a path (which will be used to create a PathPatch instance) and a boolean value indicating the path is open therefore is not fillable. This class is not an artist and actual drawing of the fancy arrow is done by the FancyArrowPatch class. """ # The derived classes are required to be able to be initialized # w/o arguments, i.e., all its argument (except self) must have # the default values. def __init__(self): super(ArrowStyle._Base, self).__init__() @staticmethod def ensure_quadratic_bezier(path): """ Some ArrowStyle class only wokrs with a simple quaratic bezier curve (created with Arc3Connetion or Angle3Connector). This static method is to check if the provided path is a simple quadratic bezier curve and returns its control points if true. """ segments = list(path.iter_segments()) if ((len(segments) != 2) or (segments[0][1] != Path.MOVETO) or (segments[1][1] != Path.CURVE3)): msg = "'path' it's not a valid quadratic bezier curve" raise ValueError(msg) return list(segments[0][0]) + list(segments[1][0]) def transmute(self, path, mutation_size, linewidth): """ The transmute method is the very core of the ArrowStyle class and must be overriden in the subclasses. It receives the path object along which the arrow will be drawn, and the mutation_size, with which the arrow head etc. will be scaled. The linewidth may be used to adjust the path so that it does not pass beyond the given points. It returns a tuple of a Path instance and a boolean. The boolean value indicate whether the path can be filled or not. The return value can also be a list of paths and list of booleans of a same length. """ raise NotImplementedError('Derived must override') def __call__(self, path, mutation_size, linewidth, aspect_ratio=1.): """ The __call__ method is a thin wrapper around the transmute method and take care of the aspect ratio. """ path = make_path_regular(path) if aspect_ratio is not None: # Squeeze the given height by the aspect_ratio vertices, codes = path.vertices[:], path.codes[:] # Squeeze the height vertices[:, 1] = vertices[:, 1] / aspect_ratio path_shrunk = Path(vertices, codes) # call transmute method with squeezed height. path_mutated, fillable = self.transmute(path_shrunk, linewidth, mutation_size) if cbook.iterable(fillable): path_list = [] for p in zip(path_mutated): v, c = p.vertices, p.codes # Restore the height v[:, 1] = v[:, 1] * aspect_ratio path_list.append(Path(v, c)) return path_list, fillable else: return path_mutated, fillable else: return self.transmute(path, mutation_size, linewidth) def __reduce__(self): # because we have decided to nest thes classes, we need to # add some more information to allow instance pickling. import matplotlib.cbook as cbook return (cbook._NestedClassGetter(), (ArrowStyle, self.__class__.__name__), self.__dict__ ) class _Curve(_Base): """ A simple arrow which will work with any path instance. The returned path is simply concatenation of the original path + at most two paths representing the arrow head at the begin point and the at the end point. The arrow heads can be either open or closed. """ def __init__(self, beginarrow=None, endarrow=None, fillbegin=False, fillend=False, head_length=.2, head_width=.1): """ The arrows are drawn if *beginarrow* and/or *endarrow* are true. *head_length* and *head_width* determines the size of the arrow relative to the *mutation scale*. The arrowhead at the begin (or end) is closed if fillbegin (or fillend) is True. """ self.beginarrow, self.endarrow = beginarrow, endarrow self.head_length, self.head_width = head_length, head_width self.fillbegin, self.fillend = fillbegin, fillend super(ArrowStyle._Curve, self).__init__() def _get_arrow_wedge(self, x0, y0, x1, y1, head_dist, cos_t, sin_t, linewidth ): """ Return the paths for arrow heads. Since arrow lines are drawn with capstyle=projected, The arrow goes beyond the desired point. This method also returns the amount of the path to be shrunken so that it does not overshoot. """ # arrow from x0, y0 to x1, y1 dx, dy = x0 - x1, y0 - y1 cp_distance = np.hypot(dx, dy) # pad_projected : amount of pad to account the # overshooting of the projection of the wedge pad_projected = (.5 * linewidth / sin_t) # Account for division by zero if cp_distance == 0: cp_distance = 1 # apply pad for projected edge ddx = pad_projected * dx / cp_distance ddy = pad_projected * dy / cp_distance # offset for arrow wedge dx = dx / cp_distance * head_dist dy = dy / cp_distance * head_dist dx1, dy1 = cos_t * dx + sin_t * dy, -sin_t * dx + cos_t * dy dx2, dy2 = cos_t * dx - sin_t * dy, sin_t * dx + cos_t * dy vertices_arrow = [(x1 + ddx + dx1, y1 + ddy + dy1), (x1 + ddx, y1 + ddy), (x1 + ddx + dx2, y1 + ddy + dy2)] codes_arrow = [Path.MOVETO, Path.LINETO, Path.LINETO] return vertices_arrow, codes_arrow, ddx, ddy def transmute(self, path, mutation_size, linewidth): head_length, head_width = self.head_length * mutation_size, \ self.head_width * mutation_size head_dist = math.sqrt(head_length ** 2 + head_width ** 2) cos_t, sin_t = head_length / head_dist, head_width / head_dist # begin arrow x0, y0 = path.vertices[0] x1, y1 = path.vertices[1] # If there is no room for an arrow and a line, then skip the arrow has_begin_arrow = (self.beginarrow and not ((x0 == x1) and (y0 == y1))) if has_begin_arrow: verticesA, codesA, ddxA, ddyA = \ self._get_arrow_wedge(x1, y1, x0, y0, head_dist, cos_t, sin_t, linewidth) else: verticesA, codesA = [], [] ddxA, ddyA = 0., 0. # end arrow x2, y2 = path.vertices[-2] x3, y3 = path.vertices[-1] # If there is no room for an arrow and a line, then skip the arrow has_end_arrow = (self.endarrow and not ((x2 == x3) and (y2 == y3))) if has_end_arrow: verticesB, codesB, ddxB, ddyB = \ self._get_arrow_wedge(x2, y2, x3, y3, head_dist, cos_t, sin_t, linewidth) else: verticesB, codesB = [], [] ddxB, ddyB = 0., 0. # this simple code will not work if ddx, ddy is greater than # separation bettern vertices. _path = [Path(np.concatenate([[(x0 + ddxA, y0 + ddyA)], path.vertices[1:-1], [(x3 + ddxB, y3 + ddyB)]]), path.codes)] _fillable = [False] if has_begin_arrow: if self.fillbegin: p = np.concatenate([verticesA, [verticesA[0], verticesA[0]], ]) c = np.concatenate([codesA, [Path.LINETO, Path.CLOSEPOLY]]) _path.append(Path(p, c)) _fillable.append(True) else: _path.append(Path(verticesA, codesA)) _fillable.append(False) if has_end_arrow: if self.fillend: _fillable.append(True) p = np.concatenate([verticesB, [verticesB[0], verticesB[0]], ]) c = np.concatenate([codesB, [Path.LINETO, Path.CLOSEPOLY]]) _path.append(Path(p, c)) else: _fillable.append(False) _path.append(Path(verticesB, codesB)) return _path, _fillable class Curve(_Curve): """ A simple curve without any arrow head. """ def __init__(self): super(ArrowStyle.Curve, self).__init__( beginarrow=False, endarrow=False) _style_list["-"] = Curve class CurveA(_Curve): """ An arrow with a head at its begin point. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveA, self).__init__( beginarrow=True, endarrow=False, head_length=head_length, head_width=head_width) _style_list["<-"] = CurveA class CurveB(_Curve): """ An arrow with a head at its end point. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveB, self).__init__( beginarrow=False, endarrow=True, head_length=head_length, head_width=head_width) _style_list["->"] = CurveB class CurveAB(_Curve): """ An arrow with heads both at the begin and the end point. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveAB, self).__init__( beginarrow=True, endarrow=True, head_length=head_length, head_width=head_width) _style_list["<->"] = CurveAB class CurveFilledA(_Curve): """ An arrow with filled triangle head at the begin. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveFilledA, self).__init__( beginarrow=True, endarrow=False, fillbegin=True, fillend=False, head_length=head_length, head_width=head_width) _style_list["<|-"] = CurveFilledA class CurveFilledB(_Curve): """ An arrow with filled triangle head at the end. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveFilledB, self).__init__( beginarrow=False, endarrow=True, fillbegin=False, fillend=True, head_length=head_length, head_width=head_width) _style_list["-|>"] = CurveFilledB class CurveFilledAB(_Curve): """ An arrow with filled triangle heads both at the begin and the end point. """ def __init__(self, head_length=.4, head_width=.2): """ *head_length* length of the arrow head *head_width* width of the arrow head """ super(ArrowStyle.CurveFilledAB, self).__init__( beginarrow=True, endarrow=True, fillbegin=True, fillend=True, head_length=head_length, head_width=head_width) _style_list["<|-|>"] = CurveFilledAB class _Bracket(_Base): def __init__(self, bracketA=None, bracketB=None, widthA=1., widthB=1., lengthA=0.2, lengthB=0.2, angleA=None, angleB=None, scaleA=None, scaleB=None): self.bracketA, self.bracketB = bracketA, bracketB self.widthA, self.widthB = widthA, widthB self.lengthA, self.lengthB = lengthA, lengthB self.angleA, self.angleB = angleA, angleB self.scaleA, self.scaleB = scaleA, scaleB def _get_bracket(self, x0, y0, cos_t, sin_t, width, length): # arrow from x0, y0 to x1, y1 from matplotlib.bezier import get_normal_points x1, y1, x2, y2 = get_normal_points(x0, y0, cos_t, sin_t, width) dx, dy = length * cos_t, length * sin_t vertices_arrow = [(x1 + dx, y1 + dy), (x1, y1), (x2, y2), (x2 + dx, y2 + dy)] codes_arrow = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] return vertices_arrow, codes_arrow def transmute(self, path, mutation_size, linewidth): if self.scaleA is None: scaleA = mutation_size else: scaleA = self.scaleA if self.scaleB is None: scaleB = mutation_size else: scaleB = self.scaleB vertices_list, codes_list = [], [] if self.bracketA: x0, y0 = path.vertices[0] x1, y1 = path.vertices[1] cos_t, sin_t = get_cos_sin(x1, y1, x0, y0) verticesA, codesA = self._get_bracket(x0, y0, cos_t, sin_t, self.widthA * scaleA, self.lengthA * scaleA) vertices_list.append(verticesA) codes_list.append(codesA) vertices_list.append(path.vertices) codes_list.append(path.codes) if self.bracketB: x0, y0 = path.vertices[-1] x1, y1 = path.vertices[-2] cos_t, sin_t = get_cos_sin(x1, y1, x0, y0) verticesB, codesB = self._get_bracket(x0, y0, cos_t, sin_t, self.widthB * scaleB, self.lengthB * scaleB) vertices_list.append(verticesB) codes_list.append(codesB) vertices = np.concatenate(vertices_list) codes = np.concatenate(codes_list) p = Path(vertices, codes) return p, False class BracketAB(_Bracket): """ An arrow with a bracket(]) at both ends. """ def __init__(self, widthA=1., lengthA=0.2, angleA=None, widthB=1., lengthB=0.2, angleB=None): """ *widthA* width of the bracket *lengthA* length of the bracket *angleA* angle between the bracket and the line *widthB* width of the bracket *lengthB* length of the bracket *angleB* angle between the bracket and the line """ super(ArrowStyle.BracketAB, self).__init__( True, True, widthA=widthA, lengthA=lengthA, angleA=angleA, widthB=widthB, lengthB=lengthB, angleB=angleB) _style_list["]-["] = BracketAB class BracketA(_Bracket): """ An arrow with a bracket(]) at its end. """ def __init__(self, widthA=1., lengthA=0.2, angleA=None): """ *widthA* width of the bracket *lengthA* length of the bracket *angleA* angle between the bracket and the line """ super(ArrowStyle.BracketA, self).__init__(True, None, widthA=widthA, lengthA=lengthA, angleA=angleA) _style_list["]-"] = BracketA class BracketB(_Bracket): """ An arrow with a bracket([) at its end. """ def __init__(self, widthB=1., lengthB=0.2, angleB=None): """ *widthB* width of the bracket *lengthB* length of the bracket *angleB* angle between the bracket and the line """ super(ArrowStyle.BracketB, self).__init__(None, True, widthB=widthB, lengthB=lengthB, angleB=angleB) _style_list["-["] = BracketB class BarAB(_Bracket): """ An arrow with a bar(|) at both ends. """ def __init__(self, widthA=1., angleA=None, widthB=1., angleB=None): """ *widthA* width of the bracket *lengthA* length of the bracket *angleA* angle between the bracket and the line *widthB* width of the bracket *lengthB* length of the bracket *angleB* angle between the bracket and the line """ super(ArrowStyle.BarAB, self).__init__( True, True, widthA=widthA, lengthA=0, angleA=angleA, widthB=widthB, lengthB=0, angleB=angleB) _style_list["|-|"] = BarAB class Simple(_Base): """ A simple arrow. Only works with a quadratic bezier curve. """ def __init__(self, head_length=.5, head_width=.5, tail_width=.2): """ *head_length* length of the arrow head *head_with* width of the arrow head *tail_width* width of the arrow tail """ self.head_length, self.head_width, self.tail_width = \ head_length, head_width, tail_width super(ArrowStyle.Simple, self).__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) # divide the path into a head and a tail head_length = self.head_length * mutation_size in_f = inside_circle(x2, y2, head_length) arrow_path = [(x0, y0), (x1, y1), (x2, y2)] from .bezier import NonIntersectingPathException try: arrow_out, arrow_in = \ split_bezier_intersecting_with_closedpath(arrow_path, in_f, tolerence=0.01) except NonIntersectingPathException: # if this happens, make a straight line of the head_length # long. x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length) x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2) arrow_in = [(x0, y0), (x1n, y1n), (x2, y2)] arrow_out = None # head head_width = self.head_width * mutation_size head_left, head_right = make_wedged_bezier2(arrow_in, head_width / 2., wm=.5) # tail if arrow_out is not None: tail_width = self.tail_width * mutation_size tail_left, tail_right = get_parallels(arrow_out, tail_width / 2.) patch_path = [(Path.MOVETO, tail_right[0]), (Path.CURVE3, tail_right[1]), (Path.CURVE3, tail_right[2]), (Path.LINETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.LINETO, tail_left[2]), (Path.CURVE3, tail_left[1]), (Path.CURVE3, tail_left[0]), (Path.LINETO, tail_right[0]), (Path.CLOSEPOLY, tail_right[0]), ] else: patch_path = [(Path.MOVETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.CLOSEPOLY, head_left[0]), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True _style_list["simple"] = Simple class Fancy(_Base): """ A fancy arrow. Only works with a quadratic bezier curve. """ def __init__(self, head_length=.4, head_width=.4, tail_width=.4): """ *head_length* length of the arrow head *head_with* width of the arrow head *tail_width* width of the arrow tail """ self.head_length, self.head_width, self.tail_width = \ head_length, head_width, tail_width super(ArrowStyle.Fancy, self).__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) # divide the path into a head and a tail head_length = self.head_length * mutation_size arrow_path = [(x0, y0), (x1, y1), (x2, y2)] from .bezier import NonIntersectingPathException # path for head in_f = inside_circle(x2, y2, head_length) try: path_out, path_in = \ split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerence=0.01) except NonIntersectingPathException: # if this happens, make a straight line of the head_length # long. x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length) x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2) arrow_path = [(x0, y0), (x1n, y1n), (x2, y2)] path_head = arrow_path else: path_head = path_in # path for head in_f = inside_circle(x2, y2, head_length * .8) path_out, path_in = split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerence=0.01 ) path_tail = path_out # head head_width = self.head_width * mutation_size head_l, head_r = make_wedged_bezier2(path_head, head_width / 2., wm=.6) # tail tail_width = self.tail_width * mutation_size tail_left, tail_right = make_wedged_bezier2(path_tail, tail_width * .5, w1=1., wm=0.6, w2=0.3) # path for head in_f = inside_circle(x0, y0, tail_width * .3) path_in, path_out = split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerence=0.01 ) tail_start = path_in[-1] head_right, head_left = head_r, head_l patch_path = [(Path.MOVETO, tail_start), (Path.LINETO, tail_right[0]), (Path.CURVE3, tail_right[1]), (Path.CURVE3, tail_right[2]), (Path.LINETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.LINETO, tail_left[2]), (Path.CURVE3, tail_left[1]), (Path.CURVE3, tail_left[0]), (Path.LINETO, tail_start), (Path.CLOSEPOLY, tail_start), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True _style_list["fancy"] = Fancy class Wedge(_Base): """ Wedge(?) shape. Only works with a quadratic bezier curve. The begin point has a width of the tail_width and the end point has a width of 0. At the middle, the width is shrink_factor*tail_width. """ def __init__(self, tail_width=.3, shrink_factor=0.5): """ *tail_width* width of the tail *shrink_factor* fraction of the arrow width at the middle point """ self.tail_width = tail_width self.shrink_factor = shrink_factor super(ArrowStyle.Wedge, self).__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) arrow_path = [(x0, y0), (x1, y1), (x2, y2)] b_plus, b_minus = make_wedged_bezier2( arrow_path, self.tail_width * mutation_size / 2., wm=self.shrink_factor) patch_path = [(Path.MOVETO, b_plus[0]), (Path.CURVE3, b_plus[1]), (Path.CURVE3, b_plus[2]), (Path.LINETO, b_minus[2]), (Path.CURVE3, b_minus[1]), (Path.CURVE3, b_minus[0]), (Path.CLOSEPOLY, b_minus[0]), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True _style_list["wedge"] = Wedge if __doc__: __doc__ = cbook.dedent(__doc__) % \ {"AvailableArrowstyles": _pprint_styles(_style_list)} docstring.interpd.update( AvailableArrowstyles=_pprint_styles(ArrowStyle._style_list), AvailableConnectorstyles=_pprint_styles(ConnectionStyle._style_list), ) class FancyArrowPatch(Patch): """ A fancy arrow patch. It draws an arrow using the :class:ArrowStyle. """ _edge_default = True def __str__(self): if self._posA_posB is not None: (x1, y1), (x2, y2) = self._posA_posB return self.__class__.__name__ \ + "(%g,%g->%g,%g)" % (x1, y1, x2, y2) else: return self.__class__.__name__ \ + "(%s)" % (str(self._path_original),) @docstring.dedent_interpd def __init__(self, posA=None, posB=None, path=None, arrowstyle="simple", arrow_transmuter=None, connectionstyle="arc3", connector=None, patchA=None, patchB=None, shrinkA=2., shrinkB=2., mutation_scale=1., mutation_aspect=None, dpi_cor=1., **kwargs): """ If *posA* and *posB* is given, a path connecting two point are created according to the connectionstyle. The path will be clipped with *patchA* and *patchB* and further shrunken by *shrinkA* and *shrinkB*. An arrow is drawn along this resulting path using the *arrowstyle* parameter. If *path* provided, an arrow is drawn along this path and *patchA*, *patchB*, *shrinkA*, and *shrinkB* are ignored. The *connectionstyle* describes how *posA* and *posB* are connected. It can be an instance of the ConnectionStyle class (matplotlib.patches.ConnectionStlye) or a string of the connectionstyle name, with optional comma-separated attributes. The following connection styles are available. %(AvailableConnectorstyles)s The *arrowstyle* describes how the fancy arrow will be drawn. It can be string of the available arrowstyle names, with optional comma-separated attributes, or one of the ArrowStyle instance. The optional attributes are meant to be scaled with the *mutation_scale*. The following arrow styles are available. %(AvailableArrowstyles)s *mutation_scale* : a value with which attributes of arrowstyle (e.g., head_length) will be scaled. default=1. *mutation_aspect* : The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it. default=None. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) if posA is not None and posB is not None and path is None: self._posA_posB = [posA, posB] if connectionstyle is None: connectionstyle = "arc3" self.set_connectionstyle(connectionstyle) elif posA is None and posB is None and path is not None: self._posA_posB = None self._connetors = None else: raise ValueError("either posA and posB, or path need to provided") self.patchA = patchA self.patchB = patchB self.shrinkA = shrinkA self.shrinkB = shrinkB self._path_original = path self.set_arrowstyle(arrowstyle) self._mutation_scale = mutation_scale self._mutation_aspect = mutation_aspect self.set_dpi_cor(dpi_cor) #self._draw_in_display_coordinate = True def set_dpi_cor(self, dpi_cor): """ dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this. """ self._dpi_cor = dpi_cor self.stale = True def get_dpi_cor(self): """ dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this. """ return self._dpi_cor def set_positions(self, posA, posB): """ set the begin and end positions of the connecting path. Use current value if None. """ if posA is not None: self._posA_posB[0] = posA if posB is not None: self._posA_posB[1] = posB self.stale = True def set_patchA(self, patchA): """ set the begin patch. """ self.patchA = patchA self.stale = True def set_patchB(self, patchB): """ set the begin patch """ self.patchB = patchB self.stale = True def set_connectionstyle(self, connectionstyle, **kw): """ Set the connection style. *connectionstyle* can be a string with connectionstyle name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords. set_connectionstyle("arc,angleA=0,armA=30,rad=10") set_connectionstyle("arc", angleA=0,armA=30,rad=10) Old attrs simply are forgotten. Without argument (or with connectionstyle=None), return available styles as a list of strings. """ if connectionstyle is None: return ConnectionStyle.pprint_styles() if isinstance(connectionstyle, ConnectionStyle._Base): self._connector = connectionstyle elif six.callable(connectionstyle): # we may need check the calling convention of the given function self._connector = connectionstyle else: self._connector = ConnectionStyle(connectionstyle, **kw) self.stale = True def get_connectionstyle(self): """ Return the ConnectionStyle instance """ return self._connector def set_arrowstyle(self, arrowstyle=None, **kw): """ Set the arrow style. *arrowstyle* can be a string with arrowstyle name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords. set_arrowstyle("Fancy,head_length=0.2") set_arrowstyle("fancy", head_length=0.2) Old attrs simply are forgotten. Without argument (or with arrowstyle=None), return available box styles as a list of strings. """ if arrowstyle is None: return ArrowStyle.pprint_styles() if isinstance(arrowstyle, ArrowStyle._Base): self._arrow_transmuter = arrowstyle else: self._arrow_transmuter = ArrowStyle(arrowstyle, **kw) self.stale = True def get_arrowstyle(self): """ Return the arrowstyle object """ return self._arrow_transmuter def set_mutation_scale(self, scale): """ Set the mutation scale. ACCEPTS: float """ self._mutation_scale = scale self.stale = True def get_mutation_scale(self): """ Return the mutation scale. """ return self._mutation_scale def set_mutation_aspect(self, aspect): """ Set the aspect ratio of the bbox mutation. ACCEPTS: float """ self._mutation_aspect = aspect self.stale = True def get_mutation_aspect(self): """ Return the aspect ratio of the bbox mutation. """ return self._mutation_aspect def get_path(self): """ return the path of the arrow in the data coordinate. Use get_path_in_displaycoord() method to retrieve the arrow path in the display coord. """ _path, fillable = self.get_path_in_displaycoord() if cbook.iterable(fillable): _path = concatenate_paths(_path) return self.get_transform().inverted().transform_path(_path) def get_path_in_displaycoord(self): """ Return the mutated path of the arrow in the display coord """ dpi_cor = self.get_dpi_cor() if self._posA_posB is not None: posA = self.get_transform().transform_point(self._posA_posB[0]) posB = self.get_transform().transform_point(self._posA_posB[1]) _path = self.get_connectionstyle()(posA, posB, patchA=self.patchA, patchB=self.patchB, shrinkA=self.shrinkA * dpi_cor, shrinkB=self.shrinkB * dpi_cor ) else: _path = self.get_transform().transform_path(self._path_original) _path, fillable = self.get_arrowstyle()( _path, self.get_mutation_scale() * dpi_cor, self.get_linewidth() * dpi_cor, self.get_mutation_aspect() ) #if not fillable: # self._fill = False return _path, fillable def draw(self, renderer): if not self.get_visible(): return renderer.open_group('patch', self.get_gid()) gc = renderer.new_gc() gc.set_foreground(self._edgecolor, isRGBA=True) lw = self._linewidth if self._edgecolor[3] == 0: lw = 0 gc.set_linewidth(lw) gc.set_dashes(self._dashoffset, self._dashes) gc.set_antialiased(self._antialiased) self._set_gc_clip(gc) gc.set_capstyle('round') gc.set_snap(self.get_snap()) rgbFace = self._facecolor if rgbFace[3] == 0: rgbFace = None # (some?) renderers expect this as no-fill signal gc.set_alpha(self._alpha) if self._hatch: gc.set_hatch(self._hatch) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) # FIXME : dpi_cor is for the dpi-dependecy of the # linewidth. There could be room for improvement. # #dpi_cor = renderer.points_to_pixels(1.) self.set_dpi_cor(renderer.points_to_pixels(1.)) path, fillable = self.get_path_in_displaycoord() if not cbook.iterable(fillable): path = [path] fillable = [fillable] affine = transforms.IdentityTransform() if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) for p, f in zip(path, fillable): if f: renderer.draw_path(gc, p, affine, rgbFace) else: renderer.draw_path(gc, p, affine, None) gc.restore() renderer.close_group('patch') self.stale = False class ConnectionPatch(FancyArrowPatch): """ A :class:`~matplotlib.patches.ConnectionPatch` class is to make connecting lines between two points (possibly in different axes). """ def __str__(self): return "ConnectionPatch((%g,%g),(%g,%g))" % \ (self.xy1[0], self.xy1[1], self.xy2[0], self.xy2[1]) @docstring.dedent_interpd def __init__(self, xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle="-", arrow_transmuter=None, connectionstyle="arc3", connector=None, patchA=None, patchB=None, shrinkA=0., shrinkB=0., mutation_scale=10., mutation_aspect=None, clip_on=False, dpi_cor=1., **kwargs): """ Connect point *xyA* in *coordsA* with point *xyB* in *coordsB* Valid keys are =============== ====================================================== Key Description =============== ====================================================== arrowstyle the arrow style connectionstyle the connection style relpos default is (0.5, 0.5) patchA default is bounding box of the text patchB default is None shrinkA default is 2 points shrinkB default is 2 points mutation_scale default is text size (in points) mutation_aspect default is 1. ? any key for :class:`matplotlib.patches.PathPatch` =============== ====================================================== *coordsA* and *coordsB* are strings that indicate the coordinates of *xyA* and *xyB*. ================= =================================================== Property Description ================= =================================================== 'figure points' points from the lower left corner of the figure 'figure pixels' pixels from the lower left corner of the figure 'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right 'axes points' points from lower left corner of axes 'axes pixels' pixels from lower left corner of axes 'axes fraction' 0,1 is lower left of axes and 1,1 is upper right 'data' use the coordinate system of the object being annotated (default) 'offset points' Specify an offset (in points) from the *xy* value 'polar' you can specify *theta*, *r* for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native "data" coordinate system. ================= =================================================== """ if coordsB is None: coordsB = coordsA # we'll draw ourself after the artist we annotate by default self.xy1 = xyA self.xy2 = xyB self.coords1 = coordsA self.coords2 = coordsB self.axesA = axesA self.axesB = axesB FancyArrowPatch.__init__(self, posA=(0, 0), posB=(1, 1), arrowstyle=arrowstyle, arrow_transmuter=arrow_transmuter, connectionstyle=connectionstyle, connector=connector, patchA=patchA, patchB=patchB, shrinkA=shrinkA, shrinkB=shrinkB, mutation_scale=mutation_scale, mutation_aspect=mutation_aspect, clip_on=clip_on, dpi_cor=dpi_cor, **kwargs) # if True, draw annotation only if self.xy is inside the axes self._annotation_clip = None def _get_xy(self, x, y, s, axes=None): """ caculate the pixel position of given point """ if axes is None: axes = self.axes if s == 'data': trans = axes.transData x = float(self.convert_xunits(x)) y = float(self.convert_yunits(y)) return trans.transform_point((x, y)) elif s == 'offset points': # convert the data point dx, dy = self.xy # prevent recursion if self.xycoords == 'offset points': return self._get_xy(dx, dy, 'data') dx, dy = self._get_xy(dx, dy, self.xycoords) # convert the offset dpi = self.figure.get_dpi() x *= dpi / 72. y *= dpi / 72. # add the offset to the data point x += dx y += dy return x, y elif s == 'polar': theta, r = x, y x = r * np.cos(theta) y = r * np.sin(theta) trans = axes.transData return trans.transform_point((x, y)) elif s == 'figure points': # points from the lower left corner of the figure dpi = self.figure.dpi l, b, w, h = self.figure.bbox.bounds r = l + w t = b + h x *= dpi / 72. y *= dpi / 72. if x < 0: x = r + x if y < 0: y = t + y return x, y elif s == 'figure pixels': # pixels from the lower left corner of the figure l, b, w, h = self.figure.bbox.bounds r = l + w t = b + h if x < 0: x = r + x if y < 0: y = t + y return x, y elif s == 'figure fraction': # (0,0) is lower left, (1,1) is upper right of figure trans = self.figure.transFigure return trans.transform_point((x, y)) elif s == 'axes points': # points from the lower left corner of the axes dpi = self.figure.dpi l, b, w, h = axes.bbox.bounds r = l + w t = b + h if x < 0: x = r + x * dpi / 72. else: x = l + x * dpi / 72. if y < 0: y = t + y * dpi / 72. else: y = b + y * dpi / 72. return x, y elif s == 'axes pixels': #pixels from the lower left corner of the axes l, b, w, h = axes.bbox.bounds r = l + w t = b + h if x < 0: x = r + x else: x = l + x if y < 0: y = t + y else: y = b + y return x, y elif s == 'axes fraction': #(0,0) is lower left, (1,1) is upper right of axes trans = axes.transAxes return trans.transform_point((x, y)) def set_annotation_clip(self, b): """ set *annotation_clip* attribute. * True: the annotation will only be drawn when self.xy is inside the axes. * False: the annotation will always be drawn regardless of its position. * None: the self.xy will be checked only if *xycoords* is "data" """ self._annotation_clip = b self.stale = True def get_annotation_clip(self): """ Return *annotation_clip* attribute. See :meth:`set_annotation_clip` for the meaning of return values. """ return self._annotation_clip def get_path_in_displaycoord(self): """ Return the mutated path of the arrow in the display coord """ dpi_cor = self.get_dpi_cor() x, y = self.xy1 posA = self._get_xy(x, y, self.coords1, self.axesA) x, y = self.xy2 posB = self._get_xy(x, y, self.coords2, self.axesB) _path = self.get_connectionstyle()(posA, posB, patchA=self.patchA, patchB=self.patchB, shrinkA=self.shrinkA * dpi_cor, shrinkB=self.shrinkB * dpi_cor ) _path, fillable = self.get_arrowstyle()( _path, self.get_mutation_scale() * dpi_cor, self.get_linewidth() * dpi_cor, self.get_mutation_aspect() ) return _path, fillable def _check_xy(self, renderer): """ check if the annotation need to be drawn. """ b = self.get_annotation_clip() if b or (b is None and self.coords1 == "data"): x, y = self.xy1 xy_pixel = self._get_xy(x, y, self.coords1, self.axesA) if not self.axes.contains_point(xy_pixel): return False if b or (b is None and self.coords2 == "data"): x, y = self.xy2 xy_pixel = self._get_xy(x, y, self.coords2, self.axesB) if self.axesB is None: axes = self.axes else: axes = self.axesB if not axes.contains_point(xy_pixel): return False return True def draw(self, renderer): """ Draw. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return if not self._check_xy(renderer): return FancyArrowPatch.draw(self, renderer)
gpl-3.0
kcavagnolo/astroML
examples/learning/plot_neighbors_photoz.py
3
2115
""" K-Neighbors for Photometric Redshifts ------------------------------------- Estimate redshifts from the colors of sdss galaxies and quasars. This uses colors from a sample of 50,000 objects with SDSS photometry and ugriz magnitudes. The example shows how far one can get with an extremely simple machine learning approach to the photometric redshift problem. The function :func:`fetch_sdss_galaxy_colors` used below actually queries the SDSS CASjobs server for the colors of the 50,000 galaxies. """ # Author: Jake VanderPlas <vanderplas@astro.washington.edu> # License: BSD # The figure is an example from astroML: see http://astroML.github.com from __future__ import print_function, division import numpy as np from matplotlib import pyplot as plt from sklearn.neighbors import KNeighborsRegressor from astroML.datasets import fetch_sdss_galaxy_colors from astroML.plotting import scatter_contour n_neighbors = 1 data = fetch_sdss_galaxy_colors() N = len(data) # shuffle data np.random.seed(0) np.random.shuffle(data) # put colors in a matrix X = np.zeros((N, 4)) X[:, 0] = data['u'] - data['g'] X[:, 1] = data['g'] - data['r'] X[:, 2] = data['r'] - data['i'] X[:, 3] = data['i'] - data['z'] z = data['redshift'] # divide into training and testing data Ntrain = N // 2 Xtrain = X[:Ntrain] ztrain = z[:Ntrain] Xtest = X[Ntrain:] ztest = z[Ntrain:] knn = KNeighborsRegressor(n_neighbors, weights='uniform') zpred = knn.fit(Xtrain, ztrain).predict(Xtest) axis_lim = np.array([-0.1, 2.5]) rms = np.sqrt(np.mean((ztest - zpred) ** 2)) print("RMS error = %.2g" % rms) ax = plt.axes() plt.scatter(ztest, zpred, c='k', lw=0, s=4) plt.plot(axis_lim, axis_lim, '--k') plt.plot(axis_lim, axis_lim + rms, ':k') plt.plot(axis_lim, axis_lim - rms, ':k') plt.xlim(axis_lim) plt.ylim(axis_lim) plt.text(0.99, 0.02, "RMS error = %.2g" % rms, ha='right', va='bottom', transform=ax.transAxes, bbox=dict(ec='w', fc='w'), fontsize=16) plt.title('Photo-z: Nearest Neigbor Regression') plt.xlabel(r'$\mathrm{z_{spec}}$', fontsize=14) plt.ylabel(r'$\mathrm{z_{phot}}$', fontsize=14) plt.show()
bsd-2-clause
nelson-liu/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
allrod5/extra-trees
benchmarks/classification/decision_surface.py
1
4826
print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for MCZA015-13 class project by Rodrigo Martins de Oliveira # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from sklearn.datasets import make_circles from sklearn.datasets import make_classification from sklearn.datasets import make_moons from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import ExtraTreesClassifier as SKExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from extra_trees.ensemble.forest import ExtraTreesClassifier h = .02 # step size in the mesh names = [ "Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Neural Net", "Naive Bayes", "QDA", "AdaBoost", "Decision Tree", "Random Forest", "ExtraTrees (SciKit)", "ExtraTrees", ] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True), MLPClassifier(alpha=1), GaussianNB(), QuadraticDiscriminantAnalysis(), AdaBoostClassifier(), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=2), SKExtraTreesClassifier(n_estimators=10, max_features=2), ExtraTreesClassifier(n_estimators=10, max_features=2), ] X, y = make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [ make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(33, 11)) i = 1 # iterate over datasets for ds_cnt, ds in enumerate(datasets): # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.4, random_state=42) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid( np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) if ds_cnt == 0: ax.set_title("Input data") # Plot the training points ax.scatter( X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # and testing points ax.scatter( X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter( X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # and testing points ax.scatter( X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors='k', alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name) ax.text( xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 plt.tight_layout() plt.show()
mit
Remi-C/LOD_ordering_for_patches_of_points
script/test_octree_LOD.py
1
7481
# -*- coding: utf-8 -*- """ Created on Tue Dec 2 22:08:22 2014 @author: remi """ #trying to order points by octree with python from numpy import random, sqrt from sklearn import preprocessing import matplotlib.pyplot as plt #defining a dummy entry :a random 3D pointcloud pointcloud = random.rand(16*16,2); index = np.arange(1,16*16+1) #parameters tot_level = 3 ; #centering data so that leftmost pint is 0 abs, bottom most point is 0 pointcloud[:,0] = pointcloud[:,0]- np.amin(pointcloud[:,0]); pointcloud[:,1] = pointcloud[:,1]- np.amin(pointcloud[:,1]); #finding the max scaling, in X, Y or Z max_r = max(np.amax(pointcloud[:,0])-np.amin(pointcloud[:,0]), np.amax(pointcloud[:,1])-np.amin(pointcloud[:,1])) #dividing so max scale is 0 . Now the point cloud is between 0,1 and 0,1 pointcloud = pointcloud/ max_r ; #we have to trick a litlle, so has that for level 3 for instance, all value are between 0 and 7 included, but not reaching 8. pointcloud_int = np.trunc(abs((pointcloud*pow(2,tot_level)-0.0001))).astype(int) plt.plot(pointcloud[:,0],pointcloud[:,1], 'ro') ; plt.plot(pointcloud_int[:,0],pointcloud_int[:,1], 'ro') ; plt.axis([-1, 8, -1, 8]) ; plt.show() ; plt.close('all'); result_point = pointcloud_int[rec_ar[:,0]] plt.plot(result_point[:,0],result_point[:,1], 'ro') ; rec_ar = np.array(rec) piv_ar = np.array(piv) plt.plot(piv_ar[:,0], piv_ar[:,1], 'ro') ; np.binary_repr(1) def bin(s): return str(s) if s<=1 else bin(s>>1) + str(s&1) def testBit(int_type, offset): mask = 1 << offset return( (int_type & mask)>0 ) testBit(8,1) pointcloud_bin = np.binary_repr(pointcloud_int) pointcloud_int >> (tot_level-1) ; #np.binary_repr(8) ( ((pointcloud_int >> 1 ) << 1) ) >> (tot_level-1) ; testBit(pointcloud_int[:,1],3) #cut the input point cloud into 8 based on l bit value starting form right to left point_cloud_0_0_mask = np.logical_and((testBit(pointcloud_int[:,0],2)==0) , (testBit(pointcloud_int[:,1],2)==0) ) ; pivot = np.array([pow(2,tot_level-1),pow(2,tot_level-1)]) pointcloud_centered = pointcloud_int - pivot #coordinate to work : toto = np.array([1,2,3]) testBit(toto,1) (pointcloud_int >>1 )>>5 pow(2,4) 1<<4 # # level 0 result = list() ; pointcloud_int ; index pivot cur_lev = 0 rec = []; #find the 0 level point min_point = np.argmin(np.sum(np.abs(pointcloud_int - pivot ),axis=1)) result.append(list((index[min_point],cur_lev))) #compute the 4 sub parts for b_x in list((0,1)) : for b_y in list((0,1)) : #looping on all 4 sub parts print b_x, b_y rec.append (np.logical_and( (testBit(pointcloud_int[:,0],2)>0)==b_x ,(testBit(pointcloud_int[:,1],2)>0)==b_y ) ) testBit(pointcloud_int[:,0],2) print (testBit(pointcloud_int[:,0],2)>0==b_x) ; print (testBit(pointcloud_int[:,1],2)>0==b_y) ; rec[b_x,b_y] = np.logical_and((testBit(pointcloud_int[:,0],2)>0==b_x) ,(testBit(pointcloud_int[:,1],2)>0==b_y) ) print rec np.binary_repr(pointcloud_int[:,0] ) #givne a point cloud #compute the closest to center def recursive_octree_ordering(point_array,index_array, center_point, level,tot_level, result,piv): #importing necessary lib import numpy as np; #print for debug # print '\n\n working on level : '+str(level); # print 'input points: \n\t',point_array ; # print 'index_array : \n\t',index_array; # print 'center_point : \n\t',center_point; # print 'level : \n\t',level; # print 'tot_level : \n\t',tot_level; # print 'result : \n\t',result; #stopping condition : no points: if len(point_array) == 0|level<=2: return; #updatig level; sub_part_level = level+1 ; print 'level ',level,' , points remaining : ',len(point_array) ; print center_point; piv.append(center_point); #find the closest point to pivot min_point = np.argmin(np.sum(np.abs(point_array - center_point ),axis=1)) result.append(list((index_array[min_point],level))) ; #removing the found point from the array of points #np.delete(point_array, min_point, axis=0) ; #np.delete(index_array, min_point, axis=0) ; #stopping if it remains only one pioint : we won't divide further, same if we have reached max depth if (len(point_array) ==1 )|(level >= tot_level): return; #compute the 4 sub parts for b_x in list((0,1)) : for b_y in list((0,1)) : #looping on all 4 sub parts print (b_x*2-1), (b_y*2-1) ; udpate_to_pivot = np.asarray([ (b_x*2-1)*(pow(2,tot_level - level -2 )) ,(b_y*2-1)*(pow(2,tot_level - level -2 )) ]); sub_part_center_point = center_point +udpate_to_pivot; # we want to iterateon # we need to update : : point_array , index_array center_point , level #update point_array and index_array : we need to find the points that are in the subparts #update center point, we need to add/substract to previous pivot 2^level+11 #find the points concerned : point_in_subpart_mask = np.logical_and( testBit(point_array[:,0],tot_level - level-1) ==b_x , testBit(point_array[:,1],tot_level - level -1) ==b_y ) ; sub_part_points= point_array[point_in_subpart_mask]; sub_part_index = index_array[point_in_subpart_mask]; sub_part_center_point = center_point + np.asarray([ (b_x*2-1)*(pow(2,tot_level - level -2 )) ,(b_y*2-1)*(pow(2,tot_level - level -2 )) ]); if len(sub_part_points)>=1: recursive_octree_ordering(sub_part_points ,sub_part_index , sub_part_center_point , sub_part_level , tot_level , result , piv); continue; else: print 'at televel ',level,'bx by:',b_x,' ',b_y,' refusing to go one, ', len(sub_part_points), ' points remaining fo this' continue; rec = [] ; piv = [] ; recursive_octree_ordering(pointcloud_int,index,pivot,0,3,rec, piv ); #recursive_octree_ordering(pointcloud_int,index, np.array([2,2]),1,3,rec, piv ); piv_ar = np.array(piv) plt.plot(piv_ar[:,0], piv_ar[:,1], 'ro') ; plot(x=pointcloud_int[:,0].T,y=pointcloud_int[:,1].T, marker='o', color='r', ls='' ) plt.plot(pointcloud_int.T, marker='o', color='r', ls='') plt.imsave('/') from mpl_toolkits.mplot3d import Axes3D plt.scatter(pointcloud[:,0], pointcloud[:,1],c='red'); plt.scatter(pointcloud_int[:,0], pointcloud_int[:,1],c='green'); plt.plot(pointcloud[:,0],pointcloud[:,1], 'ro') plt.plot(pointcloud_int[:,0],pointcloud_int[:,1], 'ro') plt.axis([-1, 8, -1, 8]) plt.show(); fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(pointcloud_int[:,0], pointcloud_int[:,1]); ax.scatter(pointcloud_int[:,0], pointcloud_int[:,1], pointcloud_int[:,0], zdir='z', c= 'red') fig.show() fig, axes = plt.subplots(1, 2, figsize=(12,3)) axes[0].scatter(pointcloud[:,0], pointcloud[:,1],c='red'); axes[1].scatter(pointcloud_int[:,0], pointcloud_int[:,1],c='green'); fig.show(); for f in list((0,1)): (f*2-1) import octree_ordering
lgpl-3.0
jor-/scipy
scipy/optimize/minpack.py
1
34280
from __future__ import division, print_function, absolute_import import threading import warnings from . import _minpack import numpy as np from numpy import (atleast_1d, dot, take, triu, shape, eye, transpose, zeros, prod, greater, array, all, where, isscalar, asarray, inf, abs, finfo, inexact, issubdtype, dtype) from scipy.linalg import svd, cholesky, solve_triangular, LinAlgError from scipy._lib._util import _asarray_validated, _lazywhere from .optimize import OptimizeResult, _check_unknown_options, OptimizeWarning from ._lsq import least_squares from ._lsq.common import make_strictly_feasible from ._lsq.least_squares import prepare_bounds error = _minpack.error __all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit'] def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None): res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) if (output_shape is not None) and (shape(res) != output_shape): if (output_shape[0] != 1): if len(output_shape) > 1: if output_shape[1] == 1: return shape(res) msg = "%s: there is a mismatch between the input and output " \ "shape of the '%s' argument" % (checker, argname) func_name = getattr(thefunc, '__name__', None) if func_name: msg += " '%s'." % func_name else: msg += "." msg += 'Shape should be %s but it is %s.' % (output_shape, shape(res)) raise TypeError(msg) if issubdtype(res.dtype, inexact): dt = res.dtype else: dt = dtype(float) return shape(res), dt def fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None, epsfcn=None, factor=100, diag=None): """ Find the roots of a function. Return the roots of the (non-linear) equations defined by ``func(x) = 0`` given a starting estimate. Parameters ---------- func : callable ``f(x, *args)`` A function that takes at least one (possibly vector) argument, and returns a value of the same length. x0 : ndarray The starting estimate for the roots of ``func(x) = 0``. args : tuple, optional Any extra arguments to `func`. fprime : callable ``f(x, *args)``, optional A function to compute the Jacobian of `func` with derivatives across the rows. By default, the Jacobian will be estimated. full_output : bool, optional If True, return optional outputs. col_deriv : bool, optional Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). xtol : float, optional The calculation will terminate if the relative error between two consecutive iterates is at most `xtol`. maxfev : int, optional The maximum number of calls to the function. If zero, then ``100*(N+1)`` is the maximum where N is the number of elements in `x0`. band : tuple, optional If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for ``fprime=None``). epsfcn : float, optional A suitable step length for the forward-difference approximation of the Jacobian (for ``fprime=None``). If `epsfcn` is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. factor : float, optional A parameter determining the initial step bound (``factor * || diag * x||``). Should be in the interval ``(0.1, 100)``. diag : sequence, optional N positive entries that serve as a scale factors for the variables. Returns ------- x : ndarray The solution (or the result of the last iteration for an unsuccessful call). infodict : dict A dictionary of optional outputs with the keys: ``nfev`` number of function calls ``njev`` number of Jacobian calls ``fvec`` function evaluated at the output ``fjac`` the orthogonal matrix, q, produced by the QR factorization of the final approximate Jacobian matrix, stored column wise ``r`` upper triangular matrix produced by QR factorization of the same matrix ``qtf`` the vector ``(transpose(q) * fvec)`` ier : int An integer flag. Set to 1 if a solution was found, otherwise refer to `mesg` for more information. mesg : str If no solution is found, `mesg` details the cause of failure. See Also -------- root : Interface to root finding algorithms for multivariate functions. See the ``method=='hybr'`` in particular. Notes ----- ``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms. """ options = {'col_deriv': col_deriv, 'xtol': xtol, 'maxfev': maxfev, 'band': band, 'eps': epsfcn, 'factor': factor, 'diag': diag} res = _root_hybr(func, x0, args, jac=fprime, **options) if full_output: x = res['x'] info = dict((k, res.get(k)) for k in ('nfev', 'njev', 'fjac', 'r', 'qtf') if k in res) info['fvec'] = res['fun'] return x, info, res['status'], res['message'] else: status = res['status'] msg = res['message'] if status == 0: raise TypeError(msg) elif status == 1: pass elif status in [2, 3, 4, 5]: warnings.warn(msg, RuntimeWarning) else: raise TypeError(msg) return res['x'] def _root_hybr(func, x0, args=(), jac=None, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, eps=None, factor=100, diag=None, **unknown_options): """ Find the roots of a multivariate function using MINPACK's hybrd and hybrj routines (modified Powell method). Options ------- col_deriv : bool Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). xtol : float The calculation will terminate if the relative error between two consecutive iterates is at most `xtol`. maxfev : int The maximum number of calls to the function. If zero, then ``100*(N+1)`` is the maximum where N is the number of elements in `x0`. band : tuple If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for ``fprime=None``). eps : float A suitable step length for the forward-difference approximation of the Jacobian (for ``fprime=None``). If `eps` is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. factor : float A parameter determining the initial step bound (``factor * || diag * x||``). Should be in the interval ``(0.1, 100)``. diag : sequence N positive entries that serve as a scale factors for the variables. """ _check_unknown_options(unknown_options) epsfcn = eps x0 = asarray(x0).flatten() n = len(x0) if not isinstance(args, tuple): args = (args,) shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,)) if epsfcn is None: epsfcn = finfo(dtype).eps Dfun = jac if Dfun is None: if band is None: ml, mu = -10, -10 else: ml, mu = band[:2] if maxfev == 0: maxfev = 200 * (n + 1) retval = _minpack._hybrd(func, x0, args, 1, xtol, maxfev, ml, mu, epsfcn, factor, diag) else: _check_func('fsolve', 'fprime', Dfun, x0, args, n, (n, n)) if (maxfev == 0): maxfev = 100 * (n + 1) retval = _minpack._hybrj(func, Dfun, x0, args, 1, col_deriv, xtol, maxfev, factor, diag) x, status = retval[0], retval[-1] errors = {0: "Improper input parameters were entered.", 1: "The solution converged.", 2: "The number of calls to function has " "reached maxfev = %d." % maxfev, 3: "xtol=%f is too small, no further improvement " "in the approximate\n solution " "is possible." % xtol, 4: "The iteration is not making good progress, as measured " "by the \n improvement from the last five " "Jacobian evaluations.", 5: "The iteration is not making good progress, " "as measured by the \n improvement from the last " "ten iterations.", 'unknown': "An error occurred."} info = retval[1] info['fun'] = info.pop('fvec') sol = OptimizeResult(x=x, success=(status == 1), status=status) sol.update(info) try: sol['message'] = errors[status] except KeyError: sol['message'] = errors['unknown'] return sol LEASTSQ_SUCCESS = [1, 2, 3, 4] LEASTSQ_FAILURE = [5, 6, 7, 8] def leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None): """ Minimize the sum of squares of a set of equations. :: x = arg min(sum(func(y)**2,axis=0)) y Parameters ---------- func : callable should take at least one (possibly length N vector) argument and returns M floating point numbers. It must not return NaNs or fitting might fail. x0 : ndarray The starting estimate for the minimization. args : tuple, optional Any extra arguments to func are placed in this tuple. Dfun : callable, optional A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated. full_output : bool, optional non-zero to return all optional outputs. col_deriv : bool, optional non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). ftol : float, optional Relative error desired in the sum of squares. xtol : float, optional Relative error desired in the approximate solution. gtol : float, optional Orthogonality desired between the function vector and the columns of the Jacobian. maxfev : int, optional The maximum number of calls to the function. If `Dfun` is provided then the default `maxfev` is 100*(N+1) where N is the number of elements in x0, otherwise the default `maxfev` is 200*(N+1). epsfcn : float, optional A variable used in determining a suitable step length for the forward- difference approximation of the Jacobian (for Dfun=None). Normally the actual step length will be sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the relative errors are of the order of the machine precision. factor : float, optional A parameter determining the initial step bound (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``. diag : sequence, optional N positive entries that serve as a scale factors for the variables. Returns ------- x : ndarray The solution (or the result of the last iteration for an unsuccessful call). cov_x : ndarray The inverse of the Hessian. `fjac` and `ipvt` are used to construct an estimate of the Hessian. A value of None indicates a singular matrix, which means the curvature in parameters `x` is numerically flat. To obtain the covariance matrix of the parameters `x`, `cov_x` must be multiplied by the variance of the residuals -- see curve_fit. infodict : dict a dictionary of optional outputs with the keys: ``nfev`` The number of function calls ``fvec`` The function evaluated at the output ``fjac`` A permutation of the R matrix of a QR factorization of the final approximate Jacobian matrix, stored column wise. Together with ipvt, the covariance of the estimate can be approximated. ``ipvt`` An integer array of length N which defines a permutation matrix, p, such that fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreasing magnitude. Column j of p is column ipvt(j) of the identity matrix. ``qtf`` The vector (transpose(q) * fvec). mesg : str A string message giving information about the cause of failure. ier : int An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the solution was not found. In either case, the optional output variable 'mesg' gives more information. See Also -------- least_squares : Newer interface to solve nonlinear least-squares problems with bounds on the variables. See ``method=='lm'`` in particular. Notes ----- "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms. cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation assumes that the objective function is based on the difference between some observed target data (ydata) and a (non-linear) function of the parameters `f(xdata, params)` :: func(params) = ydata - f(xdata, params) so that the objective function is :: min sum((ydata - f(xdata, params))**2, axis=0) params The solution, `x`, is always a 1D array, regardless of the shape of `x0`, or whether `x0` is a scalar. """ x0 = asarray(x0).flatten() n = len(x0) if not isinstance(args, tuple): args = (args,) shape, dtype = _check_func('leastsq', 'func', func, x0, args, n) m = shape[0] if n > m: raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m)) if epsfcn is None: epsfcn = finfo(dtype).eps if Dfun is None: if maxfev == 0: maxfev = 200*(n + 1) retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol, gtol, maxfev, epsfcn, factor, diag) else: if col_deriv: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m)) else: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n)) if maxfev == 0: maxfev = 100 * (n + 1) retval = _minpack._lmder(func, Dfun, x0, args, full_output, col_deriv, ftol, xtol, gtol, maxfev, factor, diag) errors = {0: ["Improper input parameters.", TypeError], 1: ["Both actual and predicted relative reductions " "in the sum of squares\n are at most %f" % ftol, None], 2: ["The relative error between two consecutive " "iterates is at most %f" % xtol, None], 3: ["Both actual and predicted relative reductions in " "the sum of squares\n are at most %f and the " "relative error between two consecutive " "iterates is at \n most %f" % (ftol, xtol), None], 4: ["The cosine of the angle between func(x) and any " "column of the\n Jacobian is at most %f in " "absolute value" % gtol, None], 5: ["Number of calls to function has reached " "maxfev = %d." % maxfev, ValueError], 6: ["ftol=%f is too small, no further reduction " "in the sum of squares\n is possible." % ftol, ValueError], 7: ["xtol=%f is too small, no further improvement in " "the approximate\n solution is possible." % xtol, ValueError], 8: ["gtol=%f is too small, func(x) is orthogonal to the " "columns of\n the Jacobian to machine " "precision." % gtol, ValueError]} # The FORTRAN return value (possible return values are >= 0 and <= 8) info = retval[-1] if full_output: cov_x = None if info in LEASTSQ_SUCCESS: from numpy.dual import inv perm = take(eye(n), retval[1]['ipvt'] - 1, 0) r = triu(transpose(retval[1]['fjac'])[:n, :]) R = dot(r, perm) try: cov_x = inv(dot(transpose(R), R)) except (LinAlgError, ValueError): pass return (retval[0], cov_x) + retval[1:-1] + (errors[info][0], info) else: if info in LEASTSQ_FAILURE: warnings.warn(errors[info][0], RuntimeWarning) elif info == 0: raise errors[info][1](errors[info][0]) return retval[0], info def _wrap_func(func, xdata, ydata, transform): if transform is None: def func_wrapped(params): return func(xdata, *params) - ydata elif transform.ndim == 1: def func_wrapped(params): return transform * (func(xdata, *params) - ydata) else: # Chisq = (y - yd)^T C^{-1} (y-yd) # transform = L such that C = L L^T # C^{-1} = L^{-T} L^{-1} # Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd) # Define (y-yd)' = L^{-1} (y-yd) # by solving # L (y-yd)' = (y-yd) # and minimize (y-yd)'^T (y-yd)' def func_wrapped(params): return solve_triangular(transform, func(xdata, *params) - ydata, lower=True) return func_wrapped def _wrap_jac(jac, xdata, transform): if transform is None: def jac_wrapped(params): return jac(xdata, *params) elif transform.ndim == 1: def jac_wrapped(params): return transform[:, np.newaxis] * np.asarray(jac(xdata, *params)) else: def jac_wrapped(params): return solve_triangular(transform, np.asarray(jac(xdata, *params)), lower=True) return jac_wrapped def _initialize_feasible(lb, ub): p0 = np.ones_like(lb) lb_finite = np.isfinite(lb) ub_finite = np.isfinite(ub) mask = lb_finite & ub_finite p0[mask] = 0.5 * (lb[mask] + ub[mask]) mask = lb_finite & ~ub_finite p0[mask] = lb[mask] + 1 mask = ~lb_finite & ub_finite p0[mask] = ub[mask] - 1 return p0 def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs): """ Use non-linear least squares to fit a function, f, to data. Assumes ``ydata = f(xdata, *params) + eps`` Parameters ---------- f : callable The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments. xdata : array_like or object The independent variable where the data is measured. Should usually be an M-length sequence or an (k,M)-shaped array for functions with k predictors, but can actually be any object. ydata : array_like The dependent data, a length M array - nominally ``f(xdata, ...)``. p0 : array_like, optional Initial guess for the parameters (length N). If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a ValueError is raised). sigma : None or M-length sequence or MxM array, optional Determines the uncertainty in `ydata`. If we define residuals as ``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma` depends on its number of dimensions: - A 1-d `sigma` should contain values of standard deviations of errors in `ydata`. In this case, the optimized function is ``chisq = sum((r / sigma) ** 2)``. - A 2-d `sigma` should contain the covariance matrix of errors in `ydata`. In this case, the optimized function is ``chisq = r.T @ inv(sigma) @ r``. .. versionadded:: 0.19 None (default) is equivalent of 1-d `sigma` filled with ones. absolute_sigma : bool, optional If True, `sigma` is used in an absolute sense and the estimated parameter covariance `pcov` reflects these absolute values. If False, only the relative magnitudes of the `sigma` values matter. The returned parameter covariance matrix `pcov` is based on scaling `sigma` by a constant factor. This constant is set by demanding that the reduced `chisq` for the optimal parameters `popt` when using the *scaled* `sigma` equals unity. In other words, `sigma` is scaled to match the sample variance of the residuals after the fit. Mathematically, ``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)`` check_finite : bool, optional If True, check that the input arrays do not contain nans of infs, and raise a ValueError if they do. Setting this parameter to False may silently produce nonsensical results if the input arrays do contain nans. Default is True. bounds : 2-tuple of array_like, optional Lower and upper bounds on parameters. Defaults to no bounds. Each element of the tuple must be either an array with the length equal to the number of parameters, or a scalar (in which case the bound is taken to be the same for all parameters.) Use ``np.inf`` with an appropriate sign to disable bounds on all or some parameters. .. versionadded:: 0.17 method : {'lm', 'trf', 'dogbox'}, optional Method to use for optimization. See `least_squares` for more details. Default is 'lm' for unconstrained problems and 'trf' if `bounds` are provided. The method 'lm' won't work when the number of observations is less than the number of variables, use 'trf' or 'dogbox' in this case. .. versionadded:: 0.17 jac : callable, string or None, optional Function with signature ``jac(x, ...)`` which computes the Jacobian matrix of the model function with respect to parameters as a dense array_like structure. It will be scaled according to provided `sigma`. If None (default), the Jacobian will be estimated numerically. String keywords for 'trf' and 'dogbox' methods can be used to select a finite difference scheme, see `least_squares`. .. versionadded:: 0.18 kwargs Keyword arguments passed to `leastsq` for ``method='lm'`` or `least_squares` otherwise. Returns ------- popt : array Optimal values for the parameters so that the sum of the squared residuals of ``f(xdata, *popt) - ydata`` is minimized pcov : 2d array The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use ``perr = np.sqrt(np.diag(pcov))``. How the `sigma` parameter affects the estimated covariance depends on `absolute_sigma` argument, as described above. If the Jacobian matrix at the solution doesn't have a full rank, then 'lm' method returns a matrix filled with ``np.inf``, on the other hand 'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute the covariance matrix. Raises ------ ValueError if either `ydata` or `xdata` contain NaNs, or if incompatible options are used. RuntimeError if the least-squares minimization fails. OptimizeWarning if covariance of the parameters can not be estimated. See Also -------- least_squares : Minimize the sum of squares of nonlinear functions. scipy.stats.linregress : Calculate a linear least squares regression for two sets of measurements. Notes ----- With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm through `leastsq`. Note that this algorithm can only deal with unconstrained problems. Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to the docstring of `least_squares` for more information. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.optimize import curve_fit >>> def func(x, a, b, c): ... return a * np.exp(-b * x) + c Define the data to be fit with some noise: >>> xdata = np.linspace(0, 4, 50) >>> y = func(xdata, 2.5, 1.3, 0.5) >>> np.random.seed(1729) >>> y_noise = 0.2 * np.random.normal(size=xdata.size) >>> ydata = y + y_noise >>> plt.plot(xdata, ydata, 'b-', label='data') Fit for the parameters a, b, c of the function `func`: >>> popt, pcov = curve_fit(func, xdata, ydata) >>> popt array([ 2.55423706, 1.35190947, 0.47450618]) >>> plt.plot(xdata, func(xdata, *popt), 'r-', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) Constrain the optimization to the region of ``0 <= a <= 3``, ``0 <= b <= 1`` and ``0 <= c <= 0.5``: >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) >>> popt array([ 2.43708906, 1. , 0.35015434]) >>> plt.plot(xdata, func(xdata, *popt), 'g--', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend() >>> plt.show() """ if p0 is None: # determine number of parameters by inspecting the function from scipy._lib._util import getargspec_no_self as _getargspec args, varargs, varkw, defaults = _getargspec(f) if len(args) < 2: raise ValueError("Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = _initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # optimization may produce garbage for float32 inputs, cast them to float64 # NaNs can not be handled if check_finite: ydata = np.asarray_chkfinite(ydata, float) else: ydata = np.asarray(ydata, float) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata, float) else: xdata = np.asarray(xdata, float) if ydata.size == 0: raise ValueError("`ydata` must not be empty!") # Determine type of sigma if sigma is not None: sigma = np.asarray(sigma) # if 1-d, sigma are errors, define transform = 1/sigma if sigma.shape == (ydata.size, ): transform = 1.0 / sigma # if 2-d, sigma is the covariance matrix, # define transform = L such that L L^T = C elif sigma.shape == (ydata.size, ydata.size): try: # scipy.linalg.cholesky requires lower=True to return L L^T = A transform = cholesky(sigma, lower=True) except LinAlgError: raise ValueError("`sigma` must be positive definite.") else: raise ValueError("`sigma` has incorrect shape.") else: transform = None func = _wrap_func(f, xdata, ydata, transform) if callable(jac): jac = _wrap_jac(jac, xdata, transform) elif jac is None and method != 'lm': jac = '2-point' if 'args' in kwargs: # The specification for the model function `f` does not support # additional arguments. Refer to the `curve_fit` docstring for # acceptable call signatures of `f`. raise ValueError("'args' is not a supported keyword argument.") if method == 'lm': # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res ysize = len(infodict['fvec']) cost = np.sum(infodict['fvec'] ** 2) if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) else: # Rename maxfev (leastsq) to max_nfev (least_squares), if specified. if 'max_nfev' not in kwargs: kwargs['max_nfev'] = kwargs.pop('maxfev', None) res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, **kwargs) if not res.success: raise RuntimeError("Optimal parameters not found: " + res.message) ysize = len(res.fun) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) return_full = False warn_cov = False if pcov is None: # indeterminate covariance pcov = zeros((len(popt), len(popt)), dtype=float) pcov.fill(inf) warn_cov = True elif not absolute_sigma: if ysize > p0.size: s_sq = cost / (ysize - p0.size) pcov = pcov * s_sq else: pcov.fill(inf) warn_cov = True if warn_cov: warnings.warn('Covariance of the parameters could not be estimated', category=OptimizeWarning) if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0): """Perform a simple check on the gradient for correctness. """ x = atleast_1d(x0) n = len(x) x = x.reshape((n,)) fvec = atleast_1d(fcn(x, *args)) m = len(fvec) fvec = fvec.reshape((m,)) ldfjac = m fjac = atleast_1d(Dfcn(x, *args)) fjac = fjac.reshape((m, n)) if col_deriv == 0: fjac = transpose(fjac) xp = zeros((n,), float) err = zeros((m,), float) fvecp = None _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err) fvecp = atleast_1d(fcn(xp, *args)) fvecp = fvecp.reshape((m,)) _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err) good = (prod(greater(err, 0.5), axis=0)) return (good, err) def _del2(p0, p1, d): return p0 - np.square(p1 - p0) / d def _relerr(actual, desired): return (actual - desired) / desired def _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel): p0 = x0 for i in range(maxiter): p1 = func(p0, *args) if use_accel: p2 = func(p1, *args) d = p2 - 2.0 * p1 + p0 p = _lazywhere(d != 0, (p0, p1, d), f=_del2, fillvalue=p2) else: p = p1 relerr = _lazywhere(p0 != 0, (p, p0), f=_relerr, fillvalue=p) if np.all(np.abs(relerr) < xtol): return p p0 = p msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p) raise RuntimeError(msg) def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500, method='del2'): """ Find a fixed point of the function. Given a function of one or more variables and a starting point, find a fixed-point of the function: i.e. where ``func(x0) == x0``. Parameters ---------- func : function Function to evaluate. x0 : array_like Fixed point of function. args : tuple, optional Extra arguments to `func`. xtol : float, optional Convergence tolerance, defaults to 1e-08. maxiter : int, optional Maximum number of iterations, defaults to 500. method : {"del2", "iteration"}, optional Method of finding the fixed-point, defaults to "del2" which uses Steffensen's Method with Aitken's ``Del^2`` convergence acceleration [1]_. The "iteration" method simply iterates the function until convergence is detected, without attempting to accelerate the convergence. References ---------- .. [1] Burden, Faires, "Numerical Analysis", 5th edition, pg. 80 Examples -------- >>> from scipy import optimize >>> def func(x, c1, c2): ... return np.sqrt(c1/(x+c2)) >>> c1 = np.array([10,12.]) >>> c2 = np.array([3, 5.]) >>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2)) array([ 1.4920333 , 1.37228132]) """ use_accel = {'del2': True, 'iteration': False}[method] x0 = _asarray_validated(x0, as_inexact=True) return _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel)
bsd-3-clause
sugiare418/tensorfx
build/tensorflow/scripts/003_lstm_keras_171203/model.py
2
5565
# -*- coding: utf-8 -*- # Python 2.7.6 # tensorflow (0.7.1) import numpy as np import random from param import * import matplotlib matplotlib.use('Agg') # GUI Off設定 import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.optimizers import Adam from keras.callbacks import EarlyStopping # ================================================================= class Model: '''機械学習のモデル定義を管理するクラス TensorFlowのSessionや学習済みモデルの保存・読込機能も持たせる ''' def __init__(self): ''' 初期化処理(準コンストラクタ) ''' self.__setup_model() def __enter__(self): ''' コンテキストマネージャ(With開始時に呼ばれる) ''' return self def __exit__(self, exc_type, exc_value, traceback): ''' コンテキストマネージャ(With終了時に呼ばれる) ''' return False def save(self, str_path): """TensorFlowのモデルを保存する Args: str_path: モデル保存先のパス Returns: - """ def restore(self, str_path): """TensorFlowのモデルを読み込むする Args: str_path: モデル保存先のパス Returns: - """ def __setup_model(self): ''' NNモデル定義 ''' def weight_variable(shape, name=None): return np.random.normal(scale=.01, size=shape) model = Sequential() model.add(BatchNormalization(input_shape=(Param.IN_CYCLE_SIZE, Param.IN_COLUMN_SIZE))) model.add( LSTM(Param.HIDDEN_UNIT_SIZE, kernel_initializer=weight_variable, input_shape=(Param.IN_CYCLE_SIZE, Param.IN_COLUMN_SIZE), # seq_length, dim dropout=Param.DROPOUT_KEEP_PROB, recurrent_dropout=Param.DROPOUT_KEEP_PROB)) model.add(Dropout(Param.DROPOUT_KEEP_PROB)) model.add(Dense(Param.OUT_NODES_SIZE, kernel_initializer=weight_variable)) # 分類 # model.add(Activation('softmax')) # optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999) # model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=["accuracy"]) # 回帰 model.add(Activation('linear')) model.compile(loss='mean_squared_error', optimizer="rmsprop") self.model = model # ================================================================= class Trainer(Model): ''' 学習用クラス jijiトレードデータをもとに、TensorFlowでの学習を行わせる ''' def train(self, steps, data): ''' モデルの学習 ''' (ary_in, ary_actual, df_jiji) = data.train_data() hist = self.model.fit( ary_in, ary_actual, batch_size=Param.IN_BATCH_SIZE, epochs=Param.TRANING_EPOCH_SIZE, ) ''' 学習結果の可視化 ''' loss = hist.history['loss'] plt.rc('font', family='serif') fig = plt.figure() plt.plot(range(len(loss)), loss, label='loss', color='black') plt.xlabel('epochs') plt.show() plt.savefig(__file__ + '.eps') ''' テストデータでの確認 ''' (ary_in, ary_actual, df_jiji) = data.test_data() acc_count = 0 for i in range(1000): k = random.randrange(len(ary_in)) x = ary_in[k] y = self.model.predict(np.array([x]), batch_size=1) l = ary_actual[k] close = df_jiji.loc[k]['n03_close'] sub_y = close - y sub_l = close - l if sub_y > 0 and sub_l > 0: acc_count = acc_count + 1 if sub_y < 0 and sub_l < 0: acc_count = acc_count + 1 print 'y : {} , l : {}, sub_y:{}, sub_l:{}'.format(y, l, sub_y ,sub_l) print '==============================================' print 'acc_count:{}'.format(acc_count) # # score = self.model.evaluate(ary_in, ary_actual, batch_size=Param.IN_BATCH_SIZE) # # print '¥n evaluate : {} '.format(score) # score = self.model.predict(ary_in, batch_size=Param.IN_BATCH_SIZE) # print '\n predict : {} '.format(score) # score = self.model.predict_classes(ary_in, batch_size=Param.IN_BATCH_SIZE) # print '\n predict_classes : {} '.format(score) # score = self.model.predict_proba(ary_in, batch_size=Param.IN_BATCH_SIZE) # print '\n predict_proba : {} '.format(score) # ================================================================= class Estimator(Model): def estimate( self, data ): output = self.session.run(self.out_softmax, feed_dict=self.estimate_feed_dict(data)) #loss = self.session.run(self.loss, feed_dict=self.estimate_feed_dict(data)) #print output return 'up' if output[0][0] > output[0][1] else 'down' #return self.session.run(tf.argmax(self.output,1), feed_dict=self.estimate_feed_dict(data)) def estimate_feed_dict(self, data): return { self.ph_trade_data: data, self.ph_state_size: 1, self.ph_dropout_keep_prob: 1.0, }
mit
vighneshbirodkar/scikit-image
skimage/viewer/viewers/core.py
33
13265
""" ImageViewer class for viewing and interacting with images. """ import numpy as np from ... import io, img_as_float from ...util.dtype import dtype_range from ...exposure import rescale_intensity from ..qt import QtWidgets, Qt, Signal from ..widgets import Slider from ..utils import (dialogs, init_qtapp, figimage, start_qtapp, update_axes_image) from ..utils.canvas import BlitManager, EventManager from ..plugins.base import Plugin __all__ = ['ImageViewer', 'CollectionViewer'] def mpl_image_to_rgba(mpl_image): """Return RGB image from the given matplotlib image object. Each image in a matplotlib figure has its own colormap and normalization function. Return RGBA (RGB + alpha channel) image with float dtype. Parameters ---------- mpl_image : matplotlib.image.AxesImage object The image being converted. Returns ------- img : array of float, shape (M, N, 4) An image of float values in [0, 1]. """ image = mpl_image.get_array() if image.ndim == 2: input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax) image = rescale_intensity(image, in_range=input_range) # cmap complains on bool arrays image = mpl_image.cmap(img_as_float(image)) elif image.ndim == 3 and image.shape[2] == 3: # add alpha channel if it's missing image = np.dstack((image, np.ones_like(image))) return img_as_float(image) class ImageViewer(QtWidgets.QMainWindow): """Viewer for displaying images. This viewer is a simple container object that holds a Matplotlib axes for showing images. `ImageViewer` doesn't subclass the Matplotlib axes (or figure) because of the high probability of name collisions. Subclasses and plugins will likely extend the `update_image` method to add custom overlays or filter the displayed image. Parameters ---------- image : array Image being viewed. Attributes ---------- canvas, fig, ax : Matplotlib canvas, figure, and axes Matplotlib canvas, figure, and axes used to display image. image : array Image being viewed. Setting this value will update the displayed frame. original_image : array Plugins typically operate on (but don't change) the *original* image. plugins : list List of attached plugins. Examples -------- >>> from skimage import data >>> image = data.coins() >>> viewer = ImageViewer(image) # doctest: +SKIP >>> viewer.show() # doctest: +SKIP """ dock_areas = {'top': Qt.TopDockWidgetArea, 'bottom': Qt.BottomDockWidgetArea, 'left': Qt.LeftDockWidgetArea, 'right': Qt.RightDockWidgetArea} # Signal that the original image has been changed original_image_changed = Signal(np.ndarray) def __init__(self, image, useblit=True): # Start main loop init_qtapp() super(ImageViewer, self).__init__() #TODO: Add ImageViewer to skimage.io window manager self.setAttribute(Qt.WA_DeleteOnClose) self.setWindowTitle("Image Viewer") self.file_menu = QtWidgets.QMenu('&File', self) self.file_menu.addAction('Open file', self.open_file, Qt.CTRL + Qt.Key_O) self.file_menu.addAction('Save to file', self.save_to_file, Qt.CTRL + Qt.Key_S) self.file_menu.addAction('Quit', self.close, Qt.CTRL + Qt.Key_Q) self.menuBar().addMenu(self.file_menu) self.main_widget = QtWidgets.QWidget() self.setCentralWidget(self.main_widget) if isinstance(image, Plugin): plugin = image image = plugin.filtered_image plugin.image_changed.connect(self._update_original_image) # When plugin is started, start plugin._started.connect(self._show) self.fig, self.ax = figimage(image) self.canvas = self.fig.canvas self.canvas.setParent(self) self.ax.autoscale(enable=False) self._tools = [] self.useblit = useblit if useblit: self._blit_manager = BlitManager(self.ax) self._event_manager = EventManager(self.ax) self._image_plot = self.ax.images[0] self._update_original_image(image) self.plugins = [] self.layout = QtWidgets.QVBoxLayout(self.main_widget) self.layout.addWidget(self.canvas) status_bar = self.statusBar() self.status_message = status_bar.showMessage sb_size = status_bar.sizeHint() cs_size = self.canvas.sizeHint() self.resize(cs_size.width(), cs_size.height() + sb_size.height()) self.connect_event('motion_notify_event', self._update_status_bar) def __add__(self, plugin): """Add plugin to ImageViewer""" plugin.attach(self) self.original_image_changed.connect(plugin._update_original_image) if plugin.dock: location = self.dock_areas[plugin.dock] dock_location = Qt.DockWidgetArea(location) dock = QtWidgets.QDockWidget() dock.setWidget(plugin) dock.setWindowTitle(plugin.name) self.addDockWidget(dock_location, dock) horiz = (self.dock_areas['left'], self.dock_areas['right']) dimension = 'width' if location in horiz else 'height' self._add_widget_size(plugin, dimension=dimension) return self def _add_widget_size(self, widget, dimension='width'): widget_size = widget.sizeHint() viewer_size = self.frameGeometry() dx = dy = 0 if dimension == 'width': dx = widget_size.width() elif dimension == 'height': dy = widget_size.height() w = viewer_size.width() h = viewer_size.height() self.resize(w + dx, h + dy) def open_file(self, filename=None): """Open image file and display in viewer.""" if filename is None: filename = dialogs.open_file_dialog() if filename is None: return image = io.imread(filename) self._update_original_image(image) def update_image(self, image): """Update displayed image. This method can be overridden or extended in subclasses and plugins to react to image changes. """ self._update_original_image(image) def _update_original_image(self, image): self.original_image = image # update saved image self.image = image.copy() # update displayed image self.original_image_changed.emit(image) def save_to_file(self, filename=None): """Save current image to file. The current behavior is not ideal: It saves the image displayed on screen, so all images will be converted to RGB, and the image size is not preserved (resizing the viewer window will alter the size of the saved image). """ if filename is None: filename = dialogs.save_file_dialog() if filename is None: return if len(self.ax.images) == 1: io.imsave(filename, self.image) else: underlay = mpl_image_to_rgba(self.ax.images[0]) overlay = mpl_image_to_rgba(self.ax.images[1]) alpha = overlay[:, :, 3] # alpha can be set by channel of array or by a scalar value. # Prefer the alpha channel, but fall back to scalar value. if np.all(alpha == 1): alpha = np.ones_like(alpha) * self.ax.images[1].get_alpha() alpha = alpha[:, :, np.newaxis] composite = (overlay[:, :, :3] * alpha + underlay[:, :, :3] * (1 - alpha)) io.imsave(filename, composite) def closeEvent(self, event): self.close() def _show(self, x=0): self.move(x, 0) for p in self.plugins: p.show() super(ImageViewer, self).show() self.activateWindow() self.raise_() def show(self, main_window=True): """Show ImageViewer and attached plugins. This behaves much like `matplotlib.pyplot.show` and `QWidget.show`. """ self._show() if main_window: start_qtapp() return [p.output() for p in self.plugins] def redraw(self): if self.useblit: self._blit_manager.redraw() else: self.canvas.draw_idle() @property def image(self): return self._img @image.setter def image(self, image): self._img = image update_axes_image(self._image_plot, image) # update display (otherwise image doesn't fill the canvas) h, w = image.shape[:2] self.ax.set_xlim(0, w) self.ax.set_ylim(h, 0) # update color range clim = dtype_range[image.dtype.type] if clim[0] < 0 and image.min() >= 0: clim = (0, clim[1]) self._image_plot.set_clim(clim) if self.useblit: self._blit_manager.background = None self.redraw() def reset_image(self): self.image = self.original_image.copy() def connect_event(self, event, callback): """Connect callback function to matplotlib event and return id.""" cid = self.canvas.mpl_connect(event, callback) return cid def disconnect_event(self, callback_id): """Disconnect callback by its id (returned by `connect_event`).""" self.canvas.mpl_disconnect(callback_id) def _update_status_bar(self, event): if event.inaxes and event.inaxes.get_navigate(): self.status_message(self._format_coord(event.xdata, event.ydata)) else: self.status_message('') def add_tool(self, tool): if self.useblit: self._blit_manager.add_artists(tool.artists) self._tools.append(tool) self._event_manager.attach(tool) def remove_tool(self, tool): if tool not in self._tools: return if self.useblit: self._blit_manager.remove_artists(tool.artists) self._tools.remove(tool) self._event_manager.detach(tool) def _format_coord(self, x, y): # callback function to format coordinate display in status bar x = int(x + 0.5) y = int(y + 0.5) try: return "%4s @ [%4s, %4s]" % (self.image[y, x], x, y) except IndexError: return "" class CollectionViewer(ImageViewer): """Viewer for displaying image collections. Select the displayed frame of the image collection using the slider or with the following keyboard shortcuts: left/right arrows Previous/next image in collection. number keys, 0--9 0% to 90% of collection. For example, "5" goes to the image in the middle (i.e. 50%) of the collection. home/end keys First/last image in collection. Parameters ---------- image_collection : list of images List of images to be displayed. update_on : {'move' | 'release'} Control whether image is updated on slide or release of the image slider. Using 'on_release' will give smoother behavior when displaying large images or when writing a plugin/subclass that requires heavy computation. """ def __init__(self, image_collection, update_on='move', **kwargs): self.image_collection = image_collection self.index = 0 self.num_images = len(self.image_collection) first_image = image_collection[0] super(CollectionViewer, self).__init__(first_image) slider_kws = dict(value=0, low=0, high=self.num_images - 1) slider_kws['update_on'] = update_on slider_kws['callback'] = self.update_index slider_kws['value_type'] = 'int' self.slider = Slider('frame', **slider_kws) self.layout.addWidget(self.slider) #TODO: Adjust height to accomodate slider; the following doesn't work # s_size = self.slider.sizeHint() # cs_size = self.canvas.sizeHint() # self.resize(cs_size.width(), cs_size.height() + s_size.height()) def update_index(self, name, index): """Select image on display using index into image collection.""" index = int(round(index)) if index == self.index: return # clip index value to collection limits index = max(index, 0) index = min(index, self.num_images - 1) self.index = index self.slider.val = index self.update_image(self.image_collection[index]) def keyPressEvent(self, event): if type(event) == QtWidgets.QKeyEvent: key = event.key() # Number keys (code: 0 = key 48, 9 = key 57) move to deciles if 48 <= key < 58: index = 0.1 * int(key - 48) * self.num_images self.update_index('', index) event.accept() else: event.ignore() else: event.ignore()
bsd-3-clause
jia-kai/hearv
disp_freq.py
1
1942
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # $File: disp_freq.py # $Date: Sun Nov 23 12:45:25 2014 +0800 # $Author: jiakai <jia.kai66@gmail.com> import matplotlib.pyplot as plt import numpy as np import argparse import json def main(): parser = argparse.ArgumentParser() parser.add_argument('fpath', help='array json fpath') parser.add_argument('--sample_rate', type=float, default=59.940) parser.add_argument('--fl', type=float, default=5, help='low cutoff') parser.add_argument('--dmin', type=int, help='min index of data') parser.add_argument('--dnr', type=int, help='number of data points used') parser.add_argument('--no_shift_mean', action='store_true', help='do not shift mean value to zero') parser.add_argument('--clip', type=float, help='clip all samples to be within range [-x, x]') parser.add_argument('-o', '--output', help='outpout the plot') args = parser.parse_args() with open(args.fpath) as fin: vals = np.array(json.load(fin)) if not args.no_shift_mean: vals -= np.mean(vals) if args.clip: vals = np.clip(vals, -args.clip, args.clip) if args.dmin: vals = vals[args.dmin:] if args.dnr: vals = vals[:args.dnr] fig = plt.figure() ax = fig.add_subplot(2, 1, 1) ax.set_xlabel('sample number') ax.set_ylabel('displacement') ax.plot(vals) fft = np.fft.fft(vals)[:len(vals) / 2] freq = args.sample_rate / len(vals) * np.arange(1, len(fft) + 1) if args.fl > 0: fl = min(np.nonzero(freq >= args.fl)[0]) fft = fft[fl:] freq = freq[fl:] ax = fig.add_subplot(2, 1, 2) ax.set_xlabel('freq') ax.set_ylabel('amplitude') ax.plot(freq, np.abs(fft)) if args.output: fig.savefig(args.output) plt.show() if __name__ == '__main__': main()
unlicense
gbugaisky/bimm_185_conotoxin
wip-scripts_data/kNNProc.py
1
1321
#!usr/bin/env/python import numpy as np import pylab as pl from matplotlib.colors import ListedColormap from sklearn import neighbors def kNNGen(trainfile, testfile): features = np.genfromtxt(trainfile, delimiter=' ', usecols=(0, 1, 2)) labels = np.genfromtxt(trainfile, delimiter=' ', usecols=(-1)) tests = np.genfromtxt(testfile, delimiter=' ', usecols=(0, 1, 2)) testlabels = np.genfromtxt(testfile, delimiter=' ', usecols=(-1)) n_neighbors = 10 h = 0.02 accuracyScores = [] for weights in ['uniform', 'distance']: clf = neighbors.KNeighborsClassifier(n_neighbors, leaf_size=20, weights=weights) clf.fit(features, labels) accuracyScores.append(clf.score(tests, testlabels)) return accuracyScores if __name__ == "__main__": FILEPATH = ".\\SeparatedTrainTest\\" accuracyVals = [] for i in range(0, 10): accuracyVals.append(kNNGen(FILEPATH + "trainDataSet" + str(i) + ".csv", FILEPATH + "testDataSet" + str(i) + ".csv")) uniformScore = 0 distanceScore = 0 with open("kNNAverageAccuracy.txt", 'w') as results: for element in accuracyVals: results.write(str(element) + '\n') uniformScore += element[0] distanceScore += element[1] results.write("Uniform kNN Accuracy: " + str(uniformScore / 10.0) + '\n') results.write("Distance kNN Accuracy: " + str(distanceScore / 10.0) + '\n')
gpl-2.0
kyleabeauchamp/vcfnp
example.py
2
1198
from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt import vcfnp vcfnp.__version__ filename = 'fixture/sample.vcf' # load data from fixed fields (including INFO) v = vcfnp.variants(filename, cache=True).view(np.recarray) # print some simple variant metrics print('found %s variants (%s SNPs)' % (v.size, np.count_nonzero(v.is_snp))) print('QUAL mean (std): %s (%s)' % (np.mean(v.QUAL), np.std(v.QUAL))) # plot a histogram of variant depth fig = plt.figure(1) ax = fig.add_subplot(111) ax.hist(v.DP) ax.set_title('DP histogram') ax.set_xlabel('DP') plt.show() # load data from sample columns c = vcfnp.calldata_2d(filename, cache=True).view(np.recarray) # print some simple genotype metrics count_phased = np.count_nonzero(c.is_phased) count_variant = np.count_nonzero(np.any(c.genotype > 0, axis=2)) count_missing = np.count_nonzero(~c.is_called) print('calls (phased, variant, missing): %s (%s, %s, %s)' % (c.flatten().size, count_phased, count_variant, count_missing)) # plot a histogram of genotype quality fig = plt.figure(2) ax = fig.add_subplot(111) ax.hist(c.GQ.flatten()) ax.set_title('GQ histogram') ax.set_xlabel('GQ') plt.show()
mit
sumitsourabh/opencog
opencog/python/utility/functions.py
34
11056
from math import fabs, isnan from datetime import datetime from spatiotemporal.unix_time import UnixTime from utility.generic import convert_dict_to_sorted_lists from utility.numeric.globals import EPSILON from numpy import NINF as NEGATIVE_INFINITY, PINF as POSITIVE_INFINITY from scipy.integrate import quad __author__ = 'keyvan' def integral(function, start, end): if hasattr(function, 'integral'): return function.integral(start, end) area, error = quad(function, start, end) return area def almost_equals(a, b, epsilon=EPSILON): if fabs(a - b) < epsilon: return True return False def invoke_method_on(method, sequence_or_point): if method is None: return None if not callable(method): raise TypeError("'method' is not callable") result = [] try: for point in sequence_or_point: if type(point) is datetime: point = UnixTime(point) result.append(method(point)) except TypeError: if type(sequence_or_point) is datetime: sequence_or_point = UnixTime(sequence_or_point) return method(sequence_or_point) return result def index_of_first_local_maximum(sequence): first_time = True index = 0 for element in sequence: if first_time: previous = element first_time = False continue if element <= previous: return index previous = element index += 1 return None class Function(object): _domain = None _range = None _function_undefined = None def __init__(self, function_undefined=None, domain=None): if function_undefined is not None: self.function_undefined = function_undefined if domain is not None: if not hasattr(domain, '__iter__') or not hasattr(domain, '__getitem__'): raise TypeError("'domain' should be iterable and support indexing") self._domain = domain def call_on_single_point(self, x): """ to override, __call__ invokes this to handle both points and sequences """ return 0 def derivative(self, point): return None def _check_domain_for(self, feature_name): if self.domain is None: raise TypeError("'{0}' object does not support {1}, 'domain' should be specified".format( self.__class__.__name__, feature_name)) def plot(self, plt=None): self._check_domain_for('plotting') if plt is None: import matplotlib.pyplot as plt plt.plot(self.domain, self.range) return plt @property def function_undefined(self): return self._function_undefined @function_undefined.setter def function_undefined(self, value): if value is not None and not isinstance(value, Function): raise TypeError("'function_undefined' should be of type 'Function'") self._function_undefined = value @property def domain(self): return self._domain @property def range(self): return self() def __call__(self, x=None): if x is None: self._check_domain_for("call with 'None'") x = self.domain return invoke_method_on(self.call_on_single_point, x) def __getitem__(self, index): self._check_domain_for('indexing') return self.range[index] def __len__(self): self._check_domain_for('len()') return len(self.range) def __iter__(self): self._check_domain_for('iter()') return iter(self.range) def __reversed__(self): self._check_domain_for('reversed()') return reversed(self.range) class FunctionLinear(Function): def __init__(self, a=None, b=None, x_0=None, y_0=None, x_1=None, y_1=None): #(x_0, y_0), (x_1, y_1) = sorted([(x_0, y_0), (x_1, y_1)]) if (a, b) == (None, None): a = (float(y_1) - y_0) / (x_1 - x_0) b = y_0 - a * x_0 if isnan(a) or isnan(b): pass self.a = a self.b = b def call_on_single_point(self, x): return float(self.a * x + self.b) def intersect(self, other): if almost_equals(self.a, other.a): return None x = (float(other.b) - self.b) / (self.a - other.a) return x, self(x) def integral(self, start, end): if start >= end: return 0 if self.a == 0: return self.b * (end - start) x_intercept = self.x_intercept if start > x_intercept or end < x_intercept or almost_equals(end, x_intercept) or almost_equals(start, x_intercept): return (self(start) + self(end)) * (end - start) / 2.0 minus_triangle = (x_intercept - start) * self(start) plus_triangle = (end - x_intercept) * self(end) return minus_triangle + plus_triangle def derivative(self, point): return self.a @property def x_intercept(self): return - float(self.b) / self.a @property def y_intercept(self): return self(0) class FunctionHorizontalLinear(FunctionLinear): def __init__(self, y_intercept): FunctionLinear.__init__(self, a=0, b=y_intercept) def call_on_single_point(self, x): return self.b def integral(self, start, end): if start >= end: return 0 if almost_equals(self.b, 0): return 0 return float(self.b) * (end - start) def derivative(self, point): return 0 FUNCTION_ZERO = FunctionHorizontalLinear(0) FUNCTION_ONE = FunctionHorizontalLinear(1) class FunctionComposite(Function): is_normalised = False def __init__(self, dictionary_bounds_function, function_undefined=None, domain=None, is_normalised=False): if is_normalised is not False: self.is_normalised = True Function.__init__(self, function_undefined=function_undefined, domain=domain) if not isinstance(dictionary_bounds_function, dict): raise TypeError("'dictionary_bounds_function' should be a dictionary with (lower_bound, higher_bound) " "tuple keys and values of type 'Function'") self._dictionary_bounds_function = dictionary_bounds_function def call_on_single_point(self, x): for function_bounds in self.dictionary_bounds_function: (a, b) = function_bounds if a <= x: if b >= x: if self.dictionary_bounds_function[function_bounds] is None: return None return self.dictionary_bounds_function[function_bounds](x) return self.function_undefined(x) def integral(self, start, end): if self.is_normalised and self.domain is not None: if (start < self.domain[0] or almost_equals(start, self.domain[0])) and ( end > self.domain[-1] or almost_equals(end, self.domain[-1])): return 1.0 if start >= end: return 0 result = 0 for function_bounds in self.dictionary_bounds_function: (a, b) = function_bounds if a <= start: if b >= end: return self.dictionary_bounds_function[function_bounds].integral(start, end) not_ordered = { (start, 0): 's', (end, 0): 'e', (a, 1): 'a', (b, 1): 'b' } order = ''.join([not_ordered[i] for i in sorted(not_ordered)]) if (a == start or a == end) and order == 'saeb' or (b == start or b == end) and order == 'asbe': continue if order in 'seab abse': continue if order == 'saeb': b = end elif order == 'asbe': a = start result += self.dictionary_bounds_function[function_bounds].integral(a, b) return result def find_bounds_for(self, point): for bounds in self.dictionary_bounds_function: (a, b) = bounds if a <= point and b >= point: return bounds def derivative(self, point): return self.dictionary_bounds_function[self.find_bounds_for(point)].derivative(point) def function_in_point(self, point): for bounds in self.dictionary_bounds_function: a, b = bounds if a <= point <= b: return self.dictionary_bounds_function[bounds] return None # def functions_in_interval(self, interval_start, interval_end): # dictionary_bounds_function = {} # for bounds in self.dictionary_bounds_function: # a, b = bounds # if (interval_start < a or almost_equals(interval_start, a)) and ( # # ): @property def dictionary_bounds_function(self): return self._dictionary_bounds_function class FunctionPiecewiseLinear(FunctionComposite): def __init__(self, dictionary_input_output, function_undefined=None, is_normalised=False): self.input_list, self.output_list = convert_dict_to_sorted_lists(dictionary_input_output) dictionary_bounds_function = {} for i in xrange(1, len(self.input_list)): x_0, x_1 = self.input_list[i - 1], self.input_list[i] y_0, y_1 = self.output_list[i - 1], self.output_list[i] dictionary_bounds_function[(x_0, x_1)] = FunctionLinear(x_0=x_0, x_1=x_1, y_0=y_0, y_1=y_1) if NEGATIVE_INFINITY not in self.input_list: dictionary_bounds_function[(NEGATIVE_INFINITY, self.input_list[0])] = function_undefined if POSITIVE_INFINITY not in self.input_list: dictionary_bounds_function[(self.input_list[-1], POSITIVE_INFINITY)] = function_undefined FunctionComposite.__init__(self, dictionary_bounds_function, function_undefined=function_undefined, domain=self.input_list, is_normalised=is_normalised) def normalised(self): area = self.integral(NEGATIVE_INFINITY, POSITIVE_INFINITY) if almost_equals(area, 0): area = self.integral(NEGATIVE_INFINITY, POSITIVE_INFINITY) dictionary_input_output = {} output_list = [y / area for y in self.output_list] for i in xrange(len(self.input_list)): dictionary_input_output[self.input_list[i]] = output_list[i] result = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=self.function_undefined) result.is_normalised = True return result def __and__(self, other): for bounds in self.dictionary_bounds_function: a, b = bounds linear_function = self.dictionary_bounds_function[bounds] if __name__ == '__main__': a = FunctionLinear(1, 0) b = FunctionLinear(-1, 1) print a.intersect(b)
agpl-3.0
theandygross/Figures
src/Figures/Boxplots.py
1
11851
""" Created on Apr 24, 2013 @author: agross """ import numpy as np import pandas as pd import matplotlib.pylab as plt import Stats.Scipy as Stats from Figures.FigureHelpers import latex_float, init_ax from Figures.FigureHelpers import prettify_ax from Helpers.Pandas import match_series, true_index colors = plt.rcParams['axes.color_cycle'] * 10 def _violin_plot(ax, data, pos=[], bp=False): """ http://pyinsci.blogspot.com/2009/09/violin-plot-with-matplotlib.html Create violin plots on an axis. Internal to module as it does not use Pandas data-structures. This is split off due to it's being a reuse of the code from the blog-post linked above, and I wanted to keep the original code untouched. """ from scipy.stats import gaussian_kde from numpy import arange # dist = max(pos)-min(pos) dist = len(pos) w = min(0.25 * max(dist, 1.0), 0.5) for p, d in enumerate(data): try: k = gaussian_kde(d) # calculates the kernel density m = k.dataset.min() # lower bound of violin M = k.dataset.max() # upper bound of violin x = arange(m, M, (M - m) / 100.) # support for violin v = k.evaluate(x) # violin profile (density curve) v = v / v.max() * w # scaling the violin to the available space ax.fill_betweenx(x, p, v + p, facecolor='y', alpha=0.1) ax.fill_betweenx(x, p, -v + p, facecolor='y', alpha=0.1) except: pass if bp: box_plot = ax.boxplot(data, notch=1, positions=range(len(pos)), vert=1, widths=.25) return box_plot def box_plot_pandas(bin_vec, real_vec, ax=None, order=None): """ Wrapper around matplotlib's boxplot function. Inputs bin_vec: Series of labels real_vec: Series of measurements to be grouped according to bin_vec """ _, ax = init_ax(ax) bin_vec, real_vec = match_series(bin_vec, real_vec) if order is not None: categories = order else: categories = bin_vec.value_counts().index data = [real_vec[bin_vec == num] for num in categories] bp = ax.boxplot(data, positions=range(len(categories)), widths=.3, patch_artist=True) if real_vec.name: ax.set_ylabel(real_vec.name) if bin_vec.name: ax.set_xlabel(bin_vec.name) ax.set_xticklabels(categories) [p.set_visible(False) for p in bp['fliers']] [p.set_visible(False) for p in bp['caps']] [p.set_visible(False) for p in bp['whiskers']] for p in bp['medians']: p.set_color(colors[0]) p.set_lw(3) p.set_alpha(.8) for i, p in enumerate(bp['boxes']): p.set_color('grey') p.set_lw(3) p.set_alpha(.7) if len(data[i]) < 3: p.set_alpha(0) def violin_plot_pandas(bin_vec, real_vec, ann='p', order=None, ax=None, filename=None): """ http://pyinsci.blogspot.com/2009/09/violin-plot-with-matplotlib.html Wrapper around matplotlib's boxplot function to add violin profile. Inputs bin_vec: Series of labels real_vec: Series of measurements to be grouped according to bin_vec """ fig, ax = init_ax(ax) ax.set_ylabel(real_vec.name) ax.set_xlabel(bin_vec.name) bin_vec, real_vec = match_series(bin_vec, real_vec) try: if order is None: categories = bin_vec.value_counts().index else: categories = order _violin_plot(ax, [real_vec[bin_vec == num] for num in categories], pos=categories, bp=True) ax.set_xticklabels([str(c) + '\n(n=%i)' % sum(bin_vec == c) for c in categories]) except: box_plot_pandas(bin_vec, real_vec, ax=ax) #if type(bin_vec.name) == str: # ax.set_title(str(bin_vec.name) + ' x ' + str(real_vec.name)) p_value = Stats.kruskal_pandas(bin_vec, real_vec)['p'] if ann == 'p_fancy': ax.annotate('$p = {}$'.format(latex_float(p_value)), (.95, -.02), xycoords='axes fraction', ha='right', va='bottom', size=14) if ann == 'p': ax.annotate('p = {0:.1e}'.format(p_value), (.95, .02), xycoords='axes fraction', ha='right', va='bottom', size=12) elif ann is not None: ax.annotate(ann, (.95, .02), xycoords='axes fraction', ha='right', va='bottom', size=12) if filename is not None: fig.savefig(filename) return def violin_plot_series(s, **kw_args): """ Wrapper for drawing a violin plot on a series with a multi-index. The second level of the index is used as the binning variable. """ assert s.index.levshape[1] > 1 violin_plot_pandas(pd.Series(s.index.get_level_values(1), s.index), s, **kw_args) def paired_boxplot_o(boxes): """ Wrapper around plt.boxplot to draw paired boxplots for a set of boxes. Input is the same as plt.boxplot: Array or a sequence of vectors. """ fig = plt.figure(figsize=(len(boxes) / 2.5, 4)) ax1 = fig.add_subplot(111) plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25) bp = ax1.boxplot(boxes, notch=0, positions=np.arange(len(boxes)) + 1.5 * (np.arange(len(boxes)) / 2), patch_artist=True) [p.set_color(colors[0]) for p in bp['boxes'][::2]] [p.set_color('black') for p in bp['whiskers']] [p.set_color('black') for p in bp['fliers']] [p.set_alpha(.4) for p in bp['fliers']] [p.set_alpha(.6) for p in bp['boxes']] [p.set_edgecolor('black') for p in bp['boxes']] ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) # Hide these grid behind plot objects ax1.set_axisbelow(True) ax1.set_ylabel('$Log_{2}$ RNA Expression') ax1.set_xticks(3.5 * np.arange(len(boxes) / 2) + .5) return ax1, bp def paired_boxplot(boxes, ax1=None): if not ax1: fig = plt.figure(figsize=(len(boxes) / 2.5, 4)) ax1 = fig.add_subplot(111) plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25) bp = ax1.boxplot(boxes, notch=0, positions=np.arange(len(boxes)) + 1.5 * (np.arange(len(boxes)) / 2), patch_artist=True) [p.set_color(colors[0]) for p in bp['boxes'][::2]] [p.set_color(colors[1]) for p in bp['boxes'][1::2]] [p.set_color('black') for p in bp['whiskers']] [p.set_color('black') for p in bp['fliers']] [p.set_alpha(.4) for p in bp['fliers']] [p.set_alpha(.8) for p in bp['boxes']] [p.set_edgecolor('black') for p in bp['boxes']] ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) # Hide these grid behind plot objects ax1.set_axisbelow(True) ax1.set_ylabel('$Log_{2}$ RNA Expression') ax1.set_xticks(3.5 * np.arange(len(boxes) / 2) + .5) return ax1, bp def paired_boxplot_tumor_normal(df, sig=True, cutoffs=[.01, .00001], order=None, ax=None): """ Draws a paired boxplot given a DataFrame with both tumor and normal samples on the index. '01' and '11' are hard-coded as the ids for tumor/normal. """ n = df.groupby(level=0).size() == 2 df = df.ix[n[n].index] if order is None: o = df.xs('11', level=1).median().order().index df = df[o[::-1]] else: df = df[order] l1 = list(df.xs('01', level=1).as_matrix().T) l2 = list(df.xs('11', level=1).as_matrix().T) boxes = [x for t in zip(l1, l2) for x in t] ax1, bp = paired_boxplot(boxes, ax) test = lambda v: Stats.ttest_rel(v.unstack()['01'], v.unstack()['11']) res = df.apply(test).T p = res.p if sig: pts = [(i * 3.5 + .5, 18) for i, n in enumerate(p) if n < cutoffs[1]] if len(pts) > 0: s1 = ax1.scatter(*zip(*pts), marker='$**$', label='$p<10^{-5}$', s=200) else: s1 = None pts = [(i * 3.5 + .5, 18) for i, n in enumerate(p) if (n < cutoffs[0]) and (n > cutoffs[1])] if len(pts) > 0: s2 = ax1.scatter(*zip(*pts), marker='$*$', label='$p<10^{-2}$', s=30) else: s2 = None ax1.legend(bp['boxes'][:2] + [s2, s1], ('Tumor', 'Normal', '$p<10^{-2}$', '$p<10^{-5}$'), loc='best', scatterpoints=1) else: ax1.legend(bp['boxes'][:2], ('Tumor', 'Normal'), loc='best') ax1.set_xticklabels(df.columns) def boxplot_panel(hit_vec, response_df): """ Draws a series of paired boxplots with the rows of the response_df split according to hit_vec. """ b = response_df.copy() b.columns = pd.MultiIndex.from_arrays([b.columns, hit_vec.ix[b.columns]]) b = b.T v1, v2 = hit_vec.unique() test = lambda v: Stats.anova(v.reset_index(level=1)[v.index.names[1]], v.reset_index(level=1)[v.name]) res = b.apply(test).T p = res.p.order() b = b.ix[:, p.index] l1 = list(b.xs(v1, level=1).as_matrix().T) l2 = list(b.xs(v2, level=1).as_matrix().T) boxes = [x for t in zip(l1, l2) for x in t] ax1, bp = paired_boxplot(boxes) y_lim = (response_df.T.quantile(.9).max()) * 1.2 pts = [(i * 3.5 + .5, y_lim) for i, n in enumerate(p) if n < .00001] if len(pts) > 0: s1 = ax1.scatter(*zip(*pts), marker='$**$', label='$p<10^{-5}$', s=200) else: s1 = None pts = [(i * 3.5 + .5, y_lim) for i, n in enumerate(p) if (n < .01) and (n > .00001)] if len(pts) > 0: s2 = ax1.scatter(*zip(*pts), marker='$*$', label='$p<10^{-2}$', s=30) else: s2 = None ax1.set_xticklabels(b.columns) ax1.legend(bp['boxes'][:2] + [s2, s1], (v1, v2, '$p<10^{-2}$', '$p<10^{-5}$'), loc='best', scatterpoints=1) def paired_bp_tn_split(vec, assignment, ax=None, split_vals=('01', '11'), data_type='gene expression'): """ Paired boxplot for a single Series, with splitting on the index, grouped by assignment. I.E. Tumor-Normal gene expression split by cancer. vec: vector of values to plot. assignment: vector mapping keys to group assignment ax (None): matplotlib axis to plot on or None split_vals ('01','11'): Values to split the boxplot pairing on. The default of ('01','11') indicates tumor vs. normal in the standard TCGA barcode nomenclature. This should coorespond to values on the second level of the index for vec and assignment. **both vec and assignment should have an overlapping index with multiple levels** """ _, ax = init_ax(ax, figsize=(8, 3)) if vec.name != None: label = vec.name # lose label in manipulation else: label = '' g1 = split_vals[0] g2 = split_vals[1] vec = pd.concat([vec[:, g1], vec[:, g2]], keys=[g1, g2], axis=1) vec = vec.dropna().stack() counts = vec.unstack().groupby(assignment).size() groups = list(true_index(counts > 5)) groups = vec.unstack().groupby(assignment).median()[g1].ix[groups] groups = groups.order().index[::-1] l1 = [np.array(vec[:, g1].ix[true_index(assignment == c)].dropna()) for c in groups] l2 = [np.array(vec[:, g2].ix[true_index(assignment == c)].dropna()) for c in groups] boxes = [x for t in zip(l1, l2) for x in t if len(t[1]) > 5] ax, bp = paired_boxplot(boxes, ax) labels = ['{}\n({})'.format(c, counts[c]) for c in groups] ax.set_xticklabels(labels) prettify_ax(ax) ax.set_ylabel('{} {}'.format(label, data_type))
mit
toastedcornflakes/scikit-learn
benchmarks/bench_plot_ward.py
117
1283
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time plt.figure("scikit-learn Ward's method benchmark results") plt.imshow(np.log(ratio), aspect='auto', origin="lower") plt.colorbar() plt.contour(ratio, levels=[1, ], colors='k') plt.yticks(range(len(n_features)), n_features.astype(np.int)) plt.ylabel('N features') plt.xticks(range(len(n_samples)), n_samples.astype(np.int)) plt.xlabel('N samples') plt.title("Scikit's time, in units of scipy time (log)") plt.show()
bsd-3-clause
redarmy30/Eurobot-2017
old year/RESET-master/Machine_vision/get_position.py
2
3426
#!/usr/bin/env python2 import numpy as np import cv2 from matplotlib import pyplot as plt from math import sin, cos, tan, sqrt, pi, atan from operator import itemgetter import timeit #start = timeit.timeit() h = 0.37 #the vertical distance from the ground to camera [in meters] alpha = pi*(28.3)/180.0 #the inclination angle in degrees F = 0.25 #the focal distance [in meters]0.00367 Nx = 640.0 #number of pixels along x axis on the focal plane Ny = 480.0 #number of pixels along the y axis on the focal plane psi = 78.0*pi/180.0 # maximum angular resolution in diagonal Tetha = 2.0*atan((tan(psi/2.0))*3.0/5.0) # maximum resolution angle for vertical view Fi = 2.0*atan((tan(psi/2.0))*4.0/5.0) # maximum resolution angle for horizontal view #Initial calculations gamma = pi/2.0 - alpha #calculate the inclination of focal plane YM = F/cos(alpha) - h*tan(alpha) YA = F*cos(alpha) ZA = h - F*sin(alpha) ksim = 2.0*F*tan(Tetha/2.0) etham = 2.0*F*tan(Tetha/2.0) # camera initialisation #DEFINE CALSSIFICATION OF OBJECTS params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = 1 params.maxThreshold = 2000 # Filter by Area. params.filterByArea = 1 params.minArea = 1000 params.maxArea = 100000 """# Filter by Circularity params.filterByCircularity = True params.minCircularity = 0.1""" """# Filter by Convexity params.filterByConvexity = True params.minConvexity = 0.1 params.maxConvexity = 1""" """# Filter by Inertia params.filterByInertia = True params.minInertiaRatio = 0""" """#Filter by color params.filterByColor = 1 params.blobColor = 0;0;0""" #detector = cv2.SimpleBlobDetector_create(params) detector = cv2.SimpleBlobDetector(params) #- use this if line 57 returns error!!! class GetObjectPosition(object): def get_position(self): cap = cv2.VideoCapture(0) #cap.set(7, 15) _, frame = cap.read() im = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) keypoints = detector.detect(im) im_with_keypoints = cv2.drawKeypoints(frame, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) a = len (keypoints) points = [] screenpoints = [] for keypoint in keypoints: x0 = keypoint.pt[0] y0 = keypoint.pt[1] cx = x0 cy = y0 ksiE = cx*ksim/Nx ethaE = cy*etham/Ny Nx1 = ksim Ny1 = etham ksiA = ksiE - Nx1/2.0 ethaA = -(ethaE - Ny1/2.0) YA1 = YA + ethaA*cos(gamma) ZA1 = (YA1 - YM)*tan(gamma) XA1 = ksiA t = h/(h-ZA1) X = XA1*t Y = YA1*t R0 = sqrt(X**2.0+Y**2.0) X = int(X*1000.0) Y = int(Y*1000.0) R0 = int(R0*1000.0) points.append((X, Y, R0)) screenpoints.append((x0,y0)) points1 = str(points) cv2.imwrite('result.png',im_with_keypoints) if not points: return z = sorted(points, key=itemgetter(2)) z1 = str(z) b = z[0] points = str(points) file = open("result.txt", "w") file.write("unsorted list") file.write(points)#unsorted file.write("\n") file.write("sorted list") file.write(z1)#sorted file.write("\n") file.write("The nearest objest is:") file.write(str(b)) file.close() #img1 = cv2.imread('result.png') #img2 = cv2.putText(img = img1,text = points,org = (0,Ny),fontFace = cv2.FONT_HERSHEY_DUPLEX,fontScale = 0.5, #color = (1,1,255)) cv2.imwrite('result1.png',img2) return(b) del(cap) a = GetObjectPosition() coordinates = a.get_position() print coordinates #end = timeit.timeit() #print end - start
mit
calispac/digicampipe
digicampipe/scripts/spe.py
1
14553
#!/usr/bin/env python """ Do the Single Photoelectron anaylsis Usage: digicam-spe [options] [--] <INPUT>... Options: -h --help Show this screen. --max_events=N Maximum number of events to analyse. --max_histo_filename=FILE File path of the max histogram. [Default: ./max_histo.pk] --charge_histo_filename=FILE File path of the charge histogram [Default: ./charge_histo.pk] --raw_histo_filename=FILE File path of the raw histogram [Default: ./raw_histo.pk] -o OUTPUT --output=OUTPUT Output file path to store the results. [Default: ./results.npz] -c --compute Compute the data. -f --fit Fit. -d --display Display. -v --debug Enter the debug mode. -p --pixel=<PIXEL> Give a list of pixel IDs. --shift=N Number of bins to shift before integrating [default: 0]. --integral_width=N Number of bins to integrate over [default: 7]. --pulse_finder_threshold=F Threshold of pulse finder in arbitrary units [default: 2.0]. --save_figures=PATH Save the plots to the indicated folder. Figures are not saved is set to none [default: none] --ncall=N Number of calls for the fit [default: 10000] --n_samples=N Number of samples per waveform """ import os import matplotlib.pyplot as plt import numpy as np from docopt import docopt from histogram.histogram import Histogram1D from tqdm import tqdm from digicampipe.calib.baseline import fill_baseline, subtract_baseline from digicampipe.calib.charge import compute_charge from digicampipe.calib.peak import find_pulse_with_max, \ find_pulse_fast from digicampipe.io.event_stream import calibration_event_stream from digicampipe.scripts import raw from digicampipe.scripts.fmpe import FMPEFitter from digicampipe.utils.docopt import convert_pixel_args, \ convert_int, convert_text from digicampipe.utils.pdf import fmpe_pdf_10 class MaxHistoFitter(FMPEFitter): def __init__(self, histogram, estimated_gain, **kwargs): n_peaks = 2 super(MaxHistoFitter, self).__init__(histogram, estimated_gain, n_peaks, **kwargs) self.parameters_plot_name = {'baseline': '$B$', 'gain': 'G', 'sigma_e': '$\sigma_e$', 'sigma_s': '$\sigma_s$', 'a_0': None, 'a_1': None} def pdf(self, x, baseline, gain, sigma_e, sigma_s, a_0, a_1): params = {'baseline': baseline, 'gain': gain, 'sigma_e': sigma_e, 'sigma_s': sigma_s, 'a_0': a_0, 'a_1': a_1, 'bin_width': 0} return fmpe_pdf_10(x, **params) class SPEFitter(FMPEFitter): def __init__(self, histogram, estimated_gain, **kwargs): n_peaks = 4 super(SPEFitter, self).__init__(histogram, estimated_gain, n_peaks, **kwargs) self.parameters_plot_name = {'baseline': '$B$', 'gain': 'G', 'sigma_e': '$\sigma_e$', 'sigma_s': '$\sigma_s$', 'a_1': None, 'a_2': None, 'a_3': None, 'a_4': None} def pdf(self, x, baseline, gain, sigma_e, sigma_s, a_1, a_2, a_3, a_4): params = {'baseline': baseline, 'gain': gain, 'sigma_e': sigma_e, 'sigma_s': sigma_s, 'a_0': 0, 'a_1': a_1, 'a_2': a_2, 'a_3': a_3, 'a_4': a_4, 'bin_width': 0} return fmpe_pdf_10(x, **params) def initialize_fit(self): init_params = super(SPEFitter, self).initialize_fit() init_params['a_4'] = init_params['a_3'] init_params['a_3'] = init_params['a_2'] init_params['a_2'] = init_params['a_1'] init_params['a_1'] = init_params['a_0'] init_params['baseline'] = init_params['baseline'] - init_params['gain'] del init_params['a_0'] self.initial_parameters = init_params return init_params def compute_dark_rate(number_of_zeros, total_number_of_events, time): p_0 = number_of_zeros / total_number_of_events rate = - np.log(p_0) rate /= time return rate def compute_max_histo(files, histo_filename, pixel_id, max_events, integral_width, shift, baseline): n_pixels = len(pixel_id) if not os.path.exists(histo_filename): events = calibration_event_stream(files, pixel_id=pixel_id, max_events=max_events) # events = compute_baseline_with_min(events) events = fill_baseline(events, baseline) events = subtract_baseline(events) events = find_pulse_with_max(events) events = compute_charge(events, integral_width, shift) max_histo = Histogram1D( data_shape=(n_pixels,), bin_edges=np.arange(-4095 * integral_width, 4095 * integral_width), ) for event in events: max_histo.fill(event.data.reconstructed_charge) max_histo.save(histo_filename) return max_histo else: max_histo = Histogram1D.load(histo_filename) return max_histo def compute_spe(files, histo_filename, pixel_id, baseline, max_events, integral_width, shift, pulse_finder_threshold, debug=False): if not os.path.exists(histo_filename): n_pixels = len(pixel_id) events = calibration_event_stream(files, max_events=max_events, pixel_id=pixel_id) events = fill_baseline(events, baseline) events = subtract_baseline(events) # events = find_pulse_1(events, 0.5, 20) # events = find_pulse_2(events, widths=[5, 6], threshold_sigma=2) events = find_pulse_fast(events, threshold=pulse_finder_threshold) # events = find_pulse_fast_2(events, threshold=pulse_finder_threshold, # min_dist=3) # events = find_pulse_correlate(events, # threshold=pulse_finder_threshold) # events = find_pulse_gaussian_filter(events, # threshold=pulse_finder_threshold) # events = find_pulse_wavelets(events, widths=[4, 5, 6], # threshold_sigma=2) events = compute_charge(events, integral_width=integral_width, shift=shift) # events = compute_amplitude(events) # events = fit_template(events) # events = compute_full_waveform_charge(events) spe_histo = Histogram1D( data_shape=(n_pixels,), bin_edges=np.arange(-4095 * 50, 4095 * 50) ) for event in events: spe_histo.fill(event.data.reconstructed_charge) spe_histo.save(histo_filename) return spe_histo else: spe_histo = Histogram1D.load(histo_filename) return spe_histo def entry(): args = docopt(__doc__) files = args['<INPUT>'] debug = args['--debug'] max_events = convert_int(args['--max_events']) raw_histo_filename = args['--raw_histo_filename'] charge_histo_filename = args['--charge_histo_filename'] max_histo_filename = args['--max_histo_filename'] results_filename = args['--output'] pixel_id = convert_pixel_args(args['--pixel']) n_pixels = len(pixel_id) integral_width = int(args['--integral_width']) shift = int(args['--shift']) pulse_finder_threshold = float(args['--pulse_finder_threshold']) n_samples = int(args['--n_samples']) # TODO access this in a better way ! estimated_gain = 20 ncall = int(args['--ncall']) if args['--compute']: raw_histo = raw.compute(files, max_events=max_events, pixel_id=pixel_id, filename=raw_histo_filename) baseline = raw_histo.mode() compute_max_histo(files, max_histo_filename, pixel_id, max_events, integral_width, shift, baseline) compute_spe(files, charge_histo_filename, pixel_id, baseline, max_events, integral_width, shift, pulse_finder_threshold, debug=debug) if args['--fit']: spe_histo = Histogram1D.load(charge_histo_filename) max_histo = Histogram1D.load(max_histo_filename) dark_count_rate = np.zeros(n_pixels) * np.nan electronic_noise = np.zeros(n_pixels) * np.nan crosstalk = np.zeros(n_pixels) * np.nan gain = np.zeros(n_pixels) * np.nan for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels, desc='Pixel'): histo = max_histo[i] fitter = MaxHistoFitter(histo, estimated_gain, throw_nan=True) try: fitter.fit(ncall=100) fitter.fit(ncall=ncall) n_entries = histo.data.sum() number_of_zeros = fitter.parameters['a_0'] window_length = 4 * n_samples rate = compute_dark_rate(number_of_zeros, n_entries, window_length) electronic_noise[i] = fitter.parameters['sigma_e'] dark_count_rate[i] = rate if debug: fitter.draw() fitter.draw_init(x_label='[LSB]') fitter.draw_fit(x_label='[LSB]') plt.show() except Exception as e: print('Could not compute dark count rate' ' in pixel {}'.format(pixel)) print(e) np.savez(results_filename, dcr=dark_count_rate, sigma_e=electronic_noise, pixel_id=pixel_id) for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels, desc='Pixel'): histo = spe_histo[i] fitter = SPEFitter(histo, estimated_gain, throw_nan=True) try: fitter.fit(ncall=100) fitter.fit(ncall=ncall) params = fitter.parameters n_entries = params['a_1'] n_entries += params['a_2'] n_entries += params['a_3'] n_entries += params['a_4'] crosstalk[i] = (n_entries - params['a_1']) / n_entries gain[i] = params['gain'] if debug: fitter.draw() fitter.draw_init(x_label='[LSB]') fitter.draw_fit(x_label='[LSB]') plt.show() except Exception as e: print('Could not compute gain and crosstalk' ' in pixel {}'.format(pixel)) print(e) data = dict(np.load(results_filename)) data['crosstalk'] = crosstalk data['gain'] = gain np.savez(results_filename, **data) save_figure = convert_text(args['--save_figures']) if save_figure is not None: output_path = save_figure spe_histo = Histogram1D.load(charge_histo_filename) spe_amplitude = Histogram1D.load(charge_histo_filename) raw_histo = Histogram1D.load(raw_histo_filename) max_histo = Histogram1D.load(max_histo_filename) figure_directory = output_path + 'figures/' if not os.path.exists(figure_directory): os.makedirs(figure_directory) histograms = [spe_histo, spe_amplitude, raw_histo, max_histo] names = ['histogram_charge/', 'histogram_amplitude/', 'histogram_raw/', 'histo_max/'] for i, histo in enumerate(histograms): figure = plt.figure() histogram_figure_directory = figure_directory + names[i] if not os.path.exists(histogram_figure_directory): os.makedirs(histogram_figure_directory) for j, pixel in enumerate(pixel_id): axis = figure.add_subplot(111) figure_path = histogram_figure_directory + 'pixel_{}'. \ format(pixel) try: histo.draw(index=(j,), axis=axis, log=True, legend=False) figure.savefig(figure_path) except Exception as e: print('Could not save pixel {} to : {} \n'. format(pixel, figure_path)) print(e) axis.remove() if args['--display']: spe_histo = Histogram1D.load(charge_histo_filename) raw_histo = Histogram1D.load(os.path.join(output_path, raw_histo_filename)) max_histo = Histogram1D.load(max_histo_filename) spe_histo.draw(index=(0,), log=True, legend=False) raw_histo.draw(index=(0,), log=True, legend=False) max_histo.draw(index=(0,), log=True, legend=False) try: data = np.load(results_filename) dark_count_rate = data['dcr'] electronic_noise = data['sigma_e'] crosstalk = data['crosstalk'] gain = data['gain'] except IOError as e: print(e) print('Could not find the analysis files !') plt.figure() plt.hist(dark_count_rate[np.isfinite(dark_count_rate)], bins='auto') plt.xlabel('dark count rate [GHz]') plt.legend(loc='best') plt.figure() plt.hist(crosstalk[np.isfinite(crosstalk)], bins='auto') plt.xlabel('Crosstalk []') plt.legend(loc='best') plt.figure() plt.hist(gain[np.isfinite(gain)], bins='auto') plt.xlabel('Gain [LSB/p.e.]') plt.legend(loc='best') plt.figure() plt.hist(electronic_noise[np.isfinite(electronic_noise)], bins='auto') plt.xlabel('$\sigma_e$ [LSB]') plt.legend(loc='best') plt.show() return if __name__ == '__main__': entry()
gpl-3.0
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/user_interfaces/gtk_spreadsheet.py
13
2463
#!/usr/bin/env python """ Example of embedding matplotlib in an application and interacting with a treeview to store data. Double click on an entry to update plot data """ import pygtk pygtk.require('2.0') import gtk from gtk import gdk import matplotlib matplotlib.use('GTKAgg') # or 'GTK' from matplotlib.backends.backend_gtk import FigureCanvasGTK as FigureCanvas from numpy.random import random from matplotlib.figure import Figure class DataManager(gtk.Window): numRows, numCols = 20,10 data = random((numRows, numCols)) def __init__(self): gtk.Window.__init__(self) self.set_default_size(600, 600) self.connect('destroy', lambda win: gtk.main_quit()) self.set_title('GtkListStore demo') self.set_border_width(8) vbox = gtk.VBox(False, 8) self.add(vbox) label = gtk.Label('Double click a row to plot the data') vbox.pack_start(label, False, False) sw = gtk.ScrolledWindow() sw.set_shadow_type(gtk.SHADOW_ETCHED_IN) sw.set_policy(gtk.POLICY_NEVER, gtk.POLICY_AUTOMATIC) vbox.pack_start(sw, True, True) model = self.create_model() self.treeview = gtk.TreeView(model) self.treeview.set_rules_hint(True) # matplotlib stuff fig = Figure(figsize=(6,4)) self.canvas = FigureCanvas(fig) # a gtk.DrawingArea vbox.pack_start(self.canvas, True, True) ax = fig.add_subplot(111) self.line, = ax.plot(self.data[0,:], 'go') # plot the first row self.treeview.connect('row-activated', self.plot_row) sw.add(self.treeview) self.add_columns() self.add_events(gdk.BUTTON_PRESS_MASK | gdk.KEY_PRESS_MASK| gdk.KEY_RELEASE_MASK) def plot_row(self, treeview, path, view_column): ind, = path # get the index into data points = self.data[ind,:] self.line.set_ydata(points) self.canvas.draw() def add_columns(self): for i in range(self.numCols): column = gtk.TreeViewColumn('%d'%i, gtk.CellRendererText(), text=i) self.treeview.append_column(column) def create_model(self): types = [float]*self.numCols store = gtk.ListStore(*types) for row in self.data: store.append(row) return store manager = DataManager() manager.show_all() gtk.main()
mit
pingpan2013/sensor-box-project
sensor_project/genGraphs.py
1
4044
#!/usr/bin/python import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pandas as pd # used to convert datetime64 to datetime import csv import sys from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA class Gen_Graph: def __init__(self, _filename): self.filename = _filename self.data = [] self.dtype = [] def readData(self): '''Read the data from .csv file''' with open(self.filename, 'r') as file: reader = csv.reader(file) for row in reader: self.data.append(tuple(row)) return self.data def genDtype(self): '''Get the data type, always put DATE in the last ''' for i in xrange(len(self.data[0])): if i != len(self.data[0]) - 1: self.dtype.append((str(self.data[0][i]), '<f8')) else: self.dtype.append((self.data[0][i], '<M8[s]')) print "Data Type: " + str(self.dtype) print '==============================================================' def uniqueish_color(self): '''Randomly select a color''' return plt.cm.gist_ncar(np.random.random()) def genGraph(self): '''Generate the graph with unique y axis''' self.genDtype() x = np.array(self.data[1:], dtype=self.dtype) np.save('./graph_data/data', x) t = np.load('./graph_data/data.npy').view(np.recarray) fig, ax = plt.subplots(1) '''Drawing multiple lines in one graph''' for label in self.data[0]: if label != 'Time': dtype = t['{0}'.format(label)] ax.plot(pd.to_datetime(t.Time), dtype) ax.set_xlabel(' date ') '''Formatting the date''' fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') plt.title('Sensor Data Flow') '''Create the labels for different lines''' labels = list(self.data[0][:-1]) plt.legend(labels, loc='lower left') plt.show() def genGraph_m(self): '''Generate the graph with multiple y axises''' self.genDtype() x = np.array(self.data[1:], dtype=self.dtype) np.save('./graph_data/data', x) t = np.load('./graph_data/data.npy').view(np.recarray) fig = plt.figure() fig.subplots_adjust(right=0.75) ax = fig.add_subplot(111) '''Drawing multiple lines with different y axises in one graph''' lines = [] labels = list(self.data[0][:-1]) for num in xrange(len(self.data[0]) - 1): label = labels[num] if num == 0: dtype = t['{0}'.format(label)] line1, = ax.plot(pd.to_datetime(t.Time), dtype, color=self.uniqueish_color()) lines.append(line1) ax.set_ylabel(label) ax.set_xlabel('Date') elif label != 'Time': dtype = t['{0}'.format(label)] par = ax.twinx() line2, = par.plot(pd.to_datetime(t.Time), dtype, color=self.uniqueish_color()) lines.append(line2) par.set_ylabel(label) '''Formatting the date''' fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') plt.title('Sensor Data Flow') '''Create the labels for different lines''' ax.legend(lines, labels, loc='lower left') plt.draw() plt.show() def main(): if len(sys.argv) != 2: print "Error with the parameters! Please specify the file path!" sys.exit(2) filename = sys.argv[1] gg = Gen_Graph(filename) data = gg.readData() print "Original Data: " for i in data: print i print '==============================================================' gg.genGraph_m() print "Finished Drawing!" if __name__ == "__main__": main()
gpl-3.0
Open-Power-System-Data/conventional_power_plants
download_and_process_DE_functions.py
1
14757
# -*- coding: utf-8 -*- import urllib.parse import urllib.request import posixpath import datetime import os import logging import filecmp import difflib import json import sqlite3 import hashlib import yaml import matplotlib.pyplot as plt import pandas as pd import numpy as np #from bokeh.io import output_notebook # output_notebook() # Logging Setup logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%d %b %Y %H:%M:%S') logger = logging.getLogger() # create download and output folders if they do not exist os.makedirs(os.path.join('download'), exist_ok=True) os.makedirs(os.path.join('output'), exist_ok=True) os.makedirs(os.path.join('output', 'original_data'), exist_ok=True) def get_sha_hash(path, blocksize=65536): sha_hasher = hashlib.sha256() with open(path, 'rb') as f: buffer = f.read(blocksize) while len(buffer) > 0: sha_hasher.update(buffer) buffer = f.read(blocksize) return sha_hasher.hexdigest() def downloadandcache(url): """ Download a file into a folder called "downloads". The file is prefixed with the download date YYYY-M-D-. Returns the local filepath. Parameters ---------- url : str Url of a file to be downloaded """ path = urllib.parse.urlsplit(url).path filename = posixpath.basename(path) now = datetime.datetime.now() datestring = str(now.year) + "-" + str(now.month) + "-" + str(now.day) filepath = os.path.join('download', datestring + "-" + filename) filepath_original_data = os.path.join('output', 'original_data', filename) # check if file exists, otherwise download it if not os.path.exists(filepath): logger.info('Downloading file %s', filename) urllib.request.urlretrieve(url, filepath) urllib.request.urlretrieve(url, filepath_original_data) else: logger.info('Using local file from %s', filepath) foldername = 'download' return foldername, datestring, filename def decrementday(year, month, day): """ Given values for year, month, and day, the values of the previous day are returned. At the moment, the function assumes that every month has 31 days, so that it will return February 31st when given values for March 1. Parameters ---------- year : integer Integer year month : integer Integer month day : integer Integer day """ if day > 1: day = day - 1 else: day = 31 if month > 1: month = month - 1 else: month = 12 year = year - 1 return year, month, day def getolderfilenameandcleanup(foldername, datestring, filename): """ Given a set of foldername and filename as returned by the downloadandcache function, an older non-identical file with the same file structure is searched in the folder. Files identical to the one given are deleted. Parameters ---------- foldername : str folder where files are located datestring : str string of original file date YYYY-M-D filename : str filename of original file """ originalfilepath = os.path.join(foldername, datestring + "-" + filename) now = datetime.datetime.now() year = now.year month = now.month day = now.day # loop through older possible files i = 0 while i < 2000: i = i + 1 year, month, day = decrementday(year, month, day) datestring = str(year) + "-" + str(month) + "-" + str(day) filepath = os.path.join(foldername, datestring + "-" + filename) # Does the file exist? if os.path.isfile(filepath): # Check if file is identical to original file. If yes delete this # file and continue if filecmp.cmp(originalfilepath, filepath): # print('files are identical, deleting', filepath) os.remove(filepath) else: # print('files are not identical:', filepath) return filepath raise ValueError('no older file found') def getmatchinglist(): """ This function returns the matchinglist located under /input/matching_bnetza_uba.csv Parameters ---------- none """ # read matching list result = pd.read_csv( os.path.join('input/data/DE', 'matching_bnetza_uba.csv'), skiprows=0, sep=',', # CSV field separator, default is ',' thousands=',', # Thousands separator, default is ',' decimal='.', # Decimal separator, default is '.') encoding='cp1252') result['uba_id_string'] = (result['uba_match_name'] + '_' + result['uba_match_fuel']) return result def getbnetzalist(url_bnetza, previous=False): """ This function returns the dataframe of the plantlist by the Bundesnetzagentur. if previous == True, the next-oldest different plantlist in the folder is returned as determined by the function getolderfilenameandcleanup. Parameters ---------- url_bnetza : str URL of plant list previous : boolean Should previous plant list be returned? """ foldername, datestring, filename = downloadandcache(url_bnetza) if not previous: plantlist = pd.read_csv(os.path.join(foldername, datestring + "-" + filename), skiprows=9, sep=';', # CSV field separator, default is ',' thousands='.', # Thousands separator, default is ',' decimal=',', # Decimal separator, default is '.' encoding='cp1252') return plantlist elif previous: oldfilename = getolderfilenameandcleanup(foldername, datestring, filename) oldplantlist = pd.read_csv(oldfilename, skiprows=9, sep=';', # CSV field separator, default is ',' thousands='.', # Thousands separator, default is ',' decimal=',', # Decimal separator, default is '.' encoding='cp1252') return oldplantlist def getubalist(url_uba, previous=False): """ This function returns the dataframe of the plantlist by the Umweltbundesamt. if previous == True, the next-oldest different plantlist in the folder is returned as determined by the function getolderfilenameandcleanup. Parameters ---------- url_uba : str URL of plant list previous : boolean Should previous plant list be returned? """ foldername, datestring, filename = downloadandcache(url_uba) if not previous: plantlist = pd.read_excel(os.path.join(foldername, datestring + "-" + filename), skiprows=9) return plantlist elif previous: oldfilename = getolderfilenameandcleanup(foldername, datestring, filename) oldplantlist = pd.read_excel(oldfilename, skiprows=9) return oldplantlist def getlistdifferences(oldplantlist, newplantlist): """ This function returns the difference between two plantlists, and only takes into account the columns specified within the function. Parameters ---------- oldplantlist : DataFrame Old Plantlist newplantlist : DataFrame New Plantlist """ oldplantlist['source'] = 'old' newplantlist['source'] = 'new' comparisonplantlist = pd.concat([oldplantlist, newplantlist]) # Only include some columns in comparison includecolumns = ['Kraftwerksnummer Bundesnetzagentur', 'Kraftwerksname', 'Blockname', 'Kraftwerksname / Standort', 'Kraftwerksstandort', 'Primärenergieträger', ] cols = [col for col in comparisonplantlist.columns if col in includecolumns] comparisonplantlist = comparisonplantlist.drop_duplicates(keep=False, subset=cols) # Sort by first column comparisonplantlist = comparisonplantlist.sort_values(comparisonplantlist.columns[0], ascending=True) return comparisonplantlist def matchinglistcheck(url_bnetza, url_uba): """ This function checks the BNetzA and UBA plantlists against the matchinglist and prints out errors. For entries form the UBA Plantlist a suggestion for correction with the closest possible match is printed. Parameters ---------- oldplantlist : DataFrame Old Plantlist newplantlist : DataFrame New Plantlist """ logger.info('Starting Matchinglistcheck') plantlist_uba = getubalist(url_uba) plantlist_bnetza = getbnetzalist(url_bnetza) matchinglist = getmatchinglist() plantlist_uba['uba_id_string'] = (plantlist_uba['Kraftwerksname / Standort'] + '_' + plantlist_uba['Primärenergieträger']) # print(plantlist_uba.uba_id_string) matchinglist.rename(columns={'ID BNetzA': 'bnetza_id'}, inplace=True) uba_entrylist = [x for x in plantlist_uba.uba_id_string.tolist() if str(x) != 'nan'] errorfound = False for entry in matchinglist.index: # print(entry, matchinglist.loc[entry].bnetza_id, matchinglist.loc[entry].uba_id_string) bnetza_entries = plantlist_bnetza.loc[(plantlist_bnetza['Kraftwerksnummer Bundesnetzagentur'] == matchinglist.loc[entry].bnetza_id)] # print(entry, len(bnetza_entries)) if len(bnetza_entries) == 0: logger.error('Entry not in Bnetzalist:', matchinglist.loc[entry].bnetza_id, matchinglist.loc[entry].uba_id_string) errorfound = True uba_entries = plantlist_uba.loc[(plantlist_uba['uba_id_string'] == matchinglist.loc[entry].uba_id_string)] # print(entry, len(uba_entries)) if len(uba_entries) == 0: alternatives = difflib.get_close_matches(matchinglist.loc[entry].uba_id_string, uba_entrylist, n=3, cutoff=0.6) logger.error('Not in ubalist: ' + matchinglist.loc[entry].uba_id_string + ' ' + matchinglist.loc[entry].bnetza_id + ' Possible alternatives: ' + ', '.join(alternatives)) # raise ValueError('Value in Ubalist missing') errorfound = True if errorfound == False: logger.info('No obvious errors in Matchinglist check found') else: logger.error('Errors in Matchinglist exist') def potentialmatching(url_bnetza, url_uba): """ This function looks for power plants form the UBA list not contained in the matching lists. It looks up possible matches based on name similarity. It returns a list of tuples with the plants name of the UBA List, augmented with possible matches. Parameters ---------- url_bnetza : string Link to BNetzA List url_uba: string Link to UBA List """ plantlist_uba = getubalist(url_uba) plantlist_bnetza = getbnetzalist(url_bnetza) matchinglist = getmatchinglist() plantlist_bnetza.rename(columns={'Kraftwerksnummer Bundesnetzagentur':'id'}, inplace=True) plantlist_bnetza_reduced = plantlist_bnetza[plantlist_bnetza['id'].isin(matchinglist['ID BNetzA']) == False] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Solare Strahlungsenergie'] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Windenergie (Onshore-Anlage)'] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Windenergie (Offshore-Anlage)'] plantlist_bnetza_reduced['name_and_block'] = plantlist_bnetza_reduced['Kraftwerksname'] + ' ' + plantlist_bnetza_reduced['Blockname'] + '_' + plantlist_bnetza_reduced['Energieträger'] plantlist_uba.rename(columns={'Kraftwerksname / Standort' : 'name', 'Primärenergieträger': 'fuel', 'Anlagenart': 'type'}, inplace=True) # print(plantlist_uba.columns) plantlist_uba['uba_id_string'] = (plantlist_uba['name'] + '_' + plantlist_uba['fuel']) # Reduce uba list plantlist_uba_reduced = plantlist_uba[plantlist_uba['uba_id_string'].isin(matchinglist['uba_id_string']) == False] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'] != 'WEA'] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'] != 'PV'] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'].isnull() == False] possiblematcheslist = [] for entry in plantlist_uba_reduced.index: # print(entry) moin = str(plantlist_uba_reduced.loc[entry].uba_id_string) moin2 = [x for x in plantlist_bnetza_reduced.name_and_block.tolist() if str(x) != 'nan']# plantlist_bnetza_reduced['name_and_block'].tolist() # print(moin) # print(moin2) possiblealternative = difflib.get_close_matches(moin, moin2, n=2, cutoff=0.3) # print(moin, possiblealternative) logger.info('Plant ' + moin + ' not in Matchinglist. Possible Matches from BNetzA List: ' + str(possiblealternative)) possiblematcheslist.append((moin, possiblealternative)) # return possiblematcheslist return plantlist_bnetza_reduced # Testing this file if __name__ == "__main__": # BNetzA Power plant list url_bnetza = ('http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/' 'Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/' 'Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_CSV.csv' '?__blob=publicationFile&v=10') # UBA Power plant list url_uba = ('https://www.umweltbundesamt.de/sites/default/files/medien/372/dokumente/kraftwerke-de-ab-100-mw.xls') matchinglist = getmatchinglist() plantlist_bnetza = getbnetzalist(url_bnetza, previous=False) # plantlist_bnetza_previous = getbnetzalist(url_bnetza, previous=True) # plantlist_bnetza_differences = getlistdifferences(plantlist_bnetza_previous, plantlist_bnetza) # plantlist_uba = getubalist(url_uba, previous=False) # plantlist_uba_previous = getubalist(url_uba, previous=True) # plantlist_uba_differences = getlistdifferences(plantlist_uba_previous, plantlist_uba) matchinglistcheck(url_bnetza, url_uba) res = potentialmatching(url_bnetza, url_uba)
mit
q1ang/seaborn
seaborn/tests/test_distributions.py
14
8102
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif from . import PlotTestCase from .. import distributions as dist try: import statsmodels.nonparametric.api assert statsmodels.nonparametric.api _no_statsmodels = False except ImportError: _no_statsmodels = True class TestKDE(PlotTestCase): rs = np.random.RandomState(0) x = rs.randn(50) y = rs.randn(50) kernel = "gau" bw = "scott" gridsize = 128 clip = (-np.inf, np.inf) cut = 3 def test_scipy_univariate_kde(self): """Test the univariate KDE estimation with scipy.""" grid, y = dist._scipy_univariate_kde(self.x, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._scipy_univariate_kde(self.x, bw, self.gridsize, self.cut, self.clip) @skipif(_no_statsmodels) def test_statsmodels_univariate_kde(self): """Test the univariate KDE estimation with statsmodels.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._statsmodels_univariate_kde(self.x, self.kernel, bw, self.gridsize, self.cut, self.clip) def test_scipy_bivariate_kde(self): """Test the bivariate KDE estimation with scipy.""" clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) # Test a specific bandwidth clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, 1, self.gridsize, self.cut, clip) # Test that we get an error with an invalid bandwidth with nt.assert_raises(ValueError): dist._scipy_bivariate_kde(self.x, self.y, (1, 2), self.gridsize, self.cut, clip) @skipif(_no_statsmodels) def test_statsmodels_bivariate_kde(self): """Test the bivariate KDE estimation with statsmodels.""" clip = [self.clip, self.clip] x, y, z = dist._statsmodels_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) @skipif(_no_statsmodels) def test_statsmodels_kde_cumulative(self): """Test computation of cumulative KDE.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip, cumulative=True) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) # make sure y is monotonically increasing npt.assert_((np.diff(y) > 0).all()) def test_kde_cummulative_2d(self): """Check error if args indicate bivariate KDE and cumulative.""" with npt.assert_raises(TypeError): dist.kdeplot(self.x, data2=self.y, cumulative=True) def test_bivariate_kde_series(self): df = pd.DataFrame({'x': self.x, 'y': self.y}) ax_series = dist.kdeplot(df.x, df.y) ax_values = dist.kdeplot(df.x.values, df.y.values) nt.assert_equal(len(ax_series.collections), len(ax_values.collections)) nt.assert_equal(ax_series.collections[0].get_paths(), ax_values.collections[0].get_paths()) class TestJointPlot(PlotTestCase): rs = np.random.RandomState(sum(map(ord, "jointplot"))) x = rs.randn(100) y = rs.randn(100) data = pd.DataFrame(dict(x=x, y=y)) def test_scatter(self): g = dist.jointplot("x", "y", self.data) nt.assert_equal(len(g.ax_joint.collections), 1) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_reg(self): g = dist.jointplot("x", "y", self.data, kind="reg") nt.assert_equal(len(g.ax_joint.collections), 2) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_resid(self): g = dist.jointplot("x", "y", self.data, kind="resid") nt.assert_equal(len(g.ax_joint.collections), 1) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 0) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_hex(self): g = dist.jointplot("x", "y", self.data, kind="hex") nt.assert_equal(len(g.ax_joint.collections), 1) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_kde(self): g = dist.jointplot("x", "y", self.data, kind="kde") nt.assert_true(len(g.ax_joint.collections) > 0) nt.assert_equal(len(g.ax_marg_x.collections), 1) nt.assert_equal(len(g.ax_marg_y.collections), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_color(self): g = dist.jointplot("x", "y", self.data, color="purple") purple = mpl.colors.colorConverter.to_rgb("purple") scatter_color = g.ax_joint.collections[0].get_facecolor()[0, :3] nt.assert_equal(tuple(scatter_color), purple) hist_color = g.ax_marg_x.patches[0].get_facecolor()[:3] nt.assert_equal(hist_color, purple) def test_annotation(self): g = dist.jointplot("x", "y", self.data) nt.assert_equal(len(g.ax_joint.legend_.get_texts()), 1) g = dist.jointplot("x", "y", self.data, stat_func=None) nt.assert_is(g.ax_joint.legend_, None) def test_hex_customise(self): # test that default gridsize can be overridden g = dist.jointplot("x", "y", self.data, kind="hex", joint_kws=dict(gridsize=5)) nt.assert_equal(len(g.ax_joint.collections), 1) a = g.ax_joint.collections[0].get_array() nt.assert_equal(28, a.shape[0]) # 28 hexagons expected for gridsize 5 def test_bad_kind(self): with nt.assert_raises(ValueError): dist.jointplot("x", "y", self.data, kind="not_a_kind")
bsd-3-clause
tuanvu216/udacity-course
intro_to_machine_learning/lesson/lesson_4_choose_your_own_algorithm/your_algorithm.py
1
2628
#!/usr/bin/python import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture from time import time features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" points mixed ### in together--separate them so we can give them different colors in the scatterplot, ### and visually identify them grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast") plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") plt.show() ################################################################################# ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary # K Nearest Neighbor from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score clf = KNeighborsClassifier(n_neighbors=1) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Random Forest from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score clf = RandomForestClassifier(n_estimators=10) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Addaboost from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score clf = AdaBoostClassifier(n_estimators=100) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc try: prettyPicture(clf, features_test, labels_test) except NameError: pass
mit
LumPenPacK/NetworkExtractionFromImages
osx_build/nefi2_osx_amd64_xcode_2015/site-packages/numpy_1.11/numpy/lib/npyio.py
35
71412
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Mote that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-2-clause
amozie/amozie
studzie/keras_gym/mountain_car_v0.py
1
2577
import numpy as np import matplotlib.pyplot as plt import gym import time import copy from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Lambda, Input, Reshape, concatenate, Merge from keras.optimizers import Adam, RMSprop from keras.callbacks import History from keras import backend as K import tensorflow as tf from gym import Env, Space, spaces from gym.utils import seeding from rl.agents.dqn import DQNAgent from rl.policy import BoltzmannQPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory, EpisodeParameterMemory from rl.agents.cem import CEMAgent from rl.agents import SARSAAgent from rl.callbacks import TrainEpisodeLogger, CallbackList class MountainCarEnv(Env): metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self) -> None: self.env = gym.make('MountainCar-v0') self.action_space = self.env.action_space self.observation_space = self.env.observation_space def _step(self, action): step = self.env.step(action) step = list(step) step[1] = np.abs(step[0][1]) - 0.05 return tuple(step) def _reset(self): return self.env.reset() def _seed(self, seed=None): return self.env.seed(seed) def _render(self, mode='human', close=False): return self.env.render(mode, close) def _close(self): return self.env.close() env = MountainCarEnv() env.seed() nb_actions = env.action_space.n x = Input((1,) + env.observation_space.shape) y = Flatten()(x) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(nb_actions)(y) y = Activation('linear')(y) model = Model(x, y) memory = SequentialMemory(limit=10000, window_length=1) # policy = BoltzmannQPolicy() policy = EpsGreedyQPolicy() dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, gamma=.9, batch_size=32, enable_dueling_network=False, dueling_type='avg', target_model_update=.1, policy=policy) dqn.compile(Adam(), metrics=['mae']) hist = dqn.fit(env, nb_steps=10000, visualize=False, verbose=2, callbacks=None) state = env.reset() action = env.action_space.sample() print(action) state_list= [] for i in range(500): action = np.argmax(dqn.model.predict(np.expand_dims(np.expand_dims(state, 0), 0))[0]) state, reward, done, _ = env.step(2) state_list.append(reward) env.render() env.render(close=True) dqn.test(env, nb_episodes=5, visualize=True) env.render(close=True)
apache-2.0
jeffersonfparil/GTWAS_POOL_RADseq_SIM
BACKUP_SCRIPTS_20170930/assignPheno.py
1
4355
#!/usr/bin/env python import os, subprocess, sys, math import numpy as np import matplotlib.pyplot as plt work_DIR = sys.argv[1] genoFile = sys.argv[2] nQTL = int(sys.argv[3]) heritability = float(sys.argv[4]) model = int(sys.argv[5]) os.chdir(work_DIR) if model == 1: ################################################# # MODEL 1: additive effects alone # y = Xb + e; e~N(0, Ve); Ve=Vg(1/1-h^2); Vg=sum(cor(Xq)bqbq')/4 ################################################# GEN = np.genfromtxt(genoFile, delimiter='\t', skip_header=1) nLOCI = GEN.shape[0] nIND = GEN.shape[1] QTL_locations = np.random.choice(range(0, nLOCI), replace=False, size=nQTL) QTL_locations.sort() # DEFINING THE DISTRIBUTIONS OF THE EFFECTS: mean_QTL = 100/(2*nQTL); var_QTL = 2 #normal QTL effects #QTL effects: QTL_effects = np.random.normal(mean_QTL, np.sqrt(var_QTL), size=nQTL) #for a mean QTL effect of ~5 and ~mean phenotypic value of 50 QTL_OUT = np.column_stack((QTL_locations, QTL_effects)) #for writing out ########################################## X=np.transpose(GEN) GFX=QTL_effects nFX=nQTL h2=heritability #partionning the variance taking into account the linkage among associated SNPs AssoX=X[:,QTL_locations] Rho=np.corrcoef(AssoX,rowvar=0) XtX=GFX.reshape(1,nFX)*GFX.reshape(nFX,1) #GFX * GFX' (nFXxnFX dimensions) Vg=np.sum(Rho*XtX)/4 Ve=Vg*(1/h2-1) #Generating the phenotypes based on the variance components Xb=np.matmul(AssoX, GFX) #alpha e=np.random.normal(0,Ve**(0.5),nIND) Y_model1=Xb+e #OUTPUT np.savetxt("Simulated_Lolium_perenne_QTL.out", QTL_OUT, fmt='%s' ,delimiter="\t") np.savetxt("Simulated_Lolium_perenne_PHENOTYPES.data", Y_model1, fmt='%s' ,delimiter="\t") elif model == 2: ################################################# &#### FIX ME!!!! Y_model2 is giving me the middle finger! ;-P # MODEL 2: additive genetic effects + transcript levels # y = Xg + Ba + Zt + e; e~N(0,Ve); Ve = (Vg+Vt)(1/1-h^2) ################################################# transBase = sys.argv[6] transGeno = sys.argv[7] GEN = np.genfromtxt(genoFile, delimiter='\t', skip_header=1) T_base = np.genfromtxt(transBase, delimiter='\t', dtype=int) T_geno = np.genfromtxt(transGeno, delimiter='\t', dtype=int) nLOCI = GEN.shape[0] nIND = GEN.shape[1] nTRANS = len(T_base) QTL_locations = np.random.choice(range(0, nLOCI), replace=False, size=nQTL) QTL_locations.sort() # DEFINING THE DISTRIBUTIONS OF THE EFFECTS: mean_QTL = 100/(2*nQTL); var_QTL = 2 #normal QTL effects mean_bT = (mean_QTL /4); var_bT = 1 #normal base trancript level effects mean_gT = (mean_QTL /2); var_gT = 1 #normal genotype-specific trancript level effecs #QTL effects: QTL_effects = np.random.normal(mean_QTL, np.sqrt(var_QTL), size=nQTL) #for a mean QTL effect of ~5 and ~mean phenotypic value of 50 QTL_OUT = np.column_stack((QTL_locations, QTL_effects)) #for writing out #Transcript Base-levels effects: nCausalTrans = int(np.ceil(np.random.normal(nQTL, 1, size=1))[0]) #number of transcripts that affect the phenotype locCausalTrans = np.random.choice(nTRANS, size=nCausalTrans, replace=False) # (i.)base-level effects: T_base_effects = np.random.normal(mean_bT, np.sqrt(var_bT), size=nCausalTrans) # (ii.)genotype-specific level effects: T_geno_effects = np.random.normal(mean_gT, np.sqrt(var_gT), size=nCausalTrans) ########################################## X=np.transpose(GEN) GFX=QTL_effects nFX=nQTL h2=heritability T0 = T_base T1 = T_geno t0FX = np.zeros((nTRANS,1)); t0FX[locCausalTrans,0] = T_base_effects t1FX = np.zeros((nTRANS,1)); t1FX[locCausalTrans,0] = T_geno_effects #variance partitioning adding Vg with Vt--> variation due to genotype-specific transcripts abundance AssoZ=T1[:,locCausalTrans] Rho=np.corrcoef(AssoZ,rowvar=0) ZtZ=T_geno_effects.reshape(1,nCausalTrans)*T_geno_effects.reshape(nCausalTrans,1) Vt=np.sum(Rho*ZtZ)/4 Vet=(Vg+Vt)*(1/h2-1) #generating the phenotypes using the new residual distribution et:Vet Xg = np.matmul(X[:,QTL_locations], GFX) Ba = np.sum(T0[locCausalTrans]*T_base_effects) Zt = np.matmul(T1, t1FX) et=np.random.normal(0,Vet**(0.5),nIND) Y_model2 = Xg + Ba + Zt[:,0] + et #OUTPUT np.savetxt("Simulated_Lolium_perenne_QTL.out", QTL_OUT, fmt='%s' ,delimiter="\t") np.savetxt("Simulated_Lolium_perenne_PHENOTYPES.data", Y_model1, fmt='%s' ,delimiter="\t")
gpl-3.0
suyashbire1/pyhton_scripts_mom6
plot_twapv_budget_complete.py
1
18150
import sys import readParams_moreoptions as rdp1 import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as ticker from mom_plot1 import m6plot, xdegtokm import numpy as np from netCDF4 import MFDataset as mfdset, Dataset as dset import time from plot_twamomx_budget_complete_direct_newest import extract_twamomx_terms from plot_twamomy_budget_complete_direct_newest import extract_twamomy_terms import pyximport pyximport.install() from getvaratzc import getvaratzc5, getvaratzc def getutwa(fhgeo, fh, fh2, sl): dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] uh = (fh.variables['uh_masked'][sl].filled(0)*dt).sum(axis=0,keepdims=True)/np.sum(dt) h_cu = fh.variables['h_Cu'][sl].filled(0).mean(axis=0,keepdims=True) h_cu = np.ma.masked_array(h_cu,mask=(h_cu<1e-3)) dycu = fhgeo.variables['dyCu'][sl[2:]] utwa = uh/h_cu/dycu return utwa, h_cu def getvtwa(fhgeo, fh, fh2, sl): dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] vh = (fh.variables['vh_masked'][sl]*dt).sum(axis=0,keepdims=True)/np.sum(dt) h_cv = fh.variables['h_Cv'][sl].mean(axis=0,keepdims=True) h_cv = np.ma.masked_array(h_cv,mask=(h_cv<1e-3)) dxcv = fhgeo.variables['dxCv'][sl[2:]] vtwa = vh/dxcv/h_cv vtwa = np.concatenate((vtwa,-vtwa[:,:,:,-1:]),axis=3) h_cv = np.concatenate((h_cv,h_cv[:,:,:,-1:]),axis=3) return vtwa, h_cv def getpv(fhgeo, fh, fh2, xs, xe, ys, ye, zs=0, ze=None): sl = np.s_[:,zs:ze,ys:ye,xs:xe] slpy = np.s_[:,zs:ze,ys:ye+1,xs:xe] utwa,h_cu = getutwa(fhgeo, fh, fh2, slpy) dybu = fhgeo.variables['dyBu'][sl[2:]] utway = np.diff(utwa,axis=2)/dybu vtwa,h_cv = getvtwa(fhgeo, fh, fh2, sl) dxbu = fhgeo.variables['dxBu'][sl[2:]] vtwax = np.diff(vtwa,axis=3)/dxbu h_q = 0.25*(h_cu[:,:,:-1,:] + h_cu[:,:,1:,:] + h_cv[:,:,:,:-1] + h_cv[:,:,:,1:]) f = fhgeo.variables['f'][sl[2:]] pvhash = (f - utway + vtwax)/h_q return pvhash, h_q def extract_twapv_terms(geofil,vgeofil,fil,fil2,xstart,xend,ystart,yend,zs,ze,meanax,fil3=None, alreadysaved=False): if not alreadysaved: keepax = () for i in range(4): if i not in meanax: keepax += (i,) fhgeo = dset(geofil) fh = mfdset(fil) fh2 = mfdset(fil2) zi = rdp1.getdims(fh)[2][0] dbl = -np.diff(zi)*9.8/1031 (xs,xe),(ys,ye),dimq = rdp1.getlatlonindx(fh,wlon=xstart,elon=xend, slat=ystart, nlat=yend,zs=zs,ze=ze,xhxq='xq',yhyq='yq') dxbu = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[2][4] dybu = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[2][5] aq = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[1][1] f = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[-1] nt_const = dimq[0].size pvhash,hq = getpv(fhgeo, fh, fh2, xs, xe, ys, ye) sl = np.s_[:,zs:ze,ys:ye,xs:xe] slpy = np.s_[:,zs:ze,ys:ye+1,xs:xe] dxcu = fhgeo.variables['dxCu'][slpy[2:]] dycv = fhgeo.variables['dyCv'][sl[2:]] dycv = np.concatenate((dycv,dycv[:,-1:]),axis=1) if fil3: fh3 = mfdset(fil3) sltn = np.s_[-1:,zs:ze,ys:ye,xs:xe] islayerdeep0 = fh3.variables['islayerdeep'][-1:,0,0,0] islayerdeep = (fh3.variables['islayerdeep'][sltn].filled(np.nan)) swash = (islayerdeep0 - islayerdeep)/islayerdeep0*100 fh3.close() else: swash = None xmom = extract_twamomx_terms(geofil,vgeofil,fil,fil2,xs,xe,ys,ye+1,zs,ze,(0,), alreadysaved=False,xyasindices=True,calledfrompv=True)[2] ymom = extract_twamomy_terms(geofil,vgeofil,fil,fil2,xs,xe,ys,ye,zs,ze,(0,), alreadysaved=False,xyasindices=True,calledfrompv=True)[2] xmom = xmom[np.newaxis,:,:,:,:] ymom = ymom[np.newaxis,:,:,:,:] ymom = np.concatenate((ymom,ymom[:,:,:,-1:]),axis=3) bxppvflx = np.sum(xmom[:,:,:,:,[0,1,3,4]],axis=4) pvhash1,_ = getpv(fhgeo, fh, fh2, xs, xe, ys-1, ye+1) sl1 = np.s_[:,zs:ze,ys-1:ye+1,xs:xe] vtwa1, h_cv1 = getvtwa(fhgeo,fh,fh2,sl1) vtwa1 = 0.5*(vtwa1[:,:,:,:-1] + vtwa1[:,:,:,1:]) pvhashvtwa = pvhash1*vtwa1 sl1 = np.s_[:,zs:ze,ys:ye+1,xs:xe] h_cu1 = fh.variables['h_Cu'][sl1].filled(np.nan).mean(axis=0,keepdims=True) h_cu1 = np.ma.masked_array(h_cu1,mask=(h_cu1<1e-3)) pvflxx = h_cu1*(pvhashvtwa[:,:,:-1,:]+pvhashvtwa[:,:,1:,:])/2 byppvflx = np.sum(ymom[:,:,:,:,[0,1,3,4]],axis=4) pvhash1,_ = getpv(fhgeo, fh, fh2, xs-1, xe, ys, ye) sl1 = np.s_[:,zs:ze,ys:ye+1,xs-1:xe] utwa1, h_cu1 = getutwa(fhgeo,fh,fh2,sl1) utwa1 = 0.5*(utwa1[:,:,:-1,:]+utwa1[:,:,1:,:]) pvhashutwa = pvhash1*utwa1 pvhashutwa[:,:,:,-1] = 0.0 sl1 = np.s_[:,zs:ze,ys:ye,xs:xe] h_cv1 = fh.variables['h_Cv'][sl1].mean(axis=0,keepdims=True) h_cv1 = np.ma.masked_array(h_cv1,mask=(h_cv1<1e-3)) pvflxy = h_cv1*(pvhashutwa[:,:,:,:-1]+pvhashutwa[:,:,:,1:])/2 pvflxy = np.concatenate((pvflxy,pvflxy[:,:,:,-1:]),axis=3) bx = bxppvflx - pvflxx by = byppvflx + pvflxy xmom1 = xmom[:,:,:,:,[2,5,6,7,8,9]] xmom1 = np.concatenate((+pvflxx[:,:,:,:,np.newaxis], xmom1, bx[:,:,:,:,np.newaxis]), axis = 4) ymom1 = ymom[:,:,:,:,[2,5,6,7,8,9]] ymom1 = np.concatenate((-pvflxy[:,:,:,:,np.newaxis], ymom1, by[:,:,:,:,np.newaxis]), axis = 4) #pv = (-np.diff(xmom*dxcu[:,:,np.newaxis],axis=2) + np.diff(ymom*dycv[:,:,np.newaxis],axis=3))/aq[:,:,np.newaxis] pv = -np.diff(xmom,axis=2)/dybu[:,:,np.newaxis] + np.diff(ymom,axis=3)/dxbu[:,:,np.newaxis] pv1x = -np.diff(xmom1*dxcu[:,:,np.newaxis],axis=2)/aq[:,:,np.newaxis] pv1y = np.diff(ymom1*dycv[:,:,np.newaxis],axis=3)/aq[:,:,np.newaxis] slyp = np.s_[:,:,ys:ye+1,xs:xe] ah1 = fhgeo.variables['Ah'][slyp[2:]] slxmyp = np.s_[:,:,ys:ye+1,xs-1:xe] uh = fh2.variables['uh'][slxmyp].filled(0).mean(axis=0,keepdims=True) uhx = np.diff(uh,axis=3)/ah1 uhx = np.concatenate((uhx,uhx[:,:,:,-1:]),axis=3) uhx = 0.25*(uhx[:,:,:-1,:-1] + uhx[:,:,:-1,1:] + uhx[:,:,1:,:-1] + uhx[:,:,1:,1:]) pv1y[:,:,:,:,0] += pvhash*uhx slymp = np.s_[:,:,ys-1:ye+1,xs:xe] vh = fh2.variables['vh'][slymp].mean(axis=0,keepdims=True) vhy = np.diff(vh,axis=2)/ah1 vhy = np.concatenate((vhy,vhy[:,:,:,-1:]),axis=3) vhy = 0.25*(vhy[:,:,:-1,:-1] + vhy[:,:,:-1,1:] + vhy[:,:,1:,:-1] + vhy[:,:,1:,1:]) pv1x[:,:,:,:,0] += pvhash*vhy wd = fh2.variables['wd'][slyp].mean(axis=0,keepdims=True) wdb = np.diff(wd,axis=1) wdb = np.concatenate((wdb,wdb[:,:,:,-1:]),axis=3) wdb = 0.25*(wdb[:,:,:-1,:-1] + wdb[:,:,:-1,1:] + wdb[:,:,1:,:-1] + wdb[:,:,1:,1:]) pv3 = pvhash*wdb pv3 = pv3[:,:,:,:,np.newaxis] #hq[hq<1] = np.nan pvnew = np.concatenate((pv1y[:,:,:,:,:1], pv1x[:,:,:,:,:1], pv3, pv1x[:,:,:,:,1:-1], pv1y[:,:,:,:,1:-1], pv1x[:,:,:,:,-1:]+pv1y[:,:,:,:,-1:]),axis=4)/hq[:,:,:,:,np.newaxis] pv = np.ma.filled(pv.astype(np.float64), np.nan) pvnew = np.ma.filled(pvnew.astype(np.float64), np.nan) pvhash = np.ma.filled(pvhash.astype(np.float64), np.nan) pv = np.nanmean(pv,meanax,keepdims=True) pvnew = np.nanmean(pvnew,meanax,keepdims=True) pvhash = np.nanmean(pvhash,meanax,keepdims=True) X = dimq[keepax[1]] Y = dimq[keepax[0]] if 1 in keepax: dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] em = (fh2.variables['e'][0:,zs:ze,ys:ye,xs:xe]*dt).sum(axis=0,keepdims=True)/np.sum(dt) em = np.nanmean(em, meanax,keepdims=True) z = np.linspace(-3000,0,100) Y = z P = getvaratzc5(pv.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() Pnew = getvaratzc5(pvnew.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() pvhash = getvaratzc(pvhash.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() if fil3: swash = np.nanmean(swash, meanax,keepdims=True) swash = getvaratzc(swash.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() else: P = pv.squeeze() Pnew = pvnew.squeeze() pvhash = pvhash.squeeze() swash = swash.squeeze() np.savez('twapv_complete_terms', X=X,Y=Y,P=P) else: npzfile = np.load('twapv_complete_terms.npz') X = npzfile['X'] Y = npzfile['Y'] P = npzfile['P'] fhgeo.close() fh.close() fh2.close() return (X,Y,P,pvhash,Pnew,swash) def plot_twapv(geofil,vgeofil,fil,fil2,xstart,xend,ystart,yend,zs,ze,meanax, fil3=None,plotterms = [0,1,10,11,12,13], swashperc = 1, cmaxpercfactor = 1,cmaxpercfactorpvhash=15,cmaxpercfactorPnew=15, savfil=None,savfilep=None,alreadysaved=False): X,Y,P,pvhash,Pnew,swash = extract_twapv_terms(geofil,vgeofil,fil,fil2, xstart,xend,ystart,yend,zs,ze,meanax,alreadysaved=alreadysaved,fil3=fil3) cmax = np.nanpercentile(P,[cmaxpercfactor,100-cmaxpercfactor]) cmax = np.max(np.fabs(cmax)) fig,ax = plt.subplots(np.int8(np.ceil(P.shape[-1]/2)),2, sharex=True,sharey=True,figsize=(12, 9)) ti = ['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)', '(i)','(j)','(k)','(l)','(m)','(n)','(o)','(p)','(q)','(r)'] labx = [ r'$(\hat{u}\hat{u}_{\tilde{x}})_{\tilde{y}}$', r'$(\hat{v}\hat{u}_{\tilde{y}})_{\tilde{y}}$', r'$(\hat{\varpi}\hat{u}_{\tilde{b}})_{\tilde{y}}$', r'$(-f\hat{v})_{\tilde{y}}$', r'$(\overline{m_{\tilde{x}}})_{\tilde{y}}$', r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}u^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{x}})_{\tilde{y}}$""", r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{y}}$""", r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{x}}^{\prime}})_{\tilde{b}})_{\tilde{y}}$""", r'$(-\widehat{X^H})_{\tilde{y}}$', r'$(-\widehat{X^V})_{\tilde{y}}$'] laby = [ r'$(-\hat{u}\hat{v}_{\tilde{x}})_{\tilde{x}}$', r'$(-\hat{v}\hat{v}_{\tilde{y}})_{\tilde{x}}$', r'$(-\hat{\varpi}\hat{v}_{\tilde{b}})_{\tilde{x}}$', r'$(-f\hat{u})_{\tilde{x}}$', r'$(-\overline{m_{\tilde{y}}})_{\tilde{x}}$', r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{x}})_{\tilde{x}}$""", r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{v^{\prime \prime}v^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{y}})_{\tilde{x}}$""", r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{v^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r'$(\widehat{Y^H})_{\tilde{x}}$', r'$(\widehat{Y^V})_{\tilde{x}}$'] for i in range(P.shape[-1]): axc = ax.ravel()[i] im = m6plot((X,Y,P[:,:,i]),axc,vmax=cmax,vmin=-cmax,ptype='imshow', txt=labx[i]+' + '+laby[i], ylim=(-2500,0), cmap='RdBu_r', cbar=False) if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if i % 2 == 0: axc.set_ylabel('z (m)') if i > np.size(ax)-3: xdegtokm(axc,0.5*(ystart+yend)) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() im = m6plot((X,Y,np.sum(P,axis=2)),vmax=cmax,vmin=-cmax,ptype='imshow',cmap='RdBu_r',ylim=(-2500,0)) if savfil: plt.savefig(savfil+'res.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() fig,ax = plt.subplots(np.int8(np.ceil(len(plotterms)/2)),2, sharex=True,sharey=True,figsize=(12,7)) cmaxpvhash = np.nanpercentile(pvhash, [cmaxpercfactorpvhash,100-cmaxpercfactorpvhash]) cmaxpvhash = np.max(np.fabs(cmaxpvhash)) cmax = np.nanpercentile(Pnew, [cmaxpercfactorPnew,100-cmaxpercfactorPnew]) cmax = np.max(np.fabs(cmax)) lab = [ r"$-\hat{u}\Pi^{\#}_{\tilde{x}}$", r"$-\hat{v}\Pi^{\#}_{\tilde{y}}$", r"$\Pi^{\#}(\bar{h} \hat{\varpi})_{\tilde{b}}$", r"$\frac{(\hat{\varpi}\hat{u}_{\tilde{b}})_{\tilde{y}}}{\bar{h}}$", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}u^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{x}})_{\tilde{y}}$""", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{y}})_{\tilde{y}}$""", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{x}}^{\prime}})_{\tilde{b}})_{\tilde{y}}$""", r'$-\frac{1}{\bar{h}}(\widehat{X^H})_{\tilde{y}}$', r'$-\frac{1}{\bar{h}}(\widehat{X^V})_{\tilde{y}}$', r'$-\frac{(\hat{\varpi}\hat{v}_{\tilde{b}})_{\tilde{x}}}{\bar{h}}$', r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{x}})_{\tilde{x}}$""", #r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}v^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{y}})_{\tilde{x}}$""", r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}v^{\prime \prime}})_{\tilde{y}})_{\tilde{x}}$""", #r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{\zeta_{\tilde{b}}}}(\overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r'$\frac{1}{\bar{h}}(\widehat{Y^H})_{\tilde{x}}$', r'$\frac{1}{\bar{h}}(\widehat{Y^V})_{\tilde{x}}$', r'$B_{\tilde{x} \tilde{y}} - B_{\tilde{y} \tilde{x}}$'] matplotlib.rcParams['contour.negative_linestyle'] = 'solid' for i,p in enumerate(plotterms): axc = ax.ravel()[i] im = m6plot((X,Y,Pnew[:,:,p]),axc,vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[p], cmap='RdBu_r', cbar=False) im2 = axc.contour(X,Y,pvhash,np.logspace(-6,-5.5,5),colors='grey',linewidths=2) im2.clabel(inline=True,fmt="%.1e") if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if i % 2 == 0: axc.set_ylabel('z (m)') if i > np.size(ax)-3: xdegtokm(axc,0.5*(ystart+yend)) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'Pnew.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() im = m6plot((X,Y,np.sum(Pnew,axis=2)),ptype='imshow',vmax=cmax,vmin=-cmax,cmap='RdBu_r',ylim=(-2500,0)) if savfil: plt.savefig(savfil+'Pnewres.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() fig,ax = plt.subplots(1,2,sharex=True,sharey=True,figsize=(10, 3)) im = m6plot((X,Y,np.nansum(Pnew[:,:,:2],axis=2)), ax[0],vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[0]+lab[1], cmap='RdBu_r', cbar=False) im = m6plot((X,Y,np.nansum(Pnew[:,:,12:13],axis=2)), ax[1],vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[12], cmap='RdBu_r', cbar=False) ax[0].set_ylabel('z (m)') for axc in ax: xdegtokm(axc,0.5*(ystart+yend)) im2 = axc.contour(X,Y,pvhash,np.logspace(-6,-5.5,5),colors='grey',linewidths=2) im2.clabel(inline=True,fmt="%.1e") axc.set_ylim(-1200,0) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'Pnewnew.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() cmax = np.nanpercentile(pvhash, [cmaxpercfactorpvhash,100-cmaxpercfactorpvhash]) cmax = np.max(np.fabs(cmax)) im = m6plot((X,Y,pvhash),ptype='imshow',vmax=cmax,vmin=-cmax,cmap='RdBu_r',ylim=(-2500,0)) if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if savfil: plt.savefig(savfil+'pvhash.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show()
gpl-3.0
doutib/lobpredict
lobpredictrst/jupyter/simple_model/create_simple_model_predict.py
1
6870
# coding: utf-8 # # The best model parameters are given by # ``` # author : SHAMINDRA # data_source_dir : SC_shuffle # test_type : validation # model_type : RF # RF: # n_estimators : 100 # criterion : 'gini' # max_features : 'auto' # max_depth : 20 # n_jobs : 1 # SVM: # kernel : 'rbf' # degree : 3 # gamma : 'auto' # tol : 0.001 # NNET: # method1 : 'Tanh' # neurons1 : 24 # method2 : 'Tanh' # neurons2 : 39 # decay : 0.0001 # learning_rate : 0.001 # n_iter : 25 # random_state : 1 # ``` # In[66]: # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import imp import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import log_loss from sklearn.metrics import accuracy_score import pandas as pd # We looked at the top features from the best performing random forest. They are as below: # In[48]: # The top variables are: var_importance = [(1, 'P_1_bid', 0.020001165389254737) , (2, 'V_1_bid', 0.018358575666246449) , (3, 'P_1_ask', 0.017058479215839299) , (4, 'V_1_ask', 0.016953559068869958) , (5, 'P_2_bid', 0.016908649059514971) , (6, 'V_2_bid', 0.016219220215427665) , (7, 'P_2_ask', 0.015039647893425838) , (8, 'V_2_ask', 0.014497773408233052) , (9, 'P_3_bid', 0.014321084019596746) , (10, 'V_3_bid', 0.014158850118003859) , (11, 'P_3_ask', 0.014101386932514923) , (12, 'V_3_ask', 0.013911823640617986) , (13, 'P_4_bid', 0.013838322603744435) , (14, 'V_4_bid', 0.013668619218980316) , (15, 'P_4_ask', 0.013413471959983998)] # In[33]: # Open test and train sets df_train = pd.read_csv(train_ds_ref , compression='gzip', index_col = None) df_test = pd.read_csv(test_ds_ref , compression='gzip', index_col = None) # Drop the first columns - they are not useful df_train_clean = df_train.iloc[:,1:] df_test_clean = df_test.iloc[:,1:] # In[34]: X_train_cols = list(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']].columns.values) X_train = np.array(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_train = np.array(df_train_clean[['labels']])[:,0] X_test = np.array(df_test_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_test = np.array(df_test_clean[['labels']])[:,0] # In[38]: # Define the labels labels = np.unique(Y_train) ## # Scale Data scaler = MinMaxScaler() X_test = scaler.fit_transform(X_test) X_train = scaler.fit_transform(X_train) # Set up the data logreg = linear_model.LogisticRegression(C=1e5) # Fit logreg.fit(X_train, Y_train) # Predict Y_hat = logreg.predict(X_test) Y_probs = logreg.predict_proba(X_test) ## # Misclassification error rate miss_err = 1-accuracy_score(Y_test, Y_hat) ## # Log Loss eps = 10^(-15) logloss = log_loss(Y_test, Y_probs, eps = eps) ##confusion_matrix confusion_matrix1 = confusion_matrix(y_true=Y_test, y_pred=Y_hat , labels=labels) # classification_report classification_report1 = classification_report(y_true=Y_test, y_pred=Y_hat) # Output results in a list format result = [] result.append("confusion_matrix") result.append(confusion_matrix1) result.append("classification_report") result.append(classification_report1) result.append("logloss") result.append(logloss) result.append("miss_err") result.append(miss_err) result.append("Y_hat") result.append(Y_hat) # In[46]: print(result[3]) print(Y_hat) print(Y_probs) # #### The predicted output for our most successful RF model is as follows # ``` # classification_report # # precision recall f1-score support # # -1 0.99 0.98 0.98 18373 # 0 0.97 0.98 0.97 16950 # 1 0.99 0.98 0.98 15265 # # avg / total 0.98 0.98 0.98 50588 # ``` # In[49]: def predict_simple_linear(df_train_clean, df_test_clean): X_train_cols = list(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']].columns.values) X_train = np.array(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_train = np.array(df_train_clean[['labels']])[:,0] X_test = np.array(df_test_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_test = np.array(df_test_clean[['labels']])[:,0] # Define the labels labels = np.unique(Y_train) ## # Scale Data scaler = MinMaxScaler() X_test = scaler.fit_transform(X_test) X_train = scaler.fit_transform(X_train) # Set up the data logreg = linear_model.LogisticRegression(C=1e5) # Fit logreg.fit(X_train, Y_train) # Predict Y_hat = logreg.predict(X_test) Y_probs = logreg.predict_proba(X_test) ## # Misclassification error rate miss_err = 1-accuracy_score(Y_test, Y_hat) ## # Log Loss eps = 10^(-15) logloss = log_loss(Y_test, Y_probs, eps = eps) ##confusion_matrix confusion_matrix1 = confusion_matrix(y_true=Y_test, y_pred=Y_hat , labels=labels) # classification_report classification_report1 = classification_report(y_true=Y_test, y_pred=Y_hat) # Output results in a list format result = [] result.append("confusion_matrix") result.append(confusion_matrix1) result.append("classification_report") result.append(classification_report1) result.append("logloss") result.append(logloss) result.append("miss_err") result.append(miss_err) result.append("Y_hat") result.append(Y_hat) return result # In[62]: linear_simple_predict = predict_simple_linear(df_train_clean = df_train_clean , df_test_clean = df_train_clean) # In[64]: # Get the predicted outcomes linear_simple_predict_vals = linear_simple_predict[len(linear_simple_predict) -1] len(list(linear_simple_predict_vals)) # In[67]: modl = imp.load_source('execute_model', '../../execute_model.py') # In[ ]:
isc
rfoxfa/python-utils
utils/plotting.py
1
1798
""" Plotting functions. """ from __future__ import absolute_import import matplotlib.pyplot as plt import numpy as np def hhist(items, title=None, axislabel=None, color=None, height=None, width=None, reverse=False): """ Plots a horizontal histogram of values and frequencies. Arguments: items (iterable[any]) => A list of objects. title (Optional[str]) => A title for the resulting histogram. axislabel (Optional[str]) => A label for the y-axis that lists the unique items in the parameter list. color (Optional[str]) => A matplotlib color value for coloring the histogram (default: matplotlib's default plot color, a royal blue) height (Optional[int]) => A height for the plot (default: 10) width (Optional[int]) => A width for the plot (default: 20) reverse (Optional[bool]) => Whether or not the histogram should plot from top to bottom in order of decreasing frequency or the reverse of that. Returns: Void, but a matplotlib figure should be produced (type=None). """ # Parse the unique items and their counts. unique_items, item_counts = np.unique(items, return_counts=True) # Sort the items by frequency. item_counts, unique_items = zip(*sorted(zip(item_counts, unique_items), reverse=reverse)) # Plot the frequencies. pos = np.arange(len(unique_items)) + 0.5 plt.figure(figsize=((width or 20), (height or 10))) plt.barh(pos, item_counts, align='center', color=color) plt.yticks(pos, unique_items) plt.xlabel('Frequency') if axislabel: plt.ylabel(axislabel) if title: plt.title(title) plt.show()
gpl-2.0
rexshihaoren/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
levelrf/level_basestation
gr-filter/examples/fir_filter_ccc.py
13
3154
#!/usr/bin/env python from gnuradio import gr, filter from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1) self.head = gr.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = gr.vector_sink_c() self.vsnk_out = gr.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
etkirsch/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
Unidata/MetPy
v0.9/_downloads/8591910a2b42dadcf3b05658ddd9c600/isentropic_example.py
2
7222
# Copyright (c) 2017,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ =================== Isentropic Analysis =================== The MetPy function `mpcalc.isentropic_interpolation` allows for isentropic analysis from model analysis data in isobaric coordinates. """ ######################################## import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt import numpy as np import xarray as xr import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, add_timestamp from metpy.units import units ####################################### # **Getting the data** # # In this example, NARR reanalysis data for 18 UTC 04 April 1987 from the National Centers # for Environmental Information (https://www.ncdc.noaa.gov/data-access/model-data) # will be used. data = xr.open_dataset(get_test_data('narr_example.nc', False)) ########################## print(list(data.variables)) ############################# # We will reduce the dimensionality of the data as it is pulled in to remove an empty time # dimension. # Assign data to variable names lat = data['lat'] lon = data['lon'] lev = data['isobaric'] times = data['time'] tmp = data['Temperature'][0] uwnd = data['u_wind'][0] vwnd = data['v_wind'][0] spech = data['Specific_humidity'][0] # pint doesn't understand gpm data['Geopotential_height'].attrs['units'] = 'meter' hgt = data['Geopotential_height'][0] ############################# # To properly interpolate to isentropic coordinates, the function must know the desired output # isentropic levels. An array with these levels will be created below. isentlevs = [296.] * units.kelvin #################################### # **Conversion to Isentropic Coordinates** # # Once three dimensional data in isobaric coordinates has been pulled and the desired # isentropic levels created, the conversion to isentropic coordinates can begin. Data will be # passed to the function as below. The function requires that isentropic levels, isobaric # levels, and temperature be input. Any additional inputs (in this case relative humidity, u, # and v wind components) will be linearly interpolated to isentropic space. isent_anal = mpcalc.isentropic_interpolation(isentlevs, lev, tmp, spech, uwnd, vwnd, hgt, tmpk_out=True) ##################################### # The output is a list, so now we will separate the variables to different names before # plotting. isentprs, isenttmp, isentspech, isentu, isentv, isenthgt = isent_anal isentu.ito('kt') isentv.ito('kt') ######################################## # A quick look at the shape of these variables will show that the data is now in isentropic # coordinates, with the number of vertical levels as specified above. print(isentprs.shape) print(isentspech.shape) print(isentu.shape) print(isentv.shape) print(isenttmp.shape) print(isenthgt.shape) ################################# # **Converting to Relative Humidity** # # The NARR only gives specific humidity on isobaric vertical levels, so relative humidity will # have to be calculated after the interpolation to isentropic space. isentrh = 100 * mpcalc.relative_humidity_from_specific_humidity(isentspech, isenttmp, isentprs) ####################################### # **Plotting the Isentropic Analysis** # Set up our projection crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0) # Coordinates to limit map area bounds = [(-122., -75., 25., 50.)] # Choose a level to plot, in this case 296 K level = 0 fig = plt.figure(figsize=(17., 12.)) add_metpy_logo(fig, 120, 245, size='large') ax = fig.add_subplot(1, 1, 1, projection=crs) ax.set_extent(*bounds, crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75) ax.add_feature(cfeature.STATES, linewidth=0.5) # Plot the surface clevisent = np.arange(0, 1000, 25) cs = ax.contour(lon, lat, isentprs[level, :, :], clevisent, colors='k', linewidths=1.0, linestyles='solid', transform=ccrs.PlateCarree()) ax.clabel(cs, fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True, use_clabeltext=True) # Plot RH cf = ax.contourf(lon, lat, isentrh[level, :, :], range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree()) cb = fig.colorbar(cf, orientation='horizontal', extend='max', aspect=65, shrink=0.5, pad=0.05, extendrect='True') cb.set_label('Relative Humidity', size='x-large') # Plot wind barbs ax.barbs(lon.values, lat.values, isentu[level, :, :].m, isentv[level, :, :].m, length=6, regrid_shape=20, transform=ccrs.PlateCarree()) # Make some titles ax.set_title('{:.0f} K Isentropic Pressure (hPa), Wind (kt), Relative Humidity (percent)' .format(isentlevs[level].m), loc='left') add_timestamp(ax, times[0].dt, y=0.02, high_contrast=True) fig.tight_layout() ###################################### # **Montgomery Streamfunction** # # The Montgomery Streamfunction, :math:`{\psi} = gdz + CpT`, is often desired because its # gradient is proportional to the geostrophic wind in isentropic space. This can be easily # calculated with `mpcalc.montgomery_streamfunction`. # Calculate Montgomery Streamfunction and scale by 10^-2 for plotting msf = mpcalc.montgomery_streamfunction(isenthgt, isenttmp) / 100. # Choose a level to plot, in this case 296 K level = 0 fig = plt.figure(figsize=(17., 12.)) add_metpy_logo(fig, 120, 250, size='large') ax = plt.subplot(111, projection=crs) ax.set_extent(*bounds, crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75) ax.add_feature(cfeature.STATES.with_scale('50m'), linewidth=0.5) # Plot the surface clevmsf = np.arange(0, 4000, 5) cs = ax.contour(lon, lat, msf[level, :, :], clevmsf, colors='k', linewidths=1.0, linestyles='solid', transform=ccrs.PlateCarree()) ax.clabel(cs, fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True, use_clabeltext=True) # Plot RH cf = ax.contourf(lon, lat, isentrh[level, :, :], range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree()) cb = fig.colorbar(cf, orientation='horizontal', extend='max', aspect=65, shrink=0.5, pad=0.05, extendrect='True') cb.set_label('Relative Humidity', size='x-large') # Plot wind barbs. ax.barbs(lon.values, lat.values, isentu[level, :, :].m, isentv[level, :, :].m, length=6, regrid_shape=20, transform=ccrs.PlateCarree()) # Make some titles ax.set_title('{:.0f} K Montgomery Streamfunction '.format(isentlevs[level].m) + r'($10^{-2} m^2 s^{-2}$), ' + 'Wind (kt), Relative Humidity (percent)', loc='left') add_timestamp(ax, times[0].dt, y=0.02, pretext='Valid: ', high_contrast=True) fig.tight_layout() plt.show()
bsd-3-clause
del680202/MachineLearning-memo
src/tensorflow/autocoder.py
1
6809
# View more python learning tutorial on my Youtube and Youku channel!!! # My tutorial website: https://morvanzhou.github.io/tutorials/ from __future__ import division, print_function, absolute_import import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) # Visualize decoder setting # Parameters learning_rate = 0.01 training_epochs = 5 batch_size = 256 display_step = 1 examples_to_show = 10 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) # hidden layer settings n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features weights = { 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b2': tf.Variable(tf.random_normal([n_input])), } # Building the encoder def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) return layer_2 # Building the decoder def decoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) return layer_2 """ # Visualize encoder setting # Parameters learning_rate = 0.01 # 0.01 this learning rate will be better! Tested training_epochs = 10 batch_size = 256 display_step = 1 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) # hidden layer settings n_hidden_1 = 128 n_hidden_2 = 64 n_hidden_3 = 10 n_hidden_4 = 2 weights = { 'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)), 'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)), 'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)), 'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)), 'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)), 'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)), 'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)), 'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])), 'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])), 'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b4': tf.Variable(tf.random_normal([n_input])), } def encoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), biases['encoder_b3'])) layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']), biases['encoder_b4']) return layer_4 def decoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), biases['decoder_b3'])) layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']), biases['decoder_b4'])) return layer_4 """ # Construct model encoder_op = encoder(X) decoder_op = decoder(encoder_op) # Prediction y_pred = decoder_op # Targets (Labels) are the input data. y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess: # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 sess.run(tf.initialize_all_variables()) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") # # Applying encode and decode over test set encode_decode = sess.run( y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) #Raw image a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) # encode -> decode image plt.show() # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images}) # plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels) # plt.colorbar() # plt.show()
apache-2.0
Lightmatter/django-inlineformfield
.tox/py27/lib/python2.7/site-packages/IPython/html/notebookapp.py
5
34560
# coding: utf-8 """A tornado based IPython notebook server. Authors: * Brian Granger """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (C) 2013 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib import errno import io import json import logging import os import random import re import select import signal import socket import sys import threading import time import webbrowser # Third party # check for pyzmq 2.1.11 from IPython.utils.zmqrelated import check_for_zmq check_for_zmq('2.1.11', 'IPython.html') from jinja2 import Environment, FileSystemLoader # Install the pyzmq ioloop. This has to be done before anything else from # tornado is imported. from zmq.eventloop import ioloop ioloop.install() # check for tornado 3.1.0 msg = "The IPython Notebook requires tornado >= 3.1.0" try: import tornado except ImportError: raise ImportError(msg) try: version_info = tornado.version_info except AttributeError: raise ImportError(msg + ", but you have < 1.1.0") if version_info < (3,1,0): raise ImportError(msg + ", but you have %s" % tornado.version) from tornado import httpserver from tornado import web # Our own libraries from IPython.html import DEFAULT_STATIC_FILES_PATH from .base.handlers import Template404 from .log import log_request from .services.kernels.kernelmanager import MappingKernelManager from .services.notebooks.nbmanager import NotebookManager from .services.notebooks.filenbmanager import FileNotebookManager from .services.clusters.clustermanager import ClusterManager from .services.sessions.sessionmanager import SessionManager from .base.handlers import AuthenticatedFileHandler, FileFindHandler from IPython.config import Config from IPython.config.application import catch_config_error, boolean_flag from IPython.core.application import BaseIPythonApplication from IPython.core.profiledir import ProfileDir from IPython.consoleapp import IPythonConsoleApp from IPython.kernel import swallow_argv from IPython.kernel.zmq.session import default_secure from IPython.kernel.zmq.kernelapp import ( kernel_flags, kernel_aliases, ) from IPython.nbformat.sign import NotebookNotary from IPython.utils.importstring import import_item from IPython.utils import submodule from IPython.utils.traitlets import ( Dict, Unicode, Integer, List, Bool, Bytes, DottedObjectName, TraitError, ) from IPython.utils import py3compat from IPython.utils.path import filefind, get_ipython_dir from .utils import url_path_join #----------------------------------------------------------------------------- # Module globals #----------------------------------------------------------------------------- _examples = """ ipython notebook # start the notebook ipython notebook --profile=sympy # use the sympy profile ipython notebook --certfile=mycert.pem # use SSL/TLS certificate """ #----------------------------------------------------------------------------- # Helper functions #----------------------------------------------------------------------------- def random_ports(port, n): """Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n-5): yield max(1, port + random.randint(-2*n, 2*n)) def load_handlers(name): """Load the (URL pattern, handler) tuples for each component.""" name = 'IPython.html.' + name mod = __import__(name, fromlist=['default_handlers']) return mod.default_handlers #----------------------------------------------------------------------------- # The Tornado web application #----------------------------------------------------------------------------- class NotebookWebApplication(web.Application): def __init__(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options): settings = self.init_settings( ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options) handlers = self.init_handlers(settings) super(NotebookWebApplication, self).__init__(handlers, **settings) def init_settings(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options=None): # Python < 2.6.5 doesn't accept unicode keys in f(**kwargs), and # base_url will always be unicode, which will in turn # make the patterns unicode, and ultimately result in unicode # keys in kwargs to handler._execute(**kwargs) in tornado. # This enforces that base_url be ascii in that situation. # # Note that the URLs these patterns check against are escaped, # and thus guaranteed to be ASCII: 'héllo' is really 'h%C3%A9llo'. base_url = py3compat.unicode_to_str(base_url, 'ascii') template_path = settings_overrides.get("template_path", os.path.join(os.path.dirname(__file__), "templates")) jenv_opt = jinja_env_options if jinja_env_options else {} env = Environment(loader=FileSystemLoader(template_path),**jenv_opt ) settings = dict( # basics log_function=log_request, base_url=base_url, template_path=template_path, static_path=ipython_app.static_file_path, static_handler_class = FileFindHandler, static_url_prefix = url_path_join(base_url,'/static/'), # authentication cookie_secret=ipython_app.cookie_secret, login_url=url_path_join(base_url,'/login'), password=ipython_app.password, # managers kernel_manager=kernel_manager, notebook_manager=notebook_manager, cluster_manager=cluster_manager, session_manager=session_manager, # IPython stuff nbextensions_path = ipython_app.nbextensions_path, mathjax_url=ipython_app.mathjax_url, config=ipython_app.config, jinja2_env=env, ) # allow custom overrides for the tornado web app. settings.update(settings_overrides) return settings def init_handlers(self, settings): # Load the (URL pattern, handler) tuples for each component. handlers = [] handlers.extend(load_handlers('base.handlers')) handlers.extend(load_handlers('tree.handlers')) handlers.extend(load_handlers('auth.login')) handlers.extend(load_handlers('auth.logout')) handlers.extend(load_handlers('notebook.handlers')) handlers.extend(load_handlers('nbconvert.handlers')) handlers.extend(load_handlers('services.kernels.handlers')) handlers.extend(load_handlers('services.notebooks.handlers')) handlers.extend(load_handlers('services.clusters.handlers')) handlers.extend(load_handlers('services.sessions.handlers')) handlers.extend(load_handlers('services.nbconvert.handlers')) # FIXME: /files/ should be handled by the Contents service when it exists nbm = settings['notebook_manager'] if hasattr(nbm, 'notebook_dir'): handlers.extend([ (r"/files/(.*)", AuthenticatedFileHandler, {'path' : nbm.notebook_dir}), (r"/nbextensions/(.*)", FileFindHandler, {'path' : settings['nbextensions_path']}), ]) # prepend base_url onto the patterns that we match new_handlers = [] for handler in handlers: pattern = url_path_join(settings['base_url'], handler[0]) new_handler = tuple([pattern] + list(handler[1:])) new_handlers.append(new_handler) # add 404 on the end, which will catch everything that falls through new_handlers.append((r'(.*)', Template404)) return new_handlers class NbserverListApp(BaseIPythonApplication): description="List currently running notebook servers in this profile." flags = dict( json=({'NbserverListApp': {'json': True}}, "Produce machine-readable JSON output."), ) json = Bool(False, config=True, help="If True, each line of output will be a JSON object with the " "details from the server info file.") def start(self): if not self.json: print("Currently running servers:") for serverinfo in list_running_servers(self.profile): if self.json: print(json.dumps(serverinfo)) else: print(serverinfo['url'], "::", serverinfo['notebook_dir']) #----------------------------------------------------------------------------- # Aliases and Flags #----------------------------------------------------------------------------- flags = dict(kernel_flags) flags['no-browser']=( {'NotebookApp' : {'open_browser' : False}}, "Don't open the notebook in a browser after startup." ) flags['no-mathjax']=( {'NotebookApp' : {'enable_mathjax' : False}}, """Disable MathJax MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) # Add notebook manager flags flags.update(boolean_flag('script', 'FileNotebookManager.save_script', 'Auto-save a .py script everytime the .ipynb notebook is saved', 'Do not auto-save .py scripts for every notebook')) # the flags that are specific to the frontend # these must be scrubbed before being passed to the kernel, # or it will raise an error on unrecognized flags notebook_flags = ['no-browser', 'no-mathjax', 'script', 'no-script'] aliases = dict(kernel_aliases) aliases.update({ 'ip': 'NotebookApp.ip', 'port': 'NotebookApp.port', 'port-retries': 'NotebookApp.port_retries', 'transport': 'KernelManager.transport', 'keyfile': 'NotebookApp.keyfile', 'certfile': 'NotebookApp.certfile', 'notebook-dir': 'NotebookApp.notebook_dir', 'browser': 'NotebookApp.browser', }) # remove ipkernel flags that are singletons, and don't make sense in # multi-kernel evironment: aliases.pop('f', None) notebook_aliases = [u'port', u'port-retries', u'ip', u'keyfile', u'certfile', u'notebook-dir', u'profile', u'profile-dir', 'browser'] #----------------------------------------------------------------------------- # NotebookApp #----------------------------------------------------------------------------- class NotebookApp(BaseIPythonApplication): name = 'ipython-notebook' description = """ The IPython HTML Notebook. This launches a Tornado based HTML Notebook Server that serves up an HTML5/Javascript Notebook client. """ examples = _examples classes = IPythonConsoleApp.classes + [MappingKernelManager, NotebookManager, FileNotebookManager, NotebookNotary] flags = Dict(flags) aliases = Dict(aliases) subcommands = dict( list=(NbserverListApp, NbserverListApp.description.splitlines()[0]), ) kernel_argv = List(Unicode) def _log_level_default(self): return logging.INFO def _log_format_default(self): """override default log format to include time""" return u"%(asctime)s.%(msecs).03d [%(name)s]%(highlevel)s %(message)s" # create requested profiles by default, if they don't exist: auto_create = Bool(True) # file to be opened in the notebook server file_to_run = Unicode('', config=True) def _file_to_run_changed(self, name, old, new): path, base = os.path.split(new) if path: self.file_to_run = base self.notebook_dir = path # Network related information allow_origin = Unicode('', config=True, help="""Set the Access-Control-Allow-Origin header Use '*' to allow any origin to access your server. Takes precedence over allow_origin_pat. """ ) allow_origin_pat = Unicode('', config=True, help="""Use a regular expression for the Access-Control-Allow-Origin header Requests from an origin matching the expression will get replies with: Access-Control-Allow-Origin: origin where `origin` is the origin of the request. Ignored if allow_origin is set. """ ) allow_credentials = Bool(False, config=True, help="Set the Access-Control-Allow-Credentials: true header" ) ip = Unicode('localhost', config=True, help="The IP address the notebook server will listen on." ) def _ip_changed(self, name, old, new): if new == u'*': self.ip = u'' port = Integer(8888, config=True, help="The port the notebook server will listen on." ) port_retries = Integer(50, config=True, help="The number of additional ports to try if the specified port is not available." ) certfile = Unicode(u'', config=True, help="""The full path to an SSL/TLS certificate file.""" ) keyfile = Unicode(u'', config=True, help="""The full path to a private key file for usage with SSL/TLS.""" ) cookie_secret = Bytes(b'', config=True, help="""The random bytes used to secure cookies. By default this is a new random number every time you start the Notebook. Set it to a value in a config file to enable logins to persist across server sessions. Note: Cookie secrets should be kept private, do not share config files with cookie_secret stored in plaintext (you can read the value from a file). """ ) def _cookie_secret_default(self): return os.urandom(1024) password = Unicode(u'', config=True, help="""Hashed password to use for web authentication. To generate, type in a python/IPython shell: from IPython.lib import passwd; passwd() The string should be of the form type:salt:hashed-password. """ ) open_browser = Bool(True, config=True, help="""Whether to open in a browser after starting. The specific browser used is platform dependent and determined by the python standard library `webbrowser` module, unless it is overridden using the --browser (NotebookApp.browser) configuration option. """) browser = Unicode(u'', config=True, help="""Specify what command to use to invoke a web browser when opening the notebook. If not specified, the default browser will be determined by the `webbrowser` standard library module, which allows setting of the BROWSER environment variable to override it. """) webapp_settings = Dict(config=True, help="Supply overrides for the tornado.web.Application that the " "IPython notebook uses.") jinja_environment_options = Dict(config=True, help="Supply extra arguments that will be passed to Jinja environment.") enable_mathjax = Bool(True, config=True, help="""Whether to enable MathJax for typesetting math/TeX MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) def _enable_mathjax_changed(self, name, old, new): """set mathjax url to empty if mathjax is disabled""" if not new: self.mathjax_url = u'' base_url = Unicode('/', config=True, help='''The base URL for the notebook server. Leading and trailing slashes can be omitted, and will automatically be added. ''') def _base_url_changed(self, name, old, new): if not new.startswith('/'): self.base_url = '/'+new elif not new.endswith('/'): self.base_url = new+'/' base_project_url = Unicode('/', config=True, help="""DEPRECATED use base_url""") def _base_project_url_changed(self, name, old, new): self.log.warn("base_project_url is deprecated, use base_url") self.base_url = new extra_static_paths = List(Unicode, config=True, help="""Extra paths to search for serving static files. This allows adding javascript/css to be available from the notebook server machine, or overriding individual files in the IPython""" ) def _extra_static_paths_default(self): return [os.path.join(self.profile_dir.location, 'static')] @property def static_file_path(self): """return extra paths + the default location""" return self.extra_static_paths + [DEFAULT_STATIC_FILES_PATH] nbextensions_path = List(Unicode, config=True, help="""paths for Javascript extensions. By default, this is just IPYTHONDIR/nbextensions""" ) def _nbextensions_path_default(self): return [os.path.join(get_ipython_dir(), 'nbextensions')] mathjax_url = Unicode("", config=True, help="""The url for MathJax.js.""" ) def _mathjax_url_default(self): if not self.enable_mathjax: return u'' static_url_prefix = self.webapp_settings.get("static_url_prefix", url_path_join(self.base_url, "static") ) # try local mathjax, either in nbextensions/mathjax or static/mathjax for (url_prefix, search_path) in [ (url_path_join(self.base_url, "nbextensions"), self.nbextensions_path), (static_url_prefix, self.static_file_path), ]: self.log.debug("searching for local mathjax in %s", search_path) try: mathjax = filefind(os.path.join('mathjax', 'MathJax.js'), search_path) except IOError: continue else: url = url_path_join(url_prefix, u"mathjax/MathJax.js") self.log.info("Serving local MathJax from %s at %s", mathjax, url) return url # no local mathjax, serve from CDN url = u"https://cdn.mathjax.org/mathjax/latest/MathJax.js" self.log.info("Using MathJax from CDN: %s", url) return url def _mathjax_url_changed(self, name, old, new): if new and not self.enable_mathjax: # enable_mathjax=False overrides mathjax_url self.mathjax_url = u'' else: self.log.info("Using MathJax: %s", new) notebook_manager_class = DottedObjectName('IPython.html.services.notebooks.filenbmanager.FileNotebookManager', config=True, help='The notebook manager class to use.') trust_xheaders = Bool(False, config=True, help=("Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headers" "sent by the upstream reverse proxy. Necessary if the proxy handles SSL") ) info_file = Unicode() def _info_file_default(self): info_file = "nbserver-%s.json"%os.getpid() return os.path.join(self.profile_dir.security_dir, info_file) notebook_dir = Unicode(py3compat.getcwd(), config=True, help="The directory to use for notebooks and kernels." ) def _notebook_dir_changed(self, name, old, new): """Do a bit of validation of the notebook dir.""" if not os.path.isabs(new): # If we receive a non-absolute path, make it absolute. self.notebook_dir = os.path.abspath(new) return if not os.path.isdir(new): raise TraitError("No such notebook dir: %r" % new) # setting App.notebook_dir implies setting notebook and kernel dirs as well self.config.FileNotebookManager.notebook_dir = new self.config.MappingKernelManager.root_dir = new def parse_command_line(self, argv=None): super(NotebookApp, self).parse_command_line(argv) if self.extra_args: arg0 = self.extra_args[0] f = os.path.abspath(arg0) self.argv.remove(arg0) if not os.path.exists(f): self.log.critical("No such file or directory: %s", f) self.exit(1) # Use config here, to ensure that it takes higher priority than # anything that comes from the profile. c = Config() if os.path.isdir(f): c.NotebookApp.notebook_dir = f elif os.path.isfile(f): c.NotebookApp.file_to_run = f self.update_config(c) def init_kernel_argv(self): """construct the kernel arguments""" # Scrub frontend-specific flags self.kernel_argv = swallow_argv(self.argv, notebook_aliases, notebook_flags) if any(arg.startswith(u'--pylab') for arg in self.kernel_argv): self.log.warn('\n '.join([ "Starting all kernels in pylab mode is not recommended,", "and will be disabled in a future release.", "Please use the %matplotlib magic to enable matplotlib instead.", "pylab implies many imports, which can have confusing side effects", "and harm the reproducibility of your notebooks.", ])) # Kernel should inherit default config file from frontend self.kernel_argv.append("--IPKernelApp.parent_appname='%s'" % self.name) # Kernel should get *absolute* path to profile directory self.kernel_argv.extend(["--profile-dir", self.profile_dir.location]) def init_configurables(self): # force Session default to be secure default_secure(self.config) self.kernel_manager = MappingKernelManager( parent=self, log=self.log, kernel_argv=self.kernel_argv, connection_dir = self.profile_dir.security_dir, ) kls = import_item(self.notebook_manager_class) self.notebook_manager = kls(parent=self, log=self.log) self.session_manager = SessionManager(parent=self, log=self.log) self.cluster_manager = ClusterManager(parent=self, log=self.log) self.cluster_manager.update_profiles() def init_logging(self): # This prevents double log messages because tornado use a root logger that # self.log is a child of. The logging module dipatches log messages to a log # and all of its ancenstors until propagate is set to False. self.log.propagate = False # hook up tornado 3's loggers to our app handlers for name in ('access', 'application', 'general'): logger = logging.getLogger('tornado.%s' % name) logger.parent = self.log logger.setLevel(self.log.level) def init_webapp(self): """initialize tornado webapp and httpserver""" self.webapp_settings['allow_origin'] = self.allow_origin if self.allow_origin_pat: self.webapp_settings['allow_origin_pat'] = re.compile(self.allow_origin_pat) self.webapp_settings['allow_credentials'] = self.allow_credentials self.web_app = NotebookWebApplication( self, self.kernel_manager, self.notebook_manager, self.cluster_manager, self.session_manager, self.log, self.base_url, self.webapp_settings, self.jinja_environment_options ) if self.certfile: ssl_options = dict(certfile=self.certfile) if self.keyfile: ssl_options['keyfile'] = self.keyfile else: ssl_options = None self.web_app.password = self.password self.http_server = httpserver.HTTPServer(self.web_app, ssl_options=ssl_options, xheaders=self.trust_xheaders) if not self.ip: warning = "WARNING: The notebook server is listening on all IP addresses" if ssl_options is None: self.log.critical(warning + " and not using encryption. This " "is not recommended.") if not self.password: self.log.critical(warning + " and not using authentication. " "This is highly insecure and not recommended.") success = None for port in random_ports(self.port, self.port_retries+1): try: self.http_server.listen(port, self.ip) except socket.error as e: if e.errno == errno.EADDRINUSE: self.log.info('The port %i is already in use, trying another random port.' % port) continue elif e.errno in (errno.EACCES, getattr(errno, 'WSAEACCES', errno.EACCES)): self.log.warn("Permission to listen on port %i denied" % port) continue else: raise else: self.port = port success = True break if not success: self.log.critical('ERROR: the notebook server could not be started because ' 'no available port could be found.') self.exit(1) @property def display_url(self): ip = self.ip if self.ip else '[all ip addresses on your system]' return self._url(ip) @property def connection_url(self): ip = self.ip if self.ip else 'localhost' return self._url(ip) def _url(self, ip): proto = 'https' if self.certfile else 'http' return "%s://%s:%i%s" % (proto, ip, self.port, self.base_url) def init_signal(self): if not sys.platform.startswith('win'): signal.signal(signal.SIGINT, self._handle_sigint) signal.signal(signal.SIGTERM, self._signal_stop) if hasattr(signal, 'SIGUSR1'): # Windows doesn't support SIGUSR1 signal.signal(signal.SIGUSR1, self._signal_info) if hasattr(signal, 'SIGINFO'): # only on BSD-based systems signal.signal(signal.SIGINFO, self._signal_info) def _handle_sigint(self, sig, frame): """SIGINT handler spawns confirmation dialog""" # register more forceful signal handler for ^C^C case signal.signal(signal.SIGINT, self._signal_stop) # request confirmation dialog in bg thread, to avoid # blocking the App thread = threading.Thread(target=self._confirm_exit) thread.daemon = True thread.start() def _restore_sigint_handler(self): """callback for restoring original SIGINT handler""" signal.signal(signal.SIGINT, self._handle_sigint) def _confirm_exit(self): """confirm shutdown on ^C A second ^C, or answering 'y' within 5s will cause shutdown, otherwise original SIGINT handler will be restored. This doesn't work on Windows. """ # FIXME: remove this delay when pyzmq dependency is >= 2.1.11 time.sleep(0.1) info = self.log.info info('interrupted') print(self.notebook_info()) sys.stdout.write("Shutdown this notebook server (y/[n])? ") sys.stdout.flush() r,w,x = select.select([sys.stdin], [], [], 5) if r: line = sys.stdin.readline() if line.lower().startswith('y') and 'n' not in line.lower(): self.log.critical("Shutdown confirmed") ioloop.IOLoop.instance().stop() return else: print("No answer for 5s:", end=' ') print("resuming operation...") # no answer, or answer is no: # set it back to original SIGINT handler # use IOLoop.add_callback because signal.signal must be called # from main thread ioloop.IOLoop.instance().add_callback(self._restore_sigint_handler) def _signal_stop(self, sig, frame): self.log.critical("received signal %s, stopping", sig) ioloop.IOLoop.instance().stop() def _signal_info(self, sig, frame): print(self.notebook_info()) def init_components(self): """Check the components submodule, and warn if it's unclean""" status = submodule.check_submodule_status() if status == 'missing': self.log.warn("components submodule missing, running `git submodule update`") submodule.update_submodules(submodule.ipython_parent()) elif status == 'unclean': self.log.warn("components submodule unclean, you may see 404s on static/components") self.log.warn("run `setup.py submodule` or `git submodule update` to update") @catch_config_error def initialize(self, argv=None): super(NotebookApp, self).initialize(argv) self.init_logging() self.init_kernel_argv() self.init_configurables() self.init_components() self.init_webapp() self.init_signal() def cleanup_kernels(self): """Shutdown all kernels. The kernels will shutdown themselves when this process no longer exists, but explicit shutdown allows the KernelManagers to cleanup the connection files. """ self.log.info('Shutting down kernels') self.kernel_manager.shutdown_all() def notebook_info(self): "Return the current working directory and the server url information" info = self.notebook_manager.info_string() + "\n" info += "%d active kernels \n" % len(self.kernel_manager._kernels) return info + "The IPython Notebook is running at: %s" % self.display_url def server_info(self): """Return a JSONable dict of information about this server.""" return {'url': self.connection_url, 'hostname': self.ip if self.ip else 'localhost', 'port': self.port, 'secure': bool(self.certfile), 'base_url': self.base_url, 'notebook_dir': os.path.abspath(self.notebook_dir), } def write_server_info_file(self): """Write the result of server_info() to the JSON file info_file.""" with open(self.info_file, 'w') as f: json.dump(self.server_info(), f, indent=2) def remove_server_info_file(self): """Remove the nbserver-<pid>.json file created for this server. Ignores the error raised when the file has already been removed. """ try: os.unlink(self.info_file) except OSError as e: if e.errno != errno.ENOENT: raise def start(self): """ Start the IPython Notebook server app, after initialization This method takes no arguments so all configuration and initialization must be done prior to calling this method.""" if self.subapp is not None: return self.subapp.start() info = self.log.info for line in self.notebook_info().split("\n"): info(line) info("Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).") self.write_server_info_file() if self.open_browser or self.file_to_run: try: browser = webbrowser.get(self.browser or None) except webbrowser.Error as e: self.log.warn('No web browser found: %s.' % e) browser = None if self.file_to_run: fullpath = os.path.join(self.notebook_dir, self.file_to_run) if not os.path.exists(fullpath): self.log.critical("%s does not exist" % fullpath) self.exit(1) uri = url_path_join('notebooks', self.file_to_run) else: uri = 'tree' if browser: b = lambda : browser.open(url_path_join(self.connection_url, uri), new=2) threading.Thread(target=b).start() try: ioloop.IOLoop.instance().start() except KeyboardInterrupt: info("Interrupted...") finally: self.cleanup_kernels() self.remove_server_info_file() def list_running_servers(profile='default'): """Iterate over the server info files of running notebook servers. Given a profile name, find nbserver-* files in the security directory of that profile, and yield dicts of their information, each one pertaining to a currently running notebook server instance. """ pd = ProfileDir.find_profile_dir_by_name(get_ipython_dir(), name=profile) for file in os.listdir(pd.security_dir): if file.startswith('nbserver-'): with io.open(os.path.join(pd.security_dir, file), encoding='utf-8') as f: yield json.load(f) #----------------------------------------------------------------------------- # Main entry point #----------------------------------------------------------------------------- launch_new_instance = NotebookApp.launch_instance
mit
Eric89GXL/scikit-learn
doc/sphinxext/gen_rst.py
1
39133
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from time import time import os import re import shutil import traceback import glob import sys from StringIO import StringIO import cPickle import urllib2 import gzip import posixpath try: from PIL import Image except: import Image import matplotlib matplotlib.use('Agg') import token import tokenize import numpy as np ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): resp = urllib2.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[value.keys()[0]] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False for comb_name in comb_names: if html.find(comb_name) >= 0: url = link + '#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_1.png': (1, 600), 'plot_outlier_detection_1.png': (3, 372), 'plot_gp_regression_1.png': (2, 250), 'plot_adaboost_twoclass_1.png': (1, 372), 'plot_compare_methods_1.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ lines = file(filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(iter(lines).next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery", "Please check your example's layout", " and make sure it's correct") else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(app.builder.srcdir + '/../' + 'examples') try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) # we create an index.rst with all examples fhindex = file(os.path.join(root_dir, 'index.rst'), 'w') #Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { display: none; } .figure { float: left; margin: 10px; -webkit-border-radius: 10px; /* Saf3-4, iOS 1-3.2, Android <1.6 */ -moz-border-radius: 10px; /* FF1-3.6 */ border-radius: 10px; /* Opera 10.5, IE9, Saf5, Chrome, FF4, iOS 4, Android 2.1+ */ border: 2px solid #fff; background-color: white; /* --> Thumbnail image size */ width: 150px; height: 100px; -webkit-background-size: 150px 100px; /* Saf3-4 */ -moz-background-size: 150px 100px; /* FF3.6 */ } .figure img { display: inline; } div.docstringWrapper p.caption { display: block; -webkit-box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.0); -moz-box-shadow: 0px 0px 20px rgba(0, 0, 0, .0); /* FF3.5 - 3.6 */ box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.0); /* Opera 10.5, IE9, FF4+, Chrome 10+ */ padding: 0px; border: white; } div.docstringWrapper p { display: none; background-color: white; -webkit-box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); -moz-box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); /* FF3.5 - 3.6 */ box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); /* Opera 10.5, IE9, FF4+, Chrome 10+ */ padding: 13px; margin-top: 0px; border-style: solid; border-width: 1px; } </style> .. raw:: html <script type="text/javascript"> function animateClone(e){ var position; position = $(this).position(); var clone = $(this).closest('.thumbnailContainer').find('.clonedItem'); var clone_fig = clone.find('.figure'); clone.css("left", position.left - 70).css("top", position.top - 70).css("position", "absolute").css("z-index", 1000).css("background-color", "white"); var cloneImg = clone_fig.find('img'); clone.show(); clone.animate({ height: "270px", width: "320px" }, 0 ); cloneImg.css({ 'max-height': "200px", 'max-width': "280px" }); cloneImg.animate({ height: "200px", width: "280px" }, 0 ); clone_fig.css({ 'margin-top': '20px', }); clone_fig.show(); clone.find('p').css("display", "block"); clone_fig.css({ height: "240", width: "305px" }); cloneP_height = clone.find('p.caption').height(); clone_fig.animate({ height: (200 + cloneP_height) }, 0 ); clone.bind("mouseleave", function(e){ clone.animate({ height: "100px", width: "150px" }, 10, function(){$(this).hide();}); clone_fig.animate({ height: "100px", width: "150px" }, 10, function(){$(this).hide();}); }); } //end animateClone() $(window).load(function () { $(".figure").css("z-index", 1); $(".docstringWrapper").each(function(i, obj){ var clone; var $obj = $(obj); clone = $obj.clone(); clone.addClass("clonedItem"); clone.appendTo($obj.closest(".thumbnailContainer")); clone.hide(); $obj.bind("mouseenter", animateClone); }); // end each }); // end </script> Examples ======== .. _examples-index: """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery) for dir in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, dir)): generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) lines = file(example_file).readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 tokens = tokenize.generate_tokens(lines.__iter__().next) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif ((tok_type == 'STRING') and check_docstring): erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = filter(lambda x: x.endswith('.py'), file_list) unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery): """ Generate the rst file for an example directory. """ if not dir == '.': target_dir = os.path.join(root_dir, dir) src_dir = os.path.join(example_dir, dir) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): print 80 * '_' print ('Example directory %s does not have a README.txt file' % src_dir) print 'Skipping this directory' print 80 * '_' return fhindex.write(""" %s """ % file(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) for fname in sorted_listdir: if fname.endswith('py'): generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, fdocstring, _ = extract_docstring(new_fname, True) thumb = os.path.join(dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(dir, fname).replace(os.path.sep, '_') fhindex.write(""" .. raw:: html <div class="thumbnailContainer"> <div class="docstringWrapper"> """) fhindex.write('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if dir != '.': fhindex.write(' :target: ./%s/%s.html\n\n' % (dir, fname[:-3])) else: fhindex.write(' :target: ./%s.html\n\n' % link_name[:-3]) fhindex.write(""" :ref:`example_%s` .. raw:: html <p>%s </p></div> </div> .. toctree:: :hidden: %s/%s """ % (link_name, fdocstring, dir, fname[:-3])) fhindex.write(""" .. raw:: html <div style="clear: both"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) / 2, (height - height_sc) / 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: os.system("optipng -quiet -o 9 '{0}'".format(out_fname)) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%s.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, fname[:-3] + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print 'plotting %s' % fname t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() # get variables so we can later add links to the documentation example_code_obj = {} for var_name, var in my_globals.iteritems(): if not hasattr(var, '__module__'): continue if not isinstance(var.__module__, basestring): continue if var.__module__.split('.')[0] not in DOCMODULES: continue # get the type as a string with other things stripped tstr = str(type(var)) tstr = (tstr[tstr.find('\'') + 1:tstr.rfind('\'')].split('.')[-1]) # get shortened module name module_short = get_short_module_name(var.__module__, tstr) cobj = {'name': tstr, 'module': var.__module__, 'module_short': module_short, 'obj_type': 'object'} example_code_obj[var_name] = cobj # find functions so we can later add links to the documentation funregex = re.compile('[\w.]+\(') with open(src_file, 'rt') as fid: for line in fid.readlines(): if line.startswith('#'): continue for match in funregex.findall(line): fun_name = match[:-1] try: exec('this_fun = %s' % fun_name, my_globals) except Exception as err: # Here, we were not able to execute the # previous statement, either because the # fun_name was not a function but a statement # (print), or because the regexp didn't # catch the whole function name : # eg: # X = something().blah() # will work for something, but not blah. continue this_fun = my_globals['this_fun'] if not callable(this_fun): continue if not hasattr(this_fun, '__module__'): continue if not isinstance(this_fun.__module__, basestring): continue if (this_fun.__module__.split('.')[0] not in DOCMODULES): continue # get shortened module name fun_name_short = fun_name.split('.')[-1] module_short = get_short_module_name( this_fun.__module__, fun_name_short) cobj = {'name': fun_name_short, 'module': this_fun.__module__, 'module_short': module_short, 'obj_type': 'function'} example_code_obj[fun_name] = cobj fid.close() if len(example_code_obj) > 0: # save the dictionary, so we can later add hyperlinks codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: cPickle.dump(example_code_obj, fid, cPickle.HIGHEST_PROTOCOL) fid.close() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] for fig_num in (fig_mngr.num for fig_mngr in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()): # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. plt.figure(fig_num) plt.savefig(image_path % fig_num) figure_list.append(image_fname % fig_num) except: print 80 * '_' print '%s is not compiling:' % fname traceback.print_exc() print 80 * '_' finally: os.chdir(cwd) sys.stdout = orig_stdout print " - time elapsed : %.2g sec" % time_elapsed else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path % '[1-9]')] #for f in glob.glob(image_path % '*')] # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, fname[:-3] + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') f = open(os.path.join(target_dir, fname[:-2] + 'rst'), 'w') f.write(this_template % locals()) f.flush() def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" try: if exception is not None: return print 'Embedding documentation hyperlinks in examples..' # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) doc_resolvers['matplotlib'] = SphinxDocLinkResolver( 'http://matplotlib.org') doc_resolvers['numpy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/numpy-1.6.0') doc_resolvers['scipy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/scipy-0.11.0/reference') example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print '\tprocessing: %s' % fname full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = cPickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.iteritems(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue link = doc_resolvers[this_module].resolve(cobj, full_fname) if link is not None: parts = name.split('.') name_html = orig_pattern % parts[0] for part in parts[1:]: name_html += period + orig_pattern % part str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') for name, link in str_repl.iteritems(): line = line.replace(name, link) fid.write(line.encode('utf-8')) except urllib2.HTTPError, e: print ("The following HTTP Error has occurred:\n") print e.code except urllib2.URLError, e: print ("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding due to a URL Error: \n") print e.args print '[done]' def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename))
bsd-3-clause
davidgbe/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
minhlongdo/scipy
scipy/integrate/odepack.py
62
9420
# Author: Travis Oliphant from __future__ import division, print_function, absolute_import __all__ = ['odeint'] from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0): """ Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y, t0, ...) where y can be a vector. *Note*: The first two arguments of ``func(y, t0, ...)`` are in the opposite order of the arguments in the system definition function used by the `scipy.integrate.ode` class. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. Examples -------- The second order differential equation for the angle `theta` of a pendulum acted on by gravity with friction can be written:: theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0 where `b` and `c` are positive constants, and a prime (') denotes a derivative. To solve this equation with `odeint`, we must first convert it to a system of first order equations. By defining the angular velocity ``omega(t) = theta'(t)``, we obtain the system:: theta'(t) = omega(t) omega'(t) = -b*omega(t) - c*sin(theta(t)) Let `y` be the vector [`theta`, `omega`]. We implement this system in python as: >>> def pend(y, t, b, c): ... theta, omega = y ... dydt = [omega, -b*omega - c*np.sin(theta)] ... return dydt ... We assume the constants are `b` = 0.25 and `c` = 5.0: >>> b = 0.25 >>> c = 5.0 For initial conditions, we assume the pendulum is nearly vertical with `theta(0)` = `pi` - 0.1, and it initially at rest, so `omega(0)` = 0. Then the vector of initial conditions is >>> y0 = [np.pi - 0.1, 0.0] We generate a solution 101 evenly spaced samples in the interval 0 <= `t` <= 10. So our array of times is: >>> t = np.linspace(0, 10, 101) Call `odeint` to generate the solution. To pass the parameters `b` and `c` to `pend`, we give them to `odeint` using the `args` argument. >>> from scipy.integrate import odeint >>> sol = odeint(pend, y0, t, args=(b, c)) The solution is an array with shape (101, 2). The first column is `theta(t)`, and the second is `omega(t)`. The following code plots both components. >>> import matplotlib.pyplot as plt >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)') >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)') >>> plt.legend(loc='best') >>> plt.xlabel('t') >>> plt.grid() >>> plt.show() """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
bsd-3-clause
lcy-seso/Paddle
python/paddle/dataset/uci_housing.py
1
3748
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UCI Housing dataset. This module will download dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and parse training set and test set into paddle reader creators. """ import numpy as np import os import paddle.dataset.common __all__ = ['train', 'test'] URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' MD5 = 'd4accdce7a25600298819f8e28e8d593' feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'convert' ] UCI_TRAIN_DATA = None UCI_TEST_DATA = None URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar' MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b' def feature_range(maximums, minimums): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots() feature_num = len(maximums) ax.bar(range(feature_num), maximums - minimums, color='r', align='center') ax.set_title('feature scale') plt.xticks(range(feature_num), feature_names) plt.xlim([-1, feature_num]) fig.set_figheight(6) fig.set_figwidth(10) if not os.path.exists('./image'): os.makedirs('./image') fig.savefig('image/ranges.png', dpi=48) plt.close(fig) def load_data(filename, feature_num=14, ratio=0.8): global UCI_TRAIN_DATA, UCI_TEST_DATA if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None: return data = np.fromfile(filename, sep=' ') data = data.reshape(data.shape[0] / feature_num, feature_num) maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( axis=0) / data.shape[0] feature_range(maximums[:-1], minimums[:-1]) for i in xrange(feature_num - 1): data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) offset = int(data.shape[0] * ratio) UCI_TRAIN_DATA = data[:offset] UCI_TEST_DATA = data[offset:] def train(): """ UCI_HOUSING training set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Training reader creator :rtype: callable """ global UCI_TRAIN_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TRAIN_DATA: yield d[:-1], d[-1:] return reader def test(): """ UCI_HOUSING test set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Test reader creator :rtype: callable """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TEST_DATA: yield d[:-1], d[-1:] return reader def fetch(): paddle.dataset.common.download(URL, 'uci_housing', MD5) def convert(path): """ Converts dataset to recordio format """ paddle.dataset.common.convert(path, train(), 1000, "uci_housing_train") paddle.dataset.common.convert(path, test(), 1000, "uci_houseing_test")
apache-2.0