repo_name
stringlengths
7
92
path
stringlengths
5
129
copies
stringclasses
201 values
size
stringlengths
4
6
content
stringlengths
1.03k
375k
license
stringclasses
15 values
maximus009/kaggle-galaxies
try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.py
7
17439
import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle from datetime import datetime, timedelta # import matplotlib.pyplot as plt # plt.ion() # import utils BATCH_SIZE = 16 NUM_INPUT_FEATURES = 3 LEARNING_RATE_SCHEDULE = { 0: 0.04, 1800: 0.004, 2300: 0.0004, } MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 CHUNK_SIZE = 10000 # 30000 # this should be a multiple of the batch size, ideally. NUM_CHUNKS = 2500 # 3000 # 1500 # 600 # 600 # 600 # 500 VALIDATE_EVERY = 20 # 12 # 6 # 6 # 6 # 5 # validate only every 5 chunks. MUST BE A DIVISOR OF NUM_CHUNKS!!! # else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded. NUM_CHUNKS_NONORM = 1 # train without normalisation for this many chunks, to get the weights in the right 'zone'. # this should be only a few, just 1 hopefully suffices. GEN_BUFFER_SIZE = 1 # # need to load the full training data anyway to extract the validation set from it. # # alternatively we could create separate validation set files. # DATA_TRAIN_PATH = "data/images_train_color_cropped33_singletf.npy.gz" # DATA2_TRAIN_PATH = "data/images_train_color_8x_singletf.npy.gz" # DATA_VALIDONLY_PATH = "data/images_validonly_color_cropped33_singletf.npy.gz" # DATA2_VALIDONLY_PATH = "data/images_validonly_color_8x_singletf.npy.gz" # DATA_TEST_PATH = "data/images_test_color_cropped33_singletf.npy.gz" # DATA2_TEST_PATH = "data/images_test_color_8x_singletf.npy.gz" TARGET_PATH = "predictions/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.csv" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.pkl" # FEATURES_PATTERN = "features/try_convnet_chunked_ra_b3sched.%s.npy" print "Set up data loading" # TODO: adapt this so it loads the validation data from JPEGs and does the processing realtime input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=NUM_CHUNKS, chunk_size=CHUNK_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes) post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5) train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) y_train = np.load("data/solutions_train.npy") train_ids = load_data.train_ids test_ids = load_data.test_ids # split training data into training + a small validation set num_train = len(train_ids) num_test = len(test_ids) num_valid = num_train // 10 # integer division num_train -= num_valid y_valid = y_train[num_train:] y_train = y_train[:num_train] valid_ids = train_ids[num_train:] train_ids = train_ids[:num_train] train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) def create_train_gen(): """ this generates the training data in order, for postprocessing. Do not use this for actual training. """ data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE) def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) def create_test_gen(): data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE) print "Preprocess validation data upfront" start_time = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up print " took %.2f seconds" % (time.time() - start_time) print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) train_loss_nonorm = l6.error(normalisation=False) train_loss = l6.error() # but compute and print this! valid_loss = l6.error(dropout_active=False) all_parameters = layers.all_parameters(l6) all_bias_parameters = layers.all_bias_parameters(l6) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] y_shared = theano.shared(np.zeros((1,1), dtype=theano.config.floatX)) learning_rate = theano.shared(np.array(LEARNING_RATE_SCHEDULE[0], dtype=theano.config.floatX)) idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l6.target_var: y_shared[idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } # updates = layers.gen_updates(train_loss, all_parameters, learning_rate=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates_nonorm = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss_nonorm, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) train_nonorm = theano.function([idx], train_loss_nonorm, givens=givens, updates=updates_nonorm) train_norm = theano.function([idx], train_loss, givens=givens, updates=updates) compute_loss = theano.function([idx], valid_loss, givens=givens) # dropout_active=False compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens, on_unused_input='ignore') # not using the labels, so theano complains compute_features = theano.function([idx], l4.output(dropout_active=False), givens=givens, on_unused_input='ignore') print "Train model" start_time = time.time() prev_time = start_time num_batches_valid = x_valid.shape[0] // BATCH_SIZE losses_train = [] losses_valid = [] param_stds = [] for e in xrange(NUM_CHUNKS): print "Chunk %d/%d" % (e + 1, NUM_CHUNKS) chunk_data, chunk_length = train_gen.next() y_chunk = chunk_data.pop() # last element is labels. xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] if e in LEARNING_RATE_SCHEDULE: current_lr = LEARNING_RATE_SCHEDULE[e] learning_rate.set_value(LEARNING_RATE_SCHEDULE[e]) print " setting learning rate to %.6f" % current_lr # train without normalisation for the first # chunks. if e >= NUM_CHUNKS_NONORM: train = train_norm else: train = train_nonorm print " load training data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) y_shared.set_value(y_chunk) num_batches_chunk = x_chunk.shape[0] // BATCH_SIZE # import pdb; pdb.set_trace() print " batch SGD" losses = [] for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) loss = train(b) losses.append(loss) # print " loss: %.6f" % loss mean_train_loss = np.sqrt(np.mean(losses)) print " mean training loss (RMSE):\t\t%.6f" % mean_train_loss losses_train.append(mean_train_loss) # store param stds during training param_stds.append([p.std() for p in layers.get_param_values(l6)]) if ((e + 1) % VALIDATE_EVERY) == 0: print print "VALIDATING" print " load validation data onto GPU" for x_shared, x_valid in zip(xs_shared, xs_valid): x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) layers.dump_params(l6, e=e) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup print "Compute predictions on validation set for analysis in batches" predictions_list = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write validation set predictions to %s" % ANALYSIS_PATH with open(ANALYSIS_PATH, 'w') as f: pickle.dump({ 'ids': valid_ids[:num_batches_valid * BATCH_SIZE], # note that we need to truncate the ids to a multiple of the batch size. 'predictions': all_predictions, 'targets': y_valid, 'mean_train_loss': mean_train_loss, 'mean_valid_loss': mean_valid_loss, 'time_since_start': time_since_start, 'losses_train': losses_train, 'losses_valid': losses_valid, 'param_values': layers.get_param_values(l6), 'param_stds': param_stds, }, f, pickle.HIGHEST_PROTOCOL) del predictions_list, all_predictions # memory cleanup # print "Loading test data" # x_test = load_data.load_gz(DATA_TEST_PATH) # x2_test = load_data.load_gz(DATA2_TEST_PATH) # test_ids = np.load("data/test_ids.npy") # num_test = x_test.shape[0] # x_test = x_test.transpose(0, 3, 1, 2) # move the colour dimension up. # x2_test = x2_test.transpose(0, 3, 1, 2) # create_test_gen = lambda: load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) print "Computing predictions on test data" predictions_list = [] for e, (xs_chunk, chunk_length) in enumerate(create_test_gen()): print "Chunk %d" % (e + 1) xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] # move the colour dimension up. for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # make predictions for testset, don't forget to cute off the zeros at the end for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) all_predictions = all_predictions[:num_test] # truncate back to the correct length # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write predictions to %s" % TARGET_PATH # test_ids = np.load("data/test_ids.npy") with open(TARGET_PATH, 'wb') as csvfile: writer = csv.writer(csvfile) # , delimiter=',', quoting=csv.QUOTE_MINIMAL) # write header writer.writerow(['GalaxyID', 'Class1.1', 'Class1.2', 'Class1.3', 'Class2.1', 'Class2.2', 'Class3.1', 'Class3.2', 'Class4.1', 'Class4.2', 'Class5.1', 'Class5.2', 'Class5.3', 'Class5.4', 'Class6.1', 'Class6.2', 'Class7.1', 'Class7.2', 'Class7.3', 'Class8.1', 'Class8.2', 'Class8.3', 'Class8.4', 'Class8.5', 'Class8.6', 'Class8.7', 'Class9.1', 'Class9.2', 'Class9.3', 'Class10.1', 'Class10.2', 'Class10.3', 'Class11.1', 'Class11.2', 'Class11.3', 'Class11.4', 'Class11.5', 'Class11.6']) # write data for k in xrange(test_ids.shape[0]): row = [test_ids[k]] + all_predictions[k].tolist() writer.writerow(row) print "Gzipping..." os.system("gzip -c %s > %s.gz" % (TARGET_PATH, TARGET_PATH)) del all_predictions, predictions_list, xs_chunk, x_chunk # memory cleanup # # need to reload training data because it has been split and shuffled. # # don't need to reload test data # x_train = load_data.load_gz(DATA_TRAIN_PATH) # x2_train = load_data.load_gz(DATA2_TRAIN_PATH) # x_train = x_train.transpose(0, 3, 1, 2) # move the colour dimension up # x2_train = x2_train.transpose(0, 3, 1, 2) # train_gen_features = load_data.array_chunker_gen([x_train, x2_train], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # test_gen_features = load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # for name, gen, num in zip(['train', 'test'], [train_gen_features, test_gen_features], [x_train.shape[0], x_test.shape[0]]): # print "Extracting feature representations for all galaxies: %s" % name # features_list = [] # for e, (xs_chunk, chunk_length) in enumerate(gen): # print "Chunk %d" % (e + 1) # x_chunk, x2_chunk = xs_chunk # x_shared.set_value(x_chunk) # x2_shared.set_value(x2_chunk) # num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # # compute features for set, don't forget to cute off the zeros at the end # for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) # features = compute_features(b) # features_list.append(features) # all_features = np.vstack(features_list) # all_features = all_features[:num] # truncate back to the correct length # features_path = FEATURES_PATTERN % name # print " write features to %s" % features_path # np.save(features_path, all_features) print "Done!"
bsd-3-clause
kyleam/seaborn
seaborn/miscplot.py
34
1498
from __future__ import division import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt def palplot(pal, size=1): """Plot the values in a color palette as a horizontal array. Parameters ---------- pal : sequence of matplotlib colors colors, i.e. as returned by seaborn.color_palette() size : scaling factor for size of plot """ n = len(pal) f, ax = plt.subplots(1, 1, figsize=(n * size, size)) ax.imshow(np.arange(n).reshape(1, n), cmap=mpl.colors.ListedColormap(list(pal)), interpolation="nearest", aspect="auto") ax.set_xticks(np.arange(n) - .5) ax.set_yticks([-.5, .5]) ax.set_xticklabels([]) ax.set_yticklabels([]) def puppyplot(grown_up=False): """Plot today's daily puppy. Only works in the IPython notebook.""" from .external.six.moves.urllib.request import urlopen from IPython.display import HTML try: from bs4 import BeautifulSoup url = "http://www.dailypuppy.com" if grown_up: url += "/dogs" html_doc = urlopen(url) soup = BeautifulSoup(html_doc) puppy = soup.find("div", {"class": "daily_puppy"}) return HTML(str(puppy.img)) except ImportError: html = ('<img src="http://cdn-www.dailypuppy.com/dog-images/' 'decker-the-nova-scotia-duck-tolling-retriever_' '72926_2013-11-04_w450.jpg" style="width:450px;"/>') return HTML(html)
bsd-3-clause
jas02/easybuild-easyblocks
easybuild/easyblocks/x/xmipp.py
10
8904
## # Copyright 2015-2015 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. ## """ EasyBuild support for building and installing Xmipp, implemented as an easyblock @author: Jens Timmerman (Ghent University) @author: Pablo Escobar (sciCORE, SIB, University of Basel) @author: Kenneth Hoste (Ghent University) """ import fileinput import os import re import stat import sys import easybuild.tools.environment as env import easybuild.tools.toolchain as toolchain from easybuild.easyblocks.generic.pythonpackage import det_pylibdir from easybuild.framework.easyblock import EasyBlock from easybuild.framework.easyconfig import CUSTOM from easybuild.tools.build_log import EasyBuildError from easybuild.tools.filetools import adjust_permissions, mkdir, write_file from easybuild.tools.modules import get_software_root, get_software_version from easybuild.tools.run import run_cmd class EB_Xmipp(EasyBlock): """ easyblock to install Xmipp """ def __init__(self, *args, **kwargs): """Easyblock constructor, enable building in installation directory.""" super(EB_Xmipp, self).__init__(*args, **kwargs) self.build_in_installdir = True self.xmipp_pythonpaths = [] def extract_step(self): """Extract Xmipp sources.""" # strip off 'xmipp' part to avoid having everything in a 'xmipp' subdirectory self.cfg.update('unpack_options', '--strip-components=1') super(EB_Xmipp, self).extract_step() def configure_step(self): """Set configure options.""" if self.toolchain.mpi_family() == toolchain.INTELMPI: mpi_bindir = os.path.join(get_software_root('impi'), 'intel64', 'bin') else: mpi_bindir = os.path.join(get_software_root(self.toolchain.MPI_MODULE_NAME[0]), 'bin') root_java = get_software_root("Java") if not get_software_root("Java"): raise EasyBuildError("Module for dependency Java not loaded.") configure_args = ' '.join([ 'profile=no fast=yes warn=no release=yes gtest=yes static=no cuda=no debug=no matlab=no', 'LINKERFORPROGRAMS=%s' % os.getenv('CXX'), 'MPI_BINDIR=%s' % mpi_bindir, 'MPI_LIB=mpi', 'JAVA_HOME=%s' % os.getenv('JAVA_HOME'), 'JAVAC=javac', 'CC=%s' % os.getenv('CC'), # pass $CXXFLAGS in Python list syntax and avoid spaces, e.g.: ['-O2','-march=native'] 'CXXFLAGS=%s' % str(os.getenv('CXXFLAGS').split(' ')).replace(' ', ''), 'CXX=%s' % os.getenv('CXX'), 'MPI_CC=%s' % os.getenv('MPICC'), # pass $CFLAGS in Python list syntax and avoid spaces, e.g.: ['-O2','-march=native'] 'CCFLAGS=%s' % str(os.getenv('CFLAGS').split(' ')).replace(' ', ''), 'MPI_CXX=%s' % os.getenv('MPICXX'), 'MPI_INCLUDE=%s' % os.getenv('MPI_INC_DIR'), 'MPI_LIBDIR=%s' % os.getenv('MPI_LIB_DIR'), 'MPI_LINKERFORPROGRAMS=%s' % os.getenv('MPICXX'), 'LIBPATH=%s' % os.getenv('LD_LIBRARY_PATH'), ]) # define list of configure options, which will be passed to Xmipp's install.sh script via --configure-args self.cfg['configopts'] = configure_args self.log.info("Configure arguments for Xmipp install.sh script: %s", self.cfg['configopts']) def build_step(self): """No custom build step (see install step).""" pass def install_step(self): """Build/install Xmipp using provided install.sh script.""" pylibdir = det_pylibdir() self.xmipp_pythonpaths = [ # location where Python packages will be installed by Xmipp installer pylibdir, 'protocols', os.path.join('libraries', 'bindings', 'python'), ] python_root = get_software_root('Python') if python_root: # extend $PYTHONPATH all_pythonpaths = [os.path.join(self.installdir, p) for p in self.xmipp_pythonpaths] # required so packages installed as extensions in Pythpn dep are picked up all_pythonpaths.append(os.path.join(python_root, pylibdir)) all_pythonpaths.append(os.environ.get('PYTHONPATH', '')) env.setvar('PYTHONPATH', os.pathsep.join(all_pythonpaths)) # location where Python packages will be installed by Xmipp installer must exist already (setuptools) mkdir(os.path.join(self.installdir, pylibdir), parents=True) # put dummy xmipp_python script in place if Python is used as a dependency bindir = os.path.join(self.installdir, 'bin') mkdir(bindir) xmipp_python = os.path.join(bindir, 'xmipp_python') xmipp_python_script_body = '\n'.join([ '#!/bin/sh', '%s/bin/python "$@"' % python_root, ]) write_file(xmipp_python, xmipp_python_script_body) adjust_permissions(xmipp_python, stat.S_IXUSR|stat.S_IXGRP|stat.S_IXOTH) pyshortver = '.'.join(get_software_version('Python').split('.')[:2]) # make sure Python.h and numpy header are found env.setvar('CPATH', os.pathsep.join([ os.path.join(python_root, 'include', 'python%s' % pyshortver), os.path.join(python_root, pylibdir, 'numpy', 'core', 'include'), os.environ.get('CPATH', ''), ])) cmd_opts = [] # disable (re)building of supplied dependencies dep_names = [dep['name'] for dep in self.cfg['dependencies']] for dep in ['FFTW', 'HDF5', ('libjpeg-turbo', 'jpeg'), ('LibTIFF', 'tiff'), 'matplotlib', 'Python', 'SQLite', 'Tcl', 'Tk']: if isinstance(dep, tuple): dep, opt = dep else: opt = dep.lower() # don't check via get_software_root, check listed dependencies directly (relevant for FFTW) if dep in dep_names: cmd_opts.append('--%s=false' % opt) # Python should also provide numpy/mpi4py if dep == 'Python': cmd_opts.extend(['--numpy=false', '--mpi4py=false']) if '--tcl=false' in cmd_opts and '--tk=false' in cmd_opts: cmd_opts.append('--tcl-tk=false') # patch install.sh script to inject configure options # setting $CONFIGURE_ARGS or using --configure-args doesn't work... for line in fileinput.input('install.sh', inplace=1, backup='.orig.eb'): line = re.sub(r"^CONFIGURE_ARGS.*$", 'CONFIGURE_ARGS="%s"' % self.cfg['configopts'], line) sys.stdout.write(line) cmd = './install.sh -j %s --unattended=true %s' % (self.cfg['parallel'], ' '.join(cmd_opts)) out, _ = run_cmd(cmd, log_all=True, simple=False) if not re.search("Xmipp has been successfully compiled", out): raise EasyBuildError("Xmipp installation did not complete successfully?") def sanity_check_step(self): """Custom sanity check for Xmipp.""" custom_paths = { # incomplete list, random picks, cfr. http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/ListOfProgramsv3 'files': ['bin/xmipp_%s' % x for x in ['compile', 'imagej', 'mpi_run', 'phantom_create', 'transform_filter', 'tomo_project', 'volume_align']], 'dirs': ['lib'], } super(EB_Xmipp, self).sanity_check_step(custom_paths=custom_paths) def make_module_extra(self): """Define Xmipp specific variables in generated module file, i.e. XMIPP_HOME.""" txt = super(EB_Xmipp, self).make_module_extra() txt += self.module_generator.set_environment('XMIPP_HOME', self.installdir) txt += self.module_generator.prepend_paths('PYTHONPATH', self.xmipp_pythonpaths) return txt
gpl-2.0
hsiaoyi0504/scikit-learn
doc/conf.py
210
8446
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2014, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
jmschrei/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
xiaoxiamii/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
thomasaarholt/hyperspy
hyperspy/drawing/signal.py
4
4534
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. # This file contains plotting code generic to the BaseSignal class. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from traits.api import Undefined from hyperspy.drawing.utils import set_axes_decor def _plot_1D_component(factors, idx, axes_manager, ax=None, calibrate=True, comp_label=None, same_window=False): if ax is None: ax = plt.gca() axis = axes_manager.signal_axes[0] if calibrate: x = axis.axis plt.xlabel(axis.units) else: x = np.arange(axis.size) plt.xlabel('Channel index') ax.plot(x, factors[:, idx], label='%i' % idx) if comp_label and not same_window: plt.title('%s' % comp_label) return ax def _plot_2D_component(factors, idx, axes_manager, calibrate=True, ax=None, comp_label=None, cmap=plt.cm.gray, axes_decor='all' ): if ax is None: ax = plt.gca() axes = axes_manager.signal_axes[::-1] shape = axes_manager._signal_shape_in_array extent = None if calibrate: extent = (axes[1].low_value, axes[1].high_value, axes[0].high_value, axes[0].low_value) if comp_label: plt.title('%s' % idx) im = ax.imshow(factors[:, idx].reshape(shape), cmap=cmap, interpolation='nearest', extent=extent) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) return ax def _plot_loading(loadings, idx, axes_manager, ax=None, comp_label=None, no_nans=True, calibrate=True, cmap=plt.cm.gray, same_window=False, axes_decor='all'): if ax is None: ax = plt.gca() if no_nans: loadings = np.nan_to_num(loadings) axes = axes_manager.navigation_axes if axes_manager.navigation_dimension == 2: extent = None # get calibration from a passed axes_manager shape = axes_manager._navigation_shape_in_array if calibrate: extent = (axes[0].low_value, axes[0].high_value, axes[1].high_value, axes[1].low_value) im = ax.imshow(loadings[idx].reshape(shape), cmap=cmap, extent=extent, interpolation='nearest') if calibrate: plt.xlabel(axes[0].units) plt.ylabel(axes[1].units) else: plt.xlabel('pixels') plt.ylabel('pixels') if comp_label: if same_window: plt.title('%s' % idx) else: plt.title('%s #%s' % (comp_label, idx)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) elif axes_manager.navigation_dimension == 1: if calibrate: x = axes[0].axis else: x = np.arange(axes[0].size) ax.step(x, loadings[idx], label='%s' % idx) if comp_label and not same_window: plt.title('%s #%s' % (comp_label, idx)) plt.ylabel('Score (a. u.)') if calibrate: if axes[0].units is not Undefined: plt.xlabel(axes[0].units) else: plt.xlabel('depth') else: plt.xlabel('depth') else: raise ValueError('View not supported')
gpl-3.0
RegulatoryGenomicsUPF/pyicoteo
pyicoteolib/enrichment.py
1
40209
""" Pyicoteo is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import sys, os import math import random from core import Cluster, Region, InvalidLine, InsufficientData, ConversionNotSupported from defaults import * import utils import bam from regions import AnnotationGene, AnnotationTranscript, AnnotationExon, RegionWriter, read_gff_file, get_exons, get_introns, gene_slide import warnings try: from shutil import move except: from os import rename as move """ Differential expression and MA plot visualization module. """ def _region_from_dual(self, line): try: self.cluster_aux.clear() self.cluster_aux.read_line(line) strand = None if self.stranded_analysis: strand = self.cluster_aux.strand ret = Region(self.cluster_aux.name, self.cluster_aux.start, self.cluster_aux.end, name2=self.cluster_aux.name2, strand=strand) self.cluster_aux.clear() return ret except ValueError: pass #discarding header def __calc_reg_write(self, region_file, count, calculated_region): if count > self.region_mintags: region_file.write(calculated_region.write()) def calculate_region(self): """ Calculate a region file using the reads present in the both main files to analyze. """ self.logger.info('Generating regions...') self.sorted_region_path = '%s/calcregion_%s.bed'%(self._output_dir(), os.path.basename(self.current_output_path)) region_file = open(self.sorted_region_path, 'wb') if self.region_magic: regwriter = RegionWriter(self.gff_file, region_file, self.region_magic, no_sort=self.no_sort, logger=self.logger, write_as=BED, galaxy_workarounds=self.galaxy_workarounds) regwriter.write_regions() dual_reader = utils.DualSortedReader(self.current_experiment_path, self.current_control_path, self.experiment_format, self.logger) if self.stranded_analysis: calculate_region_stranded(self, dual_reader, region_file) else: calculate_region_notstranded(self, dual_reader, region_file) region_file.flush() def __cr_append(self, regions, region): regions.append(region) def calculate_region_notstranded(self, dual_reader, region_file): calculated_region = Region() readcount = 1 for line in dual_reader: if not calculated_region: #first region only calculated_region = _region_from_dual(self, line) calculated_region.end += self.proximity else: new_region = _region_from_dual(self, line) new_region.end += self.proximity if calculated_region.overlap(new_region): calculated_region.join(new_region) readcount += 1 else: calculated_region.end -= self.proximity __calc_reg_write(self, region_file, readcount, calculated_region) calculated_region = new_region.copy() readcount = 1 if calculated_region: calculated_region.end -= self.proximity __calc_reg_write(self, region_file, readcount, calculated_region) def calculate_region_stranded(self, dual_reader, region_file): temp_region_file = open(self.sorted_region_path, 'wb') region_plus = Region() region_minus = Region() regions = [] numreads_plus = 1 numreads_minus = 1 dual_reader = utils.DualSortedReader(self.current_experiment_path, self.current_control_path, self.experiment_format, self.logger) for line in dual_reader: new_region = _region_from_dual(self, line) new_region.end += self.proximity if not (region_plus and new_region.strand == PLUS_STRAND): region_plus = _region_from_dual(self, line) elif not (region_plus and new_region.strand == PLUS_STRAND): region_minus = _region_from_dual(self, line) else: if region_plus.overlap(new_region) and region_plus.strand == new_region.strand: region_plus.join(new_region) numreads_plus += 1 elif region_minus.overlap(new_region) and region_minus.strand == new_region.strand: region_minus.join(new_region) numreads_minus += 1 else: if new_region.strand == region_plus.strand: region_plus.end -= self.proximity self.__calc_reg_write(region_file, numreads_plus, region_plus) region_plus = new_region.copy() numreads_plus = 1 else: region_minus.end -= self.proximity self.__calc_reg_write(region_file, numreads_minus, region_minus) region_minus = new_region.copy() numreads_minus = 1 if region_plus: region_plus.end -= self.proximity regions.append(region_plus) if region_minus: region_minus.end -= self.proximity regions.append(region_minus) regions.sort(key=lambda x:(x.name, x.start, x.end, x.strand)) for region in regions: region_file.write(region.write()) def get_zscore(x, mean, sd): if sd > 0: return float(x-mean)/sd else: return 0 #This points are weird anyway def read_interesting_regions(self, file_path): regs = [] try: regs_file = open(file_path, 'r') for line in regs_file: regs.append(line.strip()) except IOError as ioerror: self.logger.warning("Interesting regions file not found") return regs # memory inefficient if there's a large number of interesting regions def plot_enrichment(self, file_path): with warnings.catch_warnings(): warnings.simplefilter("ignore") try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import * from matplotlib import rcParams rcParams.update({'font.size': 22}) rcParams['legend.fontsize'] = 14 #decide labels if self.label1: label_main = self.label1 else: if self.real_control_path and self.real_experiment_path: label_main = '%s VS %s'%(os.path.basename(self.real_experiment_path), os.path.basename(self.real_control_path)) else: label_main = "A VS B" if self.label2: label_control = self.label2 else: if self.replica_path: label_control = '%s(A) VS %s(A)'%(os.path.basename(self.real_experiment_path), os.path.basename(self.replica_path)) else: label_control = 'Background distribution' #self.logger.info("Interesting regions path: %s" % (self.interesting_regions)) interesting_regs = [] if self.interesting_regions: self.logger.info("Reading interesting regions...") interesting_regs = read_interesting_regions(self, self.interesting_regions) #self.logger.info("Interesting regions: %s" % (interesting_regs)) #self.logger.info("Plot path: %s" % (file_path)) interesting_A = [] interesting_M = [] #self.logger.info("disable_significant: %s" % (self.disable_significant_color)) A = [] A_prime = [] M = [] M_significant = [] A_significant = [] M_prime = [] A_medians = [] points = [] minus_points = [] all_points = [] figure(figsize=(14,22)) biggest_A = -sys.maxint #for drawing smallest_A = sys.maxint #for drawing biggest_M = 0 #for drawing self.logger.info("Loading table...") for line in open(file_path): sline = line.split() try: enrich = dict(zip(enrichment_keys, sline)) # WARNING: for slide inter and slide intra: name2 = 'start:end' (no gene_id, FIXME?) name2 = enrich['name2'].split(':') gene_id = name2[0] if len(name2) >= 2: transcript_id = name2[1] # consider transcript_id? (exons) else: transcript_id = None if gene_id in interesting_regs or transcript_id in interesting_regs: interesting_M.append(float(enrich["M"])) interesting_A.append(float(enrich["A"])) biggest_A = max(biggest_A, float(enrich["A"])) smallest_A = min(smallest_A, float(enrich["A"])) biggest_M = max(biggest_M, abs(float(enrich["M"]))) biggest_A = max(biggest_A, float(enrich["A_prime"])) smallest_A = min(smallest_A, float(enrich["A_prime"])) biggest_M = max(biggest_M, abs(float(enrich["M_prime"]))) positive_point = self.zscore*float(enrich["sd"])+float(enrich["mean"]) negative_point = -self.zscore*float(enrich["sd"])+float(enrich["mean"]) A_median = float(enrich["A_median"]) all_points.append((A_median, positive_point, negative_point)) if abs(float(enrich["zscore"])) < self.zscore: M.append(float(enrich["M"])) A.append(float(enrich["A"])) else: M_significant.append(float(enrich["M"])) A_significant.append(float(enrich["A"])) M_prime.append(float(enrich["M_prime"])) A_prime.append(float(enrich["A_prime"])) except ValueError: pass #to skip the header all_points.sort(key= lambda x:x[0]) for t in all_points: (A_medians.append(t[0]), points.append(t[1]), minus_points.append(t[2])) if points: margin = 1.1 A_medians.append(biggest_A*margin) points.append(points[-1]) minus_points.append(minus_points[-1]) A_medians.insert(0, smallest_A) points.insert(0, points[0]) minus_points.insert(0, minus_points[0]) self.logger.info("Plotting points...") #Background plot subplot(211, axisbg="lightyellow") xlabel('Average', fontsize=30) ylabel('Log2 ratio', fontsize=30) axis([smallest_A*margin, biggest_A*margin, -biggest_M*margin, biggest_M*margin]) plot(A_prime, M_prime, '.', label=label_control, color = '#666666') plot(A_medians, points, 'r--', label="Z-score (%s)"%self.zscore) plot(A_medians, minus_points, 'r--') axhline(0, linestyle='--', color="grey", alpha=0.75) leg = legend(fancybox=True, scatterpoints=1, numpoints=1, loc=2, ncol=4, mode="expand") leg.get_frame().set_alpha(0.5) #Experiment plot subplot(212, axisbg="lightyellow") axis([smallest_A*margin, biggest_A*margin, -biggest_M*margin, biggest_M*margin]) plot(A, M, 'k.', label=label_main) if self.disable_significant_color: significant_marker = 'ko' else: significant_marker = 'ro' plot(A_significant, M_significant, significant_marker, label="%s (significant)"%label_main) plot(A_medians, points, 'r--', label="Z-score (%s)"%self.zscore) plot(A_medians, minus_points, 'r--') if self.interesting_regions: interesting_label = label_main + ' (interesting)' plot(interesting_A, interesting_M, 'H', label=interesting_label, color='#00EE00') # plotting "interesting" regions axhline(0, linestyle='--', color="grey", alpha=0.75) xlabel('Average', fontsize=30) ylabel('Log2 ratio', fontsize=30) leg2 = legend(fancybox=True, scatterpoints=1, numpoints=1, loc=2, ncol=4) leg2.get_frame().set_alpha(0.7) self._save_figure("enrichment_MA", width=500, height=2800) else: self.logger.warning("Nothing to plot.") except ImportError: if self.debug: raise __matplotlibwarn(self) def __matplotlibwarn(self): #FIXME move to utils.py or plotting module self.logger.warning('Pyicos can not find an installation of matplotlib, so no plot will be drawn. If you want to get a plot with the correlation values, install the matplotlib library.') def __calc_M(signal_a, signal_b): return math.log(float(signal_a)/float(signal_b), 2) def __calc_A(signal_a, signal_b): return (math.log(float(signal_a), 2)+math.log(float(signal_b), 2))/2 def _calculate_MA(self, region_path, read_counts, factor = 1, replica_factor = 1, file_a_reader=None, file_b_reader=None, replica_reader=None): tags_a = [] tags_b = [] numreads_background_1 = 0 numreads_background_2 = 0 total_reads_background_1 = 0 total_reads_background_2 = 0 self.logger.debug("Inside _calculate_MA") self.regions_analyzed_count = 0 enrichment_result = [] #This will hold the name, start and end of the region, plus the A, M, 'A and 'M if NOWRITE not in self.operations: out_file = open(self.current_output_path, 'wb') for region_line in open(region_path): sline = region_line.split() region_of_interest = self._region_from_sline(sline) if region_of_interest: region_a = None replica = None replica_tags = None signal_a = -1 signal_b = -1 signal_background_1 = -1 signal_background_2 = -1 swap1 = Region() swap2 = Region() if read_counts: signal_a = float(sline[6]) signal_b = float(sline[7])*factor signal_background_1 = float(sline[8]) signal_background_2 = float(sline[9])*replica_factor if CHECK_REPLICAS in self.operations: self.experiment_values.append(signal_background_1) self.replica_values.append(signal_background_2) else: self.logger.debug("Reading tags for %s ..."%region_of_interest) if self.experiment_format == BAM: tags_a = len(file_a_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) tags_b = len(file_b_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) else: tags_a = file_a_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) tags_b = file_b_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) if self.use_replica: if self.experiment_format == BAM: replica_tags = len(replica_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) else: replica_tags = replica_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) self.logger.debug("... done. tags_a: %s tags_b: %s"%(tags_a, tags_b)) #if we are using pseudocounts, use the union, use the intersection otherwise if (self.pseudocount and (tags_a or tags_b)) or (not self.pseudocount and tags_a and tags_b): signal_a = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, factor, self.total_reads_a, tags_a) signal_b = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, factor, self.total_reads_b, tags_b) self.already_norm = True if not self.counts_file: if (self.pseudocount and (tags_a or tags_b)) or (not self.pseudocount and tags_a and tags_b): if self.use_replica: replica = region_of_interest.copy() #replica.add_tags(replica_tags) numreads_background_1 = tags_a numreads_background_2 = replica_tags total_reads_background_1 = self.total_reads_a total_reads_background_2 = self.total_reads_replica signal_background_1 = signal_a signal_background_2 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.total_reads_replica, replica_tags) else: numreads_background_1 = 0 numreads_background_2 = 0 for i in range(0, tags_a+tags_b): if random.uniform(0,2) > 1: numreads_background_1 += 1 else: numreads_background_2 += 1 total_reads_background_1 = total_reads_background_2 = self.average_total_reads signal_background_1 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.average_total_reads, numreads_background_1) signal_background_2 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.average_total_reads, numreads_background_2) #if there is no data in the replica or in the swap and we are not using pseudocounts, dont write the data if signal_a > 0 and signal_b > 0 and signal_background_1 > 0 and signal_background_2 > 0 or self.use_MA: if self.use_MA and not self.already_norm: A = float(sline[10]) M = float(sline[11]) A_prime = float(sline[16]) M_prime = float(sline[17]) else: if not self.already_norm: #TODO refractor if self.len_norm: #read per kilobase in region signal_a = 1e3*(float(signal_a)/len(region_of_interest)) signal_b = 1e3*(float(signal_b)/len(region_of_interest)) signal_background_1 = 1e3*(float(signal_background_1)/len(region_of_interest)) signal_background_2 = 1e3*(float(signal_background_2)/len(region_of_interest)) if self.n_norm: #per million reads in the sample signal_a = 1e6*(float(signal_a)/self.total_reads_a) signal_b = 1e6*(float(signal_b)/self.total_reads_b) if self.use_replica: signal_background_1 = signal_a signal_background_2 = 1e6*(float(signal_background_2)/self.total_reads_replica) else: signal_background_1 = 1e6*(float(signal_background_1)/self.average_total_reads) signal_background_2 = 1e6*(float(signal_background_2)/self.average_total_reads) A = __calc_A(signal_a, signal_b) M = __calc_M(signal_a, signal_b) A_prime = __calc_A(signal_background_1, signal_background_2) M_prime = __calc_M(signal_background_1, signal_background_2) if CHECK_REPLICAS in self.operations: self.experiment_values.append(signal_background_1) self.replica_values.append(signal_background_2) if NOWRITE not in self.operations: out_file.write("%s\n"%("\t".join([region_of_interest.write().rstrip("\n"), str(signal_a), str(signal_b), str(signal_background_1), str(signal_background_2), str(A), str(M), str(self.total_reads_a), str(self.total_reads_b), str(tags_a), str(tags_b), str(A_prime), str(M_prime), str(total_reads_background_1), str(total_reads_background_2), str(numreads_background_1), str(numreads_background_2)]))) self.regions_analyzed_count += 1 self.logger.debug("LEAVING _calculate_MA") if NOWRITE in self.operations: return "" else: out_file.flush() out_file.close() # Outputting to HTML (if specified) if self.html_output is not None: self.logger.info("Generating HTML") try: from jinja2 import Environment, PackageLoader, Markup except: self.logger.error("Could not find the jinja2 library") return out_file.name loadr = PackageLoader('pyicoteolib', 'templates') env = Environment(loader=loadr) template = env.get_template('enrich_html.html') def jinja_read_file(filename): f = open(filename, 'r') #for line in f: # print line txt = ''.join(f.readlines()) f.close() return txt env.globals['jinja_read_file'] = jinja_read_file if self.galaxy_workarounds: # Galaxy changes the working directory when outputting multiple files parent_dir = "./" else: parent_dir = os.sep.join(out_file.name.split(os.sep)[0:-1]) + "/" plot_path = parent_dir + "enrichment_MA_" + out_file.name.split(os.sep)[-1] + ".png" bed_path = parent_dir + out_file.name.split(os.sep)[-1] html_file = open(self.html_output, 'w') html_file.write(template.render({'page_title': 'Enrichment results', 'results_output': jinja_read_file(out_file.name), 'plot_path': plot_path, 'bed_path': bed_path})) html_file.flush() html_file.close() return out_file.name def _calculate_total_lengths(self): msg = "Calculating enrichment in regions" if self.counts_file: self.sorted_region_path = self.counts_file if (not self.total_reads_a or not self.total_reads_b or (not self.total_reads_replica and self.use_replica)) and not self.use_MA: self.logger.info("... counting from counts file...") self.total_reads_a = 0 self.total_reads_b = 0 if self.total_reads_replica: self.total_reads_replica = 0 else: self.total_reads_replica = 1 for line in open(self.counts_file): try: enrich = dict(zip(enrichment_keys, line.split())) self.total_reads_a += float(enrich["signal_a"]) self.total_reads_b += float(enrich["signal_b"]) if self.use_replica: self.total_reads_replica += float(enrich["signal_prime_2"]) except ValueError: self.logger.debug("(Counting) skip header...") else: self.logger.info("... counting number of lines in files...") if not self.total_reads_a: if self.experiment_format == BAM: self.total_reads_a = bam.size(self.current_experiment_path) else: self.total_reads_a = sum(1 for line in utils.open_file(self.current_experiment_path, self.experiment_format, logger=self.logger)) if not self.total_reads_b: if self.experiment_format == BAM: self.total_reads_b = bam.size(self.current_control_path) else: self.total_reads_b = sum(1 for line in utils.open_file(self.current_control_path, self.control_format, logger=self.logger)) if self.use_replica and not self.total_reads_replica: if self.experiment_format == BAM: self.total_reads_replica = bam.size(self.replica_path) else: self.total_reads_replica = sum(1 for line in utils.open_file(self.replica_path, self.experiment_format, logger=self.logger)) self.logger.debug("Number lines in experiment A: %s Experiment B: %s"%(self.total_reads_a, self.total_reads_b)) if self.use_replica: msg = "%s using replicas..."%msg else: msg = "%s using swap..."%msg self.logger.info(msg) self.average_total_reads = (self.total_reads_a+self.total_reads_b)/2 def enrichment(self): file_a_reader = file_b_reader = replica_reader = None self.use_replica = (bool(self.replica_path) or (bool(self.counts_file) and self.use_replica_flag)) self.logger.debug("Use replica: %s"%self.use_replica) if not USE_MA in self.operations: _calculate_total_lengths(self) if not self.counts_file: file_a_reader = utils.read_fetcher(self.current_experiment_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) file_b_reader = utils.read_fetcher(self.current_control_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) if self.use_replica: replica_reader = utils.read_fetcher(self.current_replica_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) if self.sorted_region_path: self.logger.info('Using region file %s (%s)'%(self.region_path, self.region_format)) else: calculate_region(self) #create region file semi automatically self.total_regions = sum(1 for line in open(self.sorted_region_path)) self.logger.info("... analyzing regions, calculating normalized counts, A / M and replica or swap...") self.already_norm = False if self.use_MA: ma_path = self.counts_file else: ma_path = self.sorted_region_path out_path = _calculate_MA(self, ma_path, bool(self.counts_file), 1, 1, file_a_reader, file_b_reader, replica_reader) self.already_norm = True self.logger.debug("Already normalized: %s"%self.already_norm) if self.tmm_norm: if CHECK_REPLICAS in self.operations: self.experiment_values = [] self.replica_values = [] self.logger.info("TMM Normalizing...") tmm_factor = calc_tmm_factor(self, out_path, self.regions_analyzed_count, False) replica_tmm_factor = 1 if self.use_replica: replica_tmm_factor = calc_tmm_factor(self, out_path, self.regions_analyzed_count, True) #move output file to old output #use as input old_output = '%s/notnormalized_%s'%(self._current_directory(), os.path.basename(self.current_output_path)) move(os.path.abspath(self.current_output_path), old_output) out_path = _calculate_MA(self, old_output, True, tmm_factor, replica_tmm_factor, True) #recalculate with the new factor, using the counts again if self.quant_norm: self.logger.info("Full quantile normalization...") signal_a = [] signal_prime_1 = [] enrich = [] for line in open(out_path): sline = line.split() enrich_line = dict(zip(enrichment_keys, sline)) enrich.append(enrich_line) signal_a.append(float(enrich_line['signal_a'])) signal_prime_1.append(float(enrich_line['signal_prime_1'])) #full quantile normalization signal_a.sort() enrich.sort(key=lambda x:float(x['signal_b'])) quant_counts = open('%s/quantcounts_%s'%(self._current_directory(), os.path.basename(self.current_output_path)), 'w') for i in range(len(enrich)): enrich[i]['signal_b'] = signal_a[i] self.logger.info("Full quantile normalization replica...") #full quantile normalization of the replica signal_prime_1.sort() enrich.sort(key=lambda x:float(x['signal_prime_2'])) for i in range(len(enrich)): enrich[i]['signal_prime_2'] = signal_prime_1[i] quant_counts.write("%s\n"%"\t".join(str(enrich[i][key]) for key in enrichment_keys[:20])) #write the lines quant_counts.flush() out_path = _calculate_MA(self, quant_counts.name, True, 1, 1, True) #recalculate with the new factor, using the counts again self._manage_temp_file(quant_counts.name) self.logger.info("%s regions analyzed."%self.regions_analyzed_count) if not NOWRITE in self.operations: self.logger.info("Enrichment result saved to %s"%self.current_output_path) if CHECK_REPLICAS in self.operations: check_replica(self) return out_path def _sub_tmm(counts_a, counts_b, reads_a, reads_b): return (counts_a-reads_a)/(counts_a*reads_a) + (counts_b-reads_b)/(counts_b*reads_b) def calc_tmm_factor(self, file_counts, total_regions, replica): if replica: signal_1 = "signal_prime_1" signal_2 = "signal_prime_2" M = "M_prime" reads_2 = self.total_reads_replica else: signal_1 = "signal_a" signal_2 = "signal_b" M = "M" reads_2 = self.total_reads_b values_list = [] #read the file inside the values_list for line in open(file_counts): sline = line.split() values_list.append(dict(zip(enrichment_keys, sline))) a_trim_number = int(round(total_regions*self.a_trim)) #discard the bad A self.logger.debug("Removing the worst A (%s regions, %s percent)"%(a_trim_number, self.a_trim*100)) values_list.sort(key=lambda x:float(x["A"])) #sort by A for i in range (0, a_trim_number): values_list.pop(0) values_list.sort(key=lambda x:float(x[M])) #sort by M m_trim_number = int(round(total_regions*(self.m_trim/2))) #this number is half the value of the flag, because we will trim half below, and half over #remove on the left for i in range(0, m_trim_number): values_list.pop(0) #remove on the right for i in range(0, m_trim_number): values_list.pop(-1) #now calculate the normalization factor arriba = 0 abajo = 0 for value in values_list: w = _sub_tmm(float(value[signal_1]), float(value[signal_2]), self.total_reads_a, reads_2) arriba += w*float(value[M]) abajo += w try: factor = 2**(arriba/abajo) except ZeroDivisionError: self.logger.warning("Division by zero, TMM factor could not be calculated.") factor = 1 if replica: self.logger.info("Replica TMM Normalization Factor: %s"%factor) else: self.logger.info("TMM Normalization Factor: %s"%factor) return factor def __load_enrichment_result(values_path): ret = [] for line in open(values_path): sline = line.split() try: float(sline[1]) ret.append(dict(zip(enrichment_keys, sline))) except ValueError: pass return ret def calculate_zscore(self, values_path): num_regions = sum(1 for line in open(values_path)) bin_size = int(self.binsize*num_regions) if bin_size < 50: self.logger.warning("The bin size results in a sliding window smaller than 50, adjusting window to 50 in order to get statistically meaningful results.") bin_size = 50 bin_step = max(1, int(round(self.bin_step*bin_size))) self.logger.info("Enrichment window calculation using a sliding window size of %s, sliding with a step of %s"%(bin_size, bin_step)) self.logger.info("... calculating zscore...") enrichment_result = __load_enrichment_result(values_path) enrichment_result.sort(key= lambda x:(float(x["A_prime"]))) self.logger.debug("Number of loaded counts: %s"%len(enrichment_result)) self.points = [] #get the standard deviations for i in range(0, num_regions-bin_size+bin_step, bin_step): #get the slice if i+bin_size < num_regions: result_chunk = enrichment_result[i:i+bin_size] else: result_chunk = enrichment_result[i:] #last chunk #retrieve the values mean_acum = 0 a_acum = 0 Ms_replica = [] for entry in result_chunk: mean_acum += float(entry["M_prime"]) a_acum += float(entry["A_prime"]) Ms_replica.append(float(entry["M_prime"])) #add them to the points of mean and sd mean = mean_acum/len(result_chunk) sd = math.sqrt((sum((x - mean)**2 for x in Ms_replica))/len(Ms_replica)) #the A median A_median = a_acum / len(result_chunk) self.points.append([A_median, mean, sd]) #The A asigned to the window, the mean and the standard deviation #self.logger.debug("Window of %s length, with A median: %s mean: %s sd: %s"%(len(result_chunk), self.points[-1][0], self.points[-1][1], self.points[-1][2], len(self.points))) #update z scores for entry in enrichment_result: entry["A_median"] = 0 entry["mean"] = 0 entry["sd"] = 0 entry["zscore"] = 0 closest_A = sys.maxint sd_position = 0 for i in range(0, len(self.points)): new_A = self.points[i][0] if new_A != closest_A: #skip repeated points if abs(closest_A - float(entry["A"])) >= abs(new_A - float(entry["A"])): closest_A = new_A sd_position = i else: break #already found, no need to go further since the points are ordered entry["A_median"] = closest_A if self.points: #only calculate if there where windows... __sub_zscore(self.sdfold, entry, self.points[sd_position]) if not self.points: # ... otherwise give a warning self.logger.warning("Insufficient number of regions analyzed (%s), z-score values could not be calculated"%num_regions) enrichment_result.sort(key=lambda x:(x["name"], int(x["start"]), int(x["end"]))) old_file_path = '%s/before_zscore_%s'%(self._current_directory(), os.path.basename(values_path)) #create path for the outdated file move(os.path.abspath(values_path), old_file_path) #move the file new_file = file(values_path, 'w') #open a new file in the now empty file space if not self.skip_header: new_file.write('\t'.join(enrichment_keys)) new_file.write('\n') for entry in enrichment_result: new_file.write("\t".join(str(entry[key]) for key in enrichment_keys)+"\n") self._manage_temp_file(old_file_path) return values_path def __sub_zscore(sdfold, entry, point): entry["mean"] = str(point[1]) entry["sd"] = str(point[2]) entry["zscore"] = str(get_zscore(float(entry["M"]), float(entry["mean"]), sdfold*float(entry["sd"]))) def check_replica(self): #discard everything below the flag new_experiment = [] new_replica = [] min_value = sys.maxint max_value = -sys.maxint for i in range(len(self.replica_values)): if self.experiment_values[i] > self.count_filter and self.replica_values[i] > self.count_filter: new_experiment.append(math.log(self.experiment_values[i], 2)) new_replica.append(math.log(self.replica_values[i], 2)) min_value = min(min_value, math.log(self.experiment_values[i], 2), math.log(self.replica_values[i], 2)) max_value = max(max_value, math.log(self.experiment_values[i], 2), math.log(self.replica_values[i], 2)) #print self.replica_values self.experiment_values = new_experiment self.replica_values = new_replica try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import plot, show, xlabel, ylabel, axhline, axis, clf, text, title, xlim, ylim except: __matplotlibwarn(self) return 0 clf() r_squared = utils.pearson(self.experiment_values, self.replica_values)**2 text(min_value+abs(max_value)*0.1, max_value-abs(max_value)*0.2, r'Pearson $R^2$= %s'%round(r_squared, 3), fontsize=18, bbox={'facecolor':'yellow', 'alpha':0.5, 'pad':10}) xlabel("log2(%s)"%self.experiment_label, fontsize=18) ylabel("log2(%s)"%self.replica_label, fontsize=18) xlim(min_value, max_value) ylim(min_value, max_value) title(self.title_label, fontsize=24) plot(self.experiment_values, self.replica_values, '.') self._save_figure("check_replica") def check_replica_correlation(self): "No usado, de momento" min_tags = 20 experiment_reader = utils.read_fetcher(self.current_experiment_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential) replica_reader = utils.read_fetcher(self.current_replica_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential) correlations_acum = 0 num_correlations = 0 for region_line in open(self.region_path): sline = region_line.split() region_experiment = self._region_from_sline(sline) region_replica = region_experiment.copy() tags_experiment = experiment_reader.get_overlaping_clusters(region_experiment, overlap=1) tags_replica = replica_reader.get_overlaping_clusters(region_experiment, overlap=1) count_experiment = len(tags_experiment) count_replica = len(tags_replica) correlations = [] if count_experiment+count_replica > min_tags: region_experiment.add_tags(tags_experiment, clusterize=True) region_replica.add_tags(tags_replica, clusterize=True) num_correlations += 1 correlation = utils.pearson(region_experiment.get_array(), region_replica.get_array()) correlations_acum += max(0, correlation) correlations.append(correlation) print correlations_acum/num_correlations try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import plot, boxplot, show, legend, figure, xlabel, ylabel, subplot, axhline, axis except: __matplotlibwarn(self) return 0 print correlations boxplot(correlations) self._save_figure("check_replica")
gpl-3.0
bionet/ted.python
demos/iaf_delay_demo.py
1
3443
#!/usr/bin/env python """ Demos of MIMO time encoding and decoding algorithms that use IAF neurons with delays. """ # Copyright (c) 2009-2015, Lev Givon # All rights reserved. # Distributed under the terms of the BSD license: # http://www.opensource.org/licenses/bsd-license import numpy as np # Set matplotlib backend so that plots can be generated without a # display: import matplotlib matplotlib.use('AGG') from bionet.utils.misc import func_timer import bionet.utils.band_limited as bl import bionet.utils.plotting as pl import bionet.ted.iaf as iaf # For determining output plot file names: output_name = 'iaf_delay_demo_' output_count = 0 output_ext = '.png' # Define input signal generation parameters: T = 0.05 dur = 2*T dt = 1e-6 f = 100 bw = 2*np.pi*f np.random.seed(0) noise_power = None comps = 8 if noise_power == None: fig_title = 'IAF Input Signal with No Noise' else: fig_title = 'IAF Input Signal with %d dB of Noise' % noise_power M = 3 # number of input signals N = 9 # number of neurons # Starting and ending points of interval that is encoded: t_start = 0.02 t_end = t_start+T if t_end > dur: raise ValueError('t_start is too large') k_start = int(np.round(t_start/dt)) k_end = int(np.round(t_end/dt)) t_enc = np.arange(k_start, k_end, dtype=np.float)*dt u_list = [] for i in xrange(M): fig_title_in = fig_title + ' (Signal #' + str(i+1) + ')' print fig_title_in u = func_timer(bl.gen_band_limited)(dur, dt, f, noise_power, comps) u /= max(u) u *= 1.5 pl.plot_signal(t_enc, u[k_start:k_end], fig_title_in, output_name + str(output_count) + output_ext) u_list.append(u) output_count += 1 t = np.arange(len(u_list[0]), dtype=np.float)*dt # Define neuron parameters: def randu(a, b, *d): """Create an array of the given shape and propagate it with random samples from a uniform distribution over ``[a, b)``.""" if a >= b: raise ValueError('b must exceed a') return a+(b-a)*np.random.rand(*d) b_list = list(randu(2.3, 3.3, N)) d_list = list(randu(0.15, 0.25, N)) k_list = list(0.01*np.ones(N)) a_list = map(list, np.reshape(np.random.exponential(0.003, N*M), (N, M))) w_list = map(list, np.reshape(randu(0.5, 1.0, N*M), (N, M))) fig_title = 'Signal Encoded Using Delayed IAF Encoder' print fig_title s_list = func_timer(iaf.iaf_encode_delay)(u_list, t_start, dt, b_list, d_list, k_list, a_list, w_list) for i in xrange(M): for j in xrange(N): fig_title_out = fig_title + '\n(Signal #' + str(i+1) + \ ', Neuron #' + str(j+1) + ')' pl.plot_encoded(t_enc, u_list[i][k_start:k_end], s_list[j][np.cumsum(s_list[j])<T], fig_title_out, output_name + str(output_count) + output_ext) output_count += 1 fig_title = 'Signal Decoded Using Delayed IAF Decoder' print fig_title u_rec_list = func_timer(iaf.iaf_decode_delay)(s_list, T, dt, b_list, d_list, k_list, a_list, w_list) for i in xrange(M): fig_title_out = fig_title + ' (Signal #' + str(i+1) + ')' pl.plot_compare(t_enc, u_list[i][k_start:k_end], u_rec_list[i][0:k_end-k_start], fig_title_out, output_name + str(output_count) + output_ext) output_count += 1
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Static_Normal_Contact/Normal_Behviour/SoftContact_NonLinHardSoftShear/plot.py
1
1585
#!/usr/bin/python import h5py import matplotlib.pylab as plt import sys import numpy as np; ################ Node # 2 Displacement ############################# ####################################### ## Analytical Solution ####################################### finput = h5py.File('Analytical_Solution.feioutput') plt.figure() # Read the time and displacement times = finput["time"][:] normal_strain = finput["/Model/Elements/Element_Outputs"][6,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; # plt.plot(normal_strain,normal_stress,'-r',Linewidth=4,label='Analytical Solution') plt.hold(True) ####################################### ## Current Solution ####################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_strain = finput["/Model/Elements/Element_Outputs"][6,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain,normal_stress,'-k',Linewidth=4,label='Numerical Solution') plt.xlabel(r"Normal Strain $\epsilon$") plt.ylabel(r"Normal Stress $\sigma$") plt.legend() plt.savefig("Contact_Normal_Interface_Behavour.pdf", bbox_inches='tight') # plt.show() # #####################################################################
cc0-1.0
hakujyo/chessplaying_robot
matchpicture.py
1
1381
import cv2 import numpy as np import time from matplotlib import pyplot as plt x = 0 y = 0 def makematchpicture(Grayurl): img = cv2.imread(Grayurl, 0) img2 = img.copy() template = cv2.imread('test.png', 0) w, h = template.shape[::-1] methods = ['cv2.TM_SQDIFF'] for meth in methods: img = img2.copy() method = eval(meth) # Apply template Matching res = cv2.matchTemplate(img, template, method) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) print("模板匹配:",int(top_left[0] + w / 2), int(top_left[1] + h / 2)) cv2.rectangle(img, top_left, bottom_right, 255, 2) plt.figure() plt.subplot(121), plt.imshow(res, cmap='gray') plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(img, cmap='gray') plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) plt.suptitle(meth) global x global y x = int(top_left[0] + w / 2) y = int(top_left[1] + h / 2)
gpl-3.0
jjx02230808/project0223
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
bikong2/scikit-learn
examples/ensemble/plot_ensemble_oob.py
259
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <hui.kian.ho@gmail.com> # Gilles Louppe <g.louppe@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
wathen/PhD
MHD/FEniCS/MHD/Stabilised/Precond/MHDstabtest.py
1
11477
#!/usr/bin/python # interpolate scalar gradient onto nedelec space from dolfin import * import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc Print = PETSc.Sys.Print # from MatrixOperations import * import numpy as np #import matplotlib.pylab as plt import PETScIO as IO import common import scipy import scipy.io import time import BiLinear as forms import IterOperations as Iter import MatrixOperations as MO import CheckPetsc4py as CP import ExactSol import Solver as S import MHDmatrixPrecondSetup as PrecondSetup import NSprecondSetup m = 7 errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,1)) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0]= 1e0 for xx in xrange(1,m): print xx level[xx-1] = xx nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn,nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "DG", order-1) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity,Pressure,Magnetic,Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcb = DirichletBC(W.sub(2),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, p, b, r) = TrialFunctions(W) (v, q, c,s ) = TestFunctions(W) kappa = 1.0 Mu_m =1e1 MU = 1.0 IterType = 'Full' F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, 1e-6) MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n") u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New", FS = "DG") ones = Function(Pressure) ones.vector()[:]=(0*ones.vector().array()+1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx) x = Iter.u_prev(u_k,p_k,b_k,r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) # plot(b_k) ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"DG") RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"DG") bcu = DirichletBC(W.sub(0),Expression(("0.0","0.0")), boundary) bcb = DirichletBC(W.sub(2),Expression(("0.0","0.0")), boundary) bcr = DirichletBC(W.sub(3),Expression(("0.0")), boundary) bcs = [bcu,bcb,bcr] eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 40 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' if IterType == "CD": AA, bb = assemble_system(maxwell+ns, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) # u = b.duplicate() # P = CP.Assemble(PP) u_is = PETSc.IS().createGeneral(range(FSpaces[0].dim())) b_is = PETSc.IS().createGeneral(range(FSpaces[0].dim()+FSpaces[1].dim(),FSpaces[0].dim()+FSpaces[1].dim()+FSpaces[2].dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) OuterTol = 1e-5 InnerTol = 1e-3 NSits =0 Mits =0 TotalStart =time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) A,b = CP.Assemble(AA,bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) # if iter == 1: if iter == 1: u = b.duplicate() print ("{:40}").format("MHD assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() stime = time.time() # ksp.solve(b, u) u,it1,it2 = S.solve(A,b,u,[NS_is,M_is],FSpaces,IterType,OuterTol,InnerTol,HiptmairMatrices,KSPlinearfluids,kspF,Fp,MatrixLinearFluids,kspFp) Soltime = time.time()- stime NSits += it1 Mits +=it2 SolutionTime = SolutionTime +Soltime u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter) p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) # if eps > 100 and iter > 3: # print 22222 # break uOld= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) # iter = 10000 # u_k,b_k,epsu,epsb=Iter.PicardTolerance(x,u_k,b_k,FSpaces,dim,"inf",iter) SolTime[xx-1] = SolutionTime/iter NSave[xx-1] = (float(NSits)/iter) Mave[xx-1] = (float(Mits)/iter) iterations[xx-1] = iter TotalTime[xx-1] = time.time() - TotalStart ue =u0 pe = p0 be = b0 re = r0 # ExactSolution = [ue,pe,be,re] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(x,mesh,FSpaces,ExactSolution,order,dim, "DG") # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # print "\n\n Lagrange convergence" # LagrangeTitles = ["l","SolTime","B DoF","R DoF","R-L2","L2-order","R-H1","H1-order"] # LagrangeValues = np.concatenate((level,SolTime,Magneticdim,Lagrangedim,errL2r,l2rorder,errH1r,H1rorder),axis=1) # LagrangeTable= pd.DataFrame(LagrangeValues, columns = LagrangeTitles) # pd.set_option('precision',3) # LagrangeTable = MO.PandasFormat(LagrangeTable,"R-L2","%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,'R-H1',"%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,"H1-order","%1.2f") # LagrangeTable = MO.PandasFormat(LagrangeTable,'L2-order',"%1.2f") # print LagrangeTable print "\n\n Iteration table" if IterType == "Full": IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av Outer its","Av Inner its",] else: IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av NS iters","Av M iters"] IterValues = np.concatenate((level,Wdim,SolTime,TotalTime,iterations,NSave,Mave),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable,'Av Outer its',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av Inner its',"%2.1f") else: IterTable = MO.PandasFormat(IterTable,'Av NS iters',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av M iters',"%2.1f") print IterTable.to_latex() print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(ue,Velocity)) # plot(p_k) # plot(interpolate(pe,Pressure)) # plot(b_k) # plot(interpolate(be,Magnetic)) # plot(r_k) # plot(interpolate(re,Lagrange)) # interactive() interactive()
mit
NunoEdgarGub1/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/finance.py
69
20558
""" A collection of modules for collecting, analyzing and plotting financial data. User contributions welcome! """ #from __future__ import division import os, time, warnings from urllib import urlopen try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 try: import datetime except ImportError: raise ImportError('The finance module requires datetime support (python2.3)') import numpy as np from matplotlib import verbose, get_configdir from dates import date2num from matplotlib.cbook import Bunch from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter from lines import Line2D, TICKLEFT, TICKRIGHT from patches import Rectangle from matplotlib.transforms import Affine2D configdir = get_configdir() cachedir = os.path.join(configdir, 'finance.cache') def parse_yahoo_historical(fh, asobject=False, adjusted=True): """ Parse the historical data in file handle fh from yahoo finance and return results as a list of d, open, close, high, low, volume where d is a floating poing representation of date, as returned by date2num if adjust=True, use adjusted prices """ results = [] lines = fh.readlines() datefmt = None for line in lines[1:]: vals = line.split(',') if len(vals)!=7: continue datestr = vals[0] if datefmt is None: try: datefmt = '%Y-%m-%d' dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) except ValueError: datefmt = '%d-%b-%y' # Old Yahoo--cached file? dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) d = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = int(vals[5]) if adjusted: aclose = float(vals[6]) m = aclose/close open *= m high *= m low *= m close = aclose results.append((d, open, close, high, low, volume)) results.reverse() if asobject: if len(results)==0: return None else: date, open, close, high, low, volume = map(np.asarray, zip(*results)) return Bunch(date=date, open=open, close=close, high=high, low=low, volume=volume) else: return results def fetch_historical_yahoo(ticker, date1, date2, cachename=None): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are datetime instances Ex: fh = fetch_historical_yahoo('^GSPC', d1, d2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) a file handle is returned """ ticker = ticker.upper() d1 = (date1.month-1, date1.day, date1.year) d2 = (date2.month-1, date2.day, date2.year) urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=d&ignore=.csv' url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker) if cachename is None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if os.path.exists(cachename): fh = file(cachename) verbose.report('Using cachefile %s for %s'%(cachename, ticker)) else: if not os.path.isdir(cachedir): os.mkdir(cachedir) fh = file(cachename, 'w') fh.write(urlopen(url).read()) fh.close() verbose.report('Saved %s data to cache file %s'%(ticker, cachename)) fh = file(cachename, 'r') return fh def quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. date1 and date2 are datetime instances results are a list of tuples (d, open, close, high, low, volume) where d is a floating poing representation of date, as returned by date2num if asobject is True, the return val is an object with attrs date, open, close, high, low, volume, which are equal length arrays if adjust=True, use adjusted prices Ex: sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] [n,bins,patches] = hist(returns, 100) mu = mean(returns) sigma = std(returns) x = normpdf(bins, mu, sigma) plot(bins, x, color='red', lw=2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) """ fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = parse_yahoo_historical(fh, asobject, adjusted) except IOError, exc: warnings.warn('urlopen() failure\n' + url + '\n' + exc.strerror[1]) return None return ret def plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """ quotes is a list of (time, open, close, high, low, ...) tuples Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. time must be in float date format - see date2num ax : an Axes instance to plot to ticksize : open/close tick marker in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ lines = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup else : color = colordown vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D( xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D( xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ quotes is a list of (time, open, close, high, low, ...) tuples. As long as the first 5 elements of the tuples are these values, the tuple can be as long as you want (eg it may store volume). time must be in float days format - see date2num Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown ax : an Axes instance to plot to width : fraction of a day for the rectangle width colorup : the color of the rectangle where close >= open colordown : the color of the rectangle where close < open alpha : the rectangle alpha level return value is lines, patches where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width/2.0 lines = [] patches = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup lower = open height = close-open else : color = colordown lower = close height = open-close vline = Line2D( xdata=(t, t), ydata=(low, high), color='k', linewidth=0.5, antialiased=True, ) rect = Rectangle( xy = (t-OFFSET, lower), width = width, height = height, facecolor = color, edgecolor = color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """ Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. ax : an Axes instance to plot to ticksize : size of open and close ticks in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ # note this code assumes if any value open, close, low, high is # missing they all are missing rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [ ((-ticksize, 0), (0, 0)) ] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [ ((0, 0), (ticksize, 0)) ] offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ] offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ] scale = ax.figure.dpi * (1.0/72.0) tickTransform = Affine2D().scale(scale, 0.0) r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,1 r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,1 colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(rangeSegments)==len(offsetsOpen)) assert(len(offsetsOpen)==len(offsetsClose)) assert(len(offsetsClose)==len(colors)) useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors = colors, linewidths = lw, antialiaseds = useAA, ) openCollection = LineCollection(openSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsOpen, transOffset = ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsClose, transOffset = ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """ Represent the open, close as a bar line and high low range as a vertical line. ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency return value is lineCollection, barCollection """ # note this code assumes if any value open, close, low, high is # missing they all are missing delta = width/2. barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ] rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(barVerts)==len(rangeSegments)) useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors = ( (0,0,0,1), ), linewidths = lw, antialiaseds = useAA, ) barCollection = PolyCollection(barVerts, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) ax.add_collection(rangeCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] delta = width/2. bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ] barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = (0,), linewidths = (0.5,), ) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency nb: first point is not displayed - it is used only for choosing the right color """ return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. quotes is a list of (d, open, close, high, low, volume) and close-open is used to determine the color of the bar kwarg width : the bar width in points colorup : the color of the lines where close1 >= close0 colordown : the color of the lines where close1 < close0 alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } dates, opens, closes, highs, lows, volumes = zip(*quotes) colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1] colors.insert(0,colord[closes[0]>=opens[0]]) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) dates = [d for d, open, close, high, low, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, close, high, low, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.get_bounds() #print 'viewlim', ax.viewLim.get_bounds() ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """ Add a bar collection graph with height vals (-1 is missing). ax : an Axes instance to plot to width : the bar width in points alpha : bar transparency """ facecolors = (colorConverter.to_rgba(facecolor, alpha),) edgecolors = (colorConverter.to_rgba(edgecolor, alpha),) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ] barCollection = PolyCollection(bars, facecolors = facecolors, edgecolors = edgecolors, antialiaseds = (0,), linewidths = (0.5,), offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v!=-1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection
gpl-3.0
IndraVikas/scikit-learn
examples/ensemble/plot_partial_dependence.py
249
4456
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show()
bsd-3-clause
shyamalschandra/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
krez13/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
DougFirErickson/neon
examples/conv_autoencoder.py
3
2945
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ Convolutional autoencoder example network for MNIST data set """ import numpy as np from neon.data import ArrayIterator, load_mnist from neon.initializers import Uniform from neon.layers import Conv, Pooling, GeneralizedCost, Deconv from neon.models import Model from neon.optimizers import GradientDescentMomentum from neon.transforms import Rectlin, SumSquared from neon.callbacks.callbacks import Callbacks from neon.util.argparser import NeonArgparser # parse the command line arguments parser = NeonArgparser(__doc__) args = parser.parse_args() # Load dataset (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir) # Set input and target to X_train train = ArrayIterator(X_train, lshape=(1, 28, 28)) # Initialize the weights and the learning rule init_uni = Uniform(low=-0.1, high=0.1) opt_gdm = GradientDescentMomentum(learning_rate=0.001, momentum_coef=0.9) # Define the layers layers = [Conv((4, 4, 8), init=init_uni, activation=Rectlin()), Pooling(2), Conv((4, 4, 32), init=init_uni, activation=Rectlin()), Pooling(2), Deconv(fshape=(4, 4, 8), init=init_uni, activation=Rectlin()), Deconv(fshape=(3, 3, 8), init=init_uni, activation=Rectlin(), strides=2), Deconv(fshape=(2, 2, 1), init=init_uni, strides=2, padding=1)] # Define the cost cost = GeneralizedCost(costfunc=SumSquared()) model = Model(layers=layers) # configure callbacks callbacks = Callbacks(model, **args.callback_args) # Fit the model model.fit(train, optimizer=opt_gdm, num_epochs=args.epochs, cost=cost, callbacks=callbacks) # Plot the reconstructed digits try: from matplotlib import pyplot, cm fi = 0 nrows = 10 ncols = 12 test = np.zeros((28*nrows, 28*ncols)) idxs = [(row, col) for row in range(nrows) for col in range(ncols)] for row, col in idxs: im = model.layers.layers[-1].outputs.get()[:, fi].reshape((28, 28)) test[28*row:28*(row+1):, 28*col:28*(col+1)] = im fi = fi + 1 pyplot.matshow(test, cmap=cm.gray) pyplot.savefig('Reconstructed.png') except ImportError: print 'matplotlib needs to be manually installed to generate plots'
apache-2.0
neutrons/Licorne-Py
UI-playground/layerplot.py
1
2806
from __future__ import (absolute_import, division, print_function) from PyQt5 import QtCore, QtWidgets import sys import numpy as np from layer import Layer, MSLD from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import matplotlib.cm from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection class layerplot(QtWidgets.QWidget): def __init__(self, *args): QtWidgets.QWidget.__init__(self, *args) sample=[Layer(nsld=5),Layer(thickness=2.,nsld=3),Layer(nsld=5),Layer(nsld=4.,thickness=np.inf)] self.m = PlotCanvas(sample, self) self.m.move(0,0) def resizeEvent(self, event): self.m.setGeometry(self.rect()) class PlotCanvas(FigureCanvas): def __init__(self, layers, parent=None): self.fig = Figure() self.axes = self.fig.add_subplot(111) FigureCanvas.__init__(self, self.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.data=layers self.variable='nsld' self.plot() self.fig.canvas.mpl_connect('pick_event', self.onpick) def onpick(self,event): ind=event.ind[0] if ind==len(self.data)-1: ind='substrate' print('picked layer {0}'.format(ind)) return True def plot(self): layer_thick_array=np.array([l.thickness for l in self.data]) layer_nsld_array =np.array([l.nsld for l in self.data]) depth=np.zeros(len(layer_thick_array)) depth[1:]=layer_thick_array.cumsum()[:-1] patches=[] N=len(self.data) for i in range(N-1): polygon=Polygon([[depth[i],0.],[depth[i],layer_nsld_array[i]],[depth[i+1],layer_nsld_array[i]],[depth[i+1],0]],True) patches.append(polygon) polygon=Polygon([[depth[N-1],0.],[depth[N-1],layer_nsld_array[N-1]],[depth[N-1]+1,layer_nsld_array[N-1]],[depth[N-1]+1,0]],True) patches.append(polygon) p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4, picker=True) colors = 100*np.random.rand(len(patches)) p.set_array(np.array(colors)) ax = self.figure.add_subplot(111) ax.add_collection(p) ax.set_title('NSLD') ax.set_xlim(np.array([0,depth[-1]])*1.2) ax.set_ylim(np.array([0,layer_nsld_array.max()])*1.2) #TODO allow negative ax.set_xlabel('Thickness') ax.set_ylabel('NSLD') self.draw() if __name__=='__main__': app=QtWidgets.QApplication(sys.argv) mainForm=layerplot() mainForm.show() sys.exit(app.exec_())
gpl-3.0
ashhher3/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
aetilley/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
andyh616/mne-python
mne/viz/tests/test_ica.py
7
6812
# Authors: Denis Engemann <denis.engemann@gmail.com> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: Simplified BSD import os.path as op import warnings from numpy.testing import assert_raises from mne import io, read_events, Epochs, read_cov from mne import pick_types from mne.utils import run_tests_if_main, requires_sklearn from mne.viz.utils import _fake_click from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.1, 0.2 def _get_raw(preload=False): return io.Raw(raw_fname, preload=preload) def _get_events(): return read_events(event_name) def _get_picks(raw): return [0, 1, 2, 6, 7, 8, 12, 13, 14] # take a only few channels def _get_epochs(): raw = _get_raw() events = _get_events() picks = _get_picks(raw) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) return epochs @requires_sklearn def test_plot_ica_components(): """Test plotting of ICA solutions """ import matplotlib.pyplot as plt raw = _get_raw() ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica_picks = _get_picks(raw) ica.fit(raw, picks=ica_picks) warnings.simplefilter('always', UserWarning) with warnings.catch_warnings(record=True): for components in [0, [0], [0, 1], [0, 1] * 2, None]: ica.plot_components(components, image_interp='bilinear', res=16) ica.info = None assert_raises(RuntimeError, ica.plot_components, 1) plt.close('all') @requires_sklearn def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.Raw(raw_fname, preload=False) raw.crop(0, 1, copy=False) raw.preload_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all') @requires_sklearn def test_plot_ica_overlay(): """Test plotting of ICA cleaning """ import matplotlib.pyplot as plt raw = _get_raw(preload=True) picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) # don't test raw, needs preload ... ecg_epochs = create_ecg_epochs(raw, picks=picks) ica.plot_overlay(ecg_epochs.average()) eog_epochs = create_eog_epochs(raw, picks=picks) ica.plot_overlay(eog_epochs.average()) assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0]) ica.plot_overlay(raw) plt.close('all') @requires_sklearn def test_plot_ica_scores(): """Test plotting of ICA scores """ import matplotlib.pyplot as plt raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1]) assert_raises(ValueError, ica.plot_scores, [0.2]) plt.close('all') @requires_sklearn def test_plot_instance_components(): """Test plotting of components as instances of raw and epochs.""" import matplotlib.pyplot as plt raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) fig = ica.plot_sources(raw, exclude=[0], title='Components') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.key_press_event('right') fig.canvas.key_press_event('left') fig.canvas.key_press_event('o') fig.canvas.key_press_event('-') fig.canvas.key_press_event('+') fig.canvas.key_press_event('=') fig.canvas.key_press_event('pageup') fig.canvas.key_press_event('pagedown') fig.canvas.key_press_event('home') fig.canvas.key_press_event('end') fig.canvas.key_press_event('f11') ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') epochs = _get_epochs() fig = ica.plot_sources(epochs, exclude=[0], title='Components') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.key_press_event('right') fig.canvas.key_press_event('left') fig.canvas.key_press_event('o') fig.canvas.key_press_event('-') fig.canvas.key_press_event('+') fig.canvas.key_press_event('=') fig.canvas.key_press_event('pageup') fig.canvas.key_press_event('pagedown') fig.canvas.key_press_event('home') fig.canvas.key_press_event('end') fig.canvas.key_press_event('f11') # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') run_tests_if_main()
bsd-3-clause
niketanpansare/systemml
scripts/perftest/python/google_docs/stats.py
15
3540
#!/usr/bin/env python3 # ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import argparse import os import pprint from os.path import join import matplotlib.pyplot as plt from gdocs_utils import auth # Dict # {algo_name : [algo_1.0': t1, 'algo_2.0': t2]} def get_formatted_data(sheet_data): """ Read all the data from google sheets and transforms it into a dictionary that can be use for plotting later """ algo_dict = {} for i in sheet_data: inn_count = 0 data = [] for key, val in i.items(): inn_count += 1 if inn_count < 3: data.append(key) data.append(val) if inn_count == 2: t1, v1, _, v2 = data if len(str(v2)) > 0: if v1 not in algo_dict: algo_dict[v1] = [{t1: v2}] else: algo_dict[v1].append({t1: v2}) inn_count = 0 data = [] return algo_dict def plot(x, y, xlab, ylab, title): """ Save plots to the current folder based on the arguments """ CWD = os.getcwd() PATH = join(CWD, title) width = .35 plt.bar(x, y, color="red", width=width) plt.xticks(x) plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) plt.savefig(PATH + '.png') print('Plot {} generated'.format(title)) return plt # Example Usage # ./stats.py --auth ../key/client_json.json --exec-mode singlenode if __name__ == '__main__': execution_mode = ['hybrid_spark', 'singlenode'] cparser = argparse.ArgumentParser(description='System-ML Statistics Script') cparser.add_argument('--auth', help='Location to read auth file', required=True, metavar='') cparser.add_argument('--exec-type', help='Execution mode', choices=execution_mode, required=True, metavar='') cparser.add_argument('--plot', help='Algorithm to plot', metavar='') args = cparser.parse_args() sheet = auth(args.auth, args.exec_type) all_data = sheet.get_all_records() plot_data = get_formatted_data(all_data) if args.plot is not None: print(plot_data[args.plot]) title = args.plot ylab = 'Time in sec' xlab = 'Version' x = [] y = [] for i in plot_data[args.plot]: version = list(i.keys())[0] time = list(i.values())[0] y.append(time) x.append(version) x = list(map(lambda x: float(x.split('_')[1]), x)) plot(x, y, xlab, ylab, title) else: pprint.pprint(plot_data, width=1)
apache-2.0
srinathv/vispy
examples/basics/plotting/mpl_plot.py
14
1579
# -*- coding: utf-8 -*- # vispy: testskip # ----------------------------------------------------------------------------- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- """ Example demonstrating how to use vispy.pyplot, which uses mplexporter to convert matplotlib commands to vispy draw commands. Requires matplotlib. """ import numpy as np # You can use either matplotlib or vispy to render this example: # import matplotlib.pyplot as plt import vispy.mpl_plot as plt from vispy.io import read_png, load_data_file n = 200 freq = 10 fs = 100. t = np.arange(n) / fs tone = np.sin(2*np.pi*freq*t) noise = np.random.RandomState(0).randn(n) signal = tone + noise magnitude = np.abs(np.fft.fft(signal)) freqs = np.fft.fftfreq(n, 1. / fs) flim = n // 2 # Signal fig = plt.figure() ax = plt.subplot(311) ax.imshow(read_png(load_data_file('pyplot/logo.png'))) ax = plt.subplot(312) ax.plot(t, signal, 'k-') # Frequency content ax = plt.subplot(313) idx = np.argmax(magnitude[:flim]) ax.text(freqs[idx], magnitude[idx], 'Max: %s Hz' % freqs[idx], verticalalignment='top') ax.plot(freqs[:flim], magnitude[:flim], 'k-o') plt.draw() # NOTE: show() has currently been overwritten to convert to vispy format, so: # 1. It must be called to show the results, and # 2. Any plotting commands executed after this will not take effect. # We are working to remove this limitation. if __name__ == '__main__': plt.show(True)
bsd-3-clause
ChinaQuants/bokeh
bokeh/compat/bokeh_renderer.py
2
17762
"Supporting objects and functions to convert Matplotlib objects into Bokeh." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import itertools import warnings import matplotlib as mpl import numpy as np import pandas as pd from six import string_types from ..models import (ColumnDataSource, FactorRange, DataRange1d, DatetimeAxis, GlyphRenderer, Grid, GridPlot, LinearAxis, Plot, CategoricalAxis, Legend) from ..models.glyphs import (Asterisk, Circle, Cross, Diamond, InvertedTriangle, Line, MultiLine, Patches, Square, Text, Triangle, X) from ..plotting import DEFAULT_TOOLS from ..plotting_helpers import _process_tools_arg from .mplexporter.renderers import Renderer from .mpl_helpers import convert_dashes, get_props_cycled, is_ax_end, xkcd_line #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class BokehRenderer(Renderer): def __init__(self, pd_obj, xkcd): "Initial setup." self.fig = None self.pd_obj = pd_obj self.xkcd = xkcd self.zorder = {} self.handles = {} def open_figure(self, fig, props): "Get the main plot properties and create the plot." self.width = int(props['figwidth'] * props['dpi']) self.height = int(props['figheight'] * props['dpi']) self.plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_width=self.width, plot_height=self.height) def close_figure(self, fig): "Complete the plot: add tools." # Add tools tool_objs = _process_tools_arg(self.plot, DEFAULT_TOOLS) self.plot.add_tools(*tool_objs) # Simple or Grid plot setup if len(fig.axes) <= 1: self.fig = self.plot self.plot.renderers.sort(key=lambda x: self.zorder.get(x._id, 0)) else: # This list comprehension splits the plot.renderers list at the "marker" # points returning small sublists corresponding with each subplot. subrends = [list(x[1]) for x in itertools.groupby( self.plot.renderers, lambda x: is_ax_end(x)) if not x[0]] plots = [] for i, axes in enumerate(fig.axes): # create a new plot for each subplot _plot = Plot(x_range=self.plot.x_range, y_range=self.plot.y_range, plot_width=self.width, plot_height=self.height) _plot.title = "" # and add new tools _tool_objs = _process_tools_arg(_plot, DEFAULT_TOOLS) _plot.add_tools(*_tool_objs) # clean the plot ref from axis and grids _plot_rends = subrends[i] for r in _plot_rends: if not isinstance(r, GlyphRenderer): r.plot = None # add all the renderers into the new subplot for r in _plot_rends: if isinstance(r, GlyphRenderer): _plot.renderers.append(r) elif isinstance(r, Grid): _plot.add_layout(r) else: if r in self.plot.below: _plot.add_layout(r, 'below') elif r in self.plot.above: _plot.add_layout(r, 'above') elif r in self.plot.left: _plot.add_layout(r, 'left') elif r in self.plot.right: _plot.add_layout(r, 'right') _plot.renderers.sort(key=lambda x: self.zorder.get(x._id, 0)) plots.append(_plot) (a, b, c) = fig.axes[0].get_geometry() p = np.array(plots) n = np.resize(p, (a, b)) grid = GridPlot(children=n.tolist()) self.fig = grid def open_axes(self, ax, props): "Get axes data and create the axes and grids" # Get axes, title and grid into class attributes. self.ax = ax self.plot.title = ax.get_title() # to avoid title conversion by draw_text later #Make sure that all information about the axes are passed to the properties if props.get('xscale', False): props['axes'][0]['scale'] = props['xscale'] if props.get('yscale', False): props['axes'][1]['scale'] = props['yscale'] # Add axis for props in props['axes']: if props['position'] == "bottom" : location, dim, thing = "below", 0, ax.xaxis elif props['position'] == "top" : location, dim, thing = "above", 0, ax.xaxis else: location, dim, thing = props['position'], 1, ax.yaxis baxis = self.make_axis(thing, location, props) if dim==0: gridlines = ax.get_xgridlines() else: gridlines = ax.get_ygridlines() if gridlines: self.make_grid(baxis, dim, gridlines[0]) def close_axes(self, ax): "Complete the axes adding axes-dependent plot props" background_fill = ax.get_axis_bgcolor() if background_fill == 'w': background_fill = 'white' self.plot.background_fill = background_fill if self.xkcd: self.plot.title_text_font = "Comic Sans MS, Textile, cursive" self.plot.title_text_font_style = "bold" self.plot.title_text_color = "black" # Add a "marker" Glyph to help the plot.renderers splitting in the GridPlot build dummy_source = ColumnDataSource(data=dict(name="ax_end")) self.plot.renderers.append(GlyphRenderer(data_source=dummy_source, glyph=X())) def open_legend(self, legend, props): lgnd = Legend(orientation="top_right") try: for label, obj in zip(props['labels'], props['handles']): lgnd.legends.append((label, [self.handles[id(obj)]])) self.plot.add_layout(lgnd) except KeyError: pass def close_legend(self, legend): pass def draw_line(self, data, coordinates, style, label, mplobj=None): "Given a mpl line2d instance create a Bokeh Line glyph." _x = data[:, 0] if self.pd_obj is True: try: x = [pd.Period(ordinal=int(i), freq=self.ax.xaxis.freq).to_timestamp() for i in _x] except AttributeError: # we probably can make this one more intelligent later x = _x else: x = _x y = data[:, 1] if self.xkcd: x, y = xkcd_line(x, y) line = Line() source = ColumnDataSource() line.x = source.add(x) line.y = source.add(y) line.line_color = style['color'] line.line_width = style['linewidth'] line.line_alpha = style['alpha'] line.line_dash = [] if style['dasharray'] is "none" else [int(i) for i in style['dasharray'].split(",")] # str2list(int) # line.line_join = line2d.get_solid_joinstyle() # not in mplexporter # line.line_cap = cap_style_map[line2d.get_solid_capstyle()] # not in mplexporter if self.xkcd: line.line_width = 3 r = self.plot.add_glyph(source, line) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_markers(self, data, coordinates, style, label, mplobj=None): "Given a mpl line2d instance create a Bokeh Marker glyph." x = data[:, 0] y = data[:, 1] marker_map = { "o": Circle, "s": Square, "+": Cross, "^": Triangle, "v": InvertedTriangle, "x": X, "d": Diamond, "D": Diamond, "*": Asterisk, } # Not all matplotlib markers are currently handled; fall back to Circle if we encounter an # unhandled marker. See http://matplotlib.org/api/markers_api.html for a list of markers. try: marker = marker_map[style['marker']]() except KeyError: warnings.warn("Unable to handle marker: %s; defaulting to Circle" % style['marker']) marker = Circle() source = ColumnDataSource() marker.x = source.add(x) marker.y = source.add(y) marker.line_color = style['edgecolor'] marker.fill_color = style['facecolor'] marker.line_width = style['edgewidth'] marker.size = style['markersize'] marker.fill_alpha = marker.line_alpha = style['alpha'] r = self.plot.add_glyph(source, marker) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): pass def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): "Given a mpl text instance create a Bokeh Text glyph." # mpl give you the title and axes names as a text object (with specific locations) # inside the plot itself. That does not make sense inside Bokeh, so we # just skip the title and axes names from the conversion and covert any other text. if text_type in ['xlabel', 'ylabel', 'title']: return if coordinates != 'data': return x, y = position text = Text(x=x, y=y, text=[text]) alignment_map = {"center": "middle", "top": "top", "bottom": "bottom", "baseline": "bottom"} # baseline not implemented in Bokeh, deafulting to bottom. text.text_alpha = style['alpha'] text.text_font_size = "%dpx" % style['fontsize'] text.text_color = style['color'] text.text_align = style['halign'] text.text_baseline = alignment_map[style['valign']] text.angle = style['rotation'] ## Using get_fontname() works, but it's oftentimes not available in the browser, ## so it's better to just use the font family here. #text.text_font = mplText.get_fontname()) not in mplexporter #text.text_font = mplText.get_fontfamily()[0] # not in mplexporter #text.text_font_style = fontstyle_map[mplText.get_fontstyle()] # not in mplexporter ## we don't really have the full range of font weights, but at least handle bold #if mplText.get_weight() in ("bold", "heavy"): #text.text_font_style = bold source = ColumnDataSource() r = self.plot.add_glyph(source, text) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_image(self, imdata, extent, coordinates, style, mplobj=None): pass def make_axis(self, ax, location, props): "Given a mpl axes instance, returns a Bokeh LinearAxis object." # TODO: # * handle log scaling # * map `labelpad` to `major_label_standoff` # * deal with minor ticks once BokehJS supports them # * handle custom tick locations once that is added to bokehJS tf = props['tickformat'] if tf and any(isinstance(x, string_types) for x in tf): laxis = CategoricalAxis(axis_label=ax.get_label_text()) rng = FactorRange(factors=[str(x) for x in tf], offset=-1.0) if location in ["above", "below"]: self.plot.x_range = rng else: self.plot.y_range = rng else: if props['scale'] == "linear": laxis = LinearAxis(axis_label=ax.get_label_text()) elif props['scale'] == "date": laxis = DatetimeAxis(axis_label=ax.get_label_text()) self.plot.add_layout(laxis, location) # First get the label properties by getting an mpl.Text object label = ax.get_label() self.text_props(label, laxis, prefix="axis_label_") # Set the tick properties (for now just turn off if necessary) # TODO: mirror tick properties if props['nticks'] == 0: laxis.major_tick_line_color = None laxis.minor_tick_line_color = None laxis.major_label_text_color = None # To get the tick label format, we look at the first of the tick labels # and assume the rest are formatted similarly. ticklabels = ax.get_ticklabels() if ticklabels: self.text_props(ticklabels[0], laxis, prefix="major_label_") #newaxis.bounds = axis.get_data_interval() # I think this is the right func... if self.xkcd: laxis.axis_line_width = 3 laxis.axis_label_text_font = "Comic Sans MS, Textile, cursive" laxis.axis_label_text_font_style = "bold" laxis.axis_label_text_color = "black" laxis.major_label_text_font = "Comic Sans MS, Textile, cursive" laxis.major_label_text_font_style = "bold" laxis.major_label_text_color = "black" return laxis def make_grid(self, baxis, dimension, gridline): "Given a mpl axes instance, returns a Bokeh Grid object." lgrid = Grid(dimension=dimension, ticker=baxis.ticker, grid_line_color=gridline.get_color(), grid_line_width=gridline.get_linewidth()) self.plot.add_layout(lgrid) def make_line_collection(self, col): "Given a mpl collection instance create a Bokeh MultiLine glyph." xydata = col.get_segments() t_xydata = [np.transpose(seg) for seg in xydata] xs = [t_xydata[x][0] for x in range(len(t_xydata))] ys = [t_xydata[x][1] for x in range(len(t_xydata))] if self.xkcd: xkcd_xs = [xkcd_line(xs[i], ys[i])[0] for i in range(len(xs))] xkcd_ys = [xkcd_line(xs[i], ys[i])[1] for i in range(len(ys))] xs = xkcd_xs ys = xkcd_ys multiline = MultiLine() source = ColumnDataSource() multiline.xs = source.add(xs) multiline.ys = source.add(ys) self.multiline_props(source, multiline, col) r = self.plot.add_glyph(source, multiline) self.zorder[r._id] = col.zorder self.handles[id(col)] = r def make_poly_collection(self, col): "Given a mpl collection instance create a Bokeh Patches glyph." xs = [] ys = [] for path in col.get_paths(): for sub_poly in path.to_polygons(): xx, yy = sub_poly.transpose() xs.append(xx) ys.append(yy) patches = Patches() source = ColumnDataSource() patches.xs = source.add(xs) patches.ys = source.add(ys) self.patches_props(source, patches, col) r = self.plot.add_glyph(source, patches) self.zorder[r._id] = col.zorder self.handles[id(col)] = r def multiline_props(self, source, multiline, col): "Takes a mpl collection object to extract and set up some Bokeh multiline properties." colors = get_props_cycled(col, col.get_colors(), fx=lambda x: mpl.colors.rgb2hex(x)) widths = get_props_cycled(col, col.get_linewidth()) multiline.line_color = source.add(colors) multiline.line_width = source.add(widths) multiline.line_alpha = col.get_alpha() offset = col.get_linestyle()[0][0] if not col.get_linestyle()[0][1]: on_off = [] else: on_off = map(int,col.get_linestyle()[0][1]) multiline.line_dash_offset = convert_dashes(offset) multiline.line_dash = list(convert_dashes(tuple(on_off))) def patches_props(self, source, patches, col): "Takes a mpl collection object to extract and set up some Bokeh patches properties." face_colors = get_props_cycled(col, col.get_facecolors(), fx=lambda x: mpl.colors.rgb2hex(x)) patches.fill_color = source.add(face_colors) edge_colors = get_props_cycled(col, col.get_edgecolors(), fx=lambda x: mpl.colors.rgb2hex(x)) patches.line_color = source.add(edge_colors) widths = get_props_cycled(col, col.get_linewidth()) patches.line_width = source.add(widths) patches.line_alpha = col.get_alpha() patches.fill_alpha = col.get_alpha() offset = col.get_linestyle()[0][0] if not col.get_linestyle()[0][1]: on_off = [] else: on_off = map(int,col.get_linestyle()[0][1]) patches.line_dash_offset = convert_dashes(offset) patches.line_dash = list(convert_dashes(tuple(on_off))) def text_props(self, text, obj, prefix=""): fp = text.get_font_properties() setattr(obj, prefix+"text_font", fp.get_family()[0]) setattr(obj, prefix+"text_font_size", "%fpt" % fp.get_size_in_points()) setattr(obj, prefix+"text_font_style", fp.get_style())
bsd-3-clause
hurdlea/SimpleCV
SimpleCV/Shell/Shell.py
10
7838
#!/usr/bin/python #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # SimpleCV # a kinder, gentler machine vision python library #----------------------------------------------------------------------- # SimpleCV is an interface for Open Source machine # vision libraries in Python. # It provides a concise, readable interface for cameras, # image manipulation, feature extraction, and format conversion. # Our mission is to give casual users a comprehensive interface # for basic machine vision functions and an # elegant programming interface for advanced users. # # more info: # http://www.simplecv.org #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #load system libraries from subprocess import call import platform import webbrowser import sys from SimpleCV.__init__ import * #Load simpleCV libraries from SimpleCV.Shell.Tutorial import * from SimpleCV.Shell.Example import * try: from SimpleCV import __version__ as SIMPLECV_VERSION except ImportError: SIMPLECV_VERSION = '' #Command to clear the shell screen def shellclear(): if platform.system() == "Windows": return call("clear") #method to get magic_* methods working in bpython def make_magic(method): def wrapper(*args, **kwargs): if not args: return method('', '') return method('', *args, **kwargs) return wrapper def plot(arg): try: import matplotlib.pyplot as plt except ImportError: logger.warning("Matplotlib is not installed and required") return print "args", arg print "type", type(arg) plt.plot(arg) plt.show() def hist(arg): try: import pylab except ImportError: logger.warning("pylab is not installed and required") return plot(pylab.hist(arg)[1]) def magic_clear(self, arg): shellclear() def magic_forums(self, arg): webbrowser.open('http://help.simplecv.org/questions/') def magic_walkthrough(self, arg): webbrowser.open('http://examples.simplecv.org/en/latest/') def magic_docs(self, arg): webbrowser.open('http://www.simplecv.org/docs/') banner = '+-----------------------------------------------------------+\n' banner += ' SimpleCV ' banner += SIMPLECV_VERSION banner += ' [interactive shell] - http://simplecv.org\n' banner += '+-----------------------------------------------------------+\n' banner += '\n' banner += 'Commands: \n' banner += '\t"exit()" or press "Ctrl+ D" to exit the shell\n' banner += '\t"clear()" to clear the shell screen\n' banner += '\t"tutorial()" to begin the SimpleCV interactive tutorial\n' banner += '\t"example()" gives a list of examples you can run\n' banner += '\t"forums()" will launch a web browser for the help forums\n' banner += '\t"walkthrough()" will launch a web browser with a walkthrough\n' banner += '\n' banner += 'Usage:\n' banner += '\tdot complete works to show library\n' banner += '\tfor example: Image().save("/tmp/test.jpg") will dot complete\n' banner += '\tjust by touching TAB after typing Image().\n' banner += '\n' banner += 'Documentation:\n' banner += '\thelp(Image), ?Image, Image?, or Image()? all do the same\n' banner += '\t"docs()" will launch webbrowser showing documentation' banner += '\n' exit_msg = '\n... [Exiting the SimpleCV interactive shell] ...\n' def setup_ipython(): try: import IPython from IPython.config.loader import Config from IPython.frontend.terminal.embed import InteractiveShellEmbed cfg = Config() cfg.PromptManager.in_template = "SimpleCV:\\#> " cfg.PromptManager.out_template = "SimpleCV:\\#: " #~ cfg.InteractiveShellEmbed.prompt_in1 = "SimpleCV:\\#> " #~ cfg.InteractiveShellEmbed.prompt_out="SimpleCV:\\#: " scvShell = InteractiveShellEmbed(config=cfg, banner1=banner, exit_msg=exit_msg) scvShell.define_magic("tutorial", magic_tutorial) scvShell.define_magic("clear", magic_clear) scvShell.define_magic("example", magic_examples) scvShell.define_magic("forums", magic_forums) scvShell.define_magic("walkthrough", magic_walkthrough) scvShell.define_magic("docs", magic_docs) except ImportError: try: from IPython.Shell import IPShellEmbed argsv = ['-pi1', 'SimpleCV:\\#>', '-pi2', ' .\\D.:', '-po', 'SimpleCV:\\#>', '-nosep'] scvShell = IPShellEmbed(argsv) scvShell.set_banner(banner) scvShell.set_exit_msg(exit_msg) scvShell.IP.api.expose_magic("tutorial", magic_tutorial) scvShell.IP.api.expose_magic("clear", magic_clear) scvShell.IP.api.expose_magic("example", magic_examples) scvShell.IP.api.expose_magic("forums", magic_forums) scvShell.IP.api.expose_magic("walkthrough", magic_walkthrough) scvShell.IP.api.expose_magic("docs", magic_docs) except ImportError: raise return scvShell() def setup_bpython(): import bpython example = make_magic(magic_examples) clear = make_magic(magic_clear) docs = make_magic(magic_docs) tutorial = make_magic(magic_tutorial) walkthrough = make_magic(magic_walkthrough) forums = make_magic(magic_forums) temp = locals().copy() temp.update(globals()) return bpython.embed(locals_=temp, banner=banner) def setup_plain(): import code return code.interact(banner=banner, local=globals()) def run_notebook(mainArgs): if IPython.__version__.startswith('1.'): """Run the ipython notebook server""" from IPython.html import notebookapp from IPython.html.services.kernels import kernelmanager else: from IPython.frontend.html.notebook import notebookapp from IPython.frontend.html.notebook import kernelmanager code = "" code += "from SimpleCV import *;" code += "init_options_handler.enable_notebook();" kernelmanager.MappingKernelManager.first_beat = 30.0 app = notebookapp.NotebookApp.instance() mainArgs += [ '--port', '5050', '--c', code, ] app.initialize(mainArgs) app.start() sys.exit() def self_update(): URL = "https://github.com/sightmachine/SimpleCV/zipball/master" command = "pip install -U %s" % URL if os.getuid() == 0: command = "sudo " + command returncode = call(command, shell=True) sys.exit() def run_shell(shell=None): shells = ['setup_ipython', 'setup_bpython', 'setup_plain'] available_shells = [shell] if shell else shells for shell in available_shells: try: return globals()[shell]() except ImportError: pass raise ImportError def main(*args): log_level = logging.WARNING interface = None if len(sys.argv) > 1 and len(sys.argv[1]) > 1: flag = sys.argv[1] if flag == 'notebook': run_notebook(sys.argv[1:]) sys.exit() elif flag == 'update': print "Updating SimpleCV....." self_update() if flag in ['--headless', 'headless']: # set SDL to use the dummy NULL video driver, # so it doesn't need a windowing system. os.environ["SDL_VIDEODRIVER"] = "dummy" elif flag in ['--nowarnings', 'nowarnings']: log_level = logging.INFO elif flag in ['--debug', 'debug']: log_level = logging.DEBUG if flag in ['--ipython', 'ipython']: interface = 'setup_ipython' elif flag in ['--bpython', 'bpython']: interface = 'setup_bpython' else: interface = 'setup_plain' init_logging(log_level) shellclear() scvShell = run_shell(interface)
bsd-3-clause
huobaowangxi/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
jandom/rdkit
rdkit/Chem/Draw/UnitTestSimilarityMaps.py
1
7019
# $Id$ # # Copyright (c) 2013, Novartis Institutes for BioMedical Research Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Novartis Institutes for BioMedical Research Inc. # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Created by Sereina Riniker, Aug 2013 """ unit testing code for molecule drawing """ from __future__ import print_function from rdkit import RDConfig import unittest, os, tempfile from rdkit import Chem from rdkit.Chem import Draw import platform if platform.system() == "Linux": import os, sys if not os.environ.get("DISPLAY", None): try: # Force matplotlib to not use any Xwindows backend. import matplotlib print("Forcing use of Agg renderer", file=sys.stderr) matplotlib.use('Agg') except ImportError: pass try: from rdkit.Chem.Draw import SimilarityMaps as sm except ImportError: sm = None from rdkit.RDLogger import logger logger = logger() class TestCase(unittest.TestCase): def setUp(self): self.mol1 = Chem.MolFromSmiles('c1ccccc1') self.mol2 = Chem.MolFromSmiles('c1ccncc1') def testSimilarityMap(self): # Morgan2 BV refWeights = [0.5, 0.5, 0.5, -0.5, 0.5, 0.5] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, radius=2, fpType='bv')) for w, r in zip(weights, refWeights): self.assertEqual(w, r) fig, maxWeight = sm.GetSimilarityMapForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, radius=2, fpType='bv')) self.assertEqual(maxWeight, 0.5) weights, maxWeight = sm.GetStandardizedWeights(weights) self.assertEqual(maxWeight, 0.5) refWeights = [1.0, 1.0, 1.0, -1.0, 1.0, 1.0] for w, r in zip(weights, refWeights): self.assertEqual(w, r) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, fpType='count')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, fpType='bv', useFeatures=True)) self.assertTrue(weights[3] < 0) # hashed AP BV refWeights = [0.09523, 0.17366, 0.17366, -0.23809, 0.17366, 0.17366] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='bv', nBits=1024)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='normal')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='hashed')) self.assertTrue(weights[3] < 0) # hashed TT BV refWeights = [0.5, 0.5, -0.16666, -0.5, -0.16666, 0.5] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='bv', nBits=1024, nBitsPerEntry=1)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='normal')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='hashed')) self.assertTrue(weights[3] < 0) # RDK fingerprint BV refWeights = [0.42105, 0.42105, 0.42105, -0.32895, 0.42105, 0.42105] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetRDKFingerprint(m, i, nBits=1024, nBitsPerHash=1)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) def testSimilarityMapKWArgs(self): # Morgan2 BV m1 = Chem.MolFromSmiles('CC[C@](F)(Cl)c1ccccc1') m2 = Chem.MolFromSmiles('CC[C@@](F)(Cl)c1ccccc1') weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetAPFingerprint(m, atomId=i, includeChirality=False)) for w in weights: self.assertAlmostEqual(w, 0.100, 4) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetAPFingerprint(m, atomId=i, includeChirality=True)) for i, w in enumerate(weights): if i != 2: self.assertAlmostEqual(w, 0.098, 3) else: self.assertAlmostEqual(w, -0.082, 3) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetTTFingerprint(m, atomId=i, includeChirality=False)) for w in weights: self.assertTrue(w > 0.0) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetTTFingerprint(m, atomId=i, includeChirality=True)) for i, w in enumerate(weights): if i > 4: self.assertTrue(w > 0.0) else: self.assertTrue(w < 0.0) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetMorganFingerprint(m, radius=1, atomId=i, useChirality=False)) weights2 = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetMorganFingerprint(m, radius=1, atomId=i, useChirality=True)) # testing explicit values here seems silly, just check that the contribution of the # chiral center drops: self.assertTrue(weights[2] > weights2[2]) if __name__ == '__main__': try: import matplotlib from rdkit.Chem.Draw.mplCanvas import Canvas except ImportError: pass except RuntimeError: # happens with GTK can't initialize pass else: unittest.main()
bsd-3-clause
fengzhe29888/gnuradio-old
gr-digital/examples/example_costas.py
49
5316
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_costas(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.cst = digital.costas_loop_cc(bw, 2) self.vsnk_src = blocks.vector_sink_c() self.vsnk_cst = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst) self.connect(self.rrc, self.vsnk_src) self.connect((self.cst,1), self.vsnk_frq) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.707, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_costas(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data())) # Plot the Costas loop's LO frequency f1 = pylab.figure(1, figsize=(12,10), facecolor='w') s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("Costas LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the IQ symbols s3 = f1.add_subplot(2,2,2) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_cst.real, data_cst.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") s3.set_xlim([-2, 2]) s3.set_ylim([-2, 2]) # Plot the symbols in time s4 = f1.add_subplot(2,2,3) s4.set_position([0.125, 0.05, 0.775, 0.4]) s4.plot(data_src.real, "o-") s4.plot(data_cst.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
bnaul/scikit-learn
examples/preprocessing/plot_all_scaling.py
14
13721
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ============================================================= Compare the effect of different scalers on data with outliers ============================================================= Feature 0 (median income in a block) and feature 5 (number of households) of the :ref:`california_housing_dataset` have very different scales and contain some very large outliers. These two characteristics lead to difficulties to visualize the data and, more importantly, they can degrade the predictive performance of many machine learning algorithms. Unscaled data can also slow down or even prevent the convergence of many gradient-based estimators. Indeed many estimators are designed with the assumption that each feature takes values close to zero or more importantly that all features vary on comparable scales. In particular, metric-based and gradient-based estimators often assume approximately standardized data (centered features with unit variances). A notable exception are decision tree-based estimators that are robust to arbitrary scaling of the data. This example uses different scalers, transformers, and normalizers to bring the data within a pre-defined range. Scalers are linear (or more precisely affine) transformers and differ from each other in the way they estimate the parameters used to shift and scale each feature. :class:`~sklearn.preprocessing.QuantileTransformer` provides non-linear transformations in which distances between marginal outliers and inliers are shrunk. :class:`~sklearn.preprocessing.PowerTransformer` provides non-linear transformations in which data is mapped to a normal distribution to stabilize variance and minimize skewness. Unlike the previous transformations, normalization refers to a per sample transformation instead of a per feature transformation. The following code is a bit verbose, feel free to jump directly to the analysis of the results_. """ # Author: Raghav RV <rvraghav93@gmail.com> # Guillaume Lemaitre <g.lemaitre58@gmail.com> # Thomas Unterthiner # License: BSD 3 clause import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib import cm from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import minmax_scale from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import Normalizer from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import PowerTransformer from sklearn.datasets import fetch_california_housing print(__doc__) dataset = fetch_california_housing() X_full, y_full = dataset.data, dataset.target # Take only 2 features to make visualization easier # Feature of 0 has a long tail distribution. # Feature 5 has a few but very large outliers. X = X_full[:, [0, 5]] distributions = [ ('Unscaled data', X), ('Data after standard scaling', StandardScaler().fit_transform(X)), ('Data after min-max scaling', MinMaxScaler().fit_transform(X)), ('Data after max-abs scaling', MaxAbsScaler().fit_transform(X)), ('Data after robust scaling', RobustScaler(quantile_range=(25, 75)).fit_transform(X)), ('Data after power transformation (Yeo-Johnson)', PowerTransformer(method='yeo-johnson').fit_transform(X)), ('Data after power transformation (Box-Cox)', PowerTransformer(method='box-cox').fit_transform(X)), ('Data after quantile transformation (uniform pdf)', QuantileTransformer(output_distribution='uniform') .fit_transform(X)), ('Data after quantile transformation (gaussian pdf)', QuantileTransformer(output_distribution='normal') .fit_transform(X)), ('Data after sample-wise L2 normalizing', Normalizer().fit_transform(X)), ] # scale the output between 0 and 1 for the colorbar y = minmax_scale(y_full) # plasma does not exist in matplotlib < 1.5 cmap = getattr(cm, 'plasma_r', cm.hot_r) def create_axes(title, figsize=(16, 6)): fig = plt.figure(figsize=figsize) fig.suptitle(title) # define the axis for the first plot left, width = 0.1, 0.22 bottom, height = 0.1, 0.7 bottom_h = height + 0.15 left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.1] rect_histy = [left_h, bottom, 0.05, height] ax_scatter = plt.axes(rect_scatter) ax_histx = plt.axes(rect_histx) ax_histy = plt.axes(rect_histy) # define the axis for the zoomed-in plot left = width + left + 0.2 left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.1] rect_histy = [left_h, bottom, 0.05, height] ax_scatter_zoom = plt.axes(rect_scatter) ax_histx_zoom = plt.axes(rect_histx) ax_histy_zoom = plt.axes(rect_histy) # define the axis for the colorbar left, width = width + left + 0.13, 0.01 rect_colorbar = [left, bottom, width, height] ax_colorbar = plt.axes(rect_colorbar) return ((ax_scatter, ax_histy, ax_histx), (ax_scatter_zoom, ax_histy_zoom, ax_histx_zoom), ax_colorbar) def plot_distribution(axes, X, y, hist_nbins=50, title="", x0_label="", x1_label=""): ax, hist_X1, hist_X0 = axes ax.set_title(title) ax.set_xlabel(x0_label) ax.set_ylabel(x1_label) # The scatter plot colors = cmap(y) ax.scatter(X[:, 0], X[:, 1], alpha=0.5, marker='o', s=5, lw=0, c=colors) # Removing the top and the right spine for aesthetics # make nice axis layout ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.spines['left'].set_position(('outward', 10)) ax.spines['bottom'].set_position(('outward', 10)) # Histogram for axis X1 (feature 5) hist_X1.set_ylim(ax.get_ylim()) hist_X1.hist(X[:, 1], bins=hist_nbins, orientation='horizontal', color='grey', ec='grey') hist_X1.axis('off') # Histogram for axis X0 (feature 0) hist_X0.set_xlim(ax.get_xlim()) hist_X0.hist(X[:, 0], bins=hist_nbins, orientation='vertical', color='grey', ec='grey') hist_X0.axis('off') # %% # Two plots will be shown for each scaler/normalizer/transformer. The left # figure will show a scatter plot of the full data set while the right figure # will exclude the extreme values considering only 99 % of the data set, # excluding marginal outliers. In addition, the marginal distributions for each # feature will be shown on the sides of the scatter plot. def make_plot(item_idx): title, X = distributions[item_idx] ax_zoom_out, ax_zoom_in, ax_colorbar = create_axes(title) axarr = (ax_zoom_out, ax_zoom_in) plot_distribution(axarr[0], X, y, hist_nbins=200, x0_label="Median Income", x1_label="Number of households", title="Full data") # zoom-in zoom_in_percentile_range = (0, 99) cutoffs_X0 = np.percentile(X[:, 0], zoom_in_percentile_range) cutoffs_X1 = np.percentile(X[:, 1], zoom_in_percentile_range) non_outliers_mask = ( np.all(X > [cutoffs_X0[0], cutoffs_X1[0]], axis=1) & np.all(X < [cutoffs_X0[1], cutoffs_X1[1]], axis=1)) plot_distribution(axarr[1], X[non_outliers_mask], y[non_outliers_mask], hist_nbins=50, x0_label="Median Income", x1_label="Number of households", title="Zoom-in") norm = mpl.colors.Normalize(y_full.min(), y_full.max()) mpl.colorbar.ColorbarBase(ax_colorbar, cmap=cmap, norm=norm, orientation='vertical', label='Color mapping for values of y') # %% # .. _results: # # Original data # ------------- # # Each transformation is plotted showing two transformed features, with the # left plot showing the entire dataset, and the right zoomed-in to show the # dataset without the marginal outliers. A large majority of the samples are # compacted to a specific range, [0, 10] for the median income and [0, 6] for # the number of households. Note that there are some marginal outliers (some # blocks have more than 1200 households). Therefore, a specific pre-processing # can be very beneficial depending of the application. In the following, we # present some insights and behaviors of those pre-processing methods in the # presence of marginal outliers. make_plot(0) # %% # StandardScaler # -------------- # # :class:`~sklearn.preprocessing.StandardScaler` removes the mean and scales # the data to unit variance. The scaling shrinks the range of the feature # values as shown in the left figure below. # However, the outliers have an influence when computing the empirical mean and # standard deviation. Note in particular that because the outliers on each # feature have different magnitudes, the spread of the transformed data on # each feature is very different: most of the data lie in the [-2, 4] range for # the transformed median income feature while the same data is squeezed in the # smaller [-0.2, 0.2] range for the transformed number of households. # # :class:`~sklearn.preprocessing.StandardScaler` therefore cannot guarantee # balanced feature scales in the # presence of outliers. make_plot(1) # %% # MinMaxScaler # ------------ # # :class:`~sklearn.preprocessing.MinMaxScaler` rescales the data set such that # all feature values are in # the range [0, 1] as shown in the right panel below. However, this scaling # compresses all inliers into the narrow range [0, 0.005] for the transformed # number of households. # # Both :class:`~sklearn.preprocessing.StandardScaler` and # :class:`~sklearn.preprocessing.MinMaxScaler` are very sensitive to the # presence of outliers. make_plot(2) # %% # MaxAbsScaler # ------------ # # :class:`~sklearn.preprocessing.MaxAbsScaler` is similar to # :class:`~sklearn.preprocessing.MinMaxScaler` except that the # values are mapped in the range [0, 1]. On positive only data, both scalers # behave similarly. # :class:`~sklearn.preprocessing.MaxAbsScaler` therefore also suffers from # the presence of large outliers. make_plot(3) # %% # RobustScaler # ------------ # # Unlike the previous scalers, the centering and scaling statistics of # :class:`~sklearn.preprocessing.RobustScaler` # is based on percentiles and are therefore not influenced by a few # number of very large marginal outliers. Consequently, the resulting range of # the transformed feature values is larger than for the previous scalers and, # more importantly, are approximately similar: for both features most of the # transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. # Note that the outliers themselves are still present in the transformed data. # If a separate outlier clipping is desirable, a non-linear transformation is # required (see below). make_plot(4) # %% # PowerTransformer # ---------------- # # :class:`~sklearn.preprocessing.PowerTransformer` applies a power # transformation to each feature to make the data more Gaussian-like in order # to stabilize variance and minimize skewness. Currently the Yeo-Johnson # and Box-Cox transforms are supported and the optimal # scaling factor is determined via maximum likelihood estimation in both # methods. By default, :class:`~sklearn.preprocessing.PowerTransformer` applies # zero-mean, unit variance normalization. Note that # Box-Cox can only be applied to strictly positive data. Income and number of # households happen to be strictly positive, but if negative values are present # the Yeo-Johnson transformed is preferred. make_plot(5) make_plot(6) # %% # QuantileTransformer (uniform output) # ------------------------------------ # # :class:`~sklearn.preprocessing.QuantileTransformer` applies a non-linear # transformation such that the # probability density function of each feature will be mapped to a uniform # or Gaussian distribution. In this case, all the data, including outliers, # will be mapped to a uniform distribution with the range [0, 1], making # outliers indistinguishable from inliers. # # :class:`~sklearn.preprocessing.RobustScaler` and # :class:`~sklearn.preprocessing.QuantileTransformer` are robust to outliers in # the sense that adding or removing outliers in the training set will yield # approximately the same transformation. But contrary to # :class:`~sklearn.preprocessing.RobustScaler`, # :class:`~sklearn.preprocessing.QuantileTransformer` will also automatically # collapse any outlier by setting them to the a priori defined range boundaries # (0 and 1). This can result in saturation artifacts for extreme values. make_plot(7) ############################################################################## # QuantileTransformer (Gaussian output) # ------------------------------------- # # To map to a Gaussian distribution, set the parameter # ``output_distribution='normal'``. make_plot(8) # %% # Normalizer # ---------- # # The :class:`~sklearn.preprocessing.Normalizer` rescales the vector for each # sample to have unit norm, # independently of the distribution of the samples. It can be seen on both # figures below where all samples are mapped onto the unit circle. In our # example the two selected features have only positive values; therefore the # transformed data only lie in the positive quadrant. This would not be the # case if some original features had a mix of positive and negative values. make_plot(9) plt.show()
bsd-3-clause
tsgit/invenio
modules/bibauthorid/lib/bibauthorid_tortoise.py
5
16153
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2011, 2012 CERN. # # Invenio is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. import os # import cPickle as SER import msgpack as SER import gzip as filehandler # This is supposed to defeat a bit of the python vm performance losses: import sys sys.setcheckinterval(1000000) try: from collections import defaultdict except: from invenio.containerutils import defaultdict from invenio.bibauthorid_logutils import Logger from invenio.bibauthorid_cluster_set import delayed_cluster_sets_from_marktables from invenio.bibauthorid_cluster_set import delayed_cluster_sets_from_personid from invenio.bibauthorid_wedge import wedge from invenio.bibauthorid_name_utils import generate_last_name_cluster_str from invenio.bibauthorid_backinterface import empty_tortoise_results_table from invenio.bibauthorid_backinterface import remove_clusters_by_name from invenio.bibauthorid_prob_matrix import prepare_matrix # Scheduler is [temporarily] deprecated in favour of the much simpler schedule_workers # from invenio.bibauthorid_scheduler import schedule, matrix_coefs from invenio.bibauthorid_general_utils import schedule_workers logger = Logger("tortoise") ''' There are three main entry points to tortoise i) tortoise Performs disambiguation iteration. The arguemnt pure indicates whether to use the claims and the rejections or not. Use pure=True only to test the accuracy of tortoise. ii) tortoise_from_scratch NOT RECOMMENDED! Use this function only if you have just installed invenio and this is your first disambiguation or if personid is broken. iii) tortoise_last_name Computes the clusters for only one last name group. Is is primary used for testing. It may also be used to fix a broken last name cluster. It does not involve multiprocessing so it is convinient to debug with pdb. ''' # Exit codes: # The standard ones are not well documented # so we are using random numbers. def tortoise_from_scratch(): logger.log("Preparing cluster sets.") cluster_sets, _lnames, sizes = delayed_cluster_sets_from_marktables() logger.log("Building all matrices.") cluster_sets = [(s,) for s in cluster_sets] schedule_workers(lambda x: force_create_matrix(x, force=True), cluster_sets) empty_tortoise_results_table() logger.log("Preparing cluster sets.") cluster_sets, _lnames, sizes = delayed_cluster_sets_from_marktables() cluster_sets = [(s(),) for s in cluster_sets] logger.log("Starting disambiguation.") schedule_workers(wedge_and_store, cluster_sets) def tortoise(pure=False, force_matrix_creation=False, skip_matrix_creation=False, last_run=None): assert not force_matrix_creation or not skip_matrix_creation # The computation must be forced in case we want # to compute pure results force_matrix_creation = force_matrix_creation or pure if not skip_matrix_creation: logger.log("Preparing cluster sets.") clusters, _lnames, sizes = delayed_cluster_sets_from_personid(pure, last_run) logger.log("Building all matrices.") clusters = [(s,) for s in clusters] schedule_workers(lambda x: force_create_matrix(x, force=force_matrix_creation), clusters) logger.log("Preparing cluster sets.") clusters, _lnames, sizes = delayed_cluster_sets_from_personid(pure, last_run) clusters = [(s(),) for s in clusters] logger.log("Starting disambiguation.") schedule_workers(wedge_and_store, clusters) def tortoise_last_name(name, wedge_threshold=None, from_mark=True, pure=False): logger.log('Start working on %s' % name) assert not(from_mark and pure) lname = generate_last_name_cluster_str(name) if from_mark: logger.log(' ... from mark!') clusters, lnames, sizes = delayed_cluster_sets_from_marktables([lname]) logger.log(' ... delayed done') else: logger.log(' ... from pid, pure=%s' % str(pure)) clusters, lnames, sizes = delayed_cluster_sets_from_personid(pure) logger.log(' ... delayed pure done!') try: idx = lnames.index(lname) cluster = clusters[idx] size = sizes[idx] cluster_set = cluster() logger.log("Found, %s(%s). Total number of bibs: %d." % (name, lname, size)) create_matrix(cluster_set, False) wedge_and_store(cluster_set) except (IndexError, ValueError): logger.log("Sorry, %s not found in the last name clusters" % (lname)) def tortoise_last_names(names_args_list): schedule_workers(tortoise_last_name, names_args_list, with_kwargs=True) def _collect_statistics_lname_coeff(params): lname = params[0] coeff = params[1] clusters, lnames, sizes = delayed_cluster_sets_from_marktables([lname]) try: idx = lnames.index(lname) cluster = clusters[idx] size = sizes[idx] logger.log("Found, %s. Total number of bibs: %d." % (lname, size)) cluster_set = cluster() create_matrix(cluster_set, False) bibs = cluster_set.num_all_bibs expected = bibs * (bibs - 1) / 2 logger.log("Start working on %s. Total number of bibs: %d, " "maximum number of comparisons: %d" % (cluster_set.last_name, bibs, expected)) wedge(cluster_set, True, coeff) remove_clusters_by_name(cluster_set.last_name) except (IndexError, ValueError): logger.log("Sorry, %s not found in the last name clusters," % (lname)) def _create_matrix(lname): clusters, lnames, sizes = delayed_cluster_sets_from_marktables([lname]) try: idx = lnames.index(lname) cluster = clusters[idx] size = sizes[idx] logger.log("Found, %s. Total number of bibs: %d." % (lname, size)) cluster_set = cluster() create_matrix(cluster_set, False) bibs = cluster_set.num_all_bibs expected = bibs * (bibs - 1) / 2 logger.log("Start working on %s. Total number of bibs: %d, " "maximum number of comparisons: %d" % (cluster_set.last_name, bibs, expected)) cluster_set.store() except (IndexError, ValueError): logger.log("Sorry, %s not found in the last name clusters, not creating matrix" % (lname)) def tortoise_tweak_coefficient(lastnames, min_coef, max_coef, stepping, build_matrix=True): logger.log('Coefficient tweaking!') logger.log('Cluster sets from mark...') lnames = set([generate_last_name_cluster_str(n) for n in lastnames]) coefficients = [x / 100. for x in range(int(min_coef * 100), int(max_coef * 100), int(stepping * 100))] if build_matrix: schedule_workers(_create_matrix, lnames) schedule_workers(_collect_statistics_lname_coeff, ((x, y) for x in lnames for y in coefficients)) def tortoise_coefficient_statistics(pickle_output=None, generate_graphs=True): import matplotlib.pyplot as plt plt.ioff() def _gen_plot(data, filename): plt.clf() ax = plt.subplot(111) ax.grid(visible=True) x = sorted(data.keys()) w = [data[k][0] for k in x] try: wscf = max(w) except: wscf = 0 w = [float(i) / wscf for i in w] y = [data[k][1] for k in x] maxi = [data[k][3] for k in x] mini = [data[k][2] for k in x] lengs = [data[k][4] for k in x] try: ml = float(max(lengs)) except: ml = 1 lengs = [k / ml for k in lengs] normalengs = [data[k][5] for k in x] ax.plot(x, y, '-o', label='avg') ax.plot(x, maxi, '-o', label='max') ax.plot(x, mini, '-o', label='min') ax.plot(x, w, '-x', label='norm %s' % str(wscf)) ax.plot(x, lengs, '-o', label='acl %s' % str(int(ml))) ax.plot(x, normalengs, '-o', label='ncl') plt.ylim(ymax=1., ymin=-0.01) plt.xlim(xmax=1., xmin=-0.01) ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=6, mode="expand", borderaxespad=0.) plt.savefig(filename) files = ['/tmp/baistats/' + x for x in os.listdir('/tmp/baistats/') if x.startswith('cluster_status_report_pid')] fnum = float(len(files)) quanta = .1 / fnum total_stats = 0 used_coeffs = set() used_clusters = set() # av_counter, avg, min, max, nclus, normalized_avg cluster_stats = defaultdict(lambda: defaultdict(lambda: [0., 0., 0., 0., 0., 0.])) coeff_stats = defaultdict(lambda: [0., 0., 0., 0., 0., 0.]) def gen_graphs(only_synthetic=False): logger.update_status(0, 'Generating coefficients graph...') _gen_plot(coeff_stats, '/tmp/graphs/AAAAA-coefficients.svg') if not only_synthetic: cn = cluster_stats.keys() l = float(len(cn)) for i, c in enumerate(cn): logger.update_status(i / l, 'Generating name graphs... %s' % str(c)) _gen_plot(cluster_stats[c], '/tmp/graphs/CS-%s.png' % str(c)) for i, fi in enumerate(files): if generate_graphs: if i % 1000 == 0: gen_graphs(True) f = filehandler.open(fi, 'r') status = i / fnum logger.update_status(status, 'Loading ' + fi[fi.find('lastname') + 9:]) contents = SER.load(f) f.close() cur_coef = contents[0] cur_clust = contents[1] cur_maxlen = float(contents[3]) if cur_coef: total_stats += 1 used_coeffs.add(cur_coef) used_clusters.add(cur_clust) logger.update_status(status + 0.2 * quanta, ' Computing averages...') cur_clen = len(contents[2]) cur_coeffs = [x[2] for x in contents[2]] cur_clustnumber = float(len(set([x[0] for x in contents[2]]))) assert cur_clustnumber > 0 and cur_clustnumber < cur_maxlen, "Error, found log with strange clustnumber! %s %s %s %s" % (str(cur_clust), str(cur_coef), str(cur_maxlen), str(cur_clustnumber)) if cur_coeffs: assert len(cur_coeffs) == cur_clen and cur_coeffs, "Error, there is a cluster witohut stuff? %s %s %s" % ( str(cur_clust), str(cur_coef), str(cur_coeffs)) assert all([x >= 0 and x <= 1 for x in cur_coeffs]), "Error, a coefficient is wrong here! Check me! %s %s %s" % ( str(cur_clust), str(cur_coef), str(cur_coeffs)) cur_min = min(cur_coeffs) cur_max = max(cur_coeffs) cur_avg = sum(cur_coeffs) / cur_clen logger.update_status(status + 0.4 * quanta, ' comulative per coeff...') avi = coeff_stats[cur_coef][0] # number of points coeff_stats[cur_coef][0] = avi + 1 # average of coefficients coeff_stats[cur_coef][1] = (coeff_stats[cur_coef][1] * avi + cur_avg) / (avi + 1) # min coeff coeff_stats[cur_coef][2] = min(coeff_stats[cur_coef][2], cur_min) # max coeff coeff_stats[cur_coef][3] = max(coeff_stats[cur_coef][3], cur_max) # avg number of clusters coeff_stats[cur_coef][4] = (coeff_stats[cur_coef][4] * avi + cur_clustnumber) / (avi + 1) # normalized avg number of clusters coeff_stats[cur_coef][5] = (coeff_stats[cur_coef][5] * avi + cur_clustnumber / cur_maxlen) / (avi + 1) logger.update_status(status + 0.6 * quanta, ' comulative per cluster per coeff...') avi = cluster_stats[cur_clust][cur_coef][0] cluster_stats[cur_clust][cur_coef][0] = avi + 1 cluster_stats[cur_clust][cur_coef][1] = ( cluster_stats[cur_clust][cur_coef][1] * avi + cur_avg) / (avi + 1) cluster_stats[cur_clust][cur_coef][2] = min(cluster_stats[cur_clust][cur_coef][2], cur_min) cluster_stats[cur_clust][cur_coef][3] = max(cluster_stats[cur_clust][cur_coef][3], cur_max) cluster_stats[cur_clust][cur_coef][4] = ( cluster_stats[cur_clust][cur_coef][4] * avi + cur_clustnumber) / (avi + 1) cluster_stats[cur_clust][cur_coef][5] = ( cluster_stats[cur_clust][cur_coef][5] * avi + cur_clustnumber / cur_maxlen) / (avi + 1) logger.update_status_final('Done!') if generate_graphs: gen_graphs() if pickle_output: logger.update_status(0, 'Dumping to file...') f = open(pickle_output, 'w') SER.dump( {'cluster_stats': dict((x, dict(cluster_stats[x])) for x in cluster_stats.iterkeys()), 'coeff_stats': dict((coeff_stats))}, f) f.close() def create_matrix(cluster_set, force): bibs = cluster_set.num_all_bibs expected = bibs * (bibs - 1) / 2 logger.log("Start building matrix for %s. Total number of bibs: %d, " "maximum number of comparisons: %d" % (cluster_set.last_name, bibs, expected)) return prepare_matrix(cluster_set, force) def force_create_matrix(cluster_set, force): logger.log("Building a cluster set.") return create_matrix(cluster_set(), force) def wedge_and_store(cluster_set, wedge_threshold=None): bibs = cluster_set.num_all_bibs expected = bibs * (bibs - 1) / 2 logger.log("Start working on %s. Total number of bibs: %d, " "maximum number of comparisons: %d" % (cluster_set.last_name, bibs, expected)) wedge(cluster_set, force_wedge_thrsh=wedge_threshold) remove_clusters_by_name(cluster_set.last_name) cluster_set.store() return True def force_wedge_and_store(cluster_set): logger.log("Building a cluster set.") return wedge_and_store(cluster_set()) #[temporarily] deprecated # def schedule_create_matrix(cluster_sets, sizes, force): # def create_job(cluster): # def ret(): # return force_create_matrix(cluster, force) # return ret # # memfile_path = None # if bconfig.DEBUG_PROCESS_PEAK_MEMORY: # tt = datetime.now() # tt = (tt.hour, tt.minute, tt.day, tt.month, tt.year) # memfile_path = ('%smatrix_memory_%d:%d_%d-%d-%d.log' % # ((bconfig.TORTOISE_FILES_PATH,) + tt)) # # return schedule(map(create_job, cluster_sets), # sizes, # create_approx_func(matrix_coefs), # memfile_path) # # # def schedule_wedge_and_store(cluster_sets, sizes): # def create_job(cluster): # def ret(): # return force_wedge_and_store(cluster) # return ret # # memfile_path = None # if bconfig.DEBUG_PROCESS_PEAK_MEMORY: # tt = datetime.now() # tt = (tt.hour, tt.minute, tt.day, tt.month, tt.year) # memfile_path = ('%swedge_memory_%d:%d_%d-%d-%d.log' % # ((bconfig.TORTOISE_FILES_PATH,) + tt)) # # return schedule(map(create_job, cluster_sets), # sizes, # create_approx_func(matrix_coefs), # memfile_path)
gpl-2.0
poryfly/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
244
6011
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] legend_rects = [plt.Rectangle((0, 0), 0.1, 0.1, fc=color) for color in colors] legend_labels = ['n_estimators={n_estimators}, ' 'n_candidates={n_candidates}'.format(**p) for p in params_list] # Plot precision plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
PMBio/limix
limix/scripts/iSet_postprocess.py
1
2451
#! /usr/bin/env python # Copyright(c) 2014, The mtSet developers (Francesco Paolo Casale, Barbara Rakitsch, Oliver Stegle) # All rights reserved. from optparse import OptionParser from limix.mtSet.core.iset_utils import calc_emp_pv_eff import pandas as pd import glob import os import time import sys def entry_point(): parser = OptionParser() parser.add_option("--resdir", dest='resdir', type=str, default='./') parser.add_option("--outfile", dest='outfile', type=str, default=None) #parser.add_option("--manhattan_plot", dest='manhattan',action="store_true",default=False) parser.add_option("--tol", dest='tol', type=float, default=4e-3) (options, args) = parser.parse_args() resdir = options.resdir out_file = options.outfile tol = options.tol print('.. load permutation results') file_name = os.path.join(resdir, '*.iSet.perm') files = glob.glob(file_name) df0 = pd.DataFrame() for _file in files: print(_file) df0 = df0.append(pd.read_csv(_file, index_col=0)) print('.. load real results') file_name = os.path.join(resdir, '*.iSet.real') files = glob.glob(file_name) df = pd.DataFrame() for _file in files: print(_file) df = df.append(pd.read_csv(_file, index_col=0)) #calculate P values for the three tests for test in ['mtSet', 'iSet', 'iSet-het']: df[test+' pv'] = calc_emp_pv_eff(df[test+' LLR'].values, df0[test+' LLR0'].values) print(('.. saving %s' % out_file+'.res')) df.to_csv(out_file+'.res') if 0: if options.manhattan: import limix.utils.plot as plot if not os.path.exists(options.outfile): os.makedirs(options.outfile) def plot_manhattan(pv, out_file): import matplotlib.pylab as PLT import scipy as SP posCum = SP.arange(pv.shape[0]) idx=~SP.isnan(pv) plot.plot_manhattan(posCum[idx],pv[idx],alphaNS=1.0,alphaS=1.0) PLT.savefig(out_file) for test in ['mtSet', 'iSet', 'iSet-het']: out_file = os.path.join(options.outfile, 'iSet.%s_pv.manhattan.png'\ % (test,)) print((".. saving " + out_file)) plot_manhattan(df['%s pv' % test].values, out_file)
apache-2.0
jcnelson/syndicate
papers/paper-nsdi2013/data/tools/analysis/Nr1w.py
2
9504
#!/usr/bin/python import analysis import os import sys import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt def eval_dict( s ): ret = None try: exec("ret = " + s) except: return None return ret def cdf_compare( dists, title, xl, xr, yl, yr, labels ): mm = min(dists[0]) ma = max(dists[0]) cnt = len(dists[0]) for i in xrange(1,len(dists)): mm = min( mm, min(dists[i]) ) ma = max( ma, max(dists[i]) ) cnt = min( cnt, len(dists[i]) ) print "cnt = " + str(cnt) x = np.linspace( mm, ma, cnt ) i = 0 for dist in dists: ecdf = sm.distributions.ECDF( dist ) plt.step( x, ecdf(x), label=labels[i] ) i += 1 dist.sort() #print dist plt.title( title ) plt.xticks( xr ) plt.yticks( yr ) plt.xlabel( xl ) plt.ylabel( yl ) plt.legend( labels, loc=4 ) plt.show() if __name__ == "__main__": syndicate_data_1k = {} syndicate_data_1M = {} syndicate_data_50M = {} s3_data_20k = {} s3_data_50M = {} s3_data_100blk = {} s3_data_100blk_nocache = {} plc_data_100blk = {} syndicate_data_100blk = {} intersection = [] for expfile in os.listdir( sys.argv[1] ): expfd = open( os.path.join( sys.argv[1], expfile ), "r" ) expdata = analysis.parse_experiments( expfd ) expfd.close() if len(expdata['fcdistro']) > 0 and "12" not in expdata['fcdistro']: print >> sys.stderr, "%s: wrong distro '%s'" % (expfile, expdata['fcdistro']) continue syndicate_exp_1k = analysis.read_experiment_data( expdata, "Nr1w-x5-small-syndicate.py" ) syndicate_exp_1M = analysis.read_experiment_data( expdata, "Nr1w-x5-1M-syndicate.py" ) syndicate_exp_50M = analysis.read_experiment_data( expdata, "Nr1w-x5-50M-syndicate-4.py" ) syndicate_exp_100blk = analysis.read_experiment_data( expdata, "Nr1w-syndicate-3.py" ) s3_exp_20k = analysis.read_experiment_data( expdata, "Nr1w-x5.py" ) s3_exp_100blk = analysis.read_experiment_data( expdata, "Nr1w-x5-100blk-s3-cache-chunked.py" ) plc_exp_100blk = analysis.read_experiment_data( expdata, "Nr1w-x5-100blk-planetlab-cache-chunked.py" ) s3_exp_50M = analysis.read_experiment_data( expdata, "Nr1w-x5-50M.py" ) s3_exp_100blk_nocache = analysis.read_experiment_data( expdata, "Nr1w-x5-100blk-s3-chunked.py" ) intersect = True """ if syndicate_exp_1k != None and len(syndicate_exp_1k) > 0 and syndicate_exp_1k[0] != None: syndicate_data_1k[expfile] = eval_dict( syndicate_exp_1k[0][0] ) else: intersect = False if syndicate_exp_1M != None and len(syndicate_exp_1M) > 0 and syndicate_exp_1M[0] != None: syndicate_data_1M[expfile] = eval_dict( syndicate_exp_1M[0][0] ) else: intersect = False if syndicate_exp_50M != None and len(syndicate_exp_50M) > 0 and syndicate_exp_50M[0] != None: syndicate_data_50M[expfile] = eval_dict( syndicate_exp_50M[0][0] ) else: intersect = False if s3_exp_20k != None and len(s3_exp_20k) > 0 and s3_exp_20k[0] != None: s3_data_20k[expfile] = eval_dict( s3_exp_20k[0][0] ) else: intersect = False if s3_exp_50M != None and len(s3_exp_50M) > 0 and s3_exp_50M[0] != None: s3_data_50M[expfile] = eval_dict( s3_exp_50M[0][0] ) else: intersect = False """ if s3_exp_100blk != None and len(s3_exp_100blk) > 0 and s3_exp_100blk[0] != None: s3_data_100blk[expfile] = eval_dict( s3_exp_100blk[0][0] ) else: intersect = False if plc_exp_100blk != None and len(plc_exp_100blk) > 0 and plc_exp_100blk[-1] != None: plc_data_100blk[expfile] = eval_dict( plc_exp_100blk[-1][0] ) else: intersect = False if s3_exp_100blk_nocache != None and len(s3_exp_100blk_nocache) > 0 and s3_exp_100blk_nocache[-1] != None: s3_data_100blk_nocache[expfile] = eval_dict( s3_exp_100blk_nocache[-1][0] ) else: intersect = False if syndicate_exp_100blk != None and len(syndicate_exp_100blk) > 0 and syndicate_exp_100blk[-1] != None: syndicate_data_100blk[expfile] = eval_dict( syndicate_exp_100blk[-1][0] ) else: intersect = False if intersect: intersection.append( expfile ) for expfile in os.listdir( sys.argv[1] ): if expfile not in intersection: print >> sys.stderr, "Node %s did not pass all tests" % expfile print >> sys.stderr, "%s nodes have data" % len(intersection) syndicate = { 'first_1k': [], 'last_1k': [], 'first_1m': [], 'last_1m': [], 'first_50m': [], 'last_50m': [], 'first_100blk': [], 'last_100blk': [] } s3 = { 'first_20k': [], 'last_20k': [], 'first_50m': [], 'last_50m': [], 'first_100blk': [], 'last_100blk': [], 'first_100blk_nocache': [], 'last_100blk_nocache': [] } plc = {'first_100blk' : [], 'last_100blk': [] } num_valid = 0 slow = [] for node in intersection: valid = True #data_list = [("syndicate 1k", syndicate_data_1k), ("syndicate 1M", syndicate_data_1M), ("syndicate 50M", syndicate_data_50M), ("S3 20k", s3_data_20k), ("S3 50M", s3_data_50M), ("S3 100blk", s3_data_100blk), ("PLC 100blk", plc_data_100blk)] data_list = [("S3 100blk", s3_data_100blk), ("PLC 100blk", plc_data_100blk), ("S3 nocache 100blk", s3_data_100blk_nocache), ("Syndicate 100blk", syndicate_data_100blk)] for (data_name, data) in data_list: if data.get(node) == None: print >> sys.stderr, "%s: no data for %s" % (node, data_name) valid = False elif data[node] == None: print >> sys.stderr, "%s: unparseable data" % (node, data_name) valid = False elif len(data[node]['exception']) > 0: print >> sys.stderr, "%s: exceptions on %s" % (node, data_name) valid = False if not valid: continue; """ syndicate['first_1k'].append( syndicate_data_1k[node]['end_recv'][0] - syndicate_data_1k[node]['start_recv'][0] ) syndicate['last_1k'].append( syndicate_data_1k[node]['end_recv'][-1] - syndicate_data_1k[node]['start_recv'][-1] ) syndicate['first_1m'].append( syndicate_data_1M[node]['end_recv'][0] - syndicate_data_1M[node]['start_recv'][0] ) syndicate['last_1m'].append( syndicate_data_1M[node]['end_recv'][-1] - syndicate_data_1M[node]['start_recv'][-1] ) syndicate['first_50m'].append( syndicate_data_50M[node]['end_recv'][0] - syndicate_data_50M[node]['start_recv'][0] ) syndicate['last_50m'].append( syndicate_data_50M[node]['end_recv'][-1] - syndicate_data_50M[node]['start_recv'][-1] ) s3['first_20k'].append( s3_data_20k[node]['end_recv'][0] - s3_data_20k[node]['start_recv'][0] ) s3['last_20k'].append( s3_data_20k[node]['end_recv'][-1] - s3_data_20k[node]['start_recv'][-1] ) s3['first_50m'].append( s3_data_50M[node]['end_recv'][0] - s3_data_50M[node]['start_recv'][0] ) s3['last_50m'].append( s3_data_50M[node]['end_recv'][-1] - s3_data_50M[node]['start_recv'][-1] ) """ s3['first_100blk'].append( s3_data_100blk[node]['end_recv'][0] - s3_data_100blk[node]['start_recv'][0]) s3['last_100blk'].append( s3_data_100blk[node]['end_recv'][-1] - s3_data_100blk[node]['start_recv'][-1]) s3['first_100blk_nocache'].append( s3_data_100blk_nocache[node]['end_recv'][0] - s3_data_100blk_nocache[node]['start_recv'][0] ) plc['first_100blk'].append( plc_data_100blk[node]['end_recv'][0] - plc_data_100blk[node]['start_recv'][0]) plc['last_100blk'].append( plc_data_100blk[node]['end_recv'][-1] - plc_data_100blk[node]['start_recv'][-1]) syndicate['first_100blk'].append( syndicate_data_100blk[node]['end_recv'][0] - syndicate_data_100blk[node]['start_recv'][0] ) syndicate['last_100blk'].append( syndicate_data_100blk[node]['end_recv'][-1] - syndicate_data_100blk[node]['start_recv'][-1] ) if syndicate['first_100blk'][-1] > 150: slow.append( node ) num_valid += 1 #print "s3_first_100blk = " + str(s3['first_100blk']) #print "s3_last_100blk = " + str(s3['last_100blk']) print "valid: " + str(num_valid) print "slow: \n" + "\n".join(slow) # first 1K vs last 1K cdf_compare( [syndicate['first_100blk'], syndicate['last_100blk'], plc['first_100blk'] ], "Syndicate One-Writer-Many-Reader Download Times", "Seconds", np.arange(0, 1000, 100), "CDF(x)", np.arange(0, 1.05, 0.05), ["Syndicate 0% Cache Hit", "Syndicate 100% Cache Hit", "Python HTTP Server and Clients"] ) #cdf_compare( [plc['first_100blk'], s3['first_100blk']], "Amazon S3 vs PLC Cache Miss Download Times", "Seconds", np.arange(0, 425, 30), "CDF(x)", np.arange(0, 1.05, 0.05) ) cdf_compare( [s3['first_100blk'], s3['first_100blk_nocache']], "Amazon S3 Cache and Direct Download Times", "Seconds", np.arange(0, 1200, 100), "CDF(x)", np.arange(0, 1.05, 0.05), ["0% hit cache hit rate", "Direct Download"] ) cdf_compare( [s3['first_100blk'], s3['last_100blk']], "Amazon S3 Cache Miss and Cache Hit Download Times", "Seconds", np.arange(0, 425, 30), "CDF(x)", np.arange(0, 1.05, 0.05) ) cdf_compare( [syndicate['first_1k'], syndicate['last_1k']] ) cdf_compare( [syndicate['first_50m'], s3['first_50m']] ) cdf_compare( [syndicate['last_50m'], s3['last_50m']] ) #cdf_compare( [syndicate['last_1m'], s3['last_20k']] )
apache-2.0
iulian787/spack
var/spack/repos/builtin/packages/py-sncosmo/package.py
5
1133
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PySncosmo(PythonPackage): """SNCosmo is a Python library for high-level supernova cosmology analysis.""" homepage = "http://sncosmo.readthedocs.io/" url = "https://pypi.io/packages/source/s/sncosmo/sncosmo-1.2.0.tar.gz" version('1.2.0', sha256='f3969eec5b25f60c70418dbd64765a2b4735bb53c210c61d0aab68916daea588') # Required dependencies # py-sncosmo binaries are duplicates of those from py-astropy extends('python', ignore=r'bin/.*') depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-astropy', type=('build', 'run')) # Recommended dependencies depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-iminuit', type=('build', 'run')) depends_on('py-emcee', type=('build', 'run')) depends_on('py-nestle', type=('build', 'run'))
lgpl-2.1
margulies/topography
utils_py/paths_find_similar.py
4
4083
#get_ipython().magic(u'matplotlib inline') import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform import scipy.io as sio import h5py import networkx as nx import numpy as np import gdist def calcPaths(num): length = nx.all_pairs_dijkstra_path(G, num) length_paths = [] for node in length: for target in length[node]: if len(length[node][target]) == num: length_paths.append(length[node][target]) labeled_paths = labels[length_paths] same_labels = (squareform(pdist(labeled_paths)) < 1e-10).sum(axis=1) return length_paths, labeled_paths, same_labels def uniqueRows(labeled_paths, same_labels, cutoff): a = labeled_paths[same_labels == cutoff] uRows = np.unique(a.view(np.dtype((np.void, a.dtype.itemsize*a.shape[1])))).view(a.dtype).reshape(-1, a.shape[1]) return uRows print uRows def removePaths(labeled_paths, same_labels, vals, row): ind = np.in1d(labeled_paths[:,row], vals).reshape(labeled_paths[:,row].shape) labeled_paths_new = labeled_paths[ind] same_labels_new = same_labels[ind] return ind, labeled_paths_new, same_labels_new def removePathsInverse(labeled_paths, same_labels, vals, row): ind = np.in1d(labeled_paths[:,row], vals, invert=True).reshape(labeled_paths[:,row].shape) labeled_paths_new = labeled_paths[ind] same_labels_new = same_labels[ind] return ind, labeled_paths_new, same_labels_new def printAll(labeled_paths,same_labels): print (('1 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,1))) print (('2 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,2))) print (('3 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,3))) print (('4 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,4))) print (('5 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,5))) print (('6 times:\n %s \n' % uniqueRows(labeled_paths,same_labels,6))) def labelHist(num,labeled_paths): a = np.zeros([num,18]) for i in xrange(0,num): a[i] = np.histogram(labeled_paths[:,i],18, range=(1,18))[0] return a.transpose() def calcPlace(b): c = np.zeros([len(b),1]) for i in xrange(0,len(b)): if np.sum(b[i]) == 0: c[i] = 0 else: c[i] = np.average(np.array(xrange(0,num)) + 1, weights=b[i]) return c '''load data:''' fp = h5py.File('data/clus.mat') fp.keys() adj = fp['clus']['edge'][:] labels = fp['clus']['edgeNet'][:].flatten() G = nx.from_numpy_matrix(adj) num=6 length_paths, labeled_paths, same_labels = calcPaths(num) ind1, labeled_paths1, same_labels1 = removePaths(labeled_paths, same_labels, [7,12,14,15,16], 0) ind2, labeled_paths2, same_labels2 = removePathsInverse(labeled_paths1, same_labels1, [7,12,14,15,16], 1) ind3, labeled_paths3, same_labels3 = removePathsInverse(labeled_paths2, same_labels2, [7,12,14,15,16], 2) ind4, labeled_paths4, same_labels4 = removePaths(labeled_paths3, same_labels3, [17,3,8], num-2) ind5, labeled_paths5, same_labels5 = removePaths(labeled_paths4, same_labels4, [13], num-1) print '\nNum = %s' % num printAll(labeled_paths1, same_labels1) '''histograms''' indX, labeled_pathsX, same_labelsX = removePathsInverse(labeled_paths3, same_labels3, [7,12,14,15,16], 3) num=5 length_paths, labeled_paths, same_labels = calcPaths(num) ind1, labeled_paths1, same_labels1 = removePaths(labeled_paths, same_labels, [7,12,14,15,16], 0) a = labelHist(num,labeled_paths1) print a order = np.argsort(calcPlace(a), axis=0) + 1 fl = np.floor(np.sort(calcPlace(a), axis=0)) print '\nNum = %s' % num print np.hstack((order, fl)) num=6 length_paths, labeled_paths, same_labels = calcPaths(num) ind1, labeled_paths1, same_labels1 = removePaths(labeled_paths, same_labels, [7,12,14,15,16], 0) a = labelHist(num,labeled_paths1) order = np.argsort(calcPlace(a), axis=0) + 1 fl = np.floor(np.sort(calcPlace(a), axis=0)) print '\nNum = %s' % num print np.hstack((order, fl)) np.array(fl[np.argsort(order, axis=0)]).transpose() np.array(length_paths)[same_labels == same_labels.max()]
mit
xguse/ggplot
setup.py
13
2169
import os from setuptools import find_packages, setup def extract_version(): """ Extracts version values from the main matplotlib __init__.py and returns them as a dictionary. """ with open('ggplot/__init__.py') as fd: for line in fd.readlines(): if (line.startswith('__version__')): exec(line.strip()) return locals()["__version__"] def get_package_data(): baseline_images = [ 'tests/baseline_images/%s/*' % x for x in os.listdir('ggplot/tests/baseline_images')] return { 'ggplot': baseline_images + [ "exampledata/*.csv", "geoms/*.png" ]} setup( name="ggplot", # Increase the version in ggplot/__init__.py version=extract_version(), author="Greg Lamp", author_email="greg@yhathq.com", url="https://github.com/yhat/ggplot/", license="BSD", packages=find_packages(), package_dir={"ggplot": "ggplot"}, package_data=get_package_data(), description="ggplot for python", # run pandoc --from=markdown --to=rst --output=README.rst README.md long_description=open("README.rst").read(), # numpy is here to make installing easier... Needs to be at the last position, # as that's the first installed with "python setup.py install" install_requires=["six", "statsmodels", "brewer2mpl", "matplotlib", "scipy", "patsy", "pandas", "numpy"], classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3'], zip_safe=False)
bsd-2-clause
AE4317group07/paparazzi
sw/tools/calibration/calibration_utils.py
27
12769
# Copyright (C) 2010 Antoine Drouin # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Paparazzi; see the file COPYING. If not, write to # the Free Software Foundation, 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from __future__ import print_function, division import re import numpy as np from numpy import sin, cos from scipy import linalg, stats import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def get_ids_in_log(filename): """Returns available ac_id from a log.""" f = open(filename, 'r') ids = [] pattern = re.compile("\S+ (\S+)") while True: line = f.readline().strip() if line == '': break m = re.match(pattern, line) if m: ac_id = m.group(1) if not ac_id in ids: ids.append(ac_id) return ids def read_log(ac_id, filename, sensor): """Extracts raw sensor measurements from a log.""" f = open(filename, 'r') pattern = re.compile("(\S+) "+ac_id+" IMU_"+sensor+"_RAW (\S+) (\S+) (\S+)") list_meas = [] while True: line = f.readline().strip() if line == '': break m = re.match(pattern, line) if m: list_meas.append([float(m.group(2)), float(m.group(3)), float(m.group(4))]) return np.array(list_meas) def read_log_scaled(ac_id, filename, sensor, t_start, t_end): """Extracts scaled sensor measurements from a log.""" f = open(filename, 'r') pattern = re.compile("(\S+) "+ac_id+" IMU_"+sensor+"_SCALED (\S+) (\S+) (\S+)") list_meas = [] while True: line = f.readline().strip() if line == '': break m = re.match(pattern, line) if m: if (float(m.group(1)) >= float(t_start)) and (float(m.group(1)) < (float(t_end)+1.0)): list_meas.append([float(m.group(1)), float(m.group(2)), float(m.group(3)), float(m.group(4))]) return np.array(list_meas) def read_log_mag_current(ac_id, filename): """Extracts raw magnetometer and current measurements from a log.""" f = open(filename, 'r') pattern = re.compile("(\S+) "+ac_id+" IMU_MAG_CURRENT_CALIBRATION (\S+) (\S+) (\S+) (\S+)") list_meas = [] while True: line = f.readline().strip() if line == '': break m = re.match(pattern, line) if m: list_meas.append([float(m.group(2)), float(m.group(3)), float(m.group(4)), float(m.group(5))]) return np.array(list_meas) def filter_meas(meas, window_size, noise_threshold): """Select only non-noisy data.""" filtered_meas = [] filtered_idx = [] for i in range(window_size, len(meas)-window_size): noise = meas[i-window_size:i+window_size, :].std(axis=0) if linalg.norm(noise) < noise_threshold: filtered_meas.append(meas[i, :]) filtered_idx.append(i) return np.array(filtered_meas), filtered_idx def get_min_max_guess(meas, scale): """Initial boundary based calibration.""" max_meas = meas[:, :].max(axis=0) min_meas = meas[:, :].min(axis=0) range = max_meas - min_meas # check if we would get division by zero if range.all(): n = (max_meas + min_meas) / 2 sf = 2*scale/range return np.array([n[0], n[1], n[2], sf[0], sf[1], sf[2]]) else: return np.array([0, 0, 0, 0]) def scale_measurements(meas, p): """Scale the set of measurements.""" l_comp = [] l_norm = [] for m in meas[:, ]: sm = (m - p[0:3])*p[3:6] l_comp.append(sm) l_norm.append(linalg.norm(sm)) return np.array(l_comp), np.array(l_norm) def estimate_mag_current_relation(meas): """Calculate linear coefficient of magnetometer-current relation.""" coefficient = [] for i in range(0, 3): gradient, intercept, r_value, p_value, std_err = stats.linregress(meas[:, 3], meas[:, i]) coefficient.append(gradient) return coefficient def print_xml(p, sensor, res): """Print xml for airframe file.""" print("") print("<define name=\""+sensor+"_X_NEUTRAL\" value=\""+str(int(round(p[0])))+"\"/>") print("<define name=\""+sensor+"_Y_NEUTRAL\" value=\""+str(int(round(p[1])))+"\"/>") print("<define name=\""+sensor+"_Z_NEUTRAL\" value=\""+str(int(round(p[2])))+"\"/>") print("<define name=\""+sensor+"_X_SENS\" value=\""+str(p[3]*2**res)+"\" integer=\"16\"/>") print("<define name=\""+sensor+"_Y_SENS\" value=\""+str(p[4]*2**res)+"\" integer=\"16\"/>") print("<define name=\""+sensor+"_Z_SENS\" value=\""+str(p[5]*2**res)+"\" integer=\"16\"/>") print("") def print_imu_scaled(sensor, measurements, attrs): print("") print(sensor+" : Time Range("+str(measurements[:,0].min(axis=0))+" : "+str(measurements[:,0].max(axis=0))+")") np.set_printoptions(formatter={'float': '{:-7.3f}'.format}) print(" " + attrs[2] + " " + attrs[3] + " " + attrs[4]) print("Min " + str(measurements[:,1:].min(axis=0)*attrs[0]) + " " + attrs[1]) print("Max " + str(measurements[:,1:].max(axis=0)*attrs[0]) + " " + attrs[1]) print("Mean " + str(measurements[:,1:].mean(axis=0)*attrs[0]) + " " + attrs[1]) print("StDev " + str(measurements[:,1:].std(axis=0)*attrs[0]) + " " + attrs[1]) def plot_measurements(sensor, measurements): plt.plot(measurements[:, 0]) plt.plot(measurements[:, 1]) plt.plot(measurements[:, 2]) plt.ylabel('ADC') plt.title("Raw %s measurements" % sensor) plt.show() def plot_results(sensor, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref, blocking=True): """Plot calibration results.""" # plot raw measurements with filtered ones marked as red circles plt.subplot(3, 1, 1) plt.plot(measurements[:, 0]) plt.plot(measurements[:, 1]) plt.plot(measurements[:, 2]) plt.plot(flt_idx, flt_meas[:, 0], 'ro') plt.plot(flt_idx, flt_meas[:, 1], 'ro') plt.plot(flt_idx, flt_meas[:, 2], 'ro') plt.ylabel('ADC') plt.title('Raw '+sensor+', red dots are actually used measurements') plt.tight_layout() # show scaled measurements with initial guess plt.subplot(3, 2, 3) plt.plot(cp0[:, 0]) plt.plot(cp0[:, 1]) plt.plot(cp0[:, 2]) plt.plot(-sensor_ref*np.ones(len(flt_meas))) plt.plot(sensor_ref*np.ones(len(flt_meas))) plt.title('scaled '+sensor+' (initial guess)') plt.xticks([]) plt.subplot(3, 2, 4) plt.plot(np0) plt.plot(sensor_ref*np.ones(len(flt_meas))) plt.title('norm of '+sensor+' (initial guess)') plt.xticks([]) # show scaled measurements after optimization plt.subplot(3, 2, 5) plt.plot(cp1[:, 0]) plt.plot(cp1[:, 1]) plt.plot(cp1[:, 2]) plt.plot(-sensor_ref*np.ones(len(flt_meas))) plt.plot(sensor_ref*np.ones(len(flt_meas))) plt.title('scaled '+sensor+' (optimized)') plt.xticks([]) plt.subplot(3, 2, 6) plt.plot(np1) plt.plot(sensor_ref*np.ones(len(flt_meas))) plt.title('norm of '+sensor+' (optimized)') plt.xticks([]) # if we want to have another plot we only draw the figure (non-blocking) # also in matplotlib before 1.0.0 there is only one call to show possible if blocking: plt.show() else: plt.draw() def plot_imu_scaled(sensor, measurements, attrs): """Plot imu scaled results.""" plt.figure("Sensor Scaled") plt.subplot(4, 1, 1) plt.plot(measurements[:, 0], measurements[:, 1]*attrs[0]) plt.plot(measurements[:, 0], measurements[:, 2]*attrs[0]) plt.plot(measurements[:, 0], measurements[:, 3]*attrs[0]) #plt.xlabel('Time (s)') plt.ylabel(attrs[1]) plt.title(sensor) plt.subplot(4, 1, 2) plt.plot(measurements[:, 0], measurements[:, 1]*attrs[0], 'b') #plt.xlabel('Time (s)') plt.ylabel(attrs[2]) plt.subplot(4, 1, 3) plt.plot(measurements[:, 0], measurements[:, 2]*attrs[0], 'g') #plt.xlabel('Time (s)') plt.ylabel(attrs[3]) plt.subplot(4, 1, 4) plt.plot(measurements[:, 0], measurements[:, 3]*attrs[0], 'r') plt.xlabel('Time (s)') plt.ylabel(attrs[4]) plt.show() def plot_imu_scaled_fft(sensor, measurements, attrs): """Plot imu scaled fft results.""" #dt = 0.0769 #Fs = 1/dt Fs = 26.0 plt.figure("Sensor Scaled - FFT") plt.subplot(3, 1, 1) plt.magnitude_spectrum(measurements[:, 1]*attrs[0], Fs=Fs, scale='linear') plt.ylabel(attrs[2]) plt.title(sensor) plt.subplot(3, 1, 2) plt.magnitude_spectrum(measurements[:, 2]*attrs[0], Fs=Fs, scale='linear') plt.ylabel(attrs[3]) plt.subplot(3, 1, 3) plt.magnitude_spectrum(measurements[:, 3]*attrs[0], Fs=Fs, scale='linear') plt.xlabel('Frequency') plt.ylabel(attrs[4]) plt.show() def plot_mag_3d(measured, calibrated, p): """Plot magnetometer measurements on 3D sphere.""" # set up points for sphere and ellipsoid wireframes u = np.r_[0:2 * np.pi:20j] v = np.r_[0:np.pi:20j] wx = np.outer(cos(u), sin(v)) wy = np.outer(sin(u), sin(v)) wz = np.outer(np.ones(np.size(u)), cos(v)) ex = p[0] * np.ones(np.size(u)) + np.outer(cos(u), sin(v)) / p[3] ey = p[1] * np.ones(np.size(u)) + np.outer(sin(u), sin(v)) / p[4] ez = p[2] * np.ones(np.size(u)) + np.outer(np.ones(np.size(u)), cos(v)) / p[5] # measurements mx = measured[:, 0] my = measured[:, 1] mz = measured[:, 2] # calibrated values cx = calibrated[:, 0] cy = calibrated[:, 1] cz = calibrated[:, 2] # axes size left = 0.02 bottom = 0.05 width = 0.46 height = 0.9 rect_l = [left, bottom, width, height] rect_r = [left/2+0.5, bottom, width, height] fig = plt.figure(figsize=plt.figaspect(0.5)) if matplotlib.__version__.startswith('0'): ax = Axes3D(fig, rect=rect_l) else: ax = fig.add_subplot(1, 2, 1, position=rect_l, projection='3d') # plot measurements ax.scatter(mx, my, mz) plt.hold(True) # plot line from center to ellipsoid center ax.plot([0.0, p[0]], [0.0, p[1]], [0.0, p[2]], color='black', marker='+', markersize=10) # plot ellipsoid ax.plot_wireframe(ex, ey, ez, color='grey', alpha=0.5) # Create cubic bounding box to simulate equal aspect ratio max_range = np.array([mx.max() - mx.min(), my.max() - my.min(), mz.max() - mz.min()]).max() Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (mx.max() + mx.min()) Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (my.max() + my.min()) Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (mz.max() + mz.min()) # add the fake bounding box: for xb, yb, zb in zip(Xb, Yb, Zb): ax.plot([xb], [yb], [zb], 'w') ax.set_title('MAG raw with fitted ellipsoid and center offset') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') if matplotlib.__version__.startswith('0'): ax = Axes3D(fig, rect=rect_r) else: ax = fig.add_subplot(1, 2, 2, position=rect_r, projection='3d') ax.plot_wireframe(wx, wy, wz, color='grey', alpha=0.5) plt.hold(True) ax.scatter(cx, cy, cz) ax.set_title('MAG calibrated on unit sphere') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.set_xlim3d(-1, 1) ax.set_ylim3d(-1, 1) ax.set_zlim3d(-1, 1) plt.show() def read_turntable_log(ac_id, tt_id, filename, _min, _max): """ Read a turntable log. return an array which first column is turnatble and next 3 are gyro """ f = open(filename, 'r') pattern_g = re.compile("(\S+) "+str(ac_id)+" IMU_GYRO_RAW (\S+) (\S+) (\S+)") pattern_t = re.compile("(\S+) "+str(tt_id)+" IMU_TURNTABLE (\S+)") last_tt = None list_tt = [] while True: line = f.readline().strip() if line == '': break m = re.match(pattern_t, line) if m: last_tt = float(m.group(2)) m = re.match(pattern_g, line) if m and last_tt and _min < last_tt < _max: list_tt.append([last_tt, float(m.group(2)), float(m.group(3)), float(m.group(4))]) return np.array(list_tt)
gpl-2.0
SvichkarevAnatoly/Course-Python-Bioinformatics
semester2/task8/exercise2.py
1
3387
import numpy import random import matplotlib.pyplot as plot from sklearn.tree import DecisionTreeRegressor from sklearn import tree a = 1 b = 2 # Build a simple data set with y = x + random nPoints = 1000 # x values for plotting xPlot = [(float(i) / float(nPoints) - 0.5) for i in range(nPoints + 1)] # x needs to be list of lists. x = [[s] for s in xPlot] # y (labels) has random noise added to x-value # set seed random.seed(1) numpy.random.seed(1) y = [a + b * s * s + numpy.random.normal(scale=0.1) for s in xPlot] # take fixed test set 30% of sample nSample = int(nPoints * 0.30) idxTest = random.sample(range(nPoints), nSample) idxTest.sort() idxTrain = [idx for idx in range(nPoints) if not (idx in idxTest)] # Define test and training attribute and label sets xTrain = [x[r] for r in idxTrain] xTest = [x[r] for r in idxTest] yTrain = [y[r] for r in idxTrain] yTest = [y[r] for r in idxTest] # train a series of models on random subsets of the training data # collect the models in a list and check error of composite as list grows # maximum number of models to generate numTreesMax = 30 # tree depth - typically at the high end treeDepth = 5 # initialize a list to hold models modelList = [] predList = [] eps = 0.3 # initialize residuals to be the labels y residuals = list(yTrain) for iTrees in range(numTreesMax): modelList.append(DecisionTreeRegressor(max_depth=treeDepth)) modelList[-1].fit(xTrain, residuals) # make prediction with latest model and add to list of predictions latestInSamplePrediction = modelList[-1].predict(xTrain) # use new predictions to update residuals residuals = [residuals[i] - eps * latestInSamplePrediction[i] \ for i in range(len(residuals))] latestOutSamplePrediction = modelList[-1].predict(xTest) predList.append(list(latestOutSamplePrediction)) # build cumulative prediction from first "n" models mse = [] allPredictions = [] for iModels in range(len(modelList)): # add the first "iModels" of the predictions and multiply by eps prediction = [] for iPred in range(len(xTest)): prediction.append( sum([predList[i][iPred] for i in range(iModels + 1)]) * eps) allPredictions.append(prediction) errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))] mse.append(sum([e * e for e in errors]) / len(yTest)) nModels = [i + 1 for i in range(len(modelList))] # mse plot plot.plot(nModels, mse) plot.axis('tight') plot.xlabel('Number of Models in Ensemble') plot.ylabel('Mean Squared Error') plot.ylim((0.0, max(mse))) # plot.show() plot.savefig("mseEx2.png") plot.close() print min(mse) # predictions plot plotList = [0, 14, 29] lineType = [':', '-.', '--'] plot.figure() for i in range(len(plotList)): iPlot = plotList[i] textLegend = 'Prediction with ' + str(iPlot) + ' Trees' plot.plot(xTest, allPredictions[iPlot], label=textLegend, linestyle=lineType[i]) plot.plot(xTest, yTest, label='True y Value', alpha=0.25) plot.legend(bbox_to_anchor=(1, 0.3)) plot.axis('tight') plot.xlabel('x value') plot.ylabel('Predictions') # plot.show() plot.savefig("predictionsEx2.png") plot.close() # save first 2 tree with open("tree1Ex2.dot", 'w') as f1: f1 = tree.export_graphviz(modelList[0], out_file=f1) with open("tree2Ex2.dot", 'w') as f2: f2 = tree.export_graphviz(modelList[1], out_file=f2)
gpl-2.0
aleju/imgaug
imgaug/augmentables/heatmaps.py
2
25136
"""Classes to represent heatmaps, i.e. float arrays of ``[0.0, 1.0]``.""" from __future__ import print_function, division, absolute_import import numpy as np import six.moves as sm from .. import imgaug as ia from .base import IAugmentable class HeatmapsOnImage(IAugmentable): """Object representing heatmaps on a single image. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Array representing the heatmap(s) on a single image. Multiple heatmaps may be provided, in which case ``C`` is expected to denote the heatmap index. The array must be of dtype ``float32``. shape : tuple of int Shape of the image on which the heatmap(s) is/are placed. **Not** the shape of the heatmap(s) array, unless it is identical to the image shape (note the likely difference between the arrays in the number of channels). This is expected to be ``(H, W)`` or ``(H, W, C)`` with ``C`` usually being ``3``. If there is no corresponding image, use ``(H_arr, W_arr)`` instead, where ``H_arr`` is the height of the heatmap(s) array (analogous ``W_arr``). min_value : float, optional Minimum value for the heatmaps that `arr` represents. This will usually be ``0.0``. max_value : float, optional Maximum value for the heatmaps that `arr` represents. This will usually be ``1.0``. """ def __init__(self, arr, shape, min_value=0.0, max_value=1.0): """Construct a new HeatmapsOnImage object.""" assert ia.is_np_array(arr), ( "Expected numpy array as heatmap input array, " "got type %s" % (type(arr),)) # TODO maybe allow 0-sized heatmaps? in that case the min() and max() # must be adjusted assert arr.shape[0] > 0 and arr.shape[1] > 0, ( "Expected numpy array as heatmap with height and width greater " "than 0, got shape %s." % (arr.shape,)) assert arr.dtype.name in ["float32"], ( "Heatmap input array expected to be of dtype float32, " "got dtype %s." % (arr.dtype,)) assert arr.ndim in [2, 3], ( "Heatmap input array must be 2d or 3d, got shape %s." % ( arr.shape,)) assert len(shape) in [2, 3], ( "Argument 'shape' in HeatmapsOnImage expected to be 2d or 3d, " "got shape %s." % (shape,)) assert min_value < max_value, ( "Expected min_value to be lower than max_value, " "got %.4f and %.4f" % (min_value, max_value)) eps = np.finfo(arr.dtype).eps components = arr.flat[0:50] beyond_min = np.min(components) < min_value - eps beyond_max = np.max(components) > max_value + eps if beyond_min or beyond_max: ia.warn( "Value range of heatmap was chosen to be (%.8f, %.8f), but " "found actual min/max of (%.8f, %.8f). Array will be " "clipped to chosen value range." % ( min_value, max_value, np.min(arr), np.max(arr))) arr = np.clip(arr, min_value, max_value) if arr.ndim == 2: arr = arr[..., np.newaxis] self.arr_was_2d = True else: self.arr_was_2d = False min_is_zero = 0.0 - eps < min_value < 0.0 + eps max_is_one = 1.0 - eps < max_value < 1.0 + eps if min_is_zero and max_is_one: self.arr_0to1 = arr else: self.arr_0to1 = (arr - min_value) / (max_value - min_value) self.shape = shape self.min_value = min_value self.max_value = max_value def get_arr(self): """Get the heatmap's array in value range provided to ``__init__()``. The :class:`HeatmapsOnImage` object saves heatmaps internally in the value range ``[0.0, 1.0]``. This function converts the internal representation to ``[min, max]``, where ``min`` and ``max`` are provided to :func:`HeatmapsOnImage.__init__` upon instantiation of the object. Returns ------- (H,W) ndarray or (H,W,C) ndarray Heatmap array of dtype ``float32``. """ if self.arr_was_2d and self.arr_0to1.shape[2] == 1: arr = self.arr_0to1[:, :, 0] else: arr = self.arr_0to1 eps = np.finfo(np.float32).eps min_is_zero = 0.0 - eps < self.min_value < 0.0 + eps max_is_one = 1.0 - eps < self.max_value < 1.0 + eps if min_is_zero and max_is_one: return np.copy(arr) diff = self.max_value - self.min_value return self.min_value + diff * arr # TODO # def find_global_maxima(self): # raise NotImplementedError() def draw(self, size=None, cmap="jet"): """Render the heatmaps as RGB images. Parameters ---------- size : None or float or iterable of int or iterable of float, optional Size of the rendered RGB image as ``(height, width)``. See :func:`~imgaug.imgaug.imresize_single_image` for details. If set to ``None``, no resizing is performed and the size of the heatmaps array is used. cmap : str or None, optional Name of the ``matplotlib`` color map to use when convert the heatmaps to RGB images. If set to ``None``, no color map will be used and the heatmaps will be converted to simple intensity maps. Returns ------- list of (H,W,3) ndarray Rendered heatmaps as ``uint8`` arrays. Always a **list** containing one RGB image per heatmap array channel. """ heatmaps_uint8 = self.to_uint8() heatmaps_drawn = [] for c in sm.xrange(heatmaps_uint8.shape[2]): # We use c:c+1 here to get a (H,W,1) array. Otherwise imresize # would have to re-attach an axis. heatmap_c = heatmaps_uint8[..., c:c+1] if size is not None: heatmap_c_rs = ia.imresize_single_image( heatmap_c, size, interpolation="nearest") else: heatmap_c_rs = heatmap_c heatmap_c_rs = np.squeeze(heatmap_c_rs).astype(np.float32) / 255.0 if cmap is not None: # import only when necessary (faster startup; optional # dependency; less fragile -- see issue #225) import matplotlib.pyplot as plt cmap_func = plt.get_cmap(cmap) heatmap_cmapped = cmap_func(heatmap_c_rs) heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) else: heatmap_cmapped = np.tile( heatmap_c_rs[..., np.newaxis], (1, 1, 3)) heatmap_cmapped = np.clip( heatmap_cmapped * 255, 0, 255).astype(np.uint8) heatmaps_drawn.append(heatmap_cmapped) return heatmaps_drawn def draw_on_image(self, image, alpha=0.75, cmap="jet", resize="heatmaps"): """Draw the heatmaps as overlays over an image. Parameters ---------- image : (H,W,3) ndarray Image onto which to draw the heatmaps. Expected to be of dtype ``uint8``. alpha : float, optional Alpha/opacity value to use for the mixing of image and heatmaps. Larger values mean that the heatmaps will be more visible and the image less visible. cmap : str or None, optional Name of the ``matplotlib`` color map to use. See :func:`HeatmapsOnImage.draw` for details. resize : {'heatmaps', 'image'}, optional In case of size differences between the image and heatmaps, either the image or the heatmaps can be resized. This parameter controls which of the two will be resized to the other's size. Returns ------- list of (H,W,3) ndarray Rendered overlays as ``uint8`` arrays. Always a **list** containing one RGB image per heatmap array channel. """ # assert RGB image assert image.ndim == 3, ( "Expected to draw on three-dimensional image, " "got %d dimensions with shape %s instead." % ( image.ndim, image.shape)) assert image.shape[2] == 3, ( "Expected RGB image, got %d channels instead." % (image.shape[2],)) assert image.dtype.name == "uint8", ( "Expected uint8 image, got dtype %s." % (image.dtype.name,)) assert 0 - 1e-8 <= alpha <= 1.0 + 1e-8, ( "Expected 'alpha' to be in the interval [0.0, 1.0], got %.4f" % ( alpha)) assert resize in ["heatmaps", "image"], ( "Expected resize to be \"heatmaps\" or \"image\", " "got %s instead." % (resize,)) if resize == "image": image = ia.imresize_single_image( image, self.arr_0to1.shape[0:2], interpolation="cubic") heatmaps_drawn = self.draw( size=image.shape[0:2] if resize == "heatmaps" else None, cmap=cmap) # TODO use blend_alpha here mix = [ np.clip( (1-alpha) * image + alpha * heatmap_i, 0, 255 ).astype(np.uint8) for heatmap_i in heatmaps_drawn] return mix def invert(self): """Invert each component in the heatmap. This shifts low values towards high values and vice versa. This changes each value to:: v' = max - (v - min) where ``v`` is the value at a spatial location, ``min`` is the minimum value in the heatmap and ``max`` is the maximum value. As the heatmap uses internally a ``0.0`` to ``1.0`` representation, this simply becomes ``v' = 1.0 - v``. This function can be useful e.g. when working with depth maps, where algorithms might have an easier time representing the furthest away points with zeros, requiring an inverted depth map. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Inverted heatmap. """ arr_inv = HeatmapsOnImage.from_0to1( 1 - self.arr_0to1, shape=self.shape, min_value=self.min_value, max_value=self.max_value) arr_inv.arr_was_2d = self.arr_was_2d return arr_inv def pad(self, top=0, right=0, bottom=0, left=0, mode="constant", cval=0.0): """Pad the heatmaps at their top/right/bottom/left side. Parameters ---------- top : int, optional Amount of pixels to add at the top side of the heatmaps. Must be ``0`` or greater. right : int, optional Amount of pixels to add at the right side of the heatmaps. Must be ``0`` or greater. bottom : int, optional Amount of pixels to add at the bottom side of the heatmaps. Must be ``0`` or greater. left : int, optional Amount of pixels to add at the left side of the heatmaps. Must be ``0`` or greater. mode : string, optional Padding mode to use. See :func:`~imgaug.imgaug.pad` for details. cval : number, optional Value to use for padding `mode` is ``constant``. See :func:`~imgaug.imgaug.pad` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Padded heatmaps of height ``H'=H+top+bottom`` and width ``W'=W+left+right``. """ from ..augmenters import size as iasize arr_0to1_padded = iasize.pad( self.arr_0to1, top=top, right=right, bottom=bottom, left=left, mode=mode, cval=cval) # TODO change to deepcopy() return HeatmapsOnImage.from_0to1( arr_0to1_padded, shape=self.shape, min_value=self.min_value, max_value=self.max_value) def pad_to_aspect_ratio(self, aspect_ratio, mode="constant", cval=0.0, return_pad_amounts=False): """Pad the heatmaps until they match a target aspect ratio. Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or top/bottom) will be padded. In each case, both of the sides will be padded equally. Parameters ---------- aspect_ratio : float Target aspect ratio, given as width/height. E.g. ``2.0`` denotes the image having twice as much width as height. mode : str, optional Padding mode to use. See :func:`~imgaug.imgaug.pad` for details. cval : number, optional Value to use for padding if `mode` is ``constant``. See :func:`~imgaug.imgaug.pad` for details. return_pad_amounts : bool, optional If ``False``, then only the padded instance will be returned. If ``True``, a tuple with two entries will be returned, where the first entry is the padded instance and the second entry are the amounts by which each array side was padded. These amounts are again a tuple of the form ``(top, right, bottom, left)``, with each value being an integer. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Padded heatmaps as :class:`HeatmapsOnImage` instance. tuple of int Amounts by which the instance's array was padded on each side, given as a tuple ``(top, right, bottom, left)``. This tuple is only returned if `return_pad_amounts` was set to ``True``. """ from ..augmenters import size as iasize arr_0to1_padded, pad_amounts = iasize.pad_to_aspect_ratio( self.arr_0to1, aspect_ratio=aspect_ratio, mode=mode, cval=cval, return_pad_amounts=True) # TODO change to deepcopy() heatmaps = HeatmapsOnImage.from_0to1( arr_0to1_padded, shape=self.shape, min_value=self.min_value, max_value=self.max_value) if return_pad_amounts: return heatmaps, pad_amounts return heatmaps def avg_pool(self, block_size): """Average-pool the heatmap(s) array using a given block/kernel size. Parameters ---------- block_size : int or tuple of int Size of each block of values to pool, aka kernel size. See :func:`~imgaug.imgaug.pool` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Heatmaps after average pooling. """ arr_0to1_reduced = ia.avg_pool(self.arr_0to1, block_size, pad_cval=0.0) return HeatmapsOnImage.from_0to1( arr_0to1_reduced, shape=self.shape, min_value=self.min_value, max_value=self.max_value) def max_pool(self, block_size): """Max-pool the heatmap(s) array using a given block/kernel size. Parameters ---------- block_size : int or tuple of int Size of each block of values to pool, aka kernel size. See :func:`~imgaug.imgaug.pool` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Heatmaps after max-pooling. """ arr_0to1_reduced = ia.max_pool(self.arr_0to1, block_size) return HeatmapsOnImage.from_0to1( arr_0to1_reduced, shape=self.shape, min_value=self.min_value, max_value=self.max_value) @ia.deprecated(alt_func="HeatmapsOnImage.resize()", comment="resize() has the exactly same interface.") def scale(self, *args, **kwargs): """Resize the heatmap(s) array given a target size and interpolation.""" return self.resize(*args, **kwargs) def resize(self, sizes, interpolation="cubic"): """Resize the heatmap(s) array given a target size and interpolation. Parameters ---------- sizes : float or iterable of int or iterable of float New size of the array in ``(height, width)``. See :func:`~imgaug.imgaug.imresize_single_image` for details. interpolation : None or str or int, optional The interpolation to use during resize. See :func:`~imgaug.imgaug.imresize_single_image` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Resized heatmaps object. """ arr_0to1_resized = ia.imresize_single_image( self.arr_0to1, sizes, interpolation=interpolation) # cubic interpolation can lead to values outside of [0.0, 1.0], # see https://github.com/opencv/opencv/issues/7195 # TODO area interpolation too? arr_0to1_resized = np.clip(arr_0to1_resized, 0.0, 1.0) return HeatmapsOnImage.from_0to1( arr_0to1_resized, shape=self.shape, min_value=self.min_value, max_value=self.max_value) def to_uint8(self): """Convert this heatmaps object to an ``uint8`` array. Returns ------- (H,W,C) ndarray Heatmap as an ``uint8`` array, i.e. with the discrete value range ``[0, 255]``. """ # TODO this always returns (H,W,C), even if input ndarray was # originally (H,W). Does it make sense here to also return # (H,W) if self.arr_was_2d? arr_0to255 = np.clip(np.round(self.arr_0to1 * 255), 0, 255) arr_uint8 = arr_0to255.astype(np.uint8) return arr_uint8 @staticmethod def from_uint8(arr_uint8, shape, min_value=0.0, max_value=1.0): """Create a ``float``-based heatmaps object from an ``uint8`` array. Parameters ---------- arr_uint8 : (H,W) ndarray or (H,W,C) ndarray Heatmap(s) array, where ``H`` is height, ``W`` is width and ``C`` is the number of heatmap channels. Expected dtype is ``uint8``. shape : tuple of int Shape of the image on which the heatmap(s) is/are placed. **Not** the shape of the heatmap(s) array, unless it is identical to the image shape (note the likely difference between the arrays in the number of channels). If there is not a corresponding image, use the shape of the heatmaps array. min_value : float, optional Minimum value of the float heatmaps that the input array represents. This will usually be 0.0. In most other cases it will be close to the interval ``[0.0, 1.0]``. Calling :func:`~imgaug.HeatmapsOnImage.get_arr`, will automatically convert the interval ``[0.0, 1.0]`` float array to this ``[min, max]`` interval. max_value : float, optional Minimum value of the float heatmaps that the input array represents. This will usually be 1.0. See parameter `min_value` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Heatmaps object. """ arr_0to1 = arr_uint8.astype(np.float32) / 255.0 return HeatmapsOnImage.from_0to1( arr_0to1, shape, min_value=min_value, max_value=max_value) @staticmethod def from_0to1(arr_0to1, shape, min_value=0.0, max_value=1.0): """Create a heatmaps object from a ``[0.0, 1.0]`` float array. Parameters ---------- arr_0to1 : (H,W) or (H,W,C) ndarray Heatmap(s) array, where ``H`` is the height, ``W`` is the width and ``C`` is the number of heatmap channels. Expected dtype is ``float32``. shape : tuple of ints Shape of the image on which the heatmap(s) is/are placed. **Not** the shape of the heatmap(s) array, unless it is identical to the image shape (note the likely difference between the arrays in the number of channels). If there is not a corresponding image, use the shape of the heatmaps array. min_value : float, optional Minimum value of the float heatmaps that the input array represents. This will usually be 0.0. In most other cases it will be close to the interval ``[0.0, 1.0]``. Calling :func:`~imgaug.HeatmapsOnImage.get_arr`, will automatically convert the interval ``[0.0, 1.0]`` float array to this ``[min, max]`` interval. max_value : float, optional Minimum value of the float heatmaps that the input array represents. This will usually be 1.0. See parameter `min_value` for details. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Heatmaps object. """ heatmaps = HeatmapsOnImage(arr_0to1, shape, min_value=0.0, max_value=1.0) heatmaps.min_value = min_value heatmaps.max_value = max_value return heatmaps # TODO change name to change_value_range()? @classmethod def change_normalization(cls, arr, source, target): """Change the value range of a heatmap array. E.g. the value range may be changed from the interval ``[0.0, 1.0]`` to ``[-1.0, 1.0]``. Parameters ---------- arr : ndarray Heatmap array to modify. source : tuple of float Current value range of the input array, given as a tuple ``(min, max)``, where both are ``float`` values. target : tuple of float Desired output value range of the array, given as a tuple ``(min, max)``, where both are ``float`` values. Returns ------- ndarray Input array, with value range projected to the desired target value range. """ assert ia.is_np_array(arr), ( "Expected 'arr' to be an ndarray, got type %s." % (type(arr),)) def _validate_tuple(arg_name, arg_value): assert isinstance(arg_value, tuple), ( "'%s' was not a HeatmapsOnImage instance, " "expected type tuple then. Got type %s." % ( arg_name, type(arg_value),)) assert len(arg_value) == 2, ( "Expected tuple '%s' to contain exactly two entries, " "got %d." % (arg_name, len(arg_value),)) assert arg_value[0] < arg_value[1], ( "Expected tuple '%s' to have two entries with " "entry 1 < entry 2, got values %.4f and %.4f." % ( arg_name, arg_value[0], arg_value[1])) if isinstance(source, HeatmapsOnImage): source = (source.min_value, source.max_value) else: _validate_tuple("source", source) if isinstance(target, HeatmapsOnImage): target = (target.min_value, target.max_value) else: _validate_tuple("target", target) # Check if source and target are the same (with a tiny bit of # tolerance) if so, evade compuation and just copy the array instead. # This is reasonable, as source and target will often both # be (0.0, 1.0). eps = np.finfo(arr.dtype).eps mins_same = source[0] - 10*eps < target[0] < source[0] + 10*eps maxs_same = source[1] - 10*eps < target[1] < source[1] + 10*eps if mins_same and maxs_same: return np.copy(arr) min_source, max_source = source min_target, max_target = target diff_source = max_source - min_source diff_target = max_target - min_target arr_0to1 = (arr - min_source) / diff_source arr_target = min_target + arr_0to1 * diff_target return arr_target # TODO make this a proper shallow-copy def copy(self): """Create a shallow copy of the heatmaps object. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Shallow copy. """ return self.deepcopy() def deepcopy(self): """Create a deep copy of the heatmaps object. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Deep copy. """ return HeatmapsOnImage( self.get_arr(), shape=self.shape, min_value=self.min_value, max_value=self.max_value)
mit
LaboratoireMecaniqueLille/crappy
crappy/blocks/grapher.py
1
5641
# coding: utf-8 import numpy as np from .block import Block from .._global import OptionalModule try: import matplotlib.pyplot as plt from matplotlib.widgets import Button except (ModuleNotFoundError, ImportError): plt = OptionalModule("matplotlib") Button = OptionalModule("matplotlib") class Grapher(Block): """The grapher receive data from a block (via a :ref:`Link`) and plots it.""" def __init__(self, *labels, length=0, freq=2, maxpt=20000, window_size=(8, 8), window_pos=None, interp=True, backend="TkAgg"): """Sets the args and initializes the parent class. Args: *labels (:obj:`tuple`): Tuples of the columns labels of input data for plotting. You can add as much as you want, depending on your performances. The first value is the `x` label, the second is the `y` label. length (:obj:`int`, optional): If `0` the graph is static and displays all data from the start of the assay. Else only displays the last ``length`` received chunks, and drops the previous ones. freq (:obj:`float`, optional): The refresh rate of the graph. May cause high memory consumption if set too high. maxpt (:obj:`int`, optional): The maximum number of points displayed on the graph. When reaching this limit, the block deletes one point out of two but this is almost invisible to the user. window_size (:obj:`tuple`, optional): The size of the graph, in inches. window_pos (:obj:`tuple`, optional): The position of the graph in pixels. The first value is for the `x` direction, the second for the `y` direction. The origin is the top left corner. Works with multiple screens. interp (:obj:`bool`, optional): If :obj:`True`, the points of data will be linked to the following by straight lines. Else, each value wil be displayed as constant until the next update. backend (:obj:`int`, optional): The :mod:`matplotlib` backend to use. Example: :: graph = Grapher(('t(s)', 'F(N)'), ('t(s)', 'def(%)')) will plot a dynamic graph with two lines plot (`F=f(t)` and `def=f(t)`). :: graph = Grapher(('def(%)', 'F(N)'), length=0) will plot a static graph. :: graph = Grapher(('t(s)', 'F(N)'), length=30) will plot a dynamic graph displaying the last 30 chunks of data. """ Block.__init__(self) self.niceness = 10 self.length = length self.freq = freq self.maxpt = maxpt self.window_size = window_size self.window_pos = window_pos self.interp = interp self.backend = backend self.labels = labels def prepare(self): if self.backend: plt.switch_backend(self.backend) self.f = plt.figure(figsize=self.window_size) self.ax = self.f.add_subplot(111) self.lines = [] for _ in self.labels: if self.interp: self.lines.append(self.ax.plot([], [])[0]) else: self.lines.append(self.ax.step([], [])[0]) # Keep only 1/factor points on each line self.factor = [1 for _ in self.labels] # Count to drop exactly 1/factor points, no more and no less self.counter = [0 for _ in self.labels] legend = [y for x, y in self.labels] plt.legend(legend, bbox_to_anchor=(-0.03, 1.02, 1.06, .102), loc=3, ncol=len(legend), mode="expand", borderaxespad=1) plt.xlabel(self.labels[0][0]) plt.ylabel(self.labels[0][1]) plt.grid() self.axclear = plt.axes([.8, .02, .15, .05]) self.bclear = Button(self.axclear, 'Clear') self.bclear.on_clicked(self.clear) if self.window_pos: mng = plt.get_current_fig_manager() mng.window.wm_geometry("+%s+%s" % self.window_pos) plt.draw() plt.pause(.001) def clear(self, event=None): for line in self.lines: line.set_xdata([]) line.set_ydata([]) self.factor = [1 for _ in self.labels] self.counter = [0 for _ in self.labels] def loop(self): # We need to recv data from all the links, but keep # ALL of the data, even with the same label (so not get_all_last) data = self.recv_all_delay() for i, (lx, ly) in enumerate(self.labels): x, y = 0, 0 # So that if we don't find it, we do nothing for d in data: if lx in d and ly in d: # Find the first input with both labels dx = d[lx][self.factor[i]-self.counter[i]-1::self.factor[i]] dy = d[ly][self.factor[i]-self.counter[i]-1::self.factor[i]] self.counter[i] = (self.counter[i]+len(d[lx])) % self.factor[i] x = np.hstack((self.lines[i].get_xdata(), dx)) y = np.hstack((self.lines[i].get_ydata(), dy)) break if isinstance(x, int): break if self.length and len(x) >= self.length: # Remove the beginning if the graph is dynamic x = x[-self.length:] y = y[-self.length:] elif len(x) > self.maxpt: # Reduce the number of points if we have to many to display print("[Grapher] Too many points on the graph {} ({}>{})".format( i, len(x), self.maxpt)) x, y = x[::2], y[::2] self.factor[i] *= 2 print("[Grapher] Resampling factor is now {}".format(self.factor[i])) self.lines[i].set_xdata(x) self.lines[i].set_ydata(y) self.ax.relim() # Update the window self.ax.autoscale_view(True, True, True) self.f.canvas.draw() # Update the graph self.f.canvas.flush_events() def finish(self): plt.close("all")
gpl-2.0
xi-studio/anime
newnet/show.py
1
1080
import numpy as np import matplotlib.pyplot as plt from scipy.sparse import csc_matrix head = np.random.randint(low=0,high=10,size=20) tail = np.random.randint(low=0,high=10,size=20) row = np.arange(20) data = np.ones(20) a = csc_matrix((data, (row,head)),shape=(20,10)).toarray() b = csc_matrix((data, (row,tail)),shape=(20,10)).toarray() def plotCM(cm,title,colorbarOn,givenAX): ax = givenAX idx = np.arange(10) idy = np.arange(20) plt.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=5.0) ax.set_xticks(range(10)) ax.set_xticklabels(idx) plt.title(title,size=12) for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j,i,int(cm[i,j]),va='center', ha='center') #fig1=plt.subplot(1, 3, 1) #plotCM(a,"Head Index","off",fig1.axes) fig2=plt.subplot(1, 1, 1) w = np.random.randn(20,1) plt.matshow(w, fignum=False, cmap='Blues', vmin=0, vmax=1.0) for x in range(20): fig2.axes.text(0,x,w[x,0],va='center', ha='center') #fig3=plt.subplot(1, 3, 3) #plotCM(b,"Tail Index","off",fig3.axes) plt.show()
mit
cemonatk/tools
DSBSCModulation.py
2
1699
#!/usr/bin/env python # -*- coding: utf-8 -*- __date__ = '10.10.2016' __author__ = 'cemonatk' from numpy import cos,pi,sin,arange from matplotlib.pyplot import plot,show,title,subplot,suptitle,xlabel,imshow from matplotlib.image import imread from Tkinter import * def DSBSCModulate(fm,fc,aralik): suptitle('Analog-Lab') t = arange(1,aralik) tc = cos(2*pi*fc*t) ms = sin(2*pi*fm*t) DSB = tc*ms subplot(2,2,1) plot(tc) title('Carrier Wave') subplot(2,2,2) plot(ms) title('message Sinyali') subplot(2,1,2) plot(DSB) title('DSB-SC Modulasyonu') show() def AmModulation(): pass def Show(): img = imread('picture.jpg') imshow(img) title('MATLAB Kullanmayi Acilen Birakman Gerek...') show() def StrToFloat(): carrier = 1.0/float(carrierfreq.get()) message = 1.0/float(messagefreq.get()) try: aralik = int(aralik.get()) except: aralik = 360 DsbscCiz(message, carrier, aralik) kok = Tk() kok.title("Analog-Lab") carrierfreq = StringVar() e = Entry(kok, textvariable=carrierfreq) e.pack() carrierfreq.set("Carrier Freq") messagefreq = StringVar() e = Entry(kok, textvariable=messagefreq) e.pack() messagefreq.set("message freq") aralik = StringVar() e = Entry(kok, textvariable=aralik) e.pack() aralik.set("Aralık(360 varsayılan)") Button(kok, text='Draw DSB-SC', height=2, width=35, command=StrToFloat).pack() Button(kok, text='Gizli Suprizi Goster', height=2, width=35, command=Show).pack() Button(kok, text='Exit', command=kok.destroy).pack() kok.mainloop() Button(kok, text='Draw DSB-SC', height=2, width=35, command=lambda: DSBSCModulate(messagefreq,carrier,range)).pack()
mit
goodfeli/pylearn2
pylearn2/scripts/datasets/browse_small_norb.py
44
6901
#!/usr/bin/env python import sys import argparse import pickle import warnings import exceptions import numpy try: from matplotlib import pyplot except ImportError as import_error: warnings.warn("Can't use this script without matplotlib.") pyplot = None from pylearn2.datasets import norb warnings.warn("This script is deprecated. Please use ./browse_norb.py " "instead. It is kept around as a tester for deprecated class " "datasets.norb.SmallNORB", exceptions.DeprecationWarning) def main(): def parse_args(): parser = argparse.ArgumentParser( description="Browser for SmallNORB dataset.") parser.add_argument('--which_set', default='train', help="'train', 'test', or the path to a .pkl file") parser.add_argument('--zca', default=None, help=("if --which_set points to a .pkl " "file storing a ZCA-preprocessed " "NORB dataset, you can optionally " "enter the preprocessor's .pkl " "file path here to undo the " "ZCA'ing for visualization " "purposes.")) return parser.parse_args() def get_data(args): if args.which_set in ('train', 'test'): dataset = norb.SmallNORB(args.which_set, True) else: with open(args.which_set) as norb_file: dataset = pickle.load(norb_file) if len(dataset.y.shape) < 2 or dataset.y.shape[1] == 1: print("This viewer does not support NORB datasets that " "only have classification labels.") sys.exit(1) if args.zca is not None: with open(args.zca) as zca_file: zca = pickle.load(zca_file) dataset.X = zca.inverse(dataset.X) num_examples = dataset.X.shape[0] topo_shape = ((num_examples, ) + tuple(dataset.view_converter.shape)) assert topo_shape[-1] == 1 topo_shape = topo_shape[:-1] values = dataset.X.reshape(topo_shape) labels = numpy.array(dataset.y, 'int') return values, labels, dataset.which_set args = parse_args() values, labels, which_set = get_data(args) # For programming convenience, internally remap the instance labels to be # 0-4, and the azimuth labels to be 0-17. The user will still only see the # original, unmodified label values. instance_index = norb.SmallNORB.label_type_to_index['instance'] def remap_instances(which_set, labels): if which_set == 'train': new_to_old_instance = [4, 6, 7, 8, 9] elif which_set == 'test': new_to_old_instance = [0, 1, 2, 3, 5] num_instances = len(new_to_old_instance) old_to_new_instance = numpy.ndarray(10, 'int') old_to_new_instance.fill(-1) old_to_new_instance[new_to_old_instance] = numpy.arange(num_instances) instance_slice = numpy.index_exp[:, instance_index] old_instances = labels[instance_slice] new_instances = old_to_new_instance[old_instances] labels[instance_slice] = new_instances azimuth_index = norb.SmallNORB.label_type_to_index['azimuth'] azimuth_slice = numpy.index_exp[:, azimuth_index] labels[azimuth_slice] = labels[azimuth_slice] / 2 return new_to_old_instance new_to_old_instance = remap_instances(which_set, labels) def get_new_azimuth_degrees(scalar_label): return 20 * scalar_label # Maps a label vector to the corresponding index in <values> num_labels_by_type = numpy.array(norb.SmallNORB.num_labels_by_type, 'int') num_labels_by_type[instance_index] = len(new_to_old_instance) label_to_index = numpy.ndarray(num_labels_by_type, 'int') label_to_index.fill(-1) for i, label in enumerate(labels): label_to_index[tuple(label)] = i assert not numpy.any(label_to_index == -1) # all elements have been set figure, axes = pyplot.subplots(1, 2, squeeze=True) figure.canvas.set_window_title('Small NORB dataset (%sing set)' % which_set) # shift subplots down to make more room for the text figure.subplots_adjust(bottom=0.05) num_label_types = len(norb.SmallNORB.num_labels_by_type) current_labels = numpy.zeros(num_label_types, 'int') current_label_type = [0, ] label_text = figure.suptitle("title text", x=0.1, horizontalalignment="left") def redraw(redraw_text, redraw_images): if redraw_text: cl = current_labels lines = [ 'category: %s' % norb.SmallNORB.get_category(cl[0]), 'instance: %d' % new_to_old_instance[cl[1]], 'elevation: %d' % norb.SmallNORB.get_elevation_degrees(cl[2]), 'azimuth: %d' % get_new_azimuth_degrees(cl[3]), 'lighting: %d' % cl[4]] lt = current_label_type[0] lines[lt] = '==> ' + lines[lt] text = ('Up/down arrows choose label, left/right arrows change it' '\n\n' + '\n'.join(lines)) label_text.set_text(text) if redraw_images: index = label_to_index[tuple(current_labels)] image_pair = values[index, :, :, :] for i in range(2): axes[i].imshow(image_pair[i, :, :], cmap='gray') figure.canvas.draw() def on_key_press(event): def add_mod(arg, step, size): return (arg + size + step) % size def incr_label_type(step): current_label_type[0] = add_mod(current_label_type[0], step, num_label_types) def incr_label(step): lt = current_label_type[0] num_labels = num_labels_by_type[lt] current_labels[lt] = add_mod(current_labels[lt], step, num_labels) if event.key == 'up': incr_label_type(-1) redraw(True, False) elif event.key == 'down': incr_label_type(1) redraw(True, False) elif event.key == 'left': incr_label(-1) redraw(True, True) elif event.key == 'right': incr_label(1) redraw(True, True) elif event.key == 'q': sys.exit(0) figure.canvas.mpl_connect('key_press_event', on_key_press) redraw(True, True) pyplot.show() if __name__ == '__main__': main()
bsd-3-clause
Ginkgo-Biloba/Misc-Python
numpy/SciPyInt.py
1
3425
# coding=utf-8 import numpy as np from scipy import integrate as intgrt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from math import sqrt # 计算半球的体积 def ballVolume(): def halfBall(x, y): return sqrt(1 - x**2 - y**2) def halfCircle(x): return sqrt(1 - x**2) (vol, error) = intgrt.dblquad(halfBall, -1, 1, lambda x: -halfCircle(x), lambda x: halfCircle(x)) print ("vol =", vol) # 对常微分方程组积分 # 计算洛伦茨吸引子的轨迹 def LorenzAttactor(): # 给出位置矢量 w 和三个参数 sigma rho beta 计算出速度矢量 dx dy dz def lorenz(w, t, sigma, rho, beta): (x, y, z) = w.tolist() return (sigma * (y - x), x * (rho - z), x * y - beta * z) t = np.arange(0, 20, 0.01) # 创建时间点 # 调用 ode 对 lorenz 进行求解 用两个不同的初始值 track1 = intgrt.odeint(lorenz, (0.0, 1.0, 0.0), t, args=(10.0, 28.0, 2.7)) track2 = intgrt.odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 2.7)) # 绘图 fig = plt.figure() ax = Axes3D(fig) ax.plot(track1[:, 0], track1[:, 1], track1[:, 2], label="$y=1.0$") ax.plot(track2[:, 0], track2[:, 1], track2[:, 2], label="$y=1.01$") plt.legend(loc="best") plt.show() # 质量-弹簧-阻尼系统 # Mx'' + bx' + kx = F def msd(xu, t, M, k, b, F): (x, u) = xu.tolist() dx = u du = (F - k * x - b * u) / M return (dx, du) def msdDemo(): # 初始滑块在位移 x = -1.0 处 起始速度为 0 外部控制力恒为 1.0 initxu = (-1.0, 0.0) (M, k, b, F) = (1.0, 0.5, 0.2, 1.0) t = np.arange(0, 40, 0.02) rst = intgrt.odeint(msd, initxu, t, args=(M, k, b, F)) (fig, (ax1, ax2)) = plt.subplots(2, 1) ax1.plot(t, rst[:, 0], label=u"位移 x") ax2.plot(t, rst[:, 1], label=u"速度 u") ax1.legend(); ax2.legend() plt.show() # 质量-弹簧-阻尼系统 class MassSpringDamper(object): def __init__(self, M, k, b, F): (self.M, self.k, self.b, self.F) = (M, k, b, F) # 求导函数 def dee(self, t, xu): (x, u) = xu.tolist() dx = u du = (self.F - self.k * x - self.b * u) / self.M return [dx, du] # 要求返回列表而不是元组 # 采用 PID 控制器 class PID(object): def __init__(self, kp, ki, kd, dt): (self.kp, self.ki, self.kd, self.dt) = (kp, ki, kd, dt) self.lastErr = None self.x = 0.0 def update(self, err): p = self.kp * err i = self.ki * self.x if self.lastErr is None: d = 0.0 else: d = self.kd * (err - self.lastErr) / self.dt self.x += err * self.dt self.lastErr = err return p + i + d # 控制外力 F 使滑块更迅速地停止在位移 2.0 处 def msdPID(kp, ki, kd, dt): stm = MassSpringDamper(M=1.0, k=0.5, b=0.2, F=1.0) initxu = (-1.0, 0.0) pid = PID(kp, ki, kd, dt) r = intgrt.ode(stm.dee) r.set_integrator("vode", method="bdf") r.set_initial_value(initxu, 0) t = list(); rst = list(); FArr = list() while (r.successful() and (r.t + dt < 3)): r.integrate(r.t + dt) t.append(r.t) rst.append(r.y) err = 2.0 - r.y[0] F = pid.update(err) stm.F = F FArr.append(F) rst = np.array(rst) t = np.array(t) FArr = np.array(FArr) (fig, (ax1, ax2, ax3)) = plt.subplots(3, 1) ax1.plot(t, rst[:, 0], label=u"位移 x") ax2.plot(t, rst[:, 1], label=u"速度 u") ax3.plot(t, FArr, label=u"控制力 F") ax1.legend(); ax2.legend(); ax3.legend() plt.show() if (__name__ == "__main__"): # ballVolume() LorenzAttactor() # msdDemo() # msdPID(19.29, 1.41, 6.25, 0.02) # 最优的一组数
gpl-3.0
zzcclp/spark
python/pyspark/pandas/tests/plot/test_frame_plot_matplotlib.py
14
18666
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import base64 from distutils.version import LooseVersion from io import BytesIO import unittest import pandas as pd import numpy as np from pyspark import pandas as ps from pyspark.pandas.config import set_option, reset_option from pyspark.testing.pandasutils import ( have_matplotlib, matplotlib_requirement_message, PandasOnSparkTestCase, TestUtils, ) if have_matplotlib: import matplotlib from matplotlib import pyplot as plt matplotlib.use("agg") @unittest.skipIf(not have_matplotlib, matplotlib_requirement_message) class DataFramePlotMatplotlibTest(PandasOnSparkTestCase, TestUtils): sample_ratio_default = None @classmethod def setUpClass(cls): super().setUpClass() if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pd.set_option("plotting.backend", "matplotlib") set_option("plotting.backend", "matplotlib") set_option("plotting.max_rows", 2000) set_option("plotting.sample_ratio", None) @classmethod def tearDownClass(cls): if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pd.reset_option("plotting.backend") reset_option("plotting.backend") reset_option("plotting.max_rows") reset_option("plotting.sample_ratio") super().tearDownClass() @property def pdf1(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], "b": [2, 3, 4, 5, 7, 9, 10, 15, 34, 45, 49]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10], ) @property def psdf1(self): return ps.from_pandas(self.pdf1) @staticmethod def plot_to_base64(ax): bytes_data = BytesIO() ax.figure.savefig(bytes_data, format="png") bytes_data.seek(0) b64_data = base64.b64encode(bytes_data.read()) plt.close(ax.figure) return b64_data def test_line_plot(self): def check_line_plot(pdf, psdf): ax1 = pdf.plot(kind="line", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="line", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.line(colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.line(colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) pdf1 = self.pdf1 psdf1 = self.psdf1 check_line_plot(pdf1, psdf1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf1.columns = columns psdf1.columns = columns check_line_plot(pdf1, psdf1) def test_area_plot(self): def check_area_plot(pdf, psdf): ax1 = pdf.plot(kind="area", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="area", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.area(colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.area(colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) pdf = self.pdf1 psdf = self.psdf1 check_area_plot(pdf, psdf) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns check_area_plot(pdf, psdf) def test_area_plot_stacked_false(self): def check_area_plot_stacked_false(pdf, psdf): ax1 = pdf.plot.area(stacked=False) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.area(stacked=False) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) # test if frame area plot is correct when stacked=False because default is True pdf = pd.DataFrame( { "sales": [3, 2, 3, 9, 10, 6], "signups": [5, 5, 6, 12, 14, 13], "visits": [20, 42, 28, 62, 81, 50], }, index=pd.date_range(start="2018/01/01", end="2018/07/01", freq="M"), ) psdf = ps.from_pandas(pdf) check_area_plot_stacked_false(pdf, psdf) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "sales"), ("x", "signups"), ("y", "visits")]) pdf.columns = columns psdf.columns = columns check_area_plot_stacked_false(pdf, psdf) def test_area_plot_y(self): def check_area_plot_y(pdf, psdf, y): ax1 = pdf.plot.area(y=y) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.area(y=y) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) # test if frame area plot is correct when y is specified pdf = pd.DataFrame( { "sales": [3, 2, 3, 9, 10, 6], "signups": [5, 5, 6, 12, 14, 13], "visits": [20, 42, 28, 62, 81, 50], }, index=pd.date_range(start="2018/01/01", end="2018/07/01", freq="M"), ) psdf = ps.from_pandas(pdf) check_area_plot_y(pdf, psdf, y="sales") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "sales"), ("x", "signups"), ("y", "visits")]) pdf.columns = columns psdf.columns = columns check_area_plot_y(pdf, psdf, y=("x", "sales")) def test_barh_plot_with_x_y(self): def check_barh_plot_with_x_y(pdf, psdf, x, y): ax1 = pdf.plot(kind="barh", x=x, y=y, colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="barh", x=x, y=y, colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.barh(x=x, y=y, colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.barh(x=x, y=y, colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) # this is testing plot with specified x and y pdf1 = pd.DataFrame({"lab": ["A", "B", "C"], "val": [10, 30, 20]}) psdf1 = ps.from_pandas(pdf1) check_barh_plot_with_x_y(pdf1, psdf1, x="lab", y="val") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "lab"), ("y", "val")]) pdf1.columns = columns psdf1.columns = columns check_barh_plot_with_x_y(pdf1, psdf1, x=("x", "lab"), y=("y", "val")) def test_barh_plot(self): def check_barh_plot(pdf, psdf): ax1 = pdf.plot(kind="barh", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="barh", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.barh(colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.barh(colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) # this is testing when x or y is not assigned pdf1 = pd.DataFrame({"lab": ["A", "B", "C"], "val": [10, 30, 20]}) psdf1 = ps.from_pandas(pdf1) check_barh_plot(pdf1, psdf1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "lab"), ("y", "val")]) pdf1.columns = columns psdf1.columns = columns check_barh_plot(pdf1, psdf1) def test_bar_plot(self): def check_bar_plot(pdf, psdf): ax1 = pdf.plot(kind="bar", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="bar", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.bar(colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.bar(colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) pdf1 = self.pdf1 psdf1 = self.psdf1 check_bar_plot(pdf1, psdf1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "lab"), ("y", "val")]) pdf1.columns = columns psdf1.columns = columns check_bar_plot(pdf1, psdf1) def test_bar_with_x_y(self): # this is testing plot with specified x and y pdf = pd.DataFrame({"lab": ["A", "B", "C"], "val": [10, 30, 20]}) psdf = ps.from_pandas(pdf) ax1 = pdf.plot(kind="bar", x="lab", y="val", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="bar", x="lab", y="val", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax3 = pdf.plot.bar(x="lab", y="val", colormap="Paired") bin3 = self.plot_to_base64(ax3) ax4 = psdf.plot.bar(x="lab", y="val", colormap="Paired") bin4 = self.plot_to_base64(ax4) self.assertEqual(bin3, bin4) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "lab"), ("y", "val")]) pdf.columns = columns psdf.columns = columns ax5 = pdf.plot(kind="bar", x=("x", "lab"), y=("y", "val"), colormap="Paired") bin5 = self.plot_to_base64(ax5) ax6 = psdf.plot(kind="bar", x=("x", "lab"), y=("y", "val"), colormap="Paired") bin6 = self.plot_to_base64(ax6) self.assertEqual(bin5, bin6) ax7 = pdf.plot.bar(x=("x", "lab"), y=("y", "val"), colormap="Paired") bin7 = self.plot_to_base64(ax7) ax8 = psdf.plot.bar(x=("x", "lab"), y=("y", "val"), colormap="Paired") bin8 = self.plot_to_base64(ax8) self.assertEqual(bin7, bin8) def test_pie_plot(self): def check_pie_plot(pdf, psdf, y): ax1 = pdf.plot.pie(y=y, figsize=(5, 5), colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.pie(y=y, figsize=(5, 5), colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf.plot(kind="pie", y=y, figsize=(5, 5), colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="pie", y=y, figsize=(5, 5), colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax11, ax12 = pdf.plot.pie(figsize=(5, 5), subplots=True, colormap="Paired") bin11 = self.plot_to_base64(ax11) bin12 = self.plot_to_base64(ax12) self.assertEqual(bin11, bin12) ax21, ax22 = psdf.plot.pie(figsize=(5, 5), subplots=True, colormap="Paired") bin21 = self.plot_to_base64(ax21) bin22 = self.plot_to_base64(ax22) self.assertEqual(bin21, bin22) ax11, ax12 = pdf.plot(kind="pie", figsize=(5, 5), subplots=True, colormap="Paired") bin11 = self.plot_to_base64(ax11) bin12 = self.plot_to_base64(ax12) self.assertEqual(bin11, bin12) ax21, ax22 = psdf.plot(kind="pie", figsize=(5, 5), subplots=True, colormap="Paired") bin21 = self.plot_to_base64(ax21) bin22 = self.plot_to_base64(ax22) self.assertEqual(bin21, bin22) pdf1 = pd.DataFrame( {"mass": [0.330, 4.87, 5.97], "radius": [2439.7, 6051.8, 6378.1]}, index=["Mercury", "Venus", "Earth"], ) psdf1 = ps.from_pandas(pdf1) check_pie_plot(pdf1, psdf1, y="mass") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "mass"), ("y", "radius")]) pdf1.columns = columns psdf1.columns = columns check_pie_plot(pdf1, psdf1, y=("x", "mass")) def test_pie_plot_error_message(self): # this is to test if error is correctly raising when y is not specified # and subplots is not set to True pdf = pd.DataFrame( {"mass": [0.330, 4.87, 5.97], "radius": [2439.7, 6051.8, 6378.1]}, index=["Mercury", "Venus", "Earth"], ) psdf = ps.from_pandas(pdf) with self.assertRaises(ValueError) as context: psdf.plot.pie(figsize=(5, 5), colormap="Paired") error_message = "pie requires either y column or 'subplots=True'" self.assertTrue(error_message in str(context.exception)) def test_scatter_plot(self): def check_scatter_plot(pdf, psdf, x, y, c): ax1 = pdf.plot.scatter(x=x, y=y) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.scatter(x=x, y=y) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf.plot(kind="scatter", x=x, y=y) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="scatter", x=x, y=y) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) # check when keyword c is given as name of a column ax1 = pdf.plot.scatter(x=x, y=y, c=c, s=50) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.scatter(x=x, y=y, c=c, s=50) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) # Use pandas scatter plot example pdf1 = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"]) psdf1 = ps.from_pandas(pdf1) check_scatter_plot(pdf1, psdf1, x="a", y="b", c="c") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c"), ("z", "d")]) pdf1.columns = columns psdf1.columns = columns check_scatter_plot(pdf1, psdf1, x=("x", "a"), y=("x", "b"), c=("y", "c")) def test_hist_plot(self): def check_hist_plot(pdf, psdf): _, ax1 = plt.subplots(1, 1) ax1 = pdf.plot.hist() bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf.plot.hist() bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf.plot.hist(bins=15) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.hist(bins=15) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf.plot(kind="hist", bins=15) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot(kind="hist", bins=15) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf.plot.hist(bins=3, bottom=[2, 1, 3]) bin1 = self.plot_to_base64(ax1) ax2 = psdf.plot.hist(bins=3, bottom=[2, 1, 3]) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) non_numeric_pdf = self.pdf1.copy() non_numeric_pdf.c = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"] non_numeric_psdf = ps.from_pandas(non_numeric_pdf) ax1 = non_numeric_pdf.plot.hist( x=non_numeric_pdf.columns[0], y=non_numeric_pdf.columns[1], bins=3 ) bin1 = self.plot_to_base64(ax1) ax2 = non_numeric_psdf.plot.hist( x=non_numeric_pdf.columns[0], y=non_numeric_pdf.columns[1], bins=3 ) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) pdf1 = self.pdf1 psdf1 = self.psdf1 check_hist_plot(pdf1, psdf1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf1.columns = columns psdf1.columns = columns check_hist_plot(pdf1, psdf1) def test_kde_plot(self): def moving_average(a, n=10): ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n def check_kde_plot(pdf, psdf, *args, **kwargs): _, ax1 = plt.subplots(1, 1) ax1 = pdf.plot.kde(*args, **kwargs) _, ax2 = plt.subplots(1, 1) ax2 = psdf.plot.kde(*args, **kwargs) try: for i, (line1, line2) in enumerate(zip(ax1.get_lines(), ax2.get_lines())): expected = line1.get_xydata().ravel() actual = line2.get_xydata().ravel() # TODO: Due to implementation difference, the output is different comparing # to pandas'. We should identify the root cause of difference, and reduce # the diff. # Note: Data is from 1 to 50. So, it smooths them by moving average and compares # both. self.assertTrue( np.allclose(moving_average(actual), moving_average(expected), rtol=3.0) ) finally: ax1.cla() ax2.cla() pdf1 = self.pdf1 psdf1 = self.psdf1 check_kde_plot(pdf1, psdf1, bw_method=0.3) check_kde_plot(pdf1, psdf1, ind=[1, 2, 3], bw_method=3.0) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf1.columns = columns pdf1.columns = columns check_kde_plot(pdf1, psdf1, bw_method=0.3) check_kde_plot(pdf1, psdf1, ind=[1, 2, 3], bw_method=3.0) if __name__ == "__main__": from pyspark.pandas.tests.plot.test_frame_plot_matplotlib import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
zoranzhao/NoSSim
NoS_Vgraph/core_util_plot.py
1
5568
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from mpl_toolkits.axes_grid.parasite_axes import SubplotHost from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA def plot(srv_app, srv_lwip, cli_app, cli_lwip): #srv_app = {0:[],1:[],2:[]} #srv_lwip = {0:[],1:[],2:[]} #cli_app = {0:[],1:[],2:[]} #cli_lwip = {0:[],1:[],2:[]} O2lwip=cli_lwip[2] O2comp=cli_app[2] O1lwip=cli_lwip[1] O1comp=cli_app[1] O0lwip=cli_lwip[0] O0comp=cli_app[0] colorsred = ['brown', 'red', 'tomato', 'lightsalmon'] colorsgreen = ['darkgreen', 'seagreen', 'limegreen', 'springgreen'] colorsblue =['navy', 'blue', 'steelblue', 'lightsteelblue'] hatches = ['//', '++', 'xxx', 'oo','\\\\\\', 'OO', '..' , '---', "**"] label_size=15 font_size=15 #client N = 3 width = 0.25 # the width of the bars xtra_space = 0.02 ind = np.arange(N) + 2 - (width*3+xtra_space*2)/2 # the x locations for the groups ind1 = np.arange(N) + 2 - (width*3+xtra_space*2)/2 # the x locations for the groups ind2 = np.arange(N) + 2+(N+1) - (width*3+xtra_space*2)/2 # the x locations for the groups ind3 = np.arange(N) + 2+N+1+N+1 - (width*3+xtra_space*2)/2 # the x locations for the groups ind = np.append(ind1, ind2) ind = np.append(ind, ind3) #ind = np.append(ind, ind4) #ind = np.append(ind, ind5) fig, ax = plt.subplots(2) a1 = ax[0].bar(ind, O2comp, width, color=[0,0.5,1]) a2 = ax[0].bar(ind, O2lwip, width, fill=False, hatch=hatches[0], edgecolor=[0,0.5,1], bottom=O2comp) b1 = ax[0].bar(ind+ width + xtra_space, O1comp, width, color=[0,1,0.5]) b2 = ax[0].bar(ind+ width + xtra_space, O1lwip, width, fill=False, hatch=hatches[0], edgecolor=[0,1,0.5], bottom=O1comp) c1 = ax[0].bar(ind+ 2*(width + xtra_space), O0comp, width, color=[1,0.5,0]) c2 = ax[0].bar(ind+ 2*(width + xtra_space), O0lwip, width, fill=False, hatch=hatches[0], edgecolor=[1,0.5,0], bottom=O0comp) OLevel = ["O-0", "O-1", "O-2", "O-3"] channels = ["b@11Mbps", "g@9Mbps", "g@54Mbps"] duration_type = [" - lwIP", " - App."] legend_size=16 plt.figlegend( ( a1, a2, b1, b2, c1, c2 ), ( OLevel[2]+duration_type[1], OLevel[2]+duration_type[0], OLevel[1]+duration_type[1], OLevel[1]+duration_type[0], OLevel[0]+duration_type[1], OLevel[0]+duration_type[0] ), scatterpoints=1, loc='upper center', ncol=3, prop={'size':legend_size}) xticks = [ 2, 2.9, 3, 4, 6, 6.9, 7, 8, 10, 10.9, 11, 12] xticks_minor = [ 1, 5, 9, 13 ]#longer xlbls = [channels[0], '6-Cli.', channels[1], channels[2], channels[0], '4-Cli.', channels[1], channels[2], channels[0], '2-Cli.', channels[1], channels[2]] ax[0].set_xticks( xticks ) ax[0].set_xticks( xticks_minor, minor=True ) ax[0].set_xticklabels( xlbls ) ax[0].set_xlim( 1, 13 ) ax[0].grid( 'off', axis='x' ) ax[0].grid( 'off', axis='x', which='minor' ) # vertical alignment of xtick labels va = [ 0, -.1, 0, 0, 0, -.1, 0, 0, 0, -.1, 0, 0] for t, y in zip( ax[0].get_xticklabels( ), va ): t.set_y( y ) ax[0].tick_params( axis='x', which='minor', direction='out', length=40 , top='off') #ax.tick_params( axis='x', which='major', direction='out', length=10 ) ax[0].tick_params( axis='x', which='major', bottom='off', top='off' ) vals = ax[0].get_yticks() ax[0].set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals]) #server O2lwip=srv_lwip[2] O2comp=srv_app[2] O1lwip=srv_lwip[1] O1comp=srv_app[1] O0lwip=srv_lwip[0] O0comp=srv_app[0] a1 = ax[1].bar(ind, O2comp, width, color=[0,0.5,1]) a2 = ax[1].bar(ind, O2lwip, width, fill=False, hatch=hatches[0], edgecolor=[0,0.5,1], bottom=O2comp) b1 = ax[1].bar(ind+ width + xtra_space, O1comp, width, color=[0,1,0.5]) b2 = ax[1].bar(ind+ width + xtra_space, O1lwip, width, fill=False, hatch=hatches[0], edgecolor=[0,1,0.5], bottom=O1comp) c1 = ax[1].bar(ind+ 2*(width + xtra_space), O0comp, width, color=[1,0.5,0]) c2 = ax[1].bar(ind+ 2*(width + xtra_space), O0lwip, width, fill=False, hatch=hatches[0], edgecolor=[1,0.5,0], bottom=O0comp) channels = ["b@11Mbps", "g@9Mbps", "g@54Mbps"] duration_type = [" - Communication", " - Computation"] xticks = [ 2, 2.9, 3, 4, 6, 6.9, 7, 8, 10, 10.9, 11, 12] xticks_minor = [ 1, 5, 9, 13 ]#longer xlbls = [channels[0], '6-Cli.', channels[1], channels[2], channels[0], '4-Cli.', channels[1], channels[2], channels[0], '2-Cli.', channels[1], channels[2]] ax[1].set_xticks( xticks ) ax[1].set_xticks( xticks_minor, minor=True ) ax[1].set_xticklabels( xlbls ) ax[1].set_xlim( 1, 13 ) ax[1].grid( 'off', axis='x' ) ax[1].grid( 'off', axis='x', which='minor' ) va = [ 0, -.1, 0, 0, 0, -.1, 0, 0, 0, -.1, 0, 0] for t, y in zip( ax[1].get_xticklabels( ), va ): t.set_y( y ) ax[1].tick_params( axis='x', which='minor', direction='out', length=40 , top='off') ax[1].tick_params( axis='x', which='major', bottom='off', top='off' ) vals = ax[1].get_yticks() ax[1].set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals]) # add some text for labels, title and axes ticks ax[0].set_ylabel('Core Utilization', fontsize=label_size) ax[0].set_xlabel('Client', fontsize=label_size) ax[1].set_ylabel('Core Utilization', fontsize=label_size) ax[1].set_xlabel('Server', fontsize=label_size) ax[0].tick_params(axis='y', labelsize=font_size) ax[1].tick_params(axis='y', labelsize=font_size) ax[0].tick_params(axis='x', labelsize=font_size) ax[1].tick_params(axis='x', labelsize=font_size) plt.show()
bsd-3-clause
adammenges/statsmodels
statsmodels/examples/tsa/arma_plots.py
33
2516
'''Plot acf and pacf for some ARMA(1,1) ''' from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import statsmodels.tsa.arima_process as tsp from statsmodels.sandbox.tsa.fftarma import ArmaFft as FftArmaProcess import statsmodels.tsa.stattools as tss from statsmodels.graphics.tsaplots import plotacf np.set_printoptions(precision=2) arcoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] macoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] nsample = 1000 nburnin = 1000 sig = 1 fig = plt.figure(figsize=(8, 13)) fig.suptitle('ARMA: Autocorrelation (left) and Partial Autocorrelation (right)') subplotcount = 1 nrows = 4 for arcoef in arcoefs[:-1]: for macoef in macoefs[:-1]: ar = np.r_[1., -arcoef] ma = np.r_[1., macoef] #y = tsp.arma_generate_sample(ar,ma,nsample, sig, burnin) #armaprocess = FftArmaProcess(ar, ma, nsample) #TODO: make n optional #armaprocess.plot4() armaprocess = tsp.ArmaProcess(ar, ma) acf = armaprocess.acf(20)[:20] pacf = armaprocess.pacf(20)[:20] ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(acf, ax=ax) ## ax.set_title('Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(pacf, ax=ax) ## ax.set_title('Partial Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 axs = fig.axes ### turn of the 2nd column y tick labels ##for ax in axs[1::2]:#[:,1].flat: ## for label in ax.get_yticklabels(): label.set_visible(False) # turn off all but the bottom xtick labels for ax in axs[:-2]:#[:-1,:].flat: for label in ax.get_xticklabels(): label.set_visible(False) # use a MaxNLocator on the first column y axis if you have a bunch of # rows to avoid bunching; example below uses at most 3 ticks import matplotlib.ticker as mticker for ax in axs: #[::2]:#[:,1].flat: ax.yaxis.set_major_locator( mticker.MaxNLocator(3 )) plt.show()
bsd-3-clause
rgllm/uminho
04/CN/TP3/src/src/parser/PsoTools.py
1
4783
import itertools import json import matplotlib.pyplot as plt from matplotlib import style import os style.use('ggplot') import numpy as np from pprint import pprint from os.path import basename xrange=range class PsoTools(object): def __init__(self): pass # Convert a data raw file to a json file def rawToJson(self, inputFilePath, outputFilePath): inFile = open(inputFilePath, mode='r') outFile = open(outputFilePath, mode='w') meta_data = dict.fromkeys(['nb_customers', 'nb_depots', 'vehicle_cap', 'vehicle_cost', 'cost_type']) cust_dict = dict.fromkeys(['x', 'y', 'demand']) dep_dict = dict.fromkeys(['x', 'y', 'capacity']) customers = {} depots = {} # Number of customers and available depots nb_customers = int(inFile.readline()) nb_depots = int(inFile.readline()) meta_data['nb_customers'] = nb_customers meta_data['nb_depots'] = nb_depots inFile.readline() # Empty line # Depots cordinates for i, line in enumerate(inFile): if i < nb_depots: x = float(line.split()[0]) y = float(line.split()[1]) depots['d'+str(i)] = {} depots['d'+str(i)]['x'] = x depots['d'+str(i)]['y'] = y else: i=i-1 break # Customers cordinates and vehicule capacity for i, line in enumerate(inFile): if i < nb_customers: x = float(line.split()[0]) y = float(line.split()[1]) customers['c'+str(i)] = {} customers['c'+str(i)]['x'] = x customers['c'+str(i)]['y'] = y else: break # Vehicules and depots capacity for i, line in enumerate(inFile): if i == 0: vehicle_cap = float(line) meta_data['vehicle_cap'] = vehicle_cap elif i == 1: pass elif i < nb_depots+2: depot_cap = float(line) depots['d'+str(i-2)]['capacity'] = depot_cap else: break # Customers demands for i, line in enumerate(inFile): if i < nb_customers: demand = float(line) customers['c'+str(i)]['demand'] = demand else: break # Depots openning costs for i, line in enumerate(inFile): if i < nb_depots: openning_cost = float(line) depots['d'+str(i)]['opening_cost'] = openning_cost elif i == nb_depots: pass elif i == nb_depots+1: vehicle_cost = float(line) meta_data['vehicle_cost'] = vehicle_cost elif i == nb_depots+2: pass elif i == nb_depots+3: cost_type = float(line) meta_data['cost_type'] = cost_type else: break final_output = {} final_output['customers'] = customers final_output['depots'] = depots final_output['meta_data'] = meta_data json.dump(final_output, outFile, indent=4) inFile.close() outFile.close() # Plot the customers on the map def plotCustomers(self, jsonInputFile): if os.path.isfile(jsonInputFile): with open(jsonInputFile) as data_file: data = json.load(data_file) nb_customers = data['meta_data']['nb_customers'] coords_cust = np.zeros(shape=(nb_customers,2)) for i in xrange(nb_customers): x = data['customers']['c{0}'.format(i)]['x'] y = data['customers']['c{0}'.format(i)]['y'] coords_cust[i] = [x,y] plt.scatter(coords_cust[:,0], coords_cust[:,1], marker='P', s=10, linewidth=5) plt.show() # Plot the depots on the map def plotDepots(self, jsonInputFile): if os.path.isfile(jsonInputFile): with open(jsonInputFile) as data_file: data = json.load(data_file) nb_depots = data['meta_data']['nb_depots'] coords_depot = np.zeros(shape=(nb_depots,2)) for i in xrange(nb_depots): x = data['depots']['d{0}'.format(i)]['x'] y = data['depots']['d{0}'.format(i)]['y'] coords_depot[i] = [x,y] plt.scatter(coords_depot[:,0], coords_depot[:,1], marker='P', s=10, linewidth=5) plt.show() # Plot both depots and customers on the map def plotAll(self, jsonInputFile): if os.path.isfile(jsonInputFile): with open(jsonInputFile) as data_file: data = json.load(data_file) nb_customers = data['meta_data']['nb_customers'] nb_depots = data['meta_data']['nb_depots'] coords_cust = np.zeros(shape=(nb_customers,2)) coords_depot = np.zeros(shape=(nb_depots,2)) for i in xrange(nb_customers): x = data['customers']['c{0}'.format(i)]['x'] y = data['customers']['c{0}'.format(i)]['y'] coords_cust[i] = [x,y] for i in xrange(nb_depots): x = data['depots']['d{0}'.format(i)]['x'] y = data['depots']['d{0}'.format(i)]['y'] coords_depot[i] = [x,y] filename = str(basename(os.path.splitext(jsonInputFile)[0]) + '.pdf') plt.scatter(coords_cust[:,0], coords_cust[:,1], marker='s', s=10, linewidth=5) plt.scatter(coords_depot[:,0], coords_depot[:,1], marker='8', s=10, linewidth=5) plt.savefig(filename, format='pdf') #~ plt.show()
mit
jat255/seaborn
seaborn/timeseries.py
4
15212
"""Timeseries plotting functions.""" from __future__ import division import numpy as np import pandas as pd from scipy import stats, interpolate import matplotlib as mpl import matplotlib.pyplot as plt from .external.six import string_types from . import utils from . import algorithms as algo from .palettes import color_palette def tsplot(data, time=None, unit=None, condition=None, value=None, err_style="ci_band", ci=68, interpolate=True, color=None, estimator=np.mean, n_boot=5000, err_palette=None, err_kws=None, legend=True, ax=None, **kwargs): """Plot one or more timeseries with flexible representation of uncertainty. This function is intended to be used with data where observations are nested within sampling units that were measured at multiple timepoints. It can take data specified either as a long-form (tidy) DataFrame or as an ndarray with dimensions (unit, time) The interpretation of some of the other parameters changes depending on the type of object passed as data. Parameters ---------- data : DataFrame or ndarray Data for the plot. Should either be a "long form" dataframe or an array with dimensions (unit, time, condition). In both cases, the condition field/dimension is optional. The type of this argument determines the interpretation of the next few parameters. When using a DataFrame, the index has to be sequential. time : string or series-like Either the name of the field corresponding to time in the data DataFrame or x values for a plot when data is an array. If a Series, the name will be used to label the x axis. unit : string Field in the data DataFrame identifying the sampling unit (e.g. subject, neuron, etc.). The error representation will collapse over units at each time/condition observation. This has no role when data is an array. value : string Either the name of the field corresponding to the data values in the data DataFrame (i.e. the y coordinate) or a string that forms the y axis label when data is an array. condition : string or Series-like Either the name of the field identifying the condition an observation falls under in the data DataFrame, or a sequence of names with a length equal to the size of the third dimension of data. There will be a separate trace plotted for each condition. If condition is a Series with a name attribute, the name will form the title for the plot legend (unless legend is set to False). err_style : string or list of strings or None Names of ways to plot uncertainty across units from set of {ci_band, ci_bars, boot_traces, boot_kde, unit_traces, unit_points}. Can use one or more than one method. ci : float or list of floats in [0, 100] Confidence interval size(s). If a list, it will stack the error plots for each confidence interval. Only relevant for error styles with "ci" in the name. interpolate : boolean Whether to do a linear interpolation between each timepoint when plotting. The value of this parameter also determines the marker used for the main plot traces, unless marker is specified as a keyword argument. color : seaborn palette or matplotlib color name or dictionary Palette or color for the main plots and error representation (unless plotting by unit, which can be separately controlled with err_palette). If a dictionary, should map condition name to color spec. estimator : callable Function to determine central tendency and to pass to bootstrap must take an ``axis`` argument. n_boot : int Number of bootstrap iterations. err_palette : seaborn palette Palette name or list of colors used when plotting data for each unit. err_kws : dict, optional Keyword argument dictionary passed through to matplotlib function generating the error plot, legend : bool, optional If ``True`` and there is a ``condition`` variable, add a legend to the plot. ax : axis object, optional Plot in given axis; if None creates a new figure kwargs : Other keyword arguments are passed to main plot() call Returns ------- ax : matplotlib axis axis with plot data Examples -------- Plot a trace with translucent confidence bands: .. plot:: :context: close-figs >>> import numpy as np; np.random.seed(22) >>> import seaborn as sns; sns.set(color_codes=True) >>> x = np.linspace(0, 15, 31) >>> data = np.sin(x) + np.random.rand(10, 31) + np.random.randn(10, 1) >>> ax = sns.tsplot(data=data) Plot a long-form dataframe with several conditions: .. plot:: :context: close-figs >>> gammas = sns.load_dataset("gammas") >>> ax = sns.tsplot(time="timepoint", value="BOLD signal", ... unit="subject", condition="ROI", ... data=gammas) Use error bars at the positions of the observations: .. plot:: :context: close-figs >>> ax = sns.tsplot(data=data, err_style="ci_bars", color="g") Don't interpolate between the observations: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> ax = sns.tsplot(data=data, err_style="ci_bars", interpolate=False) Show multiple confidence bands: .. plot:: :context: close-figs >>> ax = sns.tsplot(data=data, ci=[68, 95], color="m") Use a different estimator: .. plot:: :context: close-figs >>> ax = sns.tsplot(data=data, estimator=np.median) Show each bootstrap resample: .. plot:: :context: close-figs >>> ax = sns.tsplot(data=data, err_style="boot_traces", n_boot=500) Show the trace from each sampling unit: .. plot:: :context: close-figs >>> ax = sns.tsplot(data=data, err_style="unit_traces") """ # Sort out default values for the parameters if ax is None: ax = plt.gca() if err_kws is None: err_kws = {} # Handle different types of input data if isinstance(data, pd.DataFrame): xlabel = time ylabel = value # Condition is optional if condition is None: condition = pd.Series(np.ones(len(data))) legend = False legend_name = None n_cond = 1 else: legend = True and legend legend_name = condition n_cond = len(data[condition].unique()) else: data = np.asarray(data) # Data can be a timecourse from a single unit or # several observations in one condition if data.ndim == 1: data = data[np.newaxis, :, np.newaxis] elif data.ndim == 2: data = data[:, :, np.newaxis] n_unit, n_time, n_cond = data.shape # Units are experimental observations. Maybe subjects, or neurons if unit is None: units = np.arange(n_unit) unit = "unit" units = np.repeat(units, n_time * n_cond) ylabel = None # Time forms the xaxis of the plot if time is None: times = np.arange(n_time) else: times = np.asarray(time) xlabel = None if hasattr(time, "name"): xlabel = time.name time = "time" times = np.tile(np.repeat(times, n_cond), n_unit) # Conditions split the timeseries plots if condition is None: conds = range(n_cond) legend = False if isinstance(color, dict): err = "Must have condition names if using color dict." raise ValueError(err) else: conds = np.asarray(condition) legend = True and legend if hasattr(condition, "name"): legend_name = condition.name else: legend_name = None condition = "cond" conds = np.tile(conds, n_unit * n_time) # Value forms the y value in the plot if value is None: ylabel = None else: ylabel = value value = "value" # Convert to long-form DataFrame data = pd.DataFrame(dict(value=data.ravel(), time=times, unit=units, cond=conds)) # Set up the err_style and ci arguments for the loop below if isinstance(err_style, string_types): err_style = [err_style] elif err_style is None: err_style = [] if not hasattr(ci, "__iter__"): ci = [ci] # Set up the color palette if color is None: current_palette = utils.get_color_cycle() if len(current_palette) < n_cond: colors = color_palette("husl", n_cond) else: colors = color_palette(n_colors=n_cond) elif isinstance(color, dict): colors = [color[c] for c in data[condition].unique()] else: try: colors = color_palette(color, n_cond) except ValueError: color = mpl.colors.colorConverter.to_rgb(color) colors = [color] * n_cond # Do a groupby with condition and plot each trace for c, (cond, df_c) in enumerate(data.groupby(condition, sort=False)): df_c = df_c.pivot(unit, time, value) x = df_c.columns.values.astype(np.float) # Bootstrap the data for confidence intervals boot_data = algo.bootstrap(df_c.values, n_boot=n_boot, axis=0, func=estimator) cis = [utils.ci(boot_data, v, axis=0) for v in ci] central_data = estimator(df_c.values, axis=0) # Get the color for this condition color = colors[c] # Use subroutines to plot the uncertainty for style in err_style: # Allow for null style (only plot central tendency) if style is None: continue # Grab the function from the global environment try: plot_func = globals()["_plot_%s" % style] except KeyError: raise ValueError("%s is not a valid err_style" % style) # Possibly set up to plot each observation in a different color if err_palette is not None and "unit" in style: orig_color = color color = color_palette(err_palette, len(df_c.values)) # Pass all parameters to the error plotter as keyword args plot_kwargs = dict(ax=ax, x=x, data=df_c.values, boot_data=boot_data, central_data=central_data, color=color, err_kws=err_kws) # Plot the error representation, possibly for multiple cis for ci_i in cis: plot_kwargs["ci"] = ci_i plot_func(**plot_kwargs) if err_palette is not None and "unit" in style: color = orig_color # Plot the central trace kwargs.setdefault("marker", "" if interpolate else "o") ls = kwargs.pop("ls", "-" if interpolate else "") kwargs.setdefault("linestyle", ls) label = cond if legend else "_nolegend_" ax.plot(x, central_data, color=color, label=label, **kwargs) # Pad the sides of the plot only when not interpolating ax.set_xlim(x.min(), x.max()) x_diff = x[1] - x[0] if not interpolate: ax.set_xlim(x.min() - x_diff, x.max() + x_diff) # Add the plot labels if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if legend: ax.legend(loc=0, title=legend_name) return ax # Subroutines for tsplot errorbar plotting # ---------------------------------------- def _plot_ci_band(ax, x, ci, color, err_kws, **kwargs): """Plot translucent error bands around the central tendancy.""" low, high = ci if "alpha" not in err_kws: err_kws["alpha"] = 0.2 ax.fill_between(x, low, high, facecolor=color, **err_kws) def _plot_ci_bars(ax, x, central_data, ci, color, err_kws, **kwargs): """Plot error bars at each data point.""" for x_i, y_i, (low, high) in zip(x, central_data, ci.T): ax.plot([x_i, x_i], [low, high], color=color, solid_capstyle="round", **err_kws) def _plot_boot_traces(ax, x, boot_data, color, err_kws, **kwargs): """Plot 250 traces from bootstrap.""" err_kws.setdefault("alpha", 0.25) err_kws.setdefault("linewidth", 0.25) if "lw" in err_kws: err_kws["linewidth"] = err_kws.pop("lw") ax.plot(x, boot_data.T, color=color, label="_nolegend_", **err_kws) def _plot_unit_traces(ax, x, data, ci, color, err_kws, **kwargs): """Plot a trace for each observation in the original data.""" if isinstance(color, list): if "alpha" not in err_kws: err_kws["alpha"] = .5 for i, obs in enumerate(data): ax.plot(x, obs, color=color[i], label="_nolegend_", **err_kws) else: if "alpha" not in err_kws: err_kws["alpha"] = .2 ax.plot(x, data.T, color=color, label="_nolegend_", **err_kws) def _plot_unit_points(ax, x, data, color, err_kws, **kwargs): """Plot each original data point discretely.""" if isinstance(color, list): for i, obs in enumerate(data): ax.plot(x, obs, "o", color=color[i], alpha=0.8, markersize=4, label="_nolegend_", **err_kws) else: ax.plot(x, data.T, "o", color=color, alpha=0.5, markersize=4, label="_nolegend_", **err_kws) def _plot_boot_kde(ax, x, boot_data, color, **kwargs): """Plot the kernal density estimate of the bootstrap distribution.""" kwargs.pop("data") _ts_kde(ax, x, boot_data, color, **kwargs) def _plot_unit_kde(ax, x, data, color, **kwargs): """Plot the kernal density estimate over the sample.""" _ts_kde(ax, x, data, color, **kwargs) def _ts_kde(ax, x, data, color, **kwargs): """Upsample over time and plot a KDE of the bootstrap distribution.""" kde_data = [] y_min, y_max = data.min(), data.max() y_vals = np.linspace(y_min, y_max, 100) upsampler = interpolate.interp1d(x, data) data_upsample = upsampler(np.linspace(x.min(), x.max(), 100)) for pt_data in data_upsample.T: pt_kde = stats.kde.gaussian_kde(pt_data) kde_data.append(pt_kde(y_vals)) kde_data = np.transpose(kde_data) rgb = mpl.colors.ColorConverter().to_rgb(color) img = np.zeros((kde_data.shape[0], kde_data.shape[1], 4)) img[:, :, :3] = rgb kde_data /= kde_data.max(axis=0) kde_data[kde_data > 1] = 1 img[:, :, 3] = kde_data ax.imshow(img, interpolation="spline16", zorder=2, extent=(x.min(), x.max(), y_min, y_max), aspect="auto", origin="lower")
bsd-3-clause
JensWehner/votca-scripts
xtp/xtp_kmc_plottrajectory.py
2
3563
#!/usr/bin/env python import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import proj3d import numpy as np import matplotlib.pyplot as plt import csv import re import sys from __tools__ import MyParser parser=MyParser(description="Tool to visualize kmc trajectory .csv files" ) parser.add_argument("-t","--trajectory",type=str,nargs="+",required=True,help="Files to visualize .csv format") parser.add_argument("--steps",type=int,default=-1,help="Maximum number of steps to read in. default:-1") args=parser.parse_args() #parser.add_argument('-p',"--plot", action='store_const', const=1, default=0,help="Calculate exciton coupling in classical limit") if type(args.trajectory)==str: args.trajectory=[args.trajectory] class carrierstorage(object): numberofobjects= 0 def __init__(self): carrierstorage.numberofobjects+=1 self.id=carrierstorage.numberofobjects self.traj=[] def append(self,posvec): self.traj.append(posvec) def array(self): return np.array(self.traj) def info(self): print "Carrier No",self.id print self.array().shape listofcarriers=[] for filename in args.trajectory: locallistofcarriers=[] with open(filename,"r") as f: reader = csv.reader(f, dialect="excel-tab") conversion=1 start=2 for i,row in enumerate(reader): #print i if args.steps>0 and i>args.steps: break if i==0: commentlinelength=len(row) if "carrier" in ''.join(row): noofcharges=''.join(row).count("carrier")/3 else: noofcharges=len(row)/3 print "Found {} carriers in file {}".format(noofcharges,filename) if noofcharges==0: break for i in range(noofcharges): newcarrier=carrierstorage() listofcarriers.append(newcarrier) locallistofcarriers.append(newcarrier) continue if i==1: #print row if len(row)!=commentlinelength: print "header and trajectory do not have same number of columns. Ignoring steps colum" start=1 nprow=np.array(row,dtype=float) firstcoord=nprow[start:start+3] if np.sqrt(np.sum(firstcoord**2))<0.0001: print "Units is probably meter instead of nm. Old trajectory format" conversion=1E9 else: print "Units is probably nm." if i>0: nprow=np.array(row,dtype=float) for j,carrier in enumerate(locallistofcarriers): s=start+j*3 carrier.append(conversion*nprow[s:s+3]) print "Found {} carriers in total".format(len(listofcarriers)) if len(listofcarriers)==0: print "No carriers found" sys.exit() fig = plt.figure(1) ax = fig.gca(projection='3d') ax.set_xlabel('x [nm]') ax.set_ylabel('y [nm]') ax.set_zlabel('z [nm]') for i in listofcarriers: posarray=i.array() #print posarray ax.plot(posarray[:,0], posarray[:,1], posarray[:,2]) ax.scatter(posarray[0,0], posarray[0,1], posarray[0,2],s=200,marker="+",c="black") ax.scatter(posarray[-1,0], posarray[-1,1], posarray[-1,2],s=400,marker="x",c="black") max_range = np.array([posarray[:,0].max()-posarray[:,0].min(), posarray[:,1].max()-posarray[:,1].min(), posarray[:,2].max()-posarray[:,2].min()]).max() Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(posarray[:,0].max()+posarray[:,0].min()) Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(posarray[:,1].max()+posarray[:,1].min()) Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(posarray[:,2].max()+posarray[:,2].min()) for xb, yb, zb in zip(Xb, Yb, Zb): ax.plot([xb], [yb], [zb], 'w') plt.grid() plt.show()
apache-2.0
richardhsu/naarad
src/naarad/graphing/matplotlib_naarad.py
4
9100
# coding=utf-8 """ Copyright 2013 LinkedIn Corp. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy import os import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.dates as mdates from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import logging import naarad.naarad_constants as CONSTANTS logger = logging.getLogger('naarad.graphing.matplotlib') def convert_to_mdate(date_str): mdate = mdates.epoch2num(int(date_str) / 1000) return mdate # MPL-WA-07 # matplotlib does not rotate colors correctly when using multiple y axes. This method fills in that gap. def get_current_color(index): return CONSTANTS.COLOR_PALETTE[index % len(CONSTANTS.COLOR_PALETTE)] def get_graph_metadata(plots): height = 0 width = 0 title = '' for plot in plots: if plot.graph_height > height: height = plot.graph_height if plot.graph_width > width: width = plot.graph_width if title == '': title = plot.graph_title elif title != plot.graph_title: title = title + ',' + plot.graph_title return height / 80, width / 80, title def curate_plot_list(plots): delete_nodes = [] for plot in plots: if os.path.exists(plot.input_csv): if not os.path.getsize(plot.input_csv): logger.warning("%s file is empty. No plot corresponding to this file will be generated", plot.input_csv) delete_nodes.append(plot) else: logger.warning("%s file does not exist. No plot corresponding to this file will be generated", plot.input_csv) delete_nodes.append(plot) for node in delete_nodes: plots.remove(node) return plots def highlight_region(plt, start_x, end_x): """ Highlight a region on the chart between the specified start and end x-co-ordinates. param pyplot plt: matplotlibk pyplot which contains the charts to be highlighted param string start_x : epoch time millis param string end_x : epoch time millis """ start_x = convert_to_mdate(start_x) end_x = convert_to_mdate(end_x) plt.axvspan(start_x, end_x, color=CONSTANTS.HIGHLIGHT_COLOR, alpha=CONSTANTS.HIGHLIGHT_ALPHA) def graph_data(list_of_plots, output_directory, resource_path, output_filename): plots = curate_plot_list(list_of_plots) plot_count = len(plots) if plot_count == 0: return False, None graph_height, graph_width, graph_title = get_graph_metadata(list_of_plots) current_plot_count = 0 fig, axis = plt.subplots() fig.set_size_inches(graph_width, graph_height) if plot_count < 2: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET) else: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET - CONSTANTS.Y_AXIS_OFFSET * (plot_count - 2)) current_axis = axis for plot in plots: current_plot_count += 1 logger.info('Processing: ' + plot.input_csv + ' [ ' + output_filename + ' ]') timestamp, yval = numpy.loadtxt(plot.input_csv, unpack=True, delimiter=',', converters={0: convert_to_mdate}) maximum_yvalue = numpy.amax(yval) * (1.0 + CONSTANTS.ZOOM_FACTOR * current_plot_count) minimum_yvalue = numpy.amin(yval) * (1.0 - CONSTANTS.ZOOM_FACTOR * current_plot_count) if current_plot_count == 0: current_axis.yaxis.set_ticks_position('left') if current_plot_count > 1: current_axis = axis.twinx() current_axis.yaxis.grid(False) # Set right y-axis for additional plots current_axis.yaxis.set_ticks_position('right') # Offset the right y axis to avoid overlap current_axis.spines['right'].set_position(('axes', 1 + CONSTANTS.Y_AXIS_OFFSET * (current_plot_count - 2))) current_axis.spines['right'].set_smart_bounds(False) current_axis.spines['right'].set_color(get_current_color(current_plot_count)) current_axis.set_frame_on(True) current_axis.patch.set_visible(False) current_axis.set_ylabel(plot.y_label, color=get_current_color(current_plot_count), fontsize=CONSTANTS.Y_LABEL_FONTSIZE) current_axis.set_ylim([minimum_yvalue, maximum_yvalue]) if plot.graph_type == 'line': current_axis.plot_date(x=timestamp, y=yval, linestyle='-', marker=None, color=get_current_color(current_plot_count)) else: current_axis.plot_date(x=timestamp, y=yval, marker='.', color=get_current_color(current_plot_count)) y_ticks = current_axis.get_yticklabels() for y_tick in y_ticks: y_tick.set_color(get_current_color(current_plot_count)) y_tick.set_fontsize(CONSTANTS.Y_TICKS_FONTSIZE) for x_tick in current_axis.get_xticklabels(): x_tick.set_fontsize(CONSTANTS.X_TICKS_FONTSIZE) if plot.highlight_regions is not None: for region in plot.highlight_regions: highlight_region(plt, str(region.start_timestamp), str(region.end_timestamp)) axis.yaxis.grid(True) axis.xaxis.grid(True) axis.set_title(graph_title) axis.set_xlabel('Time') x_date_format = mdates.DateFormatter(CONSTANTS.X_TICKS_DATEFORMAT) axis.xaxis.set_major_formatter(x_date_format) plot_file_name = os.path.join(output_directory, output_filename + ".png") fig.savefig(plot_file_name) plt.close() # Create html fragment to be used for creation of the report with open(os.path.join(output_directory, output_filename + '.div'), 'w') as div_file: div_file.write('<a name="' + os.path.basename(plot_file_name).replace(".png", "").replace(".diff", "") + '"></a><div class="col-md-12"><img src="' + resource_path + '/' + os.path.basename(plot_file_name) + '" id="' + os.path.basename(plot_file_name) + '" width="100%" height="auto"/></div><div class="col-md-12"><p align="center"><strong>' + os.path.basename(plot_file_name) + '</strong></p></div><hr />') return True, os.path.join(output_directory, output_filename + '.div') def graph_data_on_the_same_graph(list_of_plots, output_directory, resource_path, output_filename): """ graph_data_on_the_same_graph: put a list of plots on the same graph: currently it supports CDF """ maximum_yvalue = -float('inf') minimum_yvalue = float('inf') plots = curate_plot_list(list_of_plots) plot_count = len(plots) if plot_count == 0: return False, None graph_height, graph_width, graph_title = get_graph_metadata(plots) current_plot_count = 0 fig, axis = plt.subplots() fig.set_size_inches(graph_width, graph_height) if plot_count < 2: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET) else: fig.subplots_adjust(left=CONSTANTS.SUBPLOT_LEFT_OFFSET, bottom=CONSTANTS.SUBPLOT_BOTTOM_OFFSET, right=CONSTANTS.SUBPLOT_RIGHT_OFFSET - CONSTANTS.Y_AXIS_OFFSET * (plot_count - 2)) # Generate each plot on the graph for plot in plots: current_plot_count += 1 logger.info('Processing: ' + plot.input_csv + ' [ ' + output_filename + ' ]') xval, yval = numpy.loadtxt(plot.input_csv, unpack=True, delimiter=',') axis.plot(xval, yval, linestyle='-', marker=None, color=get_current_color(current_plot_count), label=plot.plot_label) axis.legend() maximum_yvalue = max(maximum_yvalue, numpy.amax(yval) * (1.0 + CONSTANTS.ZOOM_FACTOR * current_plot_count)) minimum_yvalue = min(minimum_yvalue, numpy.amin(yval) * (1.0 - CONSTANTS.ZOOM_FACTOR * current_plot_count)) # Set properties of the plots axis.yaxis.set_ticks_position('left') axis.set_xlabel(plots[0].x_label) axis.set_ylabel(plots[0].y_label, fontsize=CONSTANTS.Y_LABEL_FONTSIZE) axis.set_ylim([minimum_yvalue, maximum_yvalue]) axis.yaxis.grid(True) axis.xaxis.grid(True) axis.set_title(graph_title) plot_file_name = os.path.join(output_directory, output_filename + ".png") fig.savefig(plot_file_name) plt.close() # Create html fragment to be used for creation of the report with open(os.path.join(output_directory, output_filename + '.div'), 'w') as div_file: div_file.write('<a name="' + os.path.basename(plot_file_name).replace(".png", "").replace(".diff", "") + '"></a><div class="col-md-12"><img src="' + resource_path + '/' + os.path.basename(plot_file_name) + '" id="' + os.path.basename(plot_file_name) + '" width="100%" height="auto"/></div><div class="col-md-12"><p align=center>' + os.path.basename(plot_file_name) + '<br/></p></div>') return True, os.path.join(output_directory, output_filename + '.div')
apache-2.0
weidel-p/nest-simulator
pynest/examples/brette_gerstner_fig_3d.py
12
3030
# -*- coding: utf-8 -*- # # brette_gerstner_fig_3d.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Testing the adapting exponential integrate and fire model in NEST (Brette and Gerstner Fig 3D) ---------------------------------------------------------------------------------------------------- This example tests the adaptive integrate and fire model (AdEx) according to Brette and Gerstner [1]_ reproduces Figure 3D of the paper. Note that Brette and Gerstner give the value for `b` in `nA`. To be consistent with the other parameters in the equations, `b` must be converted to `pA` (pico Ampere). References ~~~~~~~~~~~ .. [1] Brette R and Gerstner W (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity J. Neurophysiology. https://doi.org/10.1152/jn.00686.2005 """ import nest import nest.voltage_trace import matplotlib.pyplot as plt nest.ResetKernel() ############################################################################### # First we make sure that the resolution of the simulation is 0.1 ms. This is # important, since the slop of the action potential is very steep. res = 0.1 nest.SetKernelStatus({"resolution": res}) neuron = nest.Create("aeif_cond_exp") ############################################################################### # Set the parameters of the neuron according to the paper. neuron.set(V_peak=20., E_L=-60.0, a=80.0, b=80.5, tau_w=720.0) ############################################################################### # Create and configure the stimulus which is a step current. dc = nest.Create("dc_generator") dc.set(amplitude=-800.0, start=0.0, stop=400.0) ############################################################################### # We connect the DC generators. nest.Connect(dc, neuron, 'all_to_all') ############################################################################### # And add a ``voltmeter`` to sample the membrane potentials from the neuron # in intervals of 0.1 ms. voltmeter = nest.Create("voltmeter", params={'interval': 0.1}) nest.Connect(voltmeter, neuron) ############################################################################### # Finally, we simulate for 1000 ms and plot a voltage trace to produce the # figure. nest.Simulate(1000.0) nest.voltage_trace.from_device(voltmeter) plt.axis([0, 1000, -85, 0]) nest.voltage_trace.show()
gpl-2.0
yugangzhang/chxanalys
chxanalys/chx_compress.py
1
37856
import os,shutil from glob import iglob import matplotlib.pyplot as plt from chxanalys.chx_libs import (np, roi, time, datetime, os, getpass, db, get_images,LogNorm, RUN_GUI) from chxanalys.chx_generic_functions import (create_time_slice,get_detector, get_fields, get_sid_filenames, load_data) import struct from tqdm import tqdm from contextlib import closing from multiprocessing import Pool import dill import sys import gc import pickle as pkl from eiger_io.pims_reader import EigerImages def run_dill_encoded(what): fun, args = dill.loads(what) return fun(*args) def apply_async(pool, fun, args, callback=None): return pool.apply_async( run_dill_encoded, (dill.dumps((fun, args)),), callback= callback) def map_async(pool, fun, args ): return pool.map_async(run_dill_encoded, (dill.dumps((fun, args)),)) def pass_FD(FD,n): #FD.rdframe(n) FD.seekimg(n) def go_through_FD(FD): for i in range(FD.beg, FD.end): pass_FD(FD,i) def compress_eigerdata( images, mask, md, filename=None, force_compress=False, bad_pixel_threshold=1e15, bad_pixel_low_threshold=0, hot_pixel_threshold=2**30, nobytes=4,bins=1, bad_frame_list=None, para_compress= False, num_sub=100, dtypes='uid',reverse =True, num_max_para_process=500, with_pickle=False, direct_load_data=False, data_path=None): end= len(images)//bins if filename is None: filename= '/XF11ID/analysis/Compressed_Data' +'/uid_%s.cmp'%md['uid'] if dtypes!= 'uid': para_compress= False else: if para_compress: images='foo' #para_compress= True #print( dtypes ) if force_compress: print ("Create a new compress file with filename as :%s."%filename) if para_compress: print( 'Using a multiprocess to compress the data.') return para_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold,nobytes= nobytes, bins=bins, num_sub=num_sub, dtypes=dtypes, reverse=reverse, num_max_para_process=num_max_para_process, with_pickle= with_pickle, direct_load_data= direct_load_data,data_path=data_path) else: return init_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold,nobytes= nobytes, bins=bins,with_pickle= with_pickle, direct_load_data= direct_load_data,data_path=data_path ) else: if not os.path.exists( filename ): print ("Create a new compress file with filename as :%s."%filename) if para_compress: print( 'Using a multiprocess to compress the data.') return para_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold,nobytes= nobytes, bins=bins, num_sub=num_sub, dtypes=dtypes, reverse=reverse, num_max_para_process=num_max_para_process,with_pickle= with_pickle, direct_load_data= direct_load_data,data_path=data_path) else: return init_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold, nobytes= nobytes, bins=bins,with_pickle= with_pickle, direct_load_data= direct_load_data,data_path=data_path ) else: print ("Using already created compressed file with filename as :%s."%filename) beg=0 return read_compressed_eigerdata( mask, filename, beg, end, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold ,bad_frame_list=bad_frame_list,with_pickle= with_pickle, direct_load_data= direct_load_data,data_path=data_path ) def read_compressed_eigerdata( mask, filename, beg, end, bad_pixel_threshold=1e15, hot_pixel_threshold=2**30, bad_pixel_low_threshold=0,bad_frame_list=None,with_pickle= False, direct_load_data=False,data_path=None): ''' Read already compress eiger data Return mask avg_img imsum bad_frame_list ''' #should use try and except instead of with_pickle in the future! CAL = False if not with_pickle: CAL = True else: try: mask, avg_img, imgsum, bad_frame_list_ = pkl.load( open(filename + '.pkl', 'rb' ) ) except: CAL = True if CAL: FD = Multifile( filename, beg, end) imgsum = np.zeros( FD.end- FD.beg, dtype= np.float ) avg_img = np.zeros( [FD.md['ncols'], FD.md['nrows'] ] , dtype= np.float ) imgsum, bad_frame_list_ = get_each_frame_intensityc( FD, sampling = 1, bad_pixel_threshold=bad_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold, hot_pixel_threshold=hot_pixel_threshold, plot_ = False, bad_frame_list=bad_frame_list) avg_img = get_avg_imgc( FD, beg=None,end=None,sampling = 1, plot_ = False,bad_frame_list=bad_frame_list_ ) FD.FID.close() return mask, avg_img, imgsum, bad_frame_list_ def para_compress_eigerdata( images, mask, md, filename, num_sub=100, bad_pixel_threshold=1e15, hot_pixel_threshold=2**30, bad_pixel_low_threshold=0, nobytes=4, bins=1, dtypes='uid',reverse =True, num_max_para_process=500, cpu_core_number=72, with_pickle=True, direct_load_data=False, data_path=None): if dtypes=='uid': uid= md['uid'] #images if not direct_load_data: detector = get_detector( db[uid ] ) images_ = load_data( uid, detector, reverse= reverse ) else: images_ = EigerImages(data_path, md) N= len(images_) else: N = len(images) N = int( np.ceil( N/ bins ) ) Nf = int( np.ceil( N/ num_sub ) ) if Nf > cpu_core_number: print("The process number is larger than %s (XF11ID server core number)"%cpu_core_number) num_sub_old = num_sub num_sub = int( np.ceil(N/cpu_core_number)) Nf = int( np.ceil( N/ num_sub ) ) print ("The sub compressed file number was changed from %s to %s"%( num_sub_old, num_sub )) create_compress_header( md, filename +'-header', nobytes, bins ) #print( 'done for header here') results = para_segment_compress_eigerdata( images=images, mask=mask, md=md,filename=filename, num_sub=num_sub, bad_pixel_threshold=bad_pixel_threshold, hot_pixel_threshold=hot_pixel_threshold, bad_pixel_low_threshold=bad_pixel_low_threshold,nobytes=nobytes, bins=bins, dtypes=dtypes, num_max_para_process=num_max_para_process, direct_load_data=direct_load_data, data_path=data_path) res_ = np.array( [ results[k].get() for k in list(sorted(results.keys())) ] ) imgsum = np.zeros( N ) bad_frame_list = np.zeros( N, dtype=bool ) good_count = 1 for i in range( Nf ): mask_, avg_img_, imgsum_, bad_frame_list_ = res_[i] imgsum[i*num_sub: (i+1)*num_sub] = imgsum_ bad_frame_list[i*num_sub: (i+1)*num_sub] = bad_frame_list_ if i==0: mask = mask_ avg_img = np.zeros_like( avg_img_ ) else: mask *= mask_ if not np.sum( np.isnan( avg_img_)): avg_img += avg_img_ good_count += 1 bad_frame_list = np.where( bad_frame_list )[0] avg_img /= good_count if len(bad_frame_list): print ('Bad frame list are: %s' %bad_frame_list) else: print ('No bad frames are involved.') print( 'Combining the seperated compressed files together...') combine_compressed( filename, Nf, del_old=True) del results del res_ if with_pickle: pkl.dump( [mask, avg_img, imgsum, bad_frame_list], open(filename + '.pkl', 'wb' ) ) return mask, avg_img, imgsum, bad_frame_list def combine_compressed( filename, Nf, del_old=True): old_files = np.concatenate( np.array([ [filename +'-header'], [filename + '_temp-%i.tmp'%i for i in range(Nf) ]])) combine_binary_files(filename, old_files, del_old ) def combine_binary_files(filename, old_files, del_old = False): '''Combine binary files together''' fn_ = open(filename, 'wb') for ftemp in old_files: shutil.copyfileobj( open(ftemp, 'rb'), fn_) if del_old: os.remove( ftemp ) fn_.close() def para_segment_compress_eigerdata( images, mask, md, filename, num_sub=100, bad_pixel_threshold=1e15, hot_pixel_threshold=2**30, bad_pixel_low_threshold=0, nobytes=4, bins=1, dtypes='images',reverse =True, num_max_para_process=50,direct_load_data=False, data_path=None): ''' parallelly compressed eiger data without header, this function is for parallel compress ''' if dtypes=='uid': uid= md['uid'] #images if not direct_load_data: detector = get_detector( db[uid ] ) images_ = load_data( uid, detector, reverse= reverse ) else: images_ = EigerImages(data_path, md) N= len(images_) else: N = len(images) #N = int( np.ceil( N/ bins ) ) num_sub *= bins if N%num_sub: Nf = N// num_sub +1 print('The average image intensity would be slightly not correct, about 1% error.') print( 'Please give a num_sub to make reminder of Num_images/num_sub =0 to get a correct avg_image') else: Nf = N//num_sub print( 'It will create %i temporary files for parallel compression.'%Nf) if Nf> num_max_para_process: N_runs = np.int( np.ceil( Nf/float(num_max_para_process))) print('The parallel run number: %s is larger than num_max_para_process: %s'%(Nf, num_max_para_process )) else: N_runs= 1 result = {} #print( mask_filename )# + '*'* 10 + 'here' ) for nr in range( N_runs ): if (nr+1)*num_max_para_process > Nf: inputs= range( num_max_para_process*nr, Nf ) else: inputs= range( num_max_para_process*nr, num_max_para_process*(nr + 1 ) ) fns = [ filename + '_temp-%i.tmp'%i for i in inputs] #print( nr, inputs, ) pool = Pool(processes= len(inputs) ) #, maxtasksperchild=1000 ) #print( inputs ) for i in inputs: if i*num_sub <= N: result[i] = pool.apply_async( segment_compress_eigerdata, [ images, mask, md, filename + '_temp-%i.tmp'%i,bad_pixel_threshold, hot_pixel_threshold, bad_pixel_low_threshold, nobytes, bins, i*num_sub, (i+1)*num_sub, dtypes, reverse,direct_load_data, data_path ] ) pool.close() pool.join() pool.terminate() return result def segment_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=1e15, hot_pixel_threshold=2**30, bad_pixel_low_threshold=0, nobytes=4, bins=1, N1=None, N2=None, dtypes='images',reverse =True,direct_load_data=False, data_path=None ): ''' Create a compressed eiger data without header, this function is for parallel compress for parallel compress don't pass any non-scalar parameters ''' if dtypes=='uid': uid= md['uid'] #images if not direct_load_data: detector = get_detector( db[uid ] ) images = load_data( uid, detector, reverse= reverse )[N1:N2] else: images = EigerImages(data_path, md)[N1:N2] Nimg_ = len( images) M,N = images[0].shape avg_img = np.zeros( [M,N], dtype= np.float ) Nopix = float( avg_img.size ) n=0 good_count = 0 #frac = 0.0 if nobytes==2: dtype= np.int16 elif nobytes==4: dtype= np.int32 elif nobytes==8: dtype=np.float64 else: print ( "Wrong type of nobytes, only support 2 [np.int16] or 4 [np.int32]") dtype= np.int32 #Nimg = Nimg_//bins Nimg = int( np.ceil( Nimg_ / bins ) ) time_edge = np.array(create_time_slice( N= Nimg_, slice_num= Nimg, slice_width= bins )) #print( time_edge, Nimg_, Nimg, bins, N1, N2 ) imgsum = np.zeros( Nimg ) if bins!=1: #print('The frames will be binned by %s'%bins) dtype=np.float64 fp = open( filename,'wb' ) for n in range(Nimg): t1,t2 = time_edge[n] if bins!=1: img = np.array( np.average( images[t1:t2], axis=0 ) , dtype= dtype) else: img = np.array( images[t1], dtype=dtype) mask &= img < hot_pixel_threshold p = np.where( (np.ravel(img)>0) * np.ravel(mask) )[0] #don't use masked data v = np.ravel( np.array( img, dtype= dtype )) [p] dlen = len(p) imgsum[n] = v.sum() if (dlen==0) or (imgsum[n] > bad_pixel_threshold) or (imgsum[n] <=bad_pixel_low_threshold): dlen = 0 fp.write( struct.pack( '@I', dlen )) else: np.ravel( avg_img )[p] += v good_count +=1 fp.write( struct.pack( '@I', dlen )) fp.write( struct.pack( '@{}i'.format( dlen), *p)) if bins==1: fp.write( struct.pack( '@{}{}'.format( dlen,'ih'[nobytes==2]), *v)) else: fp.write( struct.pack( '@{}{}'.format( dlen,'dd'[nobytes==2] ), *v)) #n +=1 del p,v, img fp.flush() fp.close() avg_img /= good_count bad_frame_list = (np.array(imgsum) > bad_pixel_threshold) | (np.array(imgsum) <= bad_pixel_low_threshold) sys.stdout.write('#') sys.stdout.flush() #del images, mask, avg_img, imgsum, bad_frame_list #print( 'Should release memory here') return mask, avg_img, imgsum, bad_frame_list def create_compress_header( md, filename, nobytes=4, bins=1 ): ''' Create the head for a compressed eiger data, this function is for parallel compress ''' fp = open( filename,'wb' ) #Make Header 1024 bytes #md = images.md if bins!=1: nobytes=8 Header = struct.pack('@16s8d7I916x',b'Version-COMP0001', md['beam_center_x'],md['beam_center_y'], md['count_time'], md['detector_distance'], md['frame_time'],md['incident_wavelength'], md['x_pixel_size'],md['y_pixel_size'], nobytes, md['pixel_mask'].shape[1], md['pixel_mask'].shape[0], 0, md['pixel_mask'].shape[1], 0, md['pixel_mask'].shape[0] ) fp.write( Header) fp.close() def init_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=1e15, hot_pixel_threshold=2**30, bad_pixel_low_threshold=0,nobytes=4, bins=1, with_pickle=True, direct_load_data=False, data_path=None): ''' Compress the eiger data Create a new mask by remove hot_pixel Do image average Do each image sum Find badframe_list for where image sum above bad_pixel_threshold Generate a compressed data with filename if bins!=1, will bin the images with bin number as bins Header contains 1024 bytes ['Magic value', 'beam_center_x', 'beam_center_y', 'count_time', 'detector_distance', 'frame_time', 'incident_wavelength', 'x_pixel_size', 'y_pixel_size', bytes per pixel (either 2 or 4 (Default)), Nrows, Ncols, Rows_Begin, Rows_End, Cols_Begin, Cols_End ] Return mask avg_img imsum bad_frame_list ''' fp = open( filename,'wb' ) #Make Header 1024 bytes #md = images.md if bins!=1: nobytes=8 Header = struct.pack('@16s8d7I916x',b'Version-COMP0001', md['beam_center_x'],md['beam_center_y'], md['count_time'], md['detector_distance'], md['frame_time'],md['incident_wavelength'], md['x_pixel_size'],md['y_pixel_size'], nobytes, md['pixel_mask'].shape[1], md['pixel_mask'].shape[0], 0, md['pixel_mask'].shape[1], 0, md['pixel_mask'].shape[0] ) fp.write( Header) Nimg_ = len( images) avg_img = np.zeros_like( images[0], dtype= np.float ) Nopix = float( avg_img.size ) n=0 good_count = 0 frac = 0.0 if nobytes==2: dtype= np.int16 elif nobytes==4: dtype= np.int32 elif nobytes==8: dtype=np.float64 else: print ( "Wrong type of nobytes, only support 2 [np.int16] or 4 [np.int32]") dtype= np.int32 Nimg = Nimg_//bins time_edge = np.array(create_time_slice( N= Nimg_, slice_num= Nimg, slice_width= bins )) imgsum = np.zeros( Nimg ) if bins!=1: print('The frames will be binned by %s'%bins) for n in tqdm( range(Nimg) ): t1,t2 = time_edge[n] img = np.average( images[t1:t2], axis=0 ) mask &= img < hot_pixel_threshold p = np.where( (np.ravel(img)>0) & np.ravel(mask) )[0] #don't use masked data v = np.ravel( np.array( img, dtype= dtype )) [p] dlen = len(p) imgsum[n] = v.sum() if (imgsum[n] >bad_pixel_threshold) or (imgsum[n] <=bad_pixel_low_threshold): #if imgsum[n] >=bad_pixel_threshold : dlen = 0 fp.write( struct.pack( '@I', dlen )) else: np.ravel(avg_img )[p] += v good_count +=1 frac += dlen/Nopix #s_fmt ='@I{}i{}{}'.format( dlen,dlen,'ih'[nobytes==2]) fp.write( struct.pack( '@I', dlen )) fp.write( struct.pack( '@{}i'.format( dlen), *p)) if bins==1: fp.write( struct.pack( '@{}{}'.format( dlen,'ih'[nobytes==2]), *v)) else: fp.write( struct.pack( '@{}{}'.format( dlen,'dd'[nobytes==2] ), *v)) #n +=1 fp.close() frac /=good_count print( "The fraction of pixel occupied by photon is %6.3f%% "%(100*frac) ) avg_img /= good_count bad_frame_list = np.where( (np.array(imgsum) > bad_pixel_threshold) | (np.array(imgsum) <= bad_pixel_low_threshold) )[0] #bad_frame_list1 = np.where( np.array(imgsum) > bad_pixel_threshold )[0] #bad_frame_list2 = np.where( np.array(imgsum) < bad_pixel_low_threshold )[0] #bad_frame_list = np.unique( np.concatenate( [bad_frame_list1, bad_frame_list2]) ) if len(bad_frame_list): print ('Bad frame list are: %s' %bad_frame_list) else: print ('No bad frames are involved.') if with_pickle: pkl.dump( [mask, avg_img, imgsum, bad_frame_list], open(filename + '.pkl', 'wb' ) ) return mask, avg_img, imgsum, bad_frame_list """ Description: This is code that Mark wrote to open the multifile format in compressed mode, translated to python. This seems to work for DALSA, FCCD and EIGER in compressed mode. It should be included in the respective detector.i files Currently, this refers to the compression mode being '6' Each file is image descriptor files chunked together as follows: Header (1024 bytes) |--------------IMG N begin--------------| | Dlen |---------------------------------------| | Pixel positions (dlen*4 bytes | | (0 based indexing in file) | |---------------------------------------| | Pixel data(dlen*bytes bytes) | | (bytes is found in header | | at position 116) | |--------------IMG N end----------------| |--------------IMG N+1 begin------------| |----------------etc.....---------------| Header contains 1024 bytes version name, 'beam_center_x', 'beam_center_y', 'count_time', 'detector_distance', 'frame_time', 'incident_wavelength', 'x_pixel_size', 'y_pixel_size', bytes per pixel (either 2 or 4 (Default)), Nrows, Ncols, Rows_Begin, Rows_End, Cols_Begin, Cols_End, """ class Multifile: '''The class representing the multifile. The recno is in 1 based numbering scheme (first record is 1) This is efficient for reading in increasing order. Note: reading same image twice in a row is like reading an earlier numbered image and means the program starts for the beginning again. ''' def __init__(self,filename,beg,end): '''Multifile initialization. Open the file. Here I use the read routine which returns byte objects (everything is an object in python). I use struct.unpack to convert the byte object to other data type (int object etc) NOTE: At each record n, the file cursor points to record n+1 ''' self.FID = open(filename,"rb") # self.FID.seek(0,os.SEEK_SET) self.filename = filename #br: bytes read br = self.FID.read(1024) self.beg=beg self.end=end ms_keys = ['beam_center_x', 'beam_center_y', 'count_time', 'detector_distance', 'frame_time', 'incident_wavelength', 'x_pixel_size', 'y_pixel_size', 'bytes', 'nrows', 'ncols', 'rows_begin', 'rows_end', 'cols_begin', 'cols_end' ] magic = struct.unpack('@16s', br[:16]) md_temp = struct.unpack('@8d7I916x', br[16:]) self.md = dict(zip(ms_keys, md_temp)) self.imgread=0 self.recno = 0 # some initialization stuff self.byts = self.md['bytes'] if (self.byts==2): self.valtype = np.uint16 elif (self.byts == 4): self.valtype = np.uint32 elif (self.byts == 8): self.valtype = np.float64 #now convert pieces of these bytes to our data self.dlen =np.fromfile(self.FID,dtype=np.int32,count=1)[0] # now read first image #print "Opened file. Bytes per data is {0img.shape = (self.rows,self.cols)}".format(self.byts) def _readHeader(self): self.dlen =np.fromfile(self.FID,dtype=np.int32,count=1)[0] def _readImageRaw(self): p= np.fromfile(self.FID, dtype = np.int32,count= self.dlen) v= np.fromfile(self.FID, dtype = self.valtype,count= self.dlen) self.imgread=1 return(p,v) def _readImage(self): (p,v)=self._readImageRaw() img = np.zeros( ( self.md['ncols'], self.md['nrows'] ) ) np.put( np.ravel(img), p, v ) return(img) def seekimg(self,n=None): '''Position file to read the nth image. For now only reads first image ignores n ''' # the logic involving finding the cursor position if (n is None): n = self.recno if (n < self.beg or n > self.end): raise IndexError('Error, record out of range') #print (n, self.recno, self.FID.tell() ) if ((n == self.recno) and (self.imgread==0)): pass # do nothing else: if (n <= self.recno): #ensure cursor less than search pos self.FID.seek(1024,os.SEEK_SET) self.dlen =np.fromfile(self.FID,dtype=np.int32,count=1)[0] self.recno = 0 self.imgread=0 if n == 0: return #have to iterate on seeking since dlen varies #remember for rec recno, cursor is always at recno+1 if(self.imgread==0 ): #move to next header if need to self.FID.seek(self.dlen*(4+self.byts),os.SEEK_CUR) for i in range(self.recno+1,n): #the less seeks performed the faster #print (i) self.dlen =np.fromfile(self.FID,dtype=np.int32,count=1)[0] #print 's',self.dlen self.FID.seek(self.dlen*(4+self.byts),os.SEEK_CUR) # we are now at recno in file, read the header and data #self._clearImage() self._readHeader() self.imgread=0 self.recno = n def rdframe(self,n): if self.seekimg(n)!=-1: return(self._readImage()) def rdrawframe(self,n): if self.seekimg(n)!=-1: return(self._readImageRaw()) def pass_FD(FD,n): #FD.rdframe(n) FD.seekimg(n) class Multifile_Bins( object ): ''' Bin a compressed file with bins number See Multifile for details for Multifile_class ''' def __init__(self, FD, bins=100): ''' FD: the handler of a compressed Eiger frames bins: bins number ''' self.FD=FD if (FD.end - FD.beg)%bins: print ('Please give a better bins number and make the length of FD/bins= integer') else: self.bins = bins self.md = FD.md #self.beg = FD.beg self.beg = 0 Nimg = (FD.end - FD.beg) slice_num = Nimg//bins self.end = slice_num self.time_edge = np.array(create_time_slice( N= Nimg, slice_num= slice_num, slice_width= bins )) + FD.beg self.get_bin_frame() def get_bin_frame(self): FD= self.FD self.frames = np.zeros( [ FD.md['ncols'],FD.md['nrows'], len(self.time_edge)] ) for n in tqdm( range(len(self.time_edge))): #print (n) t1,t2 = self.time_edge[n] #print( t1, t2) self.frames[:,:,n] = get_avg_imgc( FD, beg=t1,end=t2, sampling = 1, plot_ = False, show_progress = False ) def rdframe(self,n): return self.frames[:,:,n] def rdrawframe(self,n): x_= np.ravel( self.rdframe(n) ) p= np.where( x_ ) [0] v = np.array( x_[ p ]) return ( np.array(p, dtype=np.int32), v) def get_avg_imgc( FD, beg=None,end=None, sampling = 100, plot_ = False, bad_frame_list=None, show_progress=True, *argv,**kwargs): '''Get average imagef from a data_series by every sampling number to save time''' #avg_img = np.average(data_series[:: sampling], axis=0) if beg is None: beg = FD.beg if end is None: end = FD.end avg_img = FD.rdframe(beg) n=1 flag=True if show_progress: #print( sampling-1 + beg , end, sampling ) if bad_frame_list is None: bad_frame_list =[] fra_num = int( (end - beg )/sampling ) - len( bad_frame_list ) for i in tqdm(range( sampling-1 + beg , end, sampling ), desc= 'Averaging %s images'% fra_num): if bad_frame_list is not None: if i in bad_frame_list: flag= False else: flag=True #print(i, flag) if flag: (p,v) = FD.rdrawframe(i) if len(p)>0: np.ravel(avg_img )[p] += v n += 1 else: for i in range( sampling-1 + beg , end, sampling ): if bad_frame_list is not None: if i in bad_frame_list: flag= False else: flag=True if flag: (p,v) = FD.rdrawframe(i) if len(p)>0: np.ravel(avg_img )[p] += v n += 1 avg_img /= n if plot_: if RUN_GUI: fig = Figure() ax = fig.add_subplot(111) else: fig, ax = plt.subplots() uid = 'uid' if 'uid' in kwargs.keys(): uid = kwargs['uid'] im = ax.imshow(avg_img , cmap='viridis',origin='lower', norm= LogNorm(vmin=0.001, vmax=1e2)) #ax.set_title("Masked Averaged Image") ax.set_title('uid= %s--Masked-Averaged-Image-'%uid) fig.colorbar(im) if save: #dt =datetime.now() #CurTime = '%s%02d%02d-%02d%02d-' % (dt.year, dt.month, dt.day,dt.hour,dt.minute) path = kwargs['path'] if 'uid' in kwargs: uid = kwargs['uid'] else: uid = 'uid' #fp = path + "uid= %s--Waterfall-"%uid + CurTime + '.png' fp = path + "uid=%s--avg-img-"%uid + '.png' plt.savefig( fp, dpi=fig.dpi) #plt.show() return avg_img def mean_intensityc(FD, labeled_array, sampling=1, index=None, multi_cor = False): """Compute the mean intensity for each ROI in the compressed file (FD), support parallel computation Parameters ---------- FD: Multifile class compressed file labeled_array : array labeled array; 0 is background. Each ROI is represented by a nonzero integer. It is not required that the ROI labels are contiguous index : int, list, optional The ROI's to use. If None, this function will extract averages for all ROIs Returns ------- mean_intensity : array The mean intensity of each ROI for all `images` Dimensions: len(mean_intensity) == len(index) len(mean_intensity[0]) == len(images) index : list The labels for each element of the `mean_intensity` list """ qind, pixelist = roi.extract_label_indices( labeled_array ) if labeled_array.shape != ( FD.md['ncols'],FD.md['nrows']): raise ValueError( " `image` shape (%d, %d) in FD is not equal to the labeled_array shape (%d, %d)" %( FD.md['ncols'],FD.md['nrows'], labeled_array.shape[0], labeled_array.shape[1]) ) # handle various input for `index` if index is None: index = list(np.unique(labeled_array)) index.remove(0) else: try: len(index) except TypeError: index = [index] index = np.array( index ) #print ('here') good_ind = np.zeros( max(qind), dtype= np.int32 ) good_ind[ index -1 ] = np.arange( len(index) ) +1 w = np.where( good_ind[qind -1 ] )[0] qind = good_ind[ qind[w] -1 ] pixelist = pixelist[w] # pre-allocate an array for performance # might be able to use list comprehension to make this faster mean_intensity = np.zeros( [ int( ( FD.end - FD.beg)/sampling ) , len(index)] ) #fra_pix = np.zeros_like( pixelist, dtype=np.float64) timg = np.zeros( FD.md['ncols'] * FD.md['nrows'] , dtype=np.int32 ) timg[pixelist] = np.arange( 1, len(pixelist) + 1 ) #maxqind = max(qind) norm = np.bincount( qind )[1:] n= 0 #for i in tqdm(range( FD.beg , FD.end )): if not multi_cor: for i in tqdm(range( FD.beg, FD.end, sampling ), desc= 'Get ROI intensity of each frame' ): (p,v) = FD.rdrawframe(i) w = np.where( timg[p] )[0] pxlist = timg[ p[w] ] -1 mean_intensity[n] = np.bincount( qind[pxlist], weights = v[w], minlength = len(index)+1 )[1:] n +=1 else: ring_masks = [ np.array(labeled_array==i, dtype = np.int64) for i in np.unique( labeled_array )[1:] ] inputs = range( len(ring_masks) ) go_through_FD(FD) pool = Pool(processes= len(inputs) ) print( 'Starting assign the tasks...') results = {} for i in tqdm ( inputs ): results[i] = apply_async( pool, _get_mean_intensity_one_q, ( FD, sampling, ring_masks[i] ) ) pool.close() print( 'Starting running the tasks...') res = [ results[k].get() for k in tqdm( list(sorted(results.keys())) ) ] #return res for i in inputs: mean_intensity[:,i] = res[i] print( 'ROI mean_intensit calculation is DONE!') del results del res mean_intensity /= norm return mean_intensity, index def _get_mean_intensity_one_q( FD, sampling, labels ): mi = np.zeros( int( ( FD.end - FD.beg)/sampling ) ) n=0 qind, pixelist = roi.extract_label_indices( labels ) # iterate over the images to compute multi-tau correlation fra_pix = np.zeros_like( pixelist, dtype=np.float64) timg = np.zeros( FD.md['ncols'] * FD.md['nrows'] , dtype=np.int32 ) timg[pixelist] = np.arange( 1, len(pixelist) + 1 ) for i in range( FD.beg, FD.end, sampling ): (p,v) = FD.rdrawframe(i) w = np.where( timg[p] )[0] pxlist = timg[ p[w] ] -1 mi[n] = np.bincount( qind[pxlist], weights = v[w], minlength = 2 )[1:] n +=1 return mi def get_each_frame_intensityc( FD, sampling = 1, bad_pixel_threshold=1e10, bad_pixel_low_threshold=0, hot_pixel_threshold=2**30, plot_ = False, bad_frame_list=None, save=False, *argv,**kwargs): '''Get the total intensity of each frame by sampling every N frames Also get bad_frame_list by check whether above bad_pixel_threshold Usuage: imgsum, bad_frame_list = get_each_frame_intensity(good_series ,sampling = 1000, bad_pixel_threshold=1e10, plot_ = True) ''' #print ( argv, kwargs ) #mask &= img < hot_pixel_threshold imgsum = np.zeros( int( (FD.end - FD.beg )/ sampling ) ) n=0 for i in tqdm(range( FD.beg, FD.end, sampling ), desc= 'Get each frame intensity' ): (p,v) = FD.rdrawframe(i) if len(p)>0: imgsum[n] = np.sum( v ) n += 1 if plot_: uid = 'uid' if 'uid' in kwargs.keys(): uid = kwargs['uid'] fig, ax = plt.subplots() ax.plot( imgsum,'bo') ax.set_title('uid= %s--imgsum'%uid) ax.set_xlabel( 'Frame_bin_%s'%sampling ) ax.set_ylabel( 'Total_Intensity' ) if save: #dt =datetime.now() #CurTime = '%s%02d%02d-%02d%02d-' % (dt.year, dt.month, dt.day,dt.hour,dt.minute) path = kwargs['path'] if 'uid' in kwargs: uid = kwargs['uid'] else: uid = 'uid' #fp = path + "uid= %s--Waterfall-"%uid + CurTime + '.png' fp = path + "uid=%s--imgsum-"%uid + '.png' fig.savefig( fp, dpi=fig.dpi) plt.show() bad_frame_list_ = np.where( ( np.array(imgsum) > bad_pixel_threshold ) | ( np.array(imgsum) <= bad_pixel_low_threshold) )[0] + FD.beg if bad_frame_list is not None: bad_frame_list = np.unique( np.concatenate([bad_frame_list, bad_frame_list_]) ) else: bad_frame_list = bad_frame_list_ if len(bad_frame_list): print ('Bad frame list length is: %s' %len(bad_frame_list)) else: print ('No bad frames are involved.') return imgsum,bad_frame_list
bsd-3-clause
josauder/procedural_city_generation
UI.py
2
3982
import os import sys import procedural_city_generation donemessage = "\n"+(150*"-")+"\n\t\t\t Done, waiting for command\n"+(150*"-")+"\n" path = os.path.dirname(procedural_city_generation.__file__) sys.path.append(path) if not os.path.exists(path+"/temp/"): os.system("mkdir "+path+"/temp") if not os.path.exists(path+"/outputs/"): os.system("mkdir "+path+"/outputs") def setup_matplotlib(): """ This function is used to set the matplotlib backend correctly. Parameters ---------- Returns -------- None :return: """ if sys.version[0] == "3": import matplotlib try: matplotlib.use("Qt4Agg") except: print("PyQt4 is not installed - outputs will only be saved as images and not be visible at runtime") print("However, it is strongly recommended that you install PyQt4 in order to use the GUI") matplotlib.use("agg") from procedural_city_generation.roadmap import main as roadmap_main from procedural_city_generation.polygons import main as polygons_main from procedural_city_generation.building_generation import main as building_generation_main from procedural_city_generation.additional_stuff.Singleton import Singleton def setRoadmapGUI(gui): roadmap_main.gui = gui Singleton("roadmap").kill() def setPolygonsGUI(gui): polygons_main.gui = gui Singleton("polygons").kill() def setBuilding_generationGUI(gui): building_generation_main.gui = gui Singleton("building_generation").kill() def roadmap(): roadmap_main.main() Singleton("roadmap").kill() print(donemessage) def polygons(): polygons_main.main(None) Singleton("polygons").kill() print(donemessage) def building_generation(): building_generation_main.main() Singleton("building_generation").kill() print(donemessage) def visualization(): os.system("blender --python "+path+"/visualization/blenderize.py") from procedural_city_generation.additional_stuff.Singleton import Singleton Singleton("visualization").kill() def main(args): """ Welcome to procedural_city_generation, a module for procedurally generating a 3D model of a city in Blender with python. A call to this module from the command line should follow this format:: python UI.py <submodule-name> <options> <submodule-name> is either "roadmap", "polygons", "building_generation, "visualization". <options> is either "run" or "configure" If you want to configure a paremeter, go with python UI.py <submodule-name> --configure <parameter-name> <new value> """ if len(args) == 1: print(main.__doc__) return 0 if "configure" in args[2]: config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "procedural_city_generation/inputs/{0}.conf".format(args[1])) if len(args) == 3: os.system("nano {0}".format(config_file)) sys.exit(0) elif args[3] and args[4]: import json with open(config_file, 'r') as f: wb = json.loads(f.read()) i = 0 while True: try: old = wb[args[3+i]]['value'] wb[args[3+i]]['value'] = eval(args[4+i]) print("{0} was changed from {1} to {2}".format(args[3+i], old, args[4+i])) i += 2 if len(args)-1 < i+4: break except: print(i, len(args)) print("Either {0} is not a configurable parameter for {1}".format(args[3+i], args[1])) return 0 with open(config_file, 'w') as f: f.write(json.dumps(wb, indent=2)) return 0 elif "run" in args[2]: setup_matplotlib() eval(args[1])() if __name__ == '__main__': main(sys.argv)
mpl-2.0
liyu1990/sklearn
examples/linear_model/plot_lasso_and_elasticnet.py
73
2074
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2, label='Elastic net coefficients') plt.plot(lasso.coef_, color='gold', linewidth=2, label='Lasso coefficients') plt.plot(coef, '--', color='navy', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
mhbashari/machine-learning-snippets
Basic/01-linear_regression_tensorflow.py
1
2015
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from numpy.core.multiarray import ndarray __author__ = "mhbashari" class LinearRegression: def __init__(self, train_X: ndarray, train_Y: ndarray, learning_rate=0.001, training_epochs=100): self.train_X = train_X self.train_Y = train_Y self.learning_rate = learning_rate self.training_epochs = training_epochs def fit(self): x = tf.placeholder("float") y = tf.placeholder("float") a = tf.Variable(1.0, name="weight") b = tf.Variable(1.0, name="bias") pred = tf.multiply(x, a) + b cost = tf.reduce_mean(tf.abs(pred - y)) optimizer = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(cost) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for epoch in range(self.training_epochs): for i, out in zip(self.train_X, self.train_Y): sess.run(optimizer, feed_dict={x: i, y: out}) print("Epoch:", '%04d' % (epoch + 1), "cost=", "W=", sess.run(a), "b=", sess.run(b)) print("Optimization Finished!") training_cost = sess.run(cost, feed_dict={x: self.train_X, y: self.train_Y}) print("Training cost=", training_cost, "a=", sess.run(a), "b=", sess.run(b), '\n') return sess.run(a), sess.run(b) def visualize(a, b, train_X: ndarray, train_Y: ndarray): plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, train_Y) plt.plot(train_X, a * train_X + b, label='Fitted line') plt.scatter(train_X, train_Y) plt.legend() plt.show() def data_maker(num=80): X = np.arange(0, num, dtype=np.float32) Y = np.float32(np.ceil(5 * (np.sin(X) + X / 5))) return X, Y if __name__ == "__main__": data = data_maker(5) regression = LinearRegression(*data_maker()) visualize(*(regression.fit() + data_maker()))
mit
pizzathief/numpy
doc/example.py
51
3578
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceded by a blank line. """ from __future__ import division, absolute_import, print_function import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi'): r"""A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. long_var_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- type Explanation of anonymous return value of type ``type``. describe : type Explanation of return value named `describe`. out : type Explanation of `out`. Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a = [1, 2, 3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a b """ pass
bsd-3-clause
boland1992/seissuite_iran
build/lib/ambient/ant/pstomo.py
2
62674
""" Definition of classes handling dispersion curves and velocity maps (obtained by inverting dispersion curves) """ import pserrors, psutils import itertools as it import numpy as np from scipy.optimize import curve_fit from scipy.interpolate import interp1d import os import glob import pickle import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib import gridspec from matplotlib.colors import ColorConverter import shutil from inspect import getargspec # todo: discard measurments if too different from trimester velocities (see BB15B-SPB) # ==================================================== # parsing configuration file to import some parameters # ==================================================== from psconfig import ( SIGNAL_WINDOW_VMIN, SIGNAL_WINDOW_VMAX, SIGNAL2NOISE_TRAIL, NOISE_WINDOW_SIZE, MINSPECTSNR, MINSPECTSNR_NOSDEV, MAXSDEV, MINNBTRIMESTER, MAXPERIOD_FACTOR, LONSTEP, LATSTEP, CORRELATION_LENGTH, ALPHA, BETA, LAMBDA, FTAN_ALPHA, FTAN_VELOCITIES_STEP, PERIOD_RESAMPLE) # ======================== # Constants and parameters # ======================== EPS = 1.0E-6 # custom color map for seismic anomalies # -------------------------------------- c = ColorConverter() colors = ['black', 'red', 'gold', 'white', 'white', 'aquamarine', 'blue', 'magenta'] values = [-1.0, -0.35, -0.1, -0.025, 0.025, 0.1, 0.35, 1.0] #colors = ['black', 'red', 'gold', 'lemonchiffon', 'white', # 'palegreen', 'aquamarine', 'blue', 'magenta'] #values = [-1.0, -0.7, -0.3, -0.1, 0.0, # 0.1, 0.3, 0.7, 1.0] rgblist = [c.to_rgb(s) for s in colors] reds, greens, blues = zip(*rgblist) cdict = {} for x, r, g, b in zip(values, reds, greens, blues): v = (x - min(values)) / (max(values) - min(values)) cdict.setdefault('red', []).append((v, r, r)) cdict.setdefault('green', []).append((v, g, g)) cdict.setdefault('blue', []).append((v, b, b)) CMAP_SEISMIC = LinearSegmentedColormap('customseismic', cdict) # custom color map for spatial resolution # --------------------------------------- colors = ['black', 'red', 'yellow', 'green', 'white'] values = [0, 0.25, 0.5, 0.75, 1.0] #colors = ['magenta', 'blue', 'aquamarine', 'palegreen', 'white', # 'lemonchiffon', 'gold', 'red', 'darkred'] #values = [-1.0, -0.7, -0.3, -0.1, # 0.1, 0.3, 0.7, 1.0] rgblist = [c.to_rgb(s) for s in colors] reds, greens, blues = zip(*rgblist) cdict = {} for x, r, g, b in zip(values, reds, greens, blues): v = (x - min(values)) / (max(values) - min(values)) cdict.setdefault('red', []).append((v, r, r)) cdict.setdefault('green', []).append((v, g, g)) cdict.setdefault('blue', []).append((v, b, b)) CMAP_RESOLUTION = LinearSegmentedColormap('customresolution', cdict) CMAP_RESOLUTION.set_bad(color='0.85') # custom color map for path density # --------------------------------------- colors = ['white', 'cyan', 'green', 'yellow', 'red', 'black'] values = [0, 0.05, 0.1, 0.25, 0.5, 1.0] rgblist = [c.to_rgb(s) for s in colors] reds, greens, blues = zip(*rgblist) cdict = {} for x, r, g, b in zip(values, reds, greens, blues): v = (x - min(values)) / (max(values) - min(values)) cdict.setdefault('red', []).append((v, r, r)) cdict.setdefault('green', []).append((v, g, g)) cdict.setdefault('blue', []).append((v, b, b)) CMAP_DENSITY = LinearSegmentedColormap('customdensity', cdict) class DispersionCurve: """ Class holding a dispersion curve, i.e., velocity as a function of period """ def __init__(self, periods, v, station1, station2, minspectSNR=MINSPECTSNR, minspectSNR_nosdev=MINSPECTSNR_NOSDEV, maxsdev=MAXSDEV, minnbtrimester=MINNBTRIMESTER, maxperiodfactor=MAXPERIOD_FACTOR, nom2inst_periods=None): """ Initiliazes the dispersion curve between the pair *station1*-*station2* using the given velocities (array *v*) at the given *periods*. Selection parameters (used to select velocities that will participate to the tomographic inversion) are given in *minspectSNR*, *minspectSNR_nosdev*, *maxsdev*, *minnbtrimester* and *maxperiodfactor*. Periods can be nominal (i.e., center of Gaussian filters of FTAN) or instantaneous (dphi/dt). If periods are instantaneous, then a list of tuples [(nominal period, instantaneous period), ...] should be provided in *nom2inst_periods* @type periods: iterable @type v: iterable @type station1: L{psstation.Station} @type station2: L{psstation.Station} """ # periods and associated velocities self.periods = np.array(periods) self.v = np.array(v) # SNRs along periods self._SNRs = None # trimester velocities and SNRs self.v_trimesters = {} self._SNRs_trimesters = {} # stations self.station1 = station1 self.station2 = station2 # selection parameters self.minspectSNR = minspectSNR self.minspectSNR_nosdev = minspectSNR_nosdev self.maxsdev = maxsdev self.minnbtrimester = minnbtrimester self.maxperiodfactor = maxperiodfactor # list of (nominal period, instantaneous period) self.nom2inst_periods = nom2inst_periods def __repr__(self): return 'Dispersion curve between stations {}-{}'.format(self.station1.name, self.station2.name) def get_period_index(self, period): """ Gets index of *period*, or raises an error if period is not found """ iperiod = np.abs(self.periods - period).argmin() if np.abs(self.periods[iperiod] - period) > EPS: raise Exception('Cannot find period in dispersion curve') return iperiod def update_parameters(self, minspectSNR=None, minspectSNR_nosdev=None, maxsdev=None, minnbtrimester=None, maxperiodfactor=None): """ Updating one or more filtering parameter(s) """ if not minspectSNR is None: self.minspectSNR = minspectSNR if not minspectSNR_nosdev is None: self.minspectSNR_nosdev = minspectSNR_nosdev if not maxsdev is None: self.maxsdev = maxsdev if not minnbtrimester is None: self.minnbtrimester = minnbtrimester if not maxperiodfactor is None: self.maxperiodfactor = maxperiodfactor def dist(self): """ Interstation spacing (km) """ return self.station1.dist(self.station2) def add_trimester(self, trimester_start, curve_trimester): """ Adding a trimester dispersion curve. @type trimester_start: int @type curve_trimester: L{DispersionCurve} """ if trimester_start in self.v_trimesters: raise Exception('Trimester already added') if np.any(curve_trimester.periods != self.periods): raise Exception("Wrong periods for trimester curve") # adding velocity adn SNR arrays of trimester self.v_trimesters[trimester_start] = curve_trimester.v self._SNRs_trimesters[trimester_start] = curve_trimester._SNRs def add_SNRs(self, xc, filter_alpha=FTAN_ALPHA, months=None, vmin=SIGNAL_WINDOW_VMIN, vmax=SIGNAL_WINDOW_VMAX, signal2noise_trail=SIGNAL2NOISE_TRAIL, noise_window_size=NOISE_WINDOW_SIZE): """ Adding spectral SNRs at each period of the dispersion curve. The SNRs are calculated from the cross-correlation data bandpassed with narrow Gaussian filters (similar to the filter used in the FTAN) centered at self.periods, and width controlled by *filter_alpha*. (See psutils.bandpass_gaussian().) Parameters *vmin*, *vmax*, *signal2noise_trail*, *noise_window_size* control the location of the signal window and the noise window (see function xc.SNR()). @type xc: L{CrossCorrelation} """ centerperiods_and_alpha = zip(self.periods, [filter_alpha] * len(self.periods)) SNRs = xc.SNR(centerperiods_and_alpha=centerperiods_and_alpha, months=months, vmin=vmin, vmax=vmax, signal2noise_trail=signal2noise_trail, noise_window_size=noise_window_size) if self.nom2inst_periods: # if a list of (nominal period, inst period) is provided # we use it to re-interpolate SNRs inst_period_func = interp1d(*zip(*self.nom2inst_periods)) SNRs = np.interp(x=self.periods, xp=inst_period_func(self.periods), fp=SNRs, left=np.nan, right=np.nan) self._SNRs = SNRs def get_SNRs(self, **kwargs): if self._SNRs is None: self.add_SNRs(**kwargs) return self._SNRs def filtered_sdevs(self): """ Standard dev of velocity at each period, calculated across trimester velocity curves. On periods at which std dev cannot be calculated, NaNs are returned. Selection criteria: - SNR of trimester velocity >= minspectSNR - nb of trimester velocities >= minnbtrimester @rtype: L{numpy.ndarray} """ # list of arrays of trimester velocities trimester_vels = self.filtered_trimester_vels() sdevs = [] for v_across_trimesters in zip(*trimester_vels): # filtering out nans from trimester velocities v_across_trimesters = [v for v in v_across_trimesters if not np.isnan(v)] if len(v_across_trimesters) >= self.minnbtrimester: sdev = np.std(v_across_trimesters) else: # not enough trimester velocities to estimate std dev sdev = np.nan sdevs.append(sdev) return np.array(sdevs) if sdevs else np.ones_like(self.periods) * np.nan def filtered_vels_sdevs(self): """ Returns array of velocities and array of associated standard deviations. Velocities not passing selection criteria are replaced with NaNs. Where standard deviation cannot be estimated, NaNs are returned. Selection criteria: 1) period <= distance * *maxperiodfactor* 2) for velocities having a standard deviation associated: - standard deviation <= *maxsdev* - SNR >= *minspectSNR* 3) for velocities NOT having a standard deviation associated: - SNR >= *minspectSNR_nosdev* (SNRs equal to Nan are replaced with 0) @rtype: L{numpy.ndarray}, L{numpy.ndarray} """ if self._SNRs is None: raise Exception("Spectral SNRs not defined") # estimating std devs, WHERE POSSIBLE (returning NaNs where not possible) sdevs = self.filtered_sdevs() has_sdev = ~np.isnan(sdevs) # where are std devs defined? # Selection criteria: # 1) period <= distance * *maxperiodfactor* cutoffperiod = self.maxperiodfactor * self.dist() mask = self.periods <= cutoffperiod # 2) for velocities having a standard deviation associated: # - standard deviation <= *maxsdev* # - SNR >= *minspectSNR* mask[has_sdev] &= (sdevs[has_sdev] <= self.maxsdev) & \ (np.nan_to_num(self._SNRs[has_sdev]) >= self.minspectSNR) # 3) for velocities NOT having a standard deviation associated: # - SNR >= *minspectSNR_nosdev* mask[~has_sdev] &= \ np.nan_to_num(self._SNRs[~has_sdev]) >= self.minspectSNR_nosdev # replacing velocities not passing the selection criteria with NaNs return np.where(mask, self.v, np.nan), sdevs def filtered_vel_sdev_SNR(self, period): """ Returns a velocity, its std deviation and SNR at a given period, or nan if the velocity does not satisfy the criteria, or raises an exception if the period is not found. @type period: float @rtype: (float, float, float) """ iperiod = self.get_period_index(period) vels, sdevs = self.filtered_vels_sdevs() return vels[iperiod], sdevs[iperiod], self._SNRs[iperiod] def filtered_trimester_vels(self): """ Returns list of arrays of trimester velocities, or nan. Selection criteria: - SNR of trimester velocity defined and >= minspectSNR - period <= pair distance * *maxperiodfactor* @rtype: list of L{numpy.ndarray} """ # filtering criterion: periods <= distance * maxperiodfactor dist = self.station1.dist(self.station2) periodmask = self.periods <= self.maxperiodfactor * dist varrays = [] for trimester_start, vels in self.v_trimesters.items(): SNRs = self._SNRs_trimesters.get(trimester_start) if SNRs is None: raise Exception("Spectral SNRs not defined") # filtering criterion: SNR >= minspectSNR mask = periodmask & (np.nan_to_num(SNRs) >= self.minspectSNR) varrays.append(np.where(mask, vels, np.nan)) return varrays class Grid: """ Class holding a 2D regular rectangular spatial grid """ def __init__(self, xmin, xstep, nx, ymin, ystep, ny): """ Min coords, step size and nb of points of grid """ self.xmin = xmin self.xstep = xstep self.nx = int(nx) self.ymin = ymin self.ystep = ystep self.ny = int(ny) def __repr__(self): s = '<2D grid: x = {}...{} by {}, y = {}...{} by {}>' return s.format(self.xmin, self.get_xmax(), self.xstep, self.ymin, self.get_ymax(), self.ystep) def __eq__(self, other): """ @type other: Grid """ try: samegrids = (self.xmin == other.xmin and self.xstep == other.xstep and self.nx == other.nx and self.ymin == other.ymin and self.ystep == other.ystep and self.ny == other.ny) return samegrids except: return False def __ne__(self, other): return not self.__eq__(other) def get_xmax(self): return self.xmin + (self.nx - 1) * self.xstep def get_ymax(self): return self.ymin + (self.ny - 1) * self.ystep def bbox(self): """ Bounding box: (xmin, xmax, ymin, ymax) @rtype: (float, float, float, float) """ return self.xmin, self.get_xmax(), self.ymin, self.get_ymax() def n_nodes(self): """ Nb of nodes on grid """ return self.nx * self.ny def ix_iy(self, index_): """ Indexes along x and y-axis of node nb *index_* """ ix = np.int_(np.array(index_) / self.ny) iy = np.mod(np.array(index_), self.ny) return ix, iy def xy(self, index_): """ Coords of node nb *index_* """ index_ = np.array(index_) if np.any((index_ < 0) | (index_ > self.n_nodes() - 1)): raise Exception('Index out of bounds') ix, iy = self.ix_iy(index_) return self._x(ix), self._y(iy) def xy_nodes(self): """ Returns coords of all nodes of grid """ return self.xy(np.arange(0, self.n_nodes())) def xarray(self): return np.linspace(self.xmin, self.get_xmax(), num=self.nx, endpoint=True) def yarray(self): return np.linspace(self.ymin, self.get_ymax(), num=self.ny, endpoint=True) def index_(self, ix, iy): """ Index of node (ix, iy) in grid: - 0 : ix=0, iy=0 - 1 : ix=0, iy=1 - ... - ny: ix=1, iy=0 - ... - nx*ny-1: ix=nx-1, iy=ny-1 """ ix = np.array(ix) iy = np.array(iy) if np.any((ix < 0) | (ix > self.nx - 1)): raise Exception('ix out of bounds') if np.any((iy < 0) | (iy > self.ny - 1)): raise Exception('iy out of bounds') return ix * self.ny + iy def indexes_delaunay_triangle(self, x, y): """ Indexes of the grid's nodes defining the Delaunay triangle around point (x, y) """ # x and y indexes of bottom left neighbour ix = self._xindex_left_neighbour(x) iy = self._yindex_bottom_neighbour(y) np.where(ix == self.nx - 1, ix - 1, ix) np.where(iy == self.ny - 1, iy - 1, iy) xratio = (x - self._x(ix)) / self.xstep yratio = (y - self._y(iy)) / self.ystep # returning indexes of vertices of bottom right triangle # or upper left triangle depending on location index1 = self.index_(ix, iy) index2 = np.where(xratio >= yratio, self.index_(ix+1, iy), self.index_(ix, iy+1)) index3 = self.index_(ix+1, iy+1) return index1, index2, index3 def geodetic_dist(self, index1, index2): """ Geodetic distance between nodes nb *index1* and *index2*, whose coodinates (x, y) are treated as (lon, lat) """ lon1, lat2 = self.xy(index1) lon2, lat2 = self.xy(index2) return psutils.dist(lons1=lon1, lats1=lat2, lons2=lon2, lats2=lat2) def to_2D_array(self, a): """ Converts a sequence-like *a* to a 2D array b[ix, iy] such that i is the index of node (ix, iy) """ b = np.zeros((self.nx, self.ny)) ix, iy = self.ix_iy(range(self.n_nodes())) b[ix, iy] = np.array(a).flatten() return b def _x(self, ix): """ Returns the abscissa of node nb *ix* on x-axis (ix = 0 ... nx-1) """ ix = np.array(ix) if np.any((ix < 0) | (ix > self.nx - 1)): raise Exception('ix out of bounds') return self.xmin + ix * self.xstep def _y(self, iy): """ Returns the ordinate of node nb *iy* on y-axis """ iy = np.array(iy) if np.any((iy < 0) | (iy > self.ny - 1)): raise Exception('iy out of bounds') return self.ymin + iy * self.ystep def _xindex_left_neighbour(self, x): """ Returns the index (along x-axis) of the grid nodes closest to (and on the left of) *x* (Index of 1st node = 0, index of last node = nx - 1) @rtype: Number """ x = np.array(x) # checking bounds out_of_bounds = (x < self.xmin) | (x > self.get_xmax()) if np.any(out_of_bounds): s = 'some x {} are out of bounds [{} - {}]' raise Exception(s.format(x[out_of_bounds], self.xmin, self.get_xmax())) # index of closest left node return np.int_((x - self.xmin) / self.xstep) def _yindex_bottom_neighbour(self, y): """ Same as above method, along y axis @rtype: Number """ y = np.array(y) # checking bounds out_of_bounds = (y < self.ymin) | (y > self.get_ymax()) if np.any(out_of_bounds): s = 'some y {} are out of bounds [{} - {}]' raise Exception(s.format(y[out_of_bounds], self.ymin, self.get_ymax())) # index of closest bottom node return np.int_((y - self.ymin) / self.ystep) class VelocityMap: """ Class taking care of the inversion of velocities between pairs of stations, to produce a velocity map at a given period. The inversion procedure of Barmin et al. (2001) is applied. Attributes: - period : period (s) of the velocity map - disp_curves : disp curves whose period's velocity is not nan - paths : list of geodesic paths associated with pairs of stations of dispersion curves - v0 : reference velocity (inverse of mean slowness, i.e., slowness implied by all observed travel-times) - dobs : vector of observed data (differences observed-reference travel time) - Cinv : inverse of covariance matrix of the data - G : forward matrix, such that d = G.m (m = parameter vector = (v0-v)/v at grid nodes) - density : array of path densities at grid nodes - Q : regularization matrix - Ginv : inversion operator, (Gt.C^-1.G + Q)^-1.Gt - mopt : vector of best-fitting parameters, Ginv.C^-1.dobs = best-fitting (v0-v)/v at grid nodes - R : resolution matrix, (Gt.C^-1.G + Q)^-1.Gt.C^-1.G = Ginv.C^-1.G - Rradius : array of radii of the cones that best-fit each line of the resolution matrix Note that vectors (d, m) and matrixes (Cinv, G, Q, Ginv, R) are NOT numpy arrays, but numpy matrixes (vectors being n x 1 matrixes). This means that the product operation (*) on such objects is NOT the element-by-element product, but the real matrix product. """ def __init__(self, dispersion_curves, period, skippairs=(), resolution_fit='cone', min_resolution_height=0.1, showplot=False, verbose=True, **kwargs): """ Initializes the velocity map at period = *period*, from the observed velocities in *dispersion_curves*: - sets up the data vector, forward matrix and regularization matrix - performs the tomographic inversion to estimate the best-fitting parameters and the resolution matrix - estimates the characteristic spatial resolution by fitting a cone to each line of the resolution matrix Specify pairs to be skipped (if any), as a list of pairs of stations names, e.g., skippairs = [('APOB', 'SPB'), ('ITAB', 'BAMB')]. This option is useful to perform a 2-pass tomographic inversion, wherein pairs with a too large difference observed/predicted travel- time are excluded from the second pass. Select the type of function you want to fit to each resolution map with *resolution_fit*: - 'cone' to fit a cone, and report the cone's radius as characteristic resolution at each grid node in self.Rradius - 'gaussian' to fit a gaussian function, exp(-r/2.sigma^2), and report 2.sigma as characteristic resolution at each grid node in self.Rradius Note that all resolutions in self.Rradius having a best-fitting cone height < *min_resolution_height* * max height will be discarded and set to nan. Append optional argument (**kwargs) to override default values: - minspectSNR : min spectral SNR to retain velocity (default MINSPECTSNR) - minspectSNR_nosdev: min spectral SNR to retain velocities without standard deviation (default MINSPECTSNR_NOSDEV) - minnbtrimester : min nb of trimester velocities to estimate standard deviation of velocity - maxsdev : max standard deviation to retain velocity (default MAXSDEV) - lonstep : longitude step of grid (default LONSTEP) - latstep : latitude step of grid (default LATSTEP) - correlation_length: correlation length of the smoothing kernel: S(r,r') = exp[-|r-r'|**2 / (2 * correlation_length**2)] (default value CORRELATION_LENGTH) - alpha : strength of the spatial smoothing term in the penalty function (default ALPHA) - beta : strength of the weighted norm penalization term in the penalty function (default BETA) - lambda_ : parameter in the damping factor of the norm penalization term, such that the norm is weighted by: exp(- lambda_*path_density) With a value of 0.15, penalization becomes strong when path density < ~20 With a value of 0.30, penalization becomes strong when path density < ~10 (default LAMBDA) @type dispersion_curves: list of L{DispersionCurve} @type skippairs: list of (str, str) """ self.period = period # reading inversion parameters minspectSNR = kwargs.get('minspectSNR', MINSPECTSNR) minspectSNR_nosdev = kwargs.get('minspectSNR_nosdev', MINSPECTSNR_NOSDEV) minnbtrimester = kwargs.get('minnbtrimester', MINNBTRIMESTER) maxsdev = kwargs.get('maxsdev', MAXSDEV) lonstep = kwargs.get('lonstep', LONSTEP) latstep = kwargs.get('latstep', LATSTEP) correlation_length = kwargs.get('correlation_length', CORRELATION_LENGTH) alpha = kwargs.get('alpha', ALPHA) beta = kwargs.get('beta', BETA) lambda_ = kwargs.get('lambda_', LAMBDA) if verbose: print "Velocities selection criteria:" print "- rejecting velocities if SNR < {}".format(minspectSNR) s = "- rejecting velocities without std dev if SNR < {}" print s.format(minspectSNR_nosdev) s = "- estimating standard dev of velocities with more than {} trimesters" print s.format(minnbtrimester) print "- rejecting velocities with standard dev > {} km/s".format(maxsdev) print "\nTomographic inversion parameters:" print "- {} x {} deg grid".format(lonstep, latstep) s = "- correlation length of the smoothing kernel: {} km" print s.format(correlation_length) print "- strength of the spatial smoothing term: {}".format(alpha) print "- strength of the norm penalization term: {}".format(beta) print "- weighting norm by exp(- {} * path_density)".format(lambda_) print # skipping pairs if skippairs: skippairs = [set(pair) for pair in skippairs] dispersion_curves = [c for c in dispersion_curves if not {c.station1.name, c.station2.name} in skippairs] # updating parameters of dispersion curves for c in dispersion_curves: c.update_parameters(minspectSNR=minspectSNR, minspectSNR_nosdev=minspectSNR_nosdev, minnbtrimester=minnbtrimester, maxsdev=maxsdev) # valid dispersion curves (velocity != nan at period) and # associated interstation distances self.disp_curves = [c for c in dispersion_curves if not np.isnan(c.filtered_vel_sdev_SNR(self.period)[0])] if not self.disp_curves: s = "No valid velocity at selected period ({} sec)" raise pserrors.CannotPerformTomoInversion(s.format(period)) dists = np.array([c.dist() for c in self.disp_curves]) # getting (non nan) velocities and std devs at period vels, sigmav, _ = zip(*[c.filtered_vel_sdev_SNR(self.period) for c in self.disp_curves]) vels = np.array(vels) sigmav = np.array(sigmav) sigmav_isnan = np.isnan(sigmav) if np.all(sigmav_isnan): s = "No valid std deviation at selected period ({} sec)" raise pserrors.CannotPerformTomoInversion(s.format(period)) # If the resolution in the velocities space is dv, # it means that a velocity v is actually anything between # v-dv/2 and v+dv/2, so the standard deviation cannot be # less than the standard dev of a uniform distribution of # width dv, which is dv / sqrt(12). Note that: # # dv = max(dv_FTAN, dt_xc * v^2/dist), # # with dv_FTAN the intrinsic velocity discretization step # of the FTAN, and dt_xc the sampling interval of the # cross-correlation. dv = np.maximum(FTAN_VELOCITIES_STEP, PERIOD_RESAMPLE * vels**2 / dists) minsigmav = dv / np.sqrt(12) sigmav[~sigmav_isnan] = np.maximum(sigmav[~sigmav_isnan], minsigmav[~sigmav_isnan]) # where std dev cannot be estimated (std dev = nan), # assigning 3 times the mean std dev of the period # following Bensen et al. (2008) sigmav[sigmav_isnan] = 3 * sigmav[~sigmav_isnan].mean() # ====================================================== # setting up reference velocity and data vector # = vector of differences observed-reference travel time # ====================================================== if verbose: print 'Setting up reference velocity (v0) and data vector (dobs)' # reference velocity = inverse of mean slowness # mean slowness = slowness implied by observed travel-times # = sum(observed travel-times) / sum(intersation distances) s = (dists / vels).sum() / dists.sum() self.v0 = 1.0 / s # data vector self.dobs = np.matrix(dists / vels - dists / self.v0).T # inverse of covariance matrix of the data if verbose: print 'Setting up covariance matrix (C)' sigmad = sigmav * dists / vels**2 self.Cinv = np.matrix(np.zeros((len(sigmav), len(sigmav)))) np.fill_diagonal(self.Cinv, 1.0 / sigmad**2) # spatial grid for tomographic inversion (slightly enlarged to be # sure that no path will fall outside) lons1, lats1 = zip(*[c.station1.coord for c in self.disp_curves]) lons2, lats2 = zip(*[c.station2.coord for c in self.disp_curves]) tol = 0.5 lonmin = np.floor(min(lons1 + lons2) - tol) nlon = np.ceil((max(lons1 + lons2) + tol - lonmin) / lonstep) + 1 latmin = np.floor(min(lats1 + lats2) - tol) nlat = np.ceil((max(lats1 + lats2) + tol - latmin) / latstep) + 1 self.grid = Grid(lonmin, lonstep, nlon, latmin, latstep, nlat) # geodesic paths associated with pairs of stations of dispersion curves if verbose: print 'Calculating interstation paths' self.paths = [] for curve, dist in zip(self.disp_curves, dists): # interpoint distance <= 1 km, and nb of points >= 100 npts = max(np.ceil(dist) + 1, 100) path = psutils.geodesic(curve.station1.coord, curve.station2.coord, npts) self.paths.append(path) # ================================================ # setting up forward matrix G, such that d = G.m # # G[i,j] = integral{w_j(r) / v0 ds} over path nb i # (w_j(r) = weight of node nb j on location r) # ================================================ G = np.zeros((len(self.paths), self.grid.n_nodes())) if verbose: print 'Setting up {} x {} forward matrix (G)'.format(*G.shape) for ipath, path in enumerate(self.paths): # for each point M along the path (1) we determine the Delaunay # triangle ABC that encloses M, (2) we locally define a cartesian # system on the plane ABC, (3) we locate M' (the projection of M # on the plane ABC) and (4) we attribute weights to A, B, C # corresponding to the three-point linear interpolation of A, B, # C at point M'. lon_M, lat_M = path[:, 0], path[:, 1] xyzM = psutils.geo2cartesian(lon_M, lat_M) # indexes, geographic coordinates and cartesian coordinates # (on unit sphere) of grid nodes of Delaunay triangle ABC # enclosing M iA, iB, iC = self.grid.indexes_delaunay_triangle(lon_M, lat_M) lonlatA, lonlatB, lonlatC = [self.grid.xy(index_) for index_ in (iA, iB, iC)] xyzA, xyzB, xyzC = [psutils.geo2cartesian(lon, lat) for lon, lat in (lonlatA, lonlatB, lonlatC)] # projection of M on the plane ABC xyzMp = psutils.projection(xyzM, xyzA, xyzB, xyzC) # weights of nodes A, B, C in linear interpolation = # barycentric coordinates of M' in triangle ABC wA, wB, wC = psutils.barycentric_coords(xyzMp, xyzA, xyzB, xyzC) # attributing weights to grid nodes along path: # w[j, :] = w_j(r) = weights of node j along path nM = path.shape[0] w = np.zeros((self.grid.n_nodes(), nM)) w[iA, range(nM)] = wA w[iB, range(nM)] = wB w[iC, range(nM)] = wC # ds = array of infinitesimal distances along path ds = psutils.dist(lons1=lon_M[:-1], lats1=lat_M[:-1], lons2=lon_M[1:], lats2=lat_M[1:]) # integrating w_j(r) / v0 along path using trapeze formula G[ipath, :] = np.sum(0.5 * (w[:, :-1] + w[:, 1:]) / self.v0 * ds, axis=-1) self.G = np.matrix(G) # path densities around grid's nodes if verbose: print "Calculating path densities" self.density = self.path_density() # ===================================================================== # setting up regularization matrix Q = Ft.F + Ht.H # # F[i,j] = alpha * | 1 if i = j # | -S(ri,rj) / sum{S(ri,rj')} over j' != i] if i!= j # # H[i,j] = beta * | exp[-lambda * path_density(ri)] if i = j # | 0 if i!= j # # with S(.,.) the smoothing kernel and ri the locations grid nodes # ===================================================================== # setting up distance matrix: # dists[i,j] = distance between nodes nb i and j dists = np.zeros((self.grid.n_nodes(), self.grid.n_nodes())) if verbose: print "Setting up {} x {} regularization matrix (Q)".format(*dists.shape) # indices of the upper right triangle of distance matrix # = (array of index #1, array of index #2) i_upper, j_upper = np.triu_indices_from(dists) lons_i, lats_i = self.grid.xy(i_upper) lons_j, lats_j = self.grid.xy(j_upper) # distance matrix (upper triangle) dists[i_upper, j_upper] = psutils.dist(lons1=lons_i, lats1=lats_i, lons2=lons_j, lats2=lats_j) # symmetrizing distance matrix (works because diagonal elts = 0) dists += dists.T # setting up smoothing kernel: # S[i,j] = K * exp[-|ri-rj|**2 / (2 * CORRELATION_LENGTH**2)] S = np.exp(- dists**2 / (2 * correlation_length**2)) S /= S.sum(axis=-1) - np.diag(S) # normalization of non-diagonal terms # setting up spatial regularization matrix F F = np.matrix(-S) F[np.diag_indices_from(F)] = 1 F *= alpha # setting up regularization matrix Q # ... Ft.F part Q = F.T * F # ... Ht.H part for i, path_density in enumerate(self.density): Q[i, i] += beta**2 * np.exp(-2 * lambda_ * path_density) self.Q = Q # =========================================================== # setting up inversion operator Ginv = (Gt.C^-1.G + Q)^-1.Gt, # estimating model and setting up resolution matrix R = # Ginv.C^-1.G # =========================================================== # inversion operator if verbose: print "Setting up inversion operator (Ginv)" self.Ginv = (self.G.T * self.Cinv * self.G + self.Q).I * self.G.T # vector of best-fitting parameters if verbose: print "Estimating best-fitting parameters (mopt)" self.mopt = self.Ginv * self.Cinv * self.dobs # resolution matrix if verbose: print "Setting up {0} x {0} resolution matrix (R)".format(self.G.shape[1]) self.R = self.Ginv * self.Cinv * self.G # =========================================================== # Estimating spatial resolution at each node of the grid, # Rradius. # # The i-th row of the resolution matrix, R[i,:], contains the # resolution map associated with the i-th grid noe, that is, # the estimated model we would get if there were only a point # velocity anomaly at node nb i. So a cone centered on node # nb i is fitted to the resolution map, and its radius gives # an indication of the spatial resolution at node nb i (i.e., # the minimum distance at which two point anomalies can be # resolved) # =========================================================== if verbose: print "Estimation spatial resolution (Rradius)" self.Rradius = np.zeros(self.grid.n_nodes()) heights = np.zeros(self.grid.n_nodes()) for i, Ri in enumerate(np.array(self.R)): lon0, lat0 = self.grid.xy(i) # best-fitting cone at point (lon0, lat0) # Function returning the height of cone of radius *r0* # and peak *z0*, at a point located *r* km away from # the cone's center if resolution_fit.lower().strip() == 'cone': def cone_height(r, z0, r0): """ Cone """ return np.where(r < r0, z0 * (1 - r / r0), 0.0) elif resolution_fit.lower().strip() == 'gaussian': def cone_height(r, z0, r0): """ Gaussian function """ sigma = r0 / 2.0 return z0 * np.exp(- r**2 / (2 * sigma**2)) else: s = "Unknown function to fit resolution: '{}'" raise Exception(s.format(resolution_fit)) # distances between nodes and cone's center (lon0, lat0) lonnodes, latnodes = self.grid.xy_nodes() n = self.grid.n_nodes() rdata = psutils.dist(lons1=lonnodes, lats1=latnodes, lons2=n*[lon0], lats2=n*[lat0]) # best possible resolution *rmin* = 2 * inter-node distance # -> estimating *rmin* along the meridian crossing the cone's # center (conservative choice as it yields the largest # possible value) d2rad = np.pi / 180.0 rmin = 2 * d2rad * 6371.0 * max(self.grid.xstep * np.cos(lat0 * d2rad), self.grid.ystep) # fitting the above function to observed heights along nodes, # in array abs(Ri) popt, _ = curve_fit(f=cone_height, xdata=rdata, ydata=np.abs(Ri), p0=[1, 2*rmin], maxfev=10000) z0, r0 = popt # reslution cannot be better than *rmin* r0 = max(rmin, r0) # appending spatial resolution to array self.Rradius[i] = r0 heights[i] = z0 self.Rradius[heights < heights.max() * min_resolution_height] = np.nan if showplot: # potting maps of velocity perturbation, # path density and resolution _ = self.plot() def __repr__(self): """ E.g., "<Velocity map at period = 10 s>" """ return '<Velocity map at period = {} s>'.format(self.period) def path_density(self, window=(LONSTEP, LATSTEP)): """ Returns the path density, that is, on each node of the grid, the number of paths that cross the rectangular cell of size (window[0], window[1]) centered on the node. """ # initializing path density density = np.zeros(self.grid.n_nodes()) # coordinates of grid nodes and associated windows lons_nodes, lats_nodes = self.grid.xy_nodes() lons_min = np.expand_dims(lons_nodes - window[0] / 2.0, axis=-1) lons_max = np.expand_dims(lons_nodes + window[0] / 2.0, axis=-1) lats_min = np.expand_dims(lats_nodes - window[1] / 2.0, axis=-1) lats_max = np.expand_dims(lats_nodes + window[1] / 2.0, axis=-1) for path in self.paths: lons_path, lats_path = path[:, 0], path[:, 1] # are points of paths in windows? # 1st dim = grid nodes; 2nd dim = points along path points_in_windows = (lons_path >= lons_min) & (lons_path <= lons_max) & \ (lats_path >= lats_min) & (lats_path <= lats_max) density += np.any(points_in_windows, axis=-1) return density def traveltime_residuals(self, relative=False): """ Returns the [relative] differences between predicted-observed travel times at each pair of stations: differences = predicted - observed travel-time, = dpred - dobs, with dpred = G.mopt relative differences = (predicted - observed) / observed travel-time = (dpred - dobs) / (dobs + ref travel-time) @rtype: L{ndarray} """ # flattening differences as 1D array diffs = np.array(self.G * self.mopt - self.dobs).flatten() if not relative: return diffs else: ttref = np.array([c.dist() / self.v0 for c in self.disp_curves]) ttobs = np.array(self.dobs).flatten() + ttref # observed travel-times return diffs / ttobs def velocity_residuals(self, relative=False): """ Returns the [relative] differences between observed-predicted velocities (implied by travel times) at each pair of stations: differences = observed - predicted velocity, = observed - predicted (dist / travel time), @rtype: L{matrix} """ dists = np.array([c.dist() for c in self.disp_curves]) ttref = np.array([c.dist() / self.v0 for c in self.disp_curves]) ttobs = np.array(self.dobs).flatten() + ttref # observed travel-times ttpred = np.array(self.G * self.mopt).flatten() + ttref # predicted tt vobs = dists / ttobs # observed velocities vpred = dists / ttpred # predicted velocities if not relative: return vobs - vpred else: return (vobs - vpred) / vobs def checkerboard_func(self, vmid, vmin, vmax, squaresize, shape='cos'): """ Returns a checkerboard function, f(lons, lats), whose background value is *vmid*, and alternating min/max values are *vmin* and *vmax*. The centers of the anomalies are separated by *squaresize* (in km), and their shape is either 'gaussian' or 'cos'. @rtype: function """ # converting square size from km to degrees d2rad = np.pi / 180.0 midlat = 0.5 * (self.grid.ymin + self.grid.get_ymax()) latwidth = squaresize / 6371.0 / d2rad lonwidth = squaresize / (6371.0 * np.cos(midlat * d2rad)) / d2rad # Basis function defining an anomaly of # unit height centered at (*lon0*, *lat0*). if shape.lower().strip() == 'gaussian': def basis_func(lons, lats, lon0, lat0): """ Gausian anomaly , with sigma-parameter such that 3 sigma is the distance between the center and the border of the square, that is, half the distance between 2 centers. """ n = len(lons) r = psutils.dist(lons1=lons, lats1=lats, lons2=n*[lon0], lats2=n*[lat0]) sigma = squaresize / 6.0 return np.exp(- r**2 / (2 * sigma**2)) elif shape.lower().strip() == 'cos': def basis_func(lons, lats, lon0, lat0): """ Cosinus anomaly """ x = (lons - lon0) / lonwidth y = (lats - lat0) / latwidth outside_square = (np.abs(x) >= 0.5) | (np.abs(y) >= 0.5) return np.where(outside_square, 0.0, np.cos(np.pi*x) * np.cos(np.pi*y)) else: raise Exception("Unknown shape anomaly: " + shape) # coordinates of the center of the anomalies startlon = self.grid.xmin + lonwidth / 2.0 stoplon = self.grid.get_xmax() + lonwidth centerlons = list(np.arange(startlon, stoplon, lonwidth)) startlat = self.grid.ymin + latwidth / 2.0 stoplat = self.grid.get_ymax() + latwidth centerlats = list(np.arange(startlat, stoplat, latwidth)) centerlonlats = list(it.product(centerlons, centerlats)) # factors by which multiply the basis function associated # with each center (to alternate lows and highs) polarities = [(centerlons.index(lon) + centerlats.index(lat)) % 2 for lon, lat in centerlonlats] factors = np.where(np.array(polarities) == 1, vmax - vmid, vmin - vmid) def func(lons, lats): """ Checkboard function: sum of the basis functions along the centers defined above, times the high/low factor, plus background velocity. """ lowhighs = [f * basis_func(lons, lats, lon0, lat0) for f, (lon0, lat0) in zip(factors, centerlonlats)] return vmid + sum(lowhighs) return func def checkerboard_test(self, vmid, vmin, vmax, squaresize, **kwargs): """ Generates synthetic data (travel time perturbations), dsynth, from a checkerboard model of velocities, and performs a tomographic inversion on them: m = (Gt.C^-1.G + Q)^-1.Gt.C^-1.dsynth = Ginv.C^-1.dsynth Returns the vector of best-fitting parameters, m. @rtype: L{matrix} """ # checkerboard function f_checkerboard = self.checkerboard_func(vmid, vmin, vmax, squaresize, **kwargs) # setting up vector of synthetic data dsynth = np.zeros_like(self.dobs) for d, path, curve in zip(dsynth, self.paths, self.disp_curves): # array of infinitesimal distances along path lons, lats = path[:, 0], path[:, 1] ds = psutils.dist(lons1=lons[:-1], lats1=lats[:-1], lons2=lons[1:], lats2=lats[1:]) # velocities along path v = f_checkerboard(lons, lats) # travel time = integral[ds / v] t = np.sum(ds * 0.5 * (1.0 / v[:-1] + 1.0 / v[1:])) # synthetic data = travel time - ref travel time d[...] = t - curve.dist() / vmid # inverting synthetic data m = self.Ginv * self.Cinv * dsynth return m def plot(self, xsize=20, title=None, showplot=True, outfile=None, **kwargs): """ Plots velocity perturbation, path density and spatial resolution, and returns the figure. Additional keyword args in *kwargs* are sent to self.plot_velocity(), self.plot_pathdensity() and self.plot_resolution(), when applicable @rtype: L{matplotlib.figure.Figure} """ # bounding box bbox = self.grid.bbox() aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) figsize = (xsize, aspectratio * xsize / 3.0 + 2) fig = plt.figure(figsize=figsize) # layout gs = gridspec.GridSpec(1, 3, wspace=0.0, hspace=0.0) # plotting velocity perturbation ax = fig.add_subplot(gs[0, 0]) subkwargs = {'ax': ax, 'plot_title': False} # sending additional arguments (when applicable) subkwargs.update({k: kwargs[k] for k in getargspec(self.plot_velocity).args if k in kwargs}) self.plot_velocity(**subkwargs) # plotting path density ax = fig.add_subplot(gs[0, 1]) subkwargs = {'ax': ax, 'plot_title': False, 'stationlabel': True} # sending additional arguments (when applicable) subkwargs.update({k: kwargs[k] for k in getargspec(self.plot_pathdensity).args if k in kwargs}) self.plot_pathdensity(**subkwargs) # plotting spatial resolution ax = fig.add_subplot(gs[0, 2]) subkwargs = {'ax': ax, 'plot_title': False} # sending additional arguments (when applicable) subkwargs.update({k: kwargs[k] for k in getargspec(self.plot_resolution).args if k in kwargs}) self.plot_resolution(**subkwargs) # fig title if not title: # default title if not given title = u'Period = {} s, {} paths' title = title.format(self.period, len(self.paths)) fig.suptitle(title, fontsize=16) gs.tight_layout(fig, rect=[0, 0, 1, 0.95]) # saving figure if outfile: if os.path.exists(outfile): # backup shutil.copyfile(outfile, outfile + '~') fig.set_size_inches(figsize) fig.savefig(outfile, dpi=300) # showing figure if showplot: fig.show() return fig def network_plot(self, ax=None, xsize=10, plotdensity=True, plotpaths=True, stationlabel=False, plot_title=True, showgrid=False, highlight_residuals_gt=None): """ Plots network of stations using basemap rather than shapefiles! Also has the option to choose whether or not you want to plot station pair paths or not """ # bounding box bbox = self.grid.bbox() # creating figure if not given as input fig = None if not ax: aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) # xzise has not effect if axes are given as input fig = plt.figure(figsize=(xsize, aspectratio * xsize), tight_layout=True) ax = fig.add_subplot(111) # plotting coasts and tectonic provinces psutils.basemap(ax=ax, labels=False, fill=not plotdensity, bbox=bbox) if plotpaths: # residuals observed/predicted travel-times res = self.traveltime_residuals() if highlight_residuals_gt else [] # plotting paths for i, path in enumerate(self.paths): x, y = zip(*path) linestyle = {'color': 'grey', 'lw': 0.5} if highlight_residuals_gt and abs(float(res[i])) > highlight_residuals_gt: # highlighting line as the travel-time error is > threshold linestyle = {'color': 'black', 'lw': 1.5} ax.plot(x, y, '-', **linestyle) if showgrid: # plotting grid x, y = self.grid.xy_nodes() ax.plot(x, y, '+') # plotting stations self._plot_stations(ax, stationlabel=stationlabel) # formatting axes ax.set_xlim(bbox[:2]) ax.set_ylim(bbox[2:]) if plot_title: ax.set_title(u'Period = {} s, {} paths'.format(self.period, len(self.paths))) if fig: fig.show() def plot_pathdensity(self, ax=None, xsize=10, plotdensity=True, plotpaths=True, stationlabel=False, plot_title=True, showgrid=False, highlight_residuals_gt=None): """ Plots path density and/or interstation paths. Paths for which the residual observed/predicted travel-time is greater than *highlight_residuals_gt* (if defined) are highlighted as bold lines. """ # bounding box bbox = self.grid.bbox() # creating figure if not given as input fig = None if not ax: aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) # xzise has not effect if axes are given as input fig = plt.figure(figsize=(xsize, aspectratio * xsize), tight_layout=True) ax = fig.add_subplot(111) # plotting coasts and tectonic provinces psutils.basemap(ax=ax, labels=False, fill=not plotdensity, bbox=bbox) if plotdensity: # plotting path density d = self.grid.to_2D_array(self.density) extent = (self.grid.xmin, self.grid.get_xmax(), self.grid.ymin, self.grid.get_ymax()) m = ax.imshow(d.transpose(), origin='bottom', extent=extent, interpolation='bicubic', cmap=CMAP_DENSITY, vmin=0) c = plt.colorbar(m, ax=ax, orientation='horizontal', pad=0.1) c.set_label('Path density') if plotpaths: # residuals observed/predicted travel-times res = self.traveltime_residuals() if highlight_residuals_gt else [] # plotting paths for i, path in enumerate(self.paths): x, y = zip(*path) linestyle = {'color': 'grey', 'lw': 0.5} if highlight_residuals_gt and abs(float(res[i])) > highlight_residuals_gt: # highlighting line as the travel-time error is > threshold linestyle = {'color': 'black', 'lw': 1.5} ax.plot(x, y, '-', **linestyle) if showgrid: # plotting grid x, y = self.grid.xy_nodes() ax.plot(x, y, '+') # plotting stations self._plot_stations(ax, stationlabel=stationlabel) # formatting axes ax.set_xlim(bbox[:2]) ax.set_ylim(bbox[2:]) if plot_title: ax.set_title(u'Period = {} s, {} paths'.format(self.period, len(self.paths))) if fig: fig.show() def plot_velocity(self, ax=None, xsize=10, perturbation=False, plot_title=True, vscale=None): """ Plots velocity or perturbation relative to mean velocity (which is not necessarily the reference velocity) """ # bounding box bbox = self.grid.bbox() # creating figure if not given as input fig = None if not ax: aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) # xzise has not effect if axes are given as input fig = plt.figure(figsize=(xsize, aspectratio * xsize)) ax = fig.add_subplot(111) # plotting coasts and tectonic provinces psutils.basemap(ax=ax, labels=False, fill=False, bbox=bbox) # plotting stations self._plot_stations(ax, stationlabel=False) # velocities on grid: m = (v0 - v) / v, so v = v0 / (1 + m) v = self.grid.to_2D_array(self.v0 / (1 + self.mopt)) vmean = v.mean() if perturbation: # plotting % perturbation relative to mean velocity v = 100 * (v - vmean) / vmean if not vscale and perturbation: # symetric scale maxdv = np.abs(v).max() vscale = (-maxdv, maxdv) elif not vscale and not perturbation: # scale centered on mean velocity maxdv = np.abs(v - vmean).max() vscale = (vmean - maxdv, vmean + maxdv) extent = (self.grid.xmin, self.grid.get_xmax(), self.grid.ymin, self.grid.get_ymax()) m = ax.imshow(v.transpose(), origin='bottom', extent=extent, interpolation='bicubic', cmap=CMAP_SEISMIC, vmin=vscale[0], vmax=vscale[1]) c = plt.colorbar(m, ax=ax, orientation='horizontal', pad=0.1) c.set_label('Velocity perturbation (%)' if perturbation else 'Velocity (km/s)') # formatting axes ax.set_xlim(bbox[:2]) ax.set_ylim(bbox[2:]) if plot_title: ax.set_title(u'Period = {} s, {} paths'.format(self.period, len(self.paths))) if fig: fig.show() def plot_resolution(self, ax=None, xsize=10, plot_title=True): """ Plots resolution map """ # bounding box bbox = self.grid.bbox() # creating figure if not given as input fig = None if not ax: aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) # xzise has not effect if axes are given as input fig = plt.figure(figsize=(xsize, aspectratio * xsize), tight_layout=True) ax = fig.add_subplot(111) # plotting coasts and tectonic provinces psutils.basemap(ax=ax, labels=False, fill=False, bbox=bbox) # plotting stations self._plot_stations(ax, stationlabel=False) # plotting spatial resolution r = self.grid.to_2D_array(self.Rradius) extent = (self.grid.xmin, self.grid.get_xmax(), self.grid.ymin, self.grid.get_ymax()) m = ax.imshow(r.transpose(), origin='bottom', extent=extent, interpolation='bicubic', cmap=CMAP_RESOLUTION) c = plt.colorbar(m, ax=ax, orientation='horizontal', pad=0.1) c.set_label('Spatial resolution (km)') # formatting axes ax.set_xlim(bbox[:2]) ax.set_ylim(bbox[2:]) if plot_title: ax.set_title(u'Period = {} s, {} paths'.format(self.period, len(self.paths))) if fig: fig.show() def plot_checkerboard(self, vmid, vmin, vmax, squaresize, axes=None, xsize=10, **kwargs): """ Plots checkboard model and reconstructed checkerboard """ # checkerboard test m = self.checkerboard_test(vmid, vmin, vmax, squaresize, **kwargs) v = self.grid.to_2D_array(vmid / (1 + m)) dv = 100 * (v - vmid) / vmid # bounding box bbox = self.grid.bbox() # creating figure if not given as input fig = None if not axes: aspectratio = (bbox[3] - bbox[2]) / (bbox[1] - bbox[0]) # xzise has not effect if axes are given as input fig = plt.figure(figsize=(xsize, aspectratio * xsize), tight_layout=True) axes = [fig.add_subplot(121), fig.add_subplot(122)] ims = [] # checkerboard model checkerboard_func = self.checkerboard_func(vmid, vmin, vmax, squaresize, **kwargs) lons, lats = self.grid.xy_nodes() a = self.grid.to_2D_array(checkerboard_func(lons, lats)) extent = (self.grid.xmin, self.grid.get_xmax(), self.grid.ymin, self.grid.get_ymax()) im = axes[0].imshow(a.transpose(), origin='bottom', extent=extent, interpolation='bicubic', vmin=vmin, vmax=vmax, cmap=CMAP_SEISMIC) ims.append(im) # reconstructed checkerboard extent = (self.grid.xmin, self.grid.get_xmax(), self.grid.ymin, self.grid.get_ymax()) im = axes[1].imshow(dv.transpose(), origin='bottom', extent=extent, interpolation='bicubic', vmin=-np.abs(dv).max(), vmax=np.abs(dv).max(), cmap=CMAP_SEISMIC) ims.append(im) for ax, im in zip(axes, ims): # coasts and tectonic provinces psutils.basemap(ax=ax, labels=False, fill=False, bbox=bbox) # stations self._plot_stations(ax, stationlabel=False) # color bar c = plt.colorbar(im, ax=ax, orientation='horizontal', pad=0.1) c.set_label('km/s' if ax is axes[0] else '% perturbation') # limits ax.set_xlim(bbox[:2]) ax.set_ylim(bbox[2:]) if fig: fig.show() def _plot_stations(self, ax, stationlabel): """ Plots stations on map """ # plotting stations xylabels = [c.station1.coord + (c.station1.name,) for c in self.disp_curves] + \ [c.station2.coord + (c.station2.name,) for c in self.disp_curves] xlist, ylist, labels = zip(*list(set(xylabels))) ax.plot(xlist, ylist, '^', color='k', ms=10, mfc='w', mew=1) if not stationlabel: return # stations label for x, y, label in zip(xlist, ylist, labels): ax.text(x, y, label, ha='center', va='bottom', fontsize=10, weight='bold') def pathdensity_colormap(dmax): """ Builds a colormap for path density (d) varying from 0 to *dmax*: - white for d = 0 - blue to green for 1 <= d <= 5 - green to red for 5 <= d <= 10 - red to black for 10 <= d <= dmax """ dmax = max(dmax, 11) x1 = 1.0 / dmax x2 = 5.0 / dmax x3 = 10.0 / dmax cdict = {'red': ((0, 1, 1), (x1, 0, 0), (x2, 0, 0), (x3, 1, 1), (1, 0, 0)), 'green': ((0, 1, 1), (x1, 0, 0), (x2, 1, 1), (x3, 0, 0), (1, 0, 0)), 'blue': ((0, 1, 1), (x1, 1, 1), (x2, 0, 0), (x3, 0, 0), (1, 0, 0))} return LinearSegmentedColormap('tmp', cdict) if __name__ == '__main__': # importig dir of FTAN results from psconfig import FTAN_DIR # loading dispersion curves flist = sorted(glob.glob(os.path.join(FTAN_DIR, 'FTAN*.pickle*'))) print 'Select file containing dispersion curves:' print '\n'.join('{} - {}'.format(i, os.path.basename(f)) for i, f in enumerate(flist)) pickle_file = flist[int(raw_input('\n'))] f = open(pickle_file, 'rb') curves = pickle.load(f) f.close() print "Dispersion curves stored in variable 'curves'"
gpl-3.0
Lawrence-Liu/scikit-learn
examples/mixture/plot_gmm.py
248
2817
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process. Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all five components while the DP model will effectively only use as many as are needed for a good fit. This is a property of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a mixture of Gaussians with EM using five components gmm = mixture.GMM(n_components=5, covariance_type='full') gmm.fit(X) # Fit a Dirichlet process mixture of Gaussians using five components dpgmm = mixture.DPGMM(n_components=5, covariance_type='full') dpgmm.fit(X) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([(gmm, 'GMM'), (dpgmm, 'Dirichlet Process GMM')]): splot = plt.subplot(2, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show()
bsd-3-clause
jmmease/pandas
pandas/tests/plotting/test_frame.py
3
119068
# coding: utf-8 """ Test cases for DataFrame.plot """ import pytest import string import warnings from datetime import datetime, date import pandas as pd from pandas import (Series, DataFrame, MultiIndex, PeriodIndex, date_range, bdate_range) from pandas.core.dtypes.api import is_list_like from pandas.compat import range, lrange, lmap, lzip, u, zip, PY3 from pandas.io.formats.printing import pprint_thing import pandas.util.testing as tm import numpy as np from numpy.random import rand, randn import pandas.plotting as plotting from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works, _skip_if_no_scipy_gaussian_kde, _ok_for_gaussian_kde) tm._skip_if_no_mpl() class TestDataFramePlots(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)}) @pytest.mark.slow def test_plot(self): df = self.tdf _check_plot_works(df.plot, grid=False) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True, layout=(-1, 2)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True, use_index=False) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) # mpl >= 1.5.2 (or slightly below) throw AttributError with pytest.raises((TypeError, AttributeError)): df.plot.line(blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot, subplots=True, title='blah') # We have to redo it here because _check_plot_works does two plots, # once without an ax kwarg and once with an ax kwarg and the new sharex # behaviour does not remove the visibility of the latter axis (as ax is # present). see: https://github.com/pandas-dev/pandas/issues/9737 axes = df.plot(subplots=True, title='blah') self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) # axes[0].figure.savefig("test.png") for ax in axes[:2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible([ax.xaxis.get_label()], visible=False) for ax in [axes[2]]: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible([ax.xaxis.get_label()]) self._check_ticks_props(ax, xrot=0) _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) # GH 6951 # Test with single column df = DataFrame({'x': np.random.rand(10)}) axes = _check_plot_works(df.plot.bar, subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) axes = _check_plot_works(df.plot.bar, subplots=True, layout=(-1, 1)) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) # When ax is supplied and required number of axes is 1, # passed ax should be used: fig, ax = self.plt.subplots() axes = df.plot.bar(subplots=True, ax=ax) assert len(axes) == 1 if self.mpl_ge_1_5_0: result = ax.axes else: result = ax.get_axes() # deprecated assert result is axes[0] # GH 15516 def test_mpl2_color_cycle_str(self): # test CN mpl 2.0 color cycle if self.mpl_ge_2_0_0: colors = ['C' + str(x) for x in range(10)] df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) for c in colors: _check_plot_works(df.plot, color=c) else: pytest.skip("not supported in matplotlib < 2.0.0") def test_color_single_series_list(self): # GH 3486 df = DataFrame({"A": [1, 2, 3]}) _check_plot_works(df.plot, color=['red']) def test_rgb_tuple_color(self): # GH 16695 df = DataFrame({'x': [1, 2], 'y': [3, 4]}) _check_plot_works(df.plot, x='x', y='y', color=(1, 0, 0)) _check_plot_works(df.plot, x='x', y='y', color=(1, 0, 0, 0.5)) def test_color_empty_string(self): df = DataFrame(randn(10, 2)) with pytest.raises(ValueError): df.plot(color='') def test_color_and_style_arguments(self): df = DataFrame({'x': [1, 2], 'y': [3, 4]}) # passing both 'color' and 'style' arguments should be allowed # if there is no color symbol in the style strings: ax = df.plot(color=['red', 'black'], style=['-', '--']) # check that the linestyles are correctly set: linestyle = [line.get_linestyle() for line in ax.lines] assert linestyle == ['-', '--'] # check that the colors are correctly set: color = [line.get_color() for line in ax.lines] assert color == ['red', 'black'] # passing both 'color' and 'style' arguments should not be allowed # if there is a color symbol in the style strings: with pytest.raises(ValueError): df.plot(color=['red', 'black'], style=['k-', 'r--']) def test_nonnumeric_exclude(self): df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() assert len(ax.get_lines()) == 1 # B was plotted @pytest.mark.slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self._check_text_labels(ax.xaxis.get_label(), 'a') @pytest.mark.slow def test_donot_overwrite_index_name(self): # GH 8494 df = DataFrame(randn(2, 2), columns=['a', 'b']) df.index.name = 'NAME' df.plot(y='b', label='LABEL') assert df.index.name == 'NAME' @pytest.mark.slow def test_plot_xy(self): # columns.inferred_type == 'string' df = self.tdf self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self._check_text_labels(ax.title, 'Test') self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16., 8.)) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @pytest.mark.slow def test_logscales(self): df = DataFrame({'a': np.arange(100)}, index=np.arange(100)) ax = df.plot(logy=True) self._check_ax_scales(ax, yaxis='log') ax = df.plot(logx=True) self._check_ax_scales(ax, xaxis='log') ax = df.plot(loglog=True) self._check_ax_scales(ax, xaxis='log', yaxis='log') @pytest.mark.slow def test_xcompat(self): import pandas as pd df = self.tdf ax = df.plot(x_compat=True) lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() pd.plotting.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() pd.plotting.plot_params['x_compat'] = False ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plotting.plot_params.use('x_compat', True): ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex) def test_period_compat(self): # GH 9012 # period-array conversions df = DataFrame( np.random.rand(21, 2), index=bdate_range(datetime(2000, 1, 1), datetime(2000, 1, 31)), columns=['a', 'b']) df.plot() self.plt.axhline(y=0) tm.close() def test_unsorted_index(self): df = DataFrame({'y': np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name='y') tm.assert_series_equal(rs, df.y, check_index_type=False) tm.close() df.index = pd.Index(np.arange(99, -1, -1), dtype=np.float64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name='y') tm.assert_series_equal(rs, df.y) def test_unsorted_index_lims(self): df = DataFrame({'y': [0., 1., 2., 3.]}, index=[1., 0., 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., np.nan, 3., 4., 5., 6.]}, index=[1., 0., 3., 2., np.nan, 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., 2., 3.], 'z': [91., 90., 93., 92.]}) ax = df.plot(x='z', y='y') xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) @pytest.mark.slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) for kind in ['bar', 'barh', 'line', 'area']: axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) assert axes.shape == (3, ) for ax, column in zip(axes, df.columns): self._check_legend_labels(ax, labels=[pprint_thing(column)]) for ax in axes[:-2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible( ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) axes = df.plot(kind=kind, subplots=True, sharex=False) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) axes = df.plot(kind=kind, subplots=True, legend=False) for ax in axes: assert ax.get_legend() is None @pytest.mark.slow def test_subplots_timeseries(self): idx = date_range(start='2014-07-01', freq='M', periods=10) df = DataFrame(np.random.rand(10, 3), index=idx) for kind in ['line', 'area']: axes = df.plot(kind=kind, subplots=True, sharex=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes[:-2]: # GH 7801 self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible( ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) self._check_ticks_props(axes, xrot=0) axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) self._check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7) def test_subplots_timeseries_y_axis(self): # GH16953 data = {"numeric": np.array([1, 2, 5]), "timedelta": [pd.Timedelta(-10, unit="s"), pd.Timedelta(10, unit="m"), pd.Timedelta(10, unit="h")], "datetime_no_tz": [pd.to_datetime("2017-08-01 00:00:00"), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00")], "datetime_all_tz": [pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00", utc=True), pd.to_datetime("2017-08-02 00:00:00", utc=True)], "text": ["This", "should", "fail"]} testdata = DataFrame(data) ax_numeric = testdata.plot(y="numeric") assert (ax_numeric.get_lines()[0].get_data()[1] == testdata["numeric"].values).all() ax_timedelta = testdata.plot(y="timedelta") assert (ax_timedelta.get_lines()[0].get_data()[1] == testdata["timedelta"].values).all() ax_datetime_no_tz = testdata.plot(y="datetime_no_tz") assert (ax_datetime_no_tz.get_lines()[0].get_data()[1] == testdata["datetime_no_tz"].values).all() ax_datetime_all_tz = testdata.plot(y="datetime_all_tz") assert (ax_datetime_all_tz.get_lines()[0].get_data()[1] == testdata["datetime_all_tz"].values).all() with pytest.raises(TypeError): testdata.plot(y="text") @pytest.mark.xfail(reason='not support for period, categorical, ' 'datetime_mixed_tz') def test_subplots_timeseries_y_axis_not_supported(self): """ This test will fail for: period: since period isn't yet implemented in ``select_dtypes`` and because it will need a custom value converter + tick formater (as was done for x-axis plots) categorical: because it will need a custom value converter + tick formater (also doesn't work for x-axis, as of now) datetime_mixed_tz: because of the way how pandas handels ``Series`` of ``datetime`` objects with different timezone, generally converting ``datetime`` objects in a tz-aware form could help with this problem """ data = {"numeric": np.array([1, 2, 5]), "period": [pd.Period('2017-08-01 00:00:00', freq='H'), pd.Period('2017-08-01 02:00', freq='H'), pd.Period('2017-08-02 00:00:00', freq='H')], "categorical": pd.Categorical(["c", "b", "a"], categories=["a", "b", "c"], ordered=False), "datetime_mixed_tz": [pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00")]} testdata = pd.DataFrame(data) ax_period = testdata.plot(x="numeric", y="period") assert (ax_period.get_lines()[0].get_data()[1] == testdata["period"].values).all() ax_categorical = testdata.plot(x="numeric", y="categorical") assert (ax_categorical.get_lines()[0].get_data()[1] == testdata["categorical"].values).all() ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz") assert (ax_datetime_mixed_tz.get_lines()[0].get_data()[1] == testdata["datetime_mixed_tz"].values).all() @pytest.mark.slow def test_subplots_layout(self): # GH 6667 df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(-1, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(2, -1)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(4, -1)) self._check_axes_shape(axes, axes_num=3, layout=(4, 1)) assert axes.shape == (4, 1) with pytest.raises(ValueError): df.plot(subplots=True, layout=(1, 1)) with pytest.raises(ValueError): df.plot(subplots=True, layout=(-1, -1)) # single column df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) assert axes.shape == (1, ) axes = df.plot(subplots=True, layout=(3, 3)) self._check_axes_shape(axes, axes_num=1, layout=(3, 3)) assert axes.shape == (3, 3) @pytest.mark.slow def test_subplots_warnings(self): # GH 9464 warnings.simplefilter('error') try: df = DataFrame(np.random.randn(100, 4)) df.plot(subplots=True, layout=(3, 2)) df = DataFrame(np.random.randn(100, 4), index=date_range('1/1/2000', periods=100)) df.plot(subplots=True, layout=(3, 2)) except Warning as w: self.fail(w) warnings.simplefilter('default') @pytest.mark.slow def test_subplots_multiple_axes(self): # GH 5353, 6970, GH 7069 fig, axes = self.plt.subplots(2, 3) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3, ) assert returned[0].figure is fig # draw on second row returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3, ) assert returned[0].figure is fig self._check_axes_shape(axes, axes_num=6, layout=(2, 3)) tm.close() with pytest.raises(ValueError): fig, axes = self.plt.subplots(2, 3) # pass different number of axes from required df.plot(subplots=True, ax=axes) # pass 2-dim axes and invalid layout # invalid lauout should not affect to input and return value # (show warning is tested in # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes fig, axes = self.plt.subplots(2, 2) with warnings.catch_warnings(): df = DataFrame(np.random.rand(10, 4), index=list(string.ascii_letters[:10])) returned = df.plot(subplots=True, ax=axes, layout=(2, 1), sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4, ) returned = df.plot(subplots=True, ax=axes, layout=(2, -1), sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4, ) returned = df.plot(subplots=True, ax=axes, layout=(-1, 2), sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4, ) # single column fig, axes = self.plt.subplots(1, 1) df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) assert axes.shape == (1, ) def test_subplots_ts_share_axes(self): # GH 3964 fig, axes = self.plt.subplots(3, 3, sharex=True, sharey=True) self.plt.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3) df = DataFrame( np.random.randn(10, 9), index=date_range(start='2014-07-01', freq='M', periods=10)) for i, ax in enumerate(axes.ravel()): df[i].plot(ax=ax, fontsize=5) # Rows other than bottom should not be visible for ax in axes[0:-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=False) # Bottom row should be visible for ax in axes[-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=True) # First column should be visible for ax in axes[[0, 1, 2], [0]].ravel(): self._check_visible(ax.get_yticklabels(), visible=True) # Other columns should not be visible for ax in axes[[0, 1, 2], [1]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) for ax in axes[[0, 1, 2], [2]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) def test_subplots_sharex_axes_existing_axes(self): # GH 9158 d = {'A': [1., 2., 3., 4.], 'B': [4., 3., 2., 1.], 'C': [5, 1, 3, 4]} df = DataFrame(d, index=date_range('2014 10 11', '2014 10 14')) axes = df[['A', 'B']].plot(subplots=True) df['C'].plot(ax=axes[0], secondary_y=True) self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) for ax in axes.ravel(): self._check_visible(ax.get_yticklabels(), visible=True) @pytest.mark.slow def test_subplots_dup_columns(self): # GH 10962 df = DataFrame(np.random.rand(5, 5), columns=list('aaaaa')) axes = df.plot(subplots=True) for ax in axes: self._check_legend_labels(ax, labels=['a']) assert len(ax.lines) == 1 tm.close() axes = df.plot(subplots=True, secondary_y='a') for ax in axes: # (right) is only attached when subplots=False self._check_legend_labels(ax, labels=['a']) assert len(ax.lines) == 1 tm.close() ax = df.plot(secondary_y='a') self._check_legend_labels(ax, labels=['a (right)'] * 5) assert len(ax.lines) == 0 assert len(ax.right_ax.lines) == 5 def test_negative_log(self): df = - DataFrame(rand(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) with pytest.raises(ValueError): df.plot.area(logy=True) with pytest.raises(ValueError): df.plot.area(loglog=True) def _compare_stacked_y_cood(self, normal_lines, stacked_lines): base = np.zeros(len(normal_lines[0].get_data()[1])) for nl, sl in zip(normal_lines, stacked_lines): base += nl.get_data()[1] # get y coodinates sy = sl.get_data()[1] tm.assert_numpy_array_equal(base, sy) def test_line_area_stacked(self): with tm.RNGContext(42): df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z']) neg_df = -df # each column has either positive or negative value sep_df = DataFrame({'w': rand(6), 'x': rand(6), 'y': -rand(6), 'z': -rand(6)}) # each column has positive-negative mixed value mixed_df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['w', 'x', 'y', 'z']) for kind in ['line', 'area']: ax1 = _check_plot_works(df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines, ax2.lines) ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines, ax2.lines) ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2]) self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:]) _check_plot_works(mixed_df.plot, stacked=False) with pytest.raises(ValueError): mixed_df.plot(stacked=True) _check_plot_works(df.plot, kind=kind, logx=True, stacked=True) def test_line_area_nan_df(self): values1 = [1, 2, np.nan, 3] values2 = [3, np.nan, 2, 1] df = DataFrame({'a': values1, 'b': values2}) tdf = DataFrame({'a': values1, 'b': values2}, index=tm.makeDateIndex(k=4)) for d in [df, tdf]: ax = _check_plot_works(d.plot) masked1 = ax.lines[0].get_ydata() masked2 = ax.lines[1].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked1.data, 2), exp) exp = np.array([3, 2, 1], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked2.data, 1), exp) tm.assert_numpy_array_equal( masked1.mask, np.array([False, False, True, False])) tm.assert_numpy_array_equal( masked2.mask, np.array([False, True, False, False])) expected1 = np.array([1, 2, 0, 3], dtype=np.float64) expected2 = np.array([3, 0, 2, 1], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected2) def test_line_lim(self): df = DataFrame(rand(6, 3), columns=['x', 'y', 'z']) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] ax = df.plot(secondary_y=True) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] axes = df.plot(secondary_y=True, subplots=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes: assert hasattr(ax, 'left_ax') assert not hasattr(ax, 'right_ax') xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] def test_area_lim(self): df = DataFrame(rand(6, 4), columns=['x', 'y', 'z', 'four']) neg_df = -df for stacked in [True, False]: ax = _check_plot_works(df.plot.area, stacked=stacked) xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] assert ymin == 0 ax = _check_plot_works(neg_df.plot.area, stacked=stacked) ymin, ymax = ax.get_ylim() assert ymax == 0 @pytest.mark.slow def test_bar_colors(self): import matplotlib.pyplot as plt default_colors = self._maybe_unpack_cycler(plt.rcParams) df = DataFrame(randn(5, 5)) ax = df.plot.bar() self._check_colors(ax.patches[::5], facecolors=default_colors[:5]) tm.close() custom_colors = 'rgcby' ax = df.plot.bar(color=custom_colors) self._check_colors(ax.patches[::5], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.bar(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.bar(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.bar(color='DodgerBlue') self._check_colors([ax.patches[0]], facecolors=['DodgerBlue']) tm.close() ax = df.plot(kind='bar', color='green') self._check_colors(ax.patches[::5], facecolors=['green'] * 5) tm.close() def test_bar_user_colors(self): df = pd.DataFrame({"A": range(4), "B": range(1, 5), "color": ['red', 'blue', 'blue', 'red']}) # This should *only* work when `y` is specified, else # we use one color per column ax = df.plot.bar(y='A', color=df['color']) result = [p.get_facecolor() for p in ax.patches] expected = [(1., 0., 0., 1.), (0., 0., 1., 1.), (0., 0., 1., 1.), (1., 0., 0., 1.)] assert result == expected @pytest.mark.slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot.bar(linewidth=2) for r in ax.patches: assert r.get_linewidth() == 2 # stacked ax = df.plot.bar(stacked=True, linewidth=2) for r in ax.patches: assert r.get_linewidth() == 2 # subplots axes = df.plot.bar(linewidth=2, subplots=True) self._check_axes_shape(axes, axes_num=5, layout=(5, 1)) for ax in axes: for r in ax.patches: assert r.get_linewidth() == 2 @pytest.mark.slow def test_bar_barwidth(self): df = DataFrame(randn(5, 5)) width = 0.9 # regular ax = df.plot.bar(width=width) for r in ax.patches: assert r.get_width() == width / len(df.columns) # stacked ax = df.plot.bar(stacked=True, width=width) for r in ax.patches: assert r.get_width() == width # horizontal regular ax = df.plot.barh(width=width) for r in ax.patches: assert r.get_height() == width / len(df.columns) # horizontal stacked ax = df.plot.barh(stacked=True, width=width) for r in ax.patches: assert r.get_height() == width # subplots axes = df.plot.bar(width=width, subplots=True) for ax in axes: for r in ax.patches: assert r.get_width() == width # horizontal subplots axes = df.plot.barh(width=width, subplots=True) for ax in axes: for r in ax.patches: assert r.get_height() == width @pytest.mark.slow def test_bar_barwidth_position(self): df = DataFrame(randn(5, 5)) self._check_bar_alignment(df, kind='bar', stacked=False, width=0.9, position=0.2) self._check_bar_alignment(df, kind='bar', stacked=True, width=0.9, position=0.2) self._check_bar_alignment(df, kind='barh', stacked=False, width=0.9, position=0.2) self._check_bar_alignment(df, kind='barh', stacked=True, width=0.9, position=0.2) self._check_bar_alignment(df, kind='bar', subplots=True, width=0.9, position=0.2) self._check_bar_alignment(df, kind='barh', subplots=True, width=0.9, position=0.2) @pytest.mark.slow def test_bar_barwidth_position_int(self): # GH 12979 df = DataFrame(randn(5, 5)) for w in [1, 1.]: ax = df.plot.bar(stacked=True, width=w) ticks = ax.xaxis.get_ticklocs() tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4])) assert ax.get_xlim() == (-0.75, 4.75) # check left-edge of bars assert ax.patches[0].get_x() == -0.5 assert ax.patches[-1].get_x() == 3.5 self._check_bar_alignment(df, kind='bar', stacked=True, width=1) self._check_bar_alignment(df, kind='barh', stacked=False, width=1) self._check_bar_alignment(df, kind='barh', stacked=True, width=1) self._check_bar_alignment(df, kind='bar', subplots=True, width=1) self._check_bar_alignment(df, kind='barh', subplots=True, width=1) @pytest.mark.slow def test_bar_bottom_left(self): df = DataFrame(rand(5, 5)) ax = df.plot.bar(stacked=False, bottom=1) result = [p.get_y() for p in ax.patches] assert result == [1] * 25 ax = df.plot.bar(stacked=True, bottom=[-1, -2, -3, -4, -5]) result = [p.get_y() for p in ax.patches[:5]] assert result == [-1, -2, -3, -4, -5] ax = df.plot.barh(stacked=False, left=np.array([1, 1, 1, 1, 1])) result = [p.get_x() for p in ax.patches] assert result == [1] * 25 ax = df.plot.barh(stacked=True, left=[1, 2, 3, 4, 5]) result = [p.get_x() for p in ax.patches[:5]] assert result == [1, 2, 3, 4, 5] axes = df.plot.bar(subplots=True, bottom=-1) for ax in axes: result = [p.get_y() for p in ax.patches] assert result == [-1] * 5 axes = df.plot.barh(subplots=True, left=np.array([1, 1, 1, 1, 1])) for ax in axes: result = [p.get_x() for p in ax.patches] assert result == [1] * 5 @pytest.mark.slow def test_bar_nan(self): df = DataFrame({'A': [10, np.nan, 20], 'B': [5, 10, 20], 'C': [1, 2, 3]}) ax = df.plot.bar() expected = [10, 0, 20, 5, 10, 20, 1, 2, 3] result = [p.get_height() for p in ax.patches] assert result == expected ax = df.plot.bar(stacked=True) result = [p.get_height() for p in ax.patches] assert result == expected result = [p.get_y() for p in ax.patches] expected = [0.0, 0.0, 0.0, 10.0, 0.0, 20.0, 15.0, 10.0, 40.0] assert result == expected @pytest.mark.slow def test_bar_categorical(self): # GH 13019 df1 = pd.DataFrame(np.random.randn(6, 5), index=pd.Index(list('ABCDEF')), columns=pd.Index(list('abcde'))) # categorical index must behave the same df2 = pd.DataFrame(np.random.randn(6, 5), index=pd.CategoricalIndex(list('ABCDEF')), columns=pd.CategoricalIndex(list('abcde'))) for df in [df1, df2]: ax = df.plot.bar() ticks = ax.xaxis.get_ticklocs() tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5])) assert ax.get_xlim() == (-0.5, 5.5) # check left-edge of bars assert ax.patches[0].get_x() == -0.25 assert ax.patches[-1].get_x() == 5.15 ax = df.plot.bar(stacked=True) tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5])) assert ax.get_xlim() == (-0.5, 5.5) assert ax.patches[0].get_x() == -0.25 assert ax.patches[-1].get_x() == 4.75 @pytest.mark.slow def test_plot_scatter(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) _check_plot_works(df.plot.scatter, x='x', y='y') _check_plot_works(df.plot.scatter, x=1, y=2) with pytest.raises(TypeError): df.plot.scatter(x='x') with pytest.raises(TypeError): df.plot.scatter(y='y') # GH 6951 axes = df.plot(x='x', y='y', kind='scatter', subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) @pytest.mark.slow def test_plot_scatter_with_categorical_data(self): # GH 16199 df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': pd.Categorical(['a', 'b', 'a', 'c'])}) with pytest.raises(ValueError) as ve: df.plot(x='x', y='y', kind='scatter') ve.match('requires y column to be numeric') with pytest.raises(ValueError) as ve: df.plot(x='y', y='x', kind='scatter') ve.match('requires x column to be numeric') with pytest.raises(ValueError) as ve: df.plot(x='y', y='y', kind='scatter') ve.match('requires x column to be numeric') @pytest.mark.slow def test_plot_scatter_with_c(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) axes = [df.plot.scatter(x='x', y='y', c='z'), df.plot.scatter(x=0, y=1, c=2)] for ax in axes: # default to Greys assert ax.collections[0].cmap.name == 'Greys' if self.mpl_ge_1_3_1: # n.b. there appears to be no public method to get the colorbar # label assert ax.collections[0].colorbar._label == 'z' cm = 'cubehelix' ax = df.plot.scatter(x='x', y='y', c='z', colormap=cm) assert ax.collections[0].cmap.name == cm # verify turning off colorbar works ax = df.plot.scatter(x='x', y='y', c='z', colorbar=False) assert ax.collections[0].colorbar is None # verify that we can still plot a solid color ax = df.plot.scatter(x=0, y=1, c='red') assert ax.collections[0].colorbar is None self._check_colors(ax.collections, facecolors=['r']) # Ensure that we can pass an np.array straight through to matplotlib, # this functionality was accidentally removed previously. # See https://github.com/pandas-dev/pandas/issues/8852 for bug report # # Exercise colormap path and non-colormap path as they are independent # df = DataFrame({'A': [1, 2], 'B': [3, 4]}) red_rgba = [1.0, 0.0, 0.0, 1.0] green_rgba = [0.0, 1.0, 0.0, 1.0] rgba_array = np.array([red_rgba, green_rgba]) ax = df.plot.scatter(x='A', y='B', c=rgba_array) # expect the face colors of the points in the non-colormap path to be # identical to the values we supplied, normally we'd be on shaky ground # comparing floats for equality but here we expect them to be # identical. tm.assert_numpy_array_equal(ax.collections[0] .get_facecolor(), rgba_array) # we don't test the colors of the faces in this next plot because they # are dependent on the spring colormap, which may change its colors # later. float_array = np.array([0.0, 1.0]) df.plot.scatter(x='A', y='B', c=float_array, cmap='spring') def test_scatter_colors(self): df = DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3], 'c': [1, 2, 3]}) with pytest.raises(TypeError): df.plot.scatter(x='a', y='b', c='c', color='green') default_colors = self._maybe_unpack_cycler(self.plt.rcParams) ax = df.plot.scatter(x='a', y='b', c='c') tm.assert_numpy_array_equal( ax.collections[0].get_facecolor()[0], np.array(self.colorconverter.to_rgba(default_colors[0]))) ax = df.plot.scatter(x='a', y='b', color='white') tm.assert_numpy_array_equal(ax.collections[0].get_facecolor()[0], np.array([1, 1, 1, 1], dtype=np.float64)) @pytest.mark.slow def test_plot_bar(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) _check_plot_works(df.plot.bar) _check_plot_works(df.plot.bar, legend=False) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot.bar, subplots=True) _check_plot_works(df.plot.bar, stacked=True) df = DataFrame(randn(10, 15), index=list(string.ascii_letters[:10]), columns=lrange(15)) _check_plot_works(df.plot.bar) df = DataFrame({'a': [0, 1], 'b': [1, 0]}) ax = _check_plot_works(df.plot.bar) self._check_ticks_props(ax, xrot=90) ax = df.plot.bar(rot=35, fontsize=10) self._check_ticks_props(ax, xrot=35, xlabelsize=10, ylabelsize=10) ax = _check_plot_works(df.plot.barh) self._check_ticks_props(ax, yrot=0) ax = df.plot.barh(rot=55, fontsize=11) self._check_ticks_props(ax, yrot=55, ylabelsize=11, xlabelsize=11) def _check_bar_alignment(self, df, kind='bar', stacked=False, subplots=False, align='center', width=0.5, position=0.5): axes = df.plot(kind=kind, stacked=stacked, subplots=subplots, align=align, width=width, position=position, grid=True) axes = self._flatten_visible(axes) for ax in axes: if kind == 'bar': axis = ax.xaxis ax_min, ax_max = ax.get_xlim() min_edge = min([p.get_x() for p in ax.patches]) max_edge = max([p.get_x() + p.get_width() for p in ax.patches]) elif kind == 'barh': axis = ax.yaxis ax_min, ax_max = ax.get_ylim() min_edge = min([p.get_y() for p in ax.patches]) max_edge = max([p.get_y() + p.get_height() for p in ax.patches ]) else: raise ValueError # GH 7498 # compare margins between lim and bar edges tm.assert_almost_equal(ax_min, min_edge - 0.25) tm.assert_almost_equal(ax_max, max_edge + 0.25) p = ax.patches[0] if kind == 'bar' and (stacked is True or subplots is True): edge = p.get_x() center = edge + p.get_width() * position elif kind == 'bar' and stacked is False: center = p.get_x() + p.get_width() * len(df.columns) * position edge = p.get_x() elif kind == 'barh' and (stacked is True or subplots is True): center = p.get_y() + p.get_height() * position edge = p.get_y() elif kind == 'barh' and stacked is False: center = p.get_y() + p.get_height() * len( df.columns) * position edge = p.get_y() else: raise ValueError # Check the ticks locates on integer assert (axis.get_ticklocs() == np.arange(len(df))).all() if align == 'center': # Check whether the bar locates on center tm.assert_almost_equal(axis.get_ticklocs()[0], center) elif align == 'edge': # Check whether the bar's edge starts from the tick tm.assert_almost_equal(axis.get_ticklocs()[0], edge) else: raise ValueError return axes @pytest.mark.slow def test_bar_stacked_center(self): # GH2157 df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) self._check_bar_alignment(df, kind='bar', stacked=True) self._check_bar_alignment(df, kind='bar', stacked=True, width=0.9) self._check_bar_alignment(df, kind='barh', stacked=True) self._check_bar_alignment(df, kind='barh', stacked=True, width=0.9) @pytest.mark.slow def test_bar_center(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) self._check_bar_alignment(df, kind='bar', stacked=False) self._check_bar_alignment(df, kind='bar', stacked=False, width=0.9) self._check_bar_alignment(df, kind='barh', stacked=False) self._check_bar_alignment(df, kind='barh', stacked=False, width=0.9) @pytest.mark.slow def test_bar_subplots_center(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) self._check_bar_alignment(df, kind='bar', subplots=True) self._check_bar_alignment(df, kind='bar', subplots=True, width=0.9) self._check_bar_alignment(df, kind='barh', subplots=True) self._check_bar_alignment(df, kind='barh', subplots=True, width=0.9) @pytest.mark.slow def test_bar_align_single_column(self): df = DataFrame(randn(5)) self._check_bar_alignment(df, kind='bar', stacked=False) self._check_bar_alignment(df, kind='bar', stacked=True) self._check_bar_alignment(df, kind='barh', stacked=False) self._check_bar_alignment(df, kind='barh', stacked=True) self._check_bar_alignment(df, kind='bar', subplots=True) self._check_bar_alignment(df, kind='barh', subplots=True) @pytest.mark.slow def test_bar_edge(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) self._check_bar_alignment(df, kind='bar', stacked=True, align='edge') self._check_bar_alignment(df, kind='bar', stacked=True, width=0.9, align='edge') self._check_bar_alignment(df, kind='barh', stacked=True, align='edge') self._check_bar_alignment(df, kind='barh', stacked=True, width=0.9, align='edge') self._check_bar_alignment(df, kind='bar', stacked=False, align='edge') self._check_bar_alignment(df, kind='bar', stacked=False, width=0.9, align='edge') self._check_bar_alignment(df, kind='barh', stacked=False, align='edge') self._check_bar_alignment(df, kind='barh', stacked=False, width=0.9, align='edge') self._check_bar_alignment(df, kind='bar', subplots=True, align='edge') self._check_bar_alignment(df, kind='bar', subplots=True, width=0.9, align='edge') self._check_bar_alignment(df, kind='barh', subplots=True, align='edge') self._check_bar_alignment(df, kind='barh', subplots=True, width=0.9, align='edge') @pytest.mark.slow def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([1., 10.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 100)) # no subplots df = DataFrame({'A': [3] * 5, 'B': lrange(1, 6)}, index=lrange(5)) ax = df.plot.bar(grid=True, log=True) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) @pytest.mark.slow def test_bar_log_subplots(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar( log=True, subplots=True) tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected) tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected) @pytest.mark.slow def test_boxplot(self): df = self.hist_df series = df['height'] numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] ax = _check_plot_works(df.plot.box) self._check_text_labels(ax.get_xticklabels(), labels) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), np.arange(1, len(numeric_cols) + 1)) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) # different warning on py3 if not PY3: with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.box, subplots=True, logy=True) self._check_axes_shape(axes, axes_num=3, layout=(1, 3)) self._check_ax_scales(axes, yaxis='log') for ax, label in zip(axes, labels): self._check_text_labels(ax.get_xticklabels(), [label]) assert len(ax.lines) == self.bp_n_objects axes = series.plot.box(rot=40) self._check_ticks_props(axes, xrot=40, yrot=0) tm.close() ax = _check_plot_works(series.plot.box) positions = np.array([1, 6, 7]) ax = df.plot.box(positions=positions) numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] self._check_text_labels(ax.get_xticklabels(), labels) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), positions) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) @pytest.mark.slow def test_boxplot_vertical(self): df = self.hist_df numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] # if horizontal, yticklabels are rotated ax = df.plot.box(rot=50, fontsize=8, vert=False) self._check_ticks_props(ax, xrot=0, yrot=50, ylabelsize=8) self._check_text_labels(ax.get_yticklabels(), labels) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.box, subplots=True, vert=False, logx=True) self._check_axes_shape(axes, axes_num=3, layout=(1, 3)) self._check_ax_scales(axes, xaxis='log') for ax, label in zip(axes, labels): self._check_text_labels(ax.get_yticklabels(), [label]) assert len(ax.lines) == self.bp_n_objects positions = np.array([3, 2, 8]) ax = df.plot.box(positions=positions, vert=False) self._check_text_labels(ax.get_yticklabels(), labels) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), positions) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) @pytest.mark.slow def test_boxplot_return_type(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) with pytest.raises(ValueError): df.plot.box(return_type='NOTATYPE') result = df.plot.box(return_type='dict') self._check_box_return_type(result, 'dict') result = df.plot.box(return_type='axes') self._check_box_return_type(result, 'axes') result = df.plot.box() # default axes self._check_box_return_type(result, 'axes') result = df.plot.box(return_type='both') self._check_box_return_type(result, 'both') @pytest.mark.slow def test_boxplot_subplots_return_type(self): df = self.hist_df # normal style: return_type=None result = df.plot.box(subplots=True) assert isinstance(result, Series) self._check_box_return_type(result, None, expected_keys=[ 'height', 'weight', 'category']) for t in ['dict', 'axes', 'both']: returned = df.plot.box(return_type=t, subplots=True) self._check_box_return_type( returned, t, expected_keys=['height', 'weight', 'category'], check_ax_title=False) @pytest.mark.slow def test_kde_df(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") df = DataFrame(randn(100, 4)) ax = _check_plot_works(df.plot, kind='kde') expected = [pprint_thing(c) for c in df.columns] self._check_legend_labels(ax, labels=expected) self._check_ticks_props(ax, xrot=0) ax = df.plot(kind='kde', rot=20, fontsize=5) self._check_ticks_props(ax, xrot=20, xlabelsize=5, ylabelsize=5) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, kind='kde', subplots=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.plot(kind='kde', logy=True, subplots=True) self._check_ax_scales(axes, yaxis='log') @pytest.mark.slow def test_kde_missing_vals(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") df = DataFrame(np.random.uniform(size=(100, 4))) df.loc[0, 0] = np.nan _check_plot_works(df.plot, kind='kde') @pytest.mark.slow def test_hist_df(self): from matplotlib.patches import Rectangle if self.mpl_le_1_2_1: pytest.skip("not supported in matplotlib <= 1.2.x") df = DataFrame(randn(100, 4)) series = df[0] ax = _check_plot_works(df.plot.hist) expected = [pprint_thing(c) for c in df.columns] self._check_legend_labels(ax, labels=expected) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.hist, subplots=True, logy=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) self._check_ax_scales(axes, yaxis='log') axes = series.plot.hist(rot=40) self._check_ticks_props(axes, xrot=40, yrot=0) tm.close() ax = series.plot.hist(normed=True, cumulative=True, bins=4) # height of last bin (index 5) must be 1.0 rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-1].get_height(), 1.0) tm.close() ax = series.plot.hist(cumulative=True, bins=4) rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-2].get_height(), 100.0) tm.close() # if horizontal, yticklabels are rotated axes = df.plot.hist(rot=50, fontsize=8, orientation='horizontal') self._check_ticks_props(axes, xrot=0, yrot=50, ylabelsize=8) def _check_box_coord(self, patches, expected_y=None, expected_h=None, expected_x=None, expected_w=None): result_y = np.array([p.get_y() for p in patches]) result_height = np.array([p.get_height() for p in patches]) result_x = np.array([p.get_x() for p in patches]) result_width = np.array([p.get_width() for p in patches]) # dtype is depending on above values, no need to check if expected_y is not None: tm.assert_numpy_array_equal(result_y, expected_y, check_dtype=False) if expected_h is not None: tm.assert_numpy_array_equal(result_height, expected_h, check_dtype=False) if expected_x is not None: tm.assert_numpy_array_equal(result_x, expected_x, check_dtype=False) if expected_w is not None: tm.assert_numpy_array_equal(result_width, expected_w, check_dtype=False) @pytest.mark.slow def test_hist_df_coord(self): normal_df = DataFrame({'A': np.repeat(np.array([1, 2, 3, 4, 5]), np.array([10, 9, 8, 7, 6])), 'B': np.repeat(np.array([1, 2, 3, 4, 5]), np.array([8, 8, 8, 8, 8])), 'C': np.repeat(np.array([1, 2, 3, 4, 5]), np.array([6, 7, 8, 9, 10]))}, columns=['A', 'B', 'C']) nan_df = DataFrame({'A': np.repeat(np.array([np.nan, 1, 2, 3, 4, 5]), np.array([3, 10, 9, 8, 7, 6])), 'B': np.repeat(np.array([1, np.nan, 2, 3, 4, 5]), np.array([8, 3, 8, 8, 8, 8])), 'C': np.repeat(np.array([1, 2, 3, np.nan, 4, 5]), np.array([6, 7, 8, 3, 9, 10]))}, columns=['A', 'B', 'C']) for df in [normal_df, nan_df]: ax = df.plot.hist(bins=5) self._check_box_coord(ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6])) self._check_box_coord(ax.patches[5:10], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([8, 8, 8, 8, 8])) self._check_box_coord(ax.patches[10:], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([6, 7, 8, 9, 10])) ax = df.plot.hist(bins=5, stacked=True) self._check_box_coord(ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6])) self._check_box_coord(ax.patches[5:10], expected_y=np.array([10, 9, 8, 7, 6]), expected_h=np.array([8, 8, 8, 8, 8])) self._check_box_coord(ax.patches[10:], expected_y=np.array([18, 17, 16, 15, 14]), expected_h=np.array([6, 7, 8, 9, 10])) axes = df.plot.hist(bins=5, stacked=True, subplots=True) self._check_box_coord(axes[0].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6])) self._check_box_coord(axes[1].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([8, 8, 8, 8, 8])) self._check_box_coord(axes[2].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([6, 7, 8, 9, 10])) if self.mpl_ge_1_3_1: # horizontal ax = df.plot.hist(bins=5, orientation='horizontal') self._check_box_coord(ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6])) self._check_box_coord(ax.patches[5:10], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([8, 8, 8, 8, 8])) self._check_box_coord(ax.patches[10:], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([6, 7, 8, 9, 10])) ax = df.plot.hist(bins=5, stacked=True, orientation='horizontal') self._check_box_coord(ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6])) self._check_box_coord(ax.patches[5:10], expected_x=np.array([10, 9, 8, 7, 6]), expected_w=np.array([8, 8, 8, 8, 8])) self._check_box_coord( ax.patches[10:], expected_x=np.array([18, 17, 16, 15, 14]), expected_w=np.array([6, 7, 8, 9, 10])) axes = df.plot.hist(bins=5, stacked=True, subplots=True, orientation='horizontal') self._check_box_coord(axes[0].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6])) self._check_box_coord(axes[1].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([8, 8, 8, 8, 8])) self._check_box_coord(axes[2].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([6, 7, 8, 9, 10])) @pytest.mark.slow def test_plot_int_columns(self): df = DataFrame(randn(100, 4)).cumsum() _check_plot_works(df.plot, legend=True) @pytest.mark.slow def test_df_legend_labels(self): kinds = ['line', 'bar', 'barh', 'kde', 'area', 'hist'] df = DataFrame(rand(3, 3), columns=['a', 'b', 'c']) df2 = DataFrame(rand(3, 3), columns=['d', 'e', 'f']) df3 = DataFrame(rand(3, 3), columns=['g', 'h', 'i']) df4 = DataFrame(rand(3, 3), columns=['j', 'k', 'l']) for kind in kinds: if not _ok_for_gaussian_kde(kind): continue ax = df.plot(kind=kind, legend=True) self._check_legend_labels(ax, labels=df.columns) ax = df2.plot(kind=kind, legend=False, ax=ax) self._check_legend_labels(ax, labels=df.columns) ax = df3.plot(kind=kind, legend=True, ax=ax) self._check_legend_labels(ax, labels=df.columns.union(df3.columns)) ax = df4.plot(kind=kind, legend='reverse', ax=ax) expected = list(df.columns.union(df3.columns)) + list(reversed( df4.columns)) self._check_legend_labels(ax, labels=expected) # Secondary Y ax = df.plot(legend=True, secondary_y='b') self._check_legend_labels(ax, labels=['a', 'b (right)', 'c']) ax = df2.plot(legend=False, ax=ax) self._check_legend_labels(ax, labels=['a', 'b (right)', 'c']) ax = df3.plot(kind='bar', legend=True, secondary_y='h', ax=ax) self._check_legend_labels( ax, labels=['a', 'b (right)', 'c', 'g', 'h (right)', 'i']) # Time Series ind = date_range('1/1/2014', periods=3) df = DataFrame(randn(3, 3), columns=['a', 'b', 'c'], index=ind) df2 = DataFrame(randn(3, 3), columns=['d', 'e', 'f'], index=ind) df3 = DataFrame(randn(3, 3), columns=['g', 'h', 'i'], index=ind) ax = df.plot(legend=True, secondary_y='b') self._check_legend_labels(ax, labels=['a', 'b (right)', 'c']) ax = df2.plot(legend=False, ax=ax) self._check_legend_labels(ax, labels=['a', 'b (right)', 'c']) ax = df3.plot(legend=True, ax=ax) self._check_legend_labels( ax, labels=['a', 'b (right)', 'c', 'g', 'h', 'i']) # scatter ax = df.plot.scatter(x='a', y='b', label='data1') self._check_legend_labels(ax, labels=['data1']) ax = df2.plot.scatter(x='d', y='e', legend=False, label='data2', ax=ax) self._check_legend_labels(ax, labels=['data1']) ax = df3.plot.scatter(x='g', y='h', label='data3', ax=ax) self._check_legend_labels(ax, labels=['data1', 'data3']) # ensure label args pass through and # index name does not mutate # column names don't mutate df5 = df.set_index('a') ax = df5.plot(y='b') self._check_legend_labels(ax, labels=['b']) ax = df5.plot(y='b', label='LABEL_b') self._check_legend_labels(ax, labels=['LABEL_b']) self._check_text_labels(ax.xaxis.get_label(), 'a') ax = df5.plot(y='c', label='LABEL_c', ax=ax) self._check_legend_labels(ax, labels=['LABEL_b', 'LABEL_c']) assert df5.columns.tolist() == ['b', 'c'] def test_legend_name(self): multi = DataFrame(randn(4, 4), columns=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) multi.columns.names = ['group', 'individual'] ax = multi.plot() leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, 'group,individual') df = DataFrame(randn(5, 5)) ax = df.plot(legend=True, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, 'group,individual') df.columns.name = 'new' ax = df.plot(legend=False, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, 'group,individual') ax = df.plot(legend=True, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, 'new') @pytest.mark.slow def test_no_legend(self): kinds = ['line', 'bar', 'barh', 'kde', 'area', 'hist'] df = DataFrame(rand(3, 3), columns=['a', 'b', 'c']) for kind in kinds: if not _ok_for_gaussian_kde(kind): continue ax = df.plot(kind=kind, legend=False) self._check_legend_labels(ax, visible=False) @pytest.mark.slow def test_style_by_column(self): import matplotlib.pyplot as plt fig = plt.gcf() df = DataFrame(randn(100, 3)) for markers in [{0: '^', 1: '+', 2: 'o'}, {0: '^', 1: '+'}, ['^', '+', 'o'], ['^', '+']]: fig.clf() fig.add_subplot(111) ax = df.plot(style=markers) for i, l in enumerate(ax.get_lines()[:len(markers)]): assert l.get_marker() == markers[i] @pytest.mark.slow def test_line_label_none(self): s = Series([1, 2]) ax = s.plot() assert ax.get_legend() is None ax = s.plot(legend=True) assert ax.get_legend().get_texts()[0].get_text() == 'None' @pytest.mark.slow @tm.capture_stdout def test_line_colors(self): from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax2 = df.plot(colors=custom_colors) lines2 = ax2.get_lines() for l1, l2 in zip(ax.get_lines(), lines2): assert l1.get_color() == l2.get_color() tm.close() ax = df.plot(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') ax = df.loc[:, [0]].plot(color='DodgerBlue') self._check_colors(ax.lines, linecolors=['DodgerBlue']) ax = df.plot(color='red') self._check_colors(ax.get_lines(), linecolors=['red'] * 5) tm.close() # GH 10299 custom_colors = ['#FF0000', '#0000FF', '#FFFF00', '#000000', '#FFFFFF'] ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() with pytest.raises(ValueError): # Color contains shorthand hex value results in ValueError custom_colors = ['#F00', '#00F', '#FF0', '#000', '#FFF'] # Forced show plot _check_plot_works(df.plot, color=custom_colors) @pytest.mark.slow def test_dont_modify_colors(self): colors = ['r', 'g', 'b'] pd.DataFrame(np.random.rand(10, 2)).plot(color=colors) assert len(colors) == 3 @pytest.mark.slow def test_line_colors_and_styles_subplots(self): # GH 9894 from matplotlib import cm default_colors = self._maybe_unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) axes = df.plot(subplots=True) for ax, c in zip(axes, list(default_colors)): if self.mpl_ge_2_0_0: c = [c] self._check_colors(ax.get_lines(), linecolors=c) tm.close() # single color char axes = df.plot(subplots=True, color='k') for ax in axes: self._check_colors(ax.get_lines(), linecolors=['k']) tm.close() # single color str axes = df.plot(subplots=True, color='green') for ax in axes: self._check_colors(ax.get_lines(), linecolors=['green']) tm.close() custom_colors = 'rgcby' axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() axes = df.plot(color=list(custom_colors), subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # GH 10299 custom_colors = ['#FF0000', '#0000FF', '#FFFF00', '#000000', '#FFFFFF'] axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() with pytest.raises(ValueError): # Color contains shorthand hex value results in ValueError custom_colors = ['#F00', '#00F', '#FF0', '#000', '#FFF'] # Forced show plot # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot, color=custom_colors, subplots=True) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) for cmap in ['jet', cm.jet]: axes = df.plot(colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(color='DodgerBlue', subplots=True) self._check_colors(axes[0].lines, linecolors=['DodgerBlue']) # single character style axes = df.plot(style='r', subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=['r']) tm.close() # list of styles styles = list('rgcby') axes = df.plot(style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_area_colors(self): from matplotlib import cm from matplotlib.collections import PolyCollection custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.area(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=custom_colors) handles, labels = ax.get_legend_handles_labels() if self.mpl_ge_1_5_0: self._check_colors(handles, facecolors=custom_colors) else: # legend is stored as Line2D, thus check linecolors linehandles = [x for x in handles if not isinstance(x, PolyCollection)] self._check_colors(linehandles, linecolors=custom_colors) for h in handles: assert h.get_alpha() is None tm.close() ax = df.plot.area(colormap='jet') jet_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=jet_colors) handles, labels = ax.get_legend_handles_labels() if self.mpl_ge_1_5_0: self._check_colors(handles, facecolors=jet_colors) else: linehandles = [x for x in handles if not isinstance(x, PolyCollection)] self._check_colors(linehandles, linecolors=jet_colors) for h in handles: assert h.get_alpha() is None tm.close() # When stacked=False, alpha is set to 0.5 ax = df.plot.area(colormap=cm.jet, stacked=False) self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors] self._check_colors(poly, facecolors=jet_with_alpha) handles, labels = ax.get_legend_handles_labels() if self.mpl_ge_1_5_0: linecolors = jet_with_alpha else: # Line2D can't have alpha in its linecolor linecolors = jet_colors self._check_colors(handles[:len(jet_colors)], linecolors=linecolors) for h in handles: assert h.get_alpha() == 0.5 @pytest.mark.slow def test_hist_colors(self): default_colors = self._maybe_unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) ax = df.plot.hist() self._check_colors(ax.patches[::10], facecolors=default_colors[:5]) tm.close() custom_colors = 'rgcby' ax = df.plot.hist(color=custom_colors) self._check_colors(ax.patches[::10], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.hist(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.hist(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.hist(color='DodgerBlue') self._check_colors([ax.patches[0]], facecolors=['DodgerBlue']) ax = df.plot(kind='hist', color='green') self._check_colors(ax.patches[::10], facecolors=['green'] * 5) tm.close() @pytest.mark.slow def test_kde_colors(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) self._check_colors(ax.get_lines(), linecolors=rgba_colors) @pytest.mark.slow def test_kde_colors_and_styles_subplots(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() if not self.mpl_ge_1_5_0: pytest.skip("mpl is not supported") from matplotlib import cm default_colors = self._maybe_unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) axes = df.plot(kind='kde', subplots=True) for ax, c in zip(axes, list(default_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # single color char axes = df.plot(kind='kde', color='k', subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=['k']) tm.close() # single color str axes = df.plot(kind='kde', color='red', subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=['red']) tm.close() custom_colors = 'rgcby' axes = df.plot(kind='kde', color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) for cmap in ['jet', cm.jet]: axes = df.plot(kind='kde', colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(kind='kde', color='DodgerBlue', subplots=True) self._check_colors(axes[0].lines, linecolors=['DodgerBlue']) # single character style axes = df.plot(kind='kde', style='r', subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=['r']) tm.close() # list of styles styles = list('rgcby') axes = df.plot(kind='kde', style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_boxplot_colors(self): def _check_colors(bp, box_c, whiskers_c, medians_c, caps_c='k', fliers_c=None): # TODO: outside this func? if fliers_c is None: fliers_c = 'k' if self.mpl_ge_2_0_0 else 'b' self._check_colors(bp['boxes'], linecolors=[box_c] * len(bp['boxes'])) self._check_colors(bp['whiskers'], linecolors=[whiskers_c] * len(bp['whiskers'])) self._check_colors(bp['medians'], linecolors=[medians_c] * len(bp['medians'])) self._check_colors(bp['fliers'], linecolors=[fliers_c] * len(bp['fliers'])) self._check_colors(bp['caps'], linecolors=[caps_c] * len(bp['caps'])) default_colors = self._maybe_unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) bp = df.plot.box(return_type='dict') _check_colors(bp, default_colors[0], default_colors[0], default_colors[2]) tm.close() dict_colors = dict(boxes='#572923', whiskers='#982042', medians='#804823', caps='#123456') bp = df.plot.box(color=dict_colors, sym='r+', return_type='dict') _check_colors(bp, dict_colors['boxes'], dict_colors['whiskers'], dict_colors['medians'], dict_colors['caps'], 'r') tm.close() # partial colors dict_colors = dict(whiskers='c', medians='m') bp = df.plot.box(color=dict_colors, return_type='dict') _check_colors(bp, default_colors[0], 'c', 'm') tm.close() from matplotlib import cm # Test str -> colormap functionality bp = df.plot.box(colormap='jet', return_type='dict') jet_colors = lmap(cm.jet, np.linspace(0, 1, 3)) _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2]) tm.close() # Test colormap functionality bp = df.plot.box(colormap=cm.jet, return_type='dict') _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2]) tm.close() # string color is applied to all artists except fliers bp = df.plot.box(color='DodgerBlue', return_type='dict') _check_colors(bp, 'DodgerBlue', 'DodgerBlue', 'DodgerBlue', 'DodgerBlue') # tuple is also applied to all artists except fliers bp = df.plot.box(color=(0, 1, 0), sym='#123456', return_type='dict') _check_colors(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), '#123456') with pytest.raises(ValueError): # Color contains invalid key results in ValueError df.plot.box(color=dict(boxes='red', xxxx='blue')) def test_default_color_cycle(self): import matplotlib.pyplot as plt colors = list('rgbk') if self.mpl_ge_1_5_0: import cycler plt.rcParams['axes.prop_cycle'] = cycler.cycler('color', colors) else: plt.rcParams['axes.color_cycle'] = colors df = DataFrame(randn(5, 3)) ax = df.plot() expected = self._maybe_unpack_cycler(plt.rcParams)[:3] self._check_colors(ax.get_lines(), linecolors=expected) def test_unordered_ts(self): df = DataFrame(np.array([3.0, 2.0, 1.0]), index=[date(2012, 10, 1), date(2012, 9, 1), date(2012, 8, 1)], columns=['test']) ax = df.plot() xticks = ax.lines[0].get_xdata() assert xticks[0] < xticks[1] ydata = ax.lines[0].get_ydata() tm.assert_numpy_array_equal(ydata, np.array([1.0, 2.0, 3.0])) def test_kind_both_ways(self): df = DataFrame({'x': [1, 2, 3]}) for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue df.plot(kind=kind) getattr(df.plot, kind)() for kind in ['scatter', 'hexbin']: df.plot('x', 'x', kind=kind) getattr(df.plot, kind)('x', 'x') def test_all_invalid_plot_data(self): df = DataFrame(list('abcd')) for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue with pytest.raises(TypeError): df.plot(kind=kind) @pytest.mark.slow def test_partially_invalid_plot_data(self): with tm.RNGContext(42): df = DataFrame(randn(10, 2), dtype=object) df[np.random.rand(df.shape[0]) > 0.5] = 'a' for kind in plotting._core._common_kinds: if not _ok_for_gaussian_kde(kind): continue with pytest.raises(TypeError): df.plot(kind=kind) with tm.RNGContext(42): # area plot doesn't support positive/negative mixed data kinds = ['area'] df = DataFrame(rand(10, 2), dtype=object) df[np.random.rand(df.shape[0]) > 0.5] = 'a' for kind in kinds: with pytest.raises(TypeError): df.plot(kind=kind) def test_invalid_kind(self): df = DataFrame(randn(10, 2)) with pytest.raises(ValueError): df.plot(kind='aasdf') @pytest.mark.slow def test_hexbin_basic(self): df = self.hexbin_df ax = df.plot.hexbin(x='A', y='B', gridsize=10) # TODO: need better way to test. This just does existence. assert len(ax.collections) == 1 # GH 6951 axes = df.plot.hexbin(x='A', y='B', subplots=True) # hexbin should have 2 axes in the figure, 1 for plotting and another # is colorbar assert len(axes[0].figure.axes) == 2 # return value is single axes self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) @pytest.mark.slow def test_hexbin_with_c(self): df = self.hexbin_df ax = df.plot.hexbin(x='A', y='B', C='C') assert len(ax.collections) == 1 ax = df.plot.hexbin(x='A', y='B', C='C', reduce_C_function=np.std) assert len(ax.collections) == 1 @pytest.mark.slow def test_hexbin_cmap(self): df = self.hexbin_df # Default to BuGn ax = df.plot.hexbin(x='A', y='B') assert ax.collections[0].cmap.name == 'BuGn' cm = 'cubehelix' ax = df.plot.hexbin(x='A', y='B', colormap=cm) assert ax.collections[0].cmap.name == cm @pytest.mark.slow def test_no_color_bar(self): df = self.hexbin_df ax = df.plot.hexbin(x='A', y='B', colorbar=None) assert ax.collections[0].colorbar is None @pytest.mark.slow def test_allow_cmap(self): df = self.hexbin_df ax = df.plot.hexbin(x='A', y='B', cmap='YlGn') assert ax.collections[0].cmap.name == 'YlGn' with pytest.raises(TypeError): df.plot.hexbin(x='A', y='B', cmap='YlGn', colormap='BuGn') @pytest.mark.slow def test_pie_df(self): df = DataFrame(np.random.rand(5, 3), columns=['X', 'Y', 'Z'], index=['a', 'b', 'c', 'd', 'e']) with pytest.raises(ValueError): df.plot.pie() ax = _check_plot_works(df.plot.pie, y='Y') self._check_text_labels(ax.texts, df.index) ax = _check_plot_works(df.plot.pie, y=2) self._check_text_labels(ax.texts, df.index) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.pie, subplots=True) assert len(axes) == len(df.columns) for ax in axes: self._check_text_labels(ax.texts, df.index) for ax, ylabel in zip(axes, df.columns): assert ax.get_ylabel() == ylabel labels = ['A', 'B', 'C', 'D', 'E'] color_args = ['r', 'g', 'b', 'c', 'm'] with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.pie, subplots=True, labels=labels, colors=color_args) assert len(axes) == len(df.columns) for ax in axes: self._check_text_labels(ax.texts, labels) self._check_colors(ax.patches, facecolors=color_args) def test_pie_df_nan(self): df = DataFrame(np.random.rand(4, 4)) for i in range(4): df.iloc[i, i] = np.nan fig, axes = self.plt.subplots(ncols=4) df.plot.pie(subplots=True, ax=axes, legend=True) base_expected = ['0', '1', '2', '3'] for i, ax in enumerate(axes): expected = list(base_expected) # force copy expected[i] = '' result = [x.get_text() for x in ax.texts] assert result == expected # legend labels # NaN's not included in legend with subplots # see https://github.com/pandas-dev/pandas/issues/8390 assert ([x.get_text() for x in ax.get_legend().get_texts()] == base_expected[:i] + base_expected[i + 1:]) @pytest.mark.slow def test_errorbar_plot(self): with warnings.catch_warnings(): d = {'x': np.arange(12), 'y': np.arange(12, 0, -1)} df = DataFrame(d) d_err = {'x': np.ones(12) * 0.2, 'y': np.ones(12) * 0.4} df_err = DataFrame(d_err) # check line plots ax = _check_plot_works(df.plot, yerr=df_err, logy=True) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, logx=True, logy=True) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, loglog=True) self._check_has_errorbars(ax, xerr=0, yerr=2) kinds = ['line', 'bar', 'barh'] for kind in kinds: ax = _check_plot_works(df.plot, yerr=df_err['x'], kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, xerr=df_err, kind=kind) self._check_has_errorbars(ax, xerr=2, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err['x'], xerr=df_err['x'], kind=kind) self._check_has_errorbars(ax, xerr=2, yerr=2) ax = _check_plot_works(df.plot, xerr=0.2, yerr=0.2, kind=kind) self._check_has_errorbars(ax, xerr=2, yerr=2) # _check_plot_works adds an ax so catch warning. see GH #13188 axes = _check_plot_works(df.plot, yerr=df_err, xerr=df_err, subplots=True, kind=kind) self._check_has_errorbars(axes, xerr=1, yerr=1) ax = _check_plot_works((df + 1).plot, yerr=df_err, xerr=df_err, kind='bar', log=True) self._check_has_errorbars(ax, xerr=2, yerr=2) # yerr is raw error values ax = _check_plot_works(df['y'].plot, yerr=np.ones(12) * 0.4) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(df.plot, yerr=np.ones((2, 12)) * 0.4) self._check_has_errorbars(ax, xerr=0, yerr=2) # yerr is iterator import itertools ax = _check_plot_works(df.plot, yerr=itertools.repeat(0.1, len(df))) self._check_has_errorbars(ax, xerr=0, yerr=2) # yerr is column name for yerr in ['yerr', u('誤差')]: s_df = df.copy() s_df[yerr] = np.ones(12) * 0.2 ax = _check_plot_works(s_df.plot, yerr=yerr) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(s_df.plot, y='y', x='x', yerr=yerr) self._check_has_errorbars(ax, xerr=0, yerr=1) with pytest.raises(ValueError): df.plot(yerr=np.random.randn(11)) df_err = DataFrame({'x': ['zzz'] * 12, 'y': ['zzz'] * 12}) with pytest.raises((ValueError, TypeError)): df.plot(yerr=df_err) @pytest.mark.slow def test_errorbar_with_integer_column_names(self): # test with integer column names df = DataFrame(np.random.randn(10, 2)) df_err = DataFrame(np.random.randn(10, 2)) ax = _check_plot_works(df.plot, yerr=df_err) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, y=0, yerr=1) self._check_has_errorbars(ax, xerr=0, yerr=1) @pytest.mark.slow def test_errorbar_with_partial_columns(self): df = DataFrame(np.random.randn(10, 3)) df_err = DataFrame(np.random.randn(10, 2), columns=[0, 2]) kinds = ['line', 'bar'] for kind in kinds: ax = _check_plot_works(df.plot, yerr=df_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ix = date_range('1/1/2000', periods=10, freq='M') df.set_index(ix, inplace=True) df_err.set_index(ix, inplace=True) ax = _check_plot_works(df.plot, yerr=df_err, kind='line') self._check_has_errorbars(ax, xerr=0, yerr=2) d = {'x': np.arange(12), 'y': np.arange(12, 0, -1)} df = DataFrame(d) d_err = {'x': np.ones(12) * 0.2, 'z': np.ones(12) * 0.4} df_err = DataFrame(d_err) for err in [d_err, df_err]: ax = _check_plot_works(df.plot, yerr=err) self._check_has_errorbars(ax, xerr=0, yerr=1) @pytest.mark.slow def test_errorbar_timeseries(self): with warnings.catch_warnings(): d = {'x': np.arange(12), 'y': np.arange(12, 0, -1)} d_err = {'x': np.ones(12) * 0.2, 'y': np.ones(12) * 0.4} # check time-series plots ix = date_range('1/1/2000', '1/1/2001', freq='M') tdf = DataFrame(d, index=ix) tdf_err = DataFrame(d_err, index=ix) kinds = ['line', 'bar', 'barh'] for kind in kinds: ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(tdf.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(tdf.plot, y='y', yerr=tdf_err['x'], kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(tdf.plot, y='y', yerr='x', kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) # _check_plot_works adds an ax so catch warning. see GH #13188 axes = _check_plot_works(tdf.plot, kind=kind, yerr=tdf_err, subplots=True) self._check_has_errorbars(axes, xerr=0, yerr=1) def test_errorbar_asymmetrical(self): np.random.seed(0) err = np.random.rand(3, 2, 5) # each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]... df = DataFrame(np.arange(15).reshape(3, 5)).T data = df.values ax = df.plot(yerr=err, xerr=err / 2) if self.mpl_ge_2_0_0: yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1] expected_0_0 = err[0, :, 0] * np.array([-1, 1]) tm.assert_almost_equal(yerr_0_0, expected_0_0) else: assert ax.lines[7].get_ydata()[0] == data[0, 1] - err[1, 0, 0] assert ax.lines[8].get_ydata()[0] == data[0, 1] + err[1, 1, 0] assert ax.lines[5].get_xdata()[0] == -err[1, 0, 0] / 2 assert ax.lines[6].get_xdata()[0] == err[1, 1, 0] / 2 with pytest.raises(ValueError): df.plot(yerr=err.T) tm.close() def test_table(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, table=True) _check_plot_works(df.plot, table=df) ax = df.plot() assert len(ax.tables) == 0 plotting.table(ax, df.T) assert len(ax.tables) == 1 def test_errorbar_scatter(self): df = DataFrame( np.random.randn(5, 2), index=range(5), columns=['x', 'y']) df_err = DataFrame(np.random.randn(5, 2) / 5, index=range(5), columns=['x', 'y']) ax = _check_plot_works(df.plot.scatter, x='x', y='y') self._check_has_errorbars(ax, xerr=0, yerr=0) ax = _check_plot_works(df.plot.scatter, x='x', y='y', xerr=df_err) self._check_has_errorbars(ax, xerr=1, yerr=0) ax = _check_plot_works(df.plot.scatter, x='x', y='y', yerr=df_err) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(df.plot.scatter, x='x', y='y', xerr=df_err, yerr=df_err) self._check_has_errorbars(ax, xerr=1, yerr=1) def _check_errorbar_color(containers, expected, has_err='has_xerr'): lines = [] errs = [c.lines for c in ax.containers if getattr(c, has_err, False)][0] for el in errs: if is_list_like(el): lines.extend(el) else: lines.append(el) err_lines = [x for x in lines if x in ax.collections] self._check_colors( err_lines, linecolors=np.array([expected] * len(err_lines))) # GH 8081 df = DataFrame( np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) ax = df.plot.scatter(x='a', y='b', xerr='d', yerr='e', c='red') self._check_has_errorbars(ax, xerr=1, yerr=1) _check_errorbar_color(ax.containers, 'red', has_err='has_xerr') _check_errorbar_color(ax.containers, 'red', has_err='has_yerr') ax = df.plot.scatter(x='a', y='b', yerr='e', color='green') self._check_has_errorbars(ax, xerr=0, yerr=1) _check_errorbar_color(ax.containers, 'green', has_err='has_yerr') @pytest.mark.slow def test_sharex_and_ax(self): # https://github.com/pandas-dev/pandas/issues/9737 using gridspec, # the axis in fig.get_axis() are sorted differently than pandas # expected them, so make sure that only the right ones are removed import matplotlib.pyplot as plt plt.close('all') gs, axes = _generate_4_axes_via_gridspec() df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [1, 2, 3, 4, 5, 6], "c": [1, 2, 3, 4, 5, 6], "d": [1, 2, 3, 4, 5, 6]}) def _check(axes): for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[0], axes[2]]: self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible( ax.get_xticklabels(minor=True), visible=False) for ax in [axes[1], axes[3]]: self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible( ax.get_xticklabels(minor=True), visible=True) for ax in axes: df.plot(x="a", y="b", title="title", ax=ax, sharex=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() # without sharex, no labels should be touched! for ax in axes: df.plot(x="a", y="b", title="title", ax=ax) gs.tight_layout(plt.gcf()) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_sharey_and_ax(self): # https://github.com/pandas-dev/pandas/issues/9737 using gridspec, # the axis in fig.get_axis() are sorted differently than pandas # expected them, so make sure that only the right ones are removed import matplotlib.pyplot as plt gs, axes = _generate_4_axes_via_gridspec() df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [1, 2, 3, 4, 5, 6], "c": [1, 2, 3, 4, 5, 6], "d": [1, 2, 3, 4, 5, 6]}) def _check(axes): for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible( ax.get_xticklabels(minor=True), visible=True) for ax in [axes[0], axes[1]]: self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[2], axes[3]]: self._check_visible(ax.get_yticklabels(), visible=False) for ax in axes: df.plot(x="a", y="b", title="title", ax=ax, sharey=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharey=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() # without sharex, no labels should be touched! for ax in axes: df.plot(x="a", y="b", title="title", ax=ax) gs.tight_layout(plt.gcf()) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) def test_memory_leak(self): """ Check that every plot type gets properly collected. """ import weakref import gc results = {} for kind in plotting._core._plot_klass.keys(): if not _ok_for_gaussian_kde(kind): continue args = {} if kind in ['hexbin', 'scatter', 'pie']: df = self.hexbin_df args = {'x': 'A', 'y': 'B'} elif kind == 'area': df = self.tdf.abs() else: df = self.tdf # Use a weakref so we can see if the object gets collected without # also preventing it from being collected results[kind] = weakref.proxy(df.plot(kind=kind, **args)) # have matplotlib delete all the figures tm.close() # force a garbage collection gc.collect() for key in results: # check that every plot was collected with pytest.raises(ReferenceError): # need to actually access something to get an error results[key].lines @pytest.mark.slow def test_df_subplots_patterns_minorticks(self): # GH 10657 import matplotlib.pyplot as plt df = DataFrame(np.random.randn(10, 2), index=date_range('1/1/2000', periods=10), columns=list('AB')) # shared subplots fig, axes = plt.subplots(2, 1, sharex=True) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() fig, axes = plt.subplots(2, 1) with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() # not shared fig, axes = plt.subplots(2, 1) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_df_gridspec_patterns(self): # GH 10819 import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ts = Series(np.random.randn(10), index=date_range('1/1/2000', periods=10)) df = DataFrame(np.random.randn(10, 2), index=ts.index, columns=list('AB')) def _get_vertical_grid(): gs = gridspec.GridSpec(3, 1) fig = plt.figure() ax1 = fig.add_subplot(gs[:2, :]) ax2 = fig.add_subplot(gs[2, :]) return ax1, ax2 def _get_horizontal_grid(): gs = gridspec.GridSpec(1, 3) fig = plt.figure() ax1 = fig.add_subplot(gs[:, :2]) ax2 = fig.add_subplot(gs[:, 2]) return ax1, ax2 for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]: ax1 = ts.plot(ax=ax1) assert len(ax1.lines) == 1 ax2 = df.plot(ax=ax2) assert len(ax2.lines) == 2 for ax in [ax1, ax2]: self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible( ax.get_xticklabels(minor=True), visible=True) tm.close() # subplots=True for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]: axes = df.plot(subplots=True, ax=[ax1, ax2]) assert len(ax1.lines) == 1 assert len(ax2.lines) == 1 for ax in axes: self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible( ax.get_xticklabels(minor=True), visible=True) tm.close() # vertical / subplots / sharex=True / sharey=True ax1, ax2 = _get_vertical_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True) assert len(axes[0].lines) == 1 assert len(axes[1].lines) == 1 for ax in [ax1, ax2]: # yaxis are visible because there is only one column self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of axes0 (top) are hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() # horizontal / subplots / sharex=True / sharey=True ax1, ax2 = _get_horizontal_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True) assert len(axes[0].lines) == 1 assert len(axes[1].lines) == 1 self._check_visible(axes[0].get_yticklabels(), visible=True) # yaxis of axes1 (right) are hidden self._check_visible(axes[1].get_yticklabels(), visible=False) for ax in [ax1, ax2]: # xaxis are visible because there is only one column self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # boxed def _get_boxed_grid(): gs = gridspec.GridSpec(3, 3) fig = plt.figure() ax1 = fig.add_subplot(gs[:2, :2]) ax2 = fig.add_subplot(gs[:2, 2]) ax3 = fig.add_subplot(gs[2, :2]) ax4 = fig.add_subplot(gs[2, 2]) return ax1, ax2, ax3, ax4 axes = _get_boxed_grid() df = DataFrame(np.random.randn(10, 4), index=ts.index, columns=list('ABCD')) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 # axis are visible because these are not shared self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # subplots / sharex=True / sharey=True axes = _get_boxed_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True, sharey=True) for ax in axes: assert len(ax.lines) == 1 for ax in [axes[0], axes[2]]: # left column self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[1], axes[3]]: # right column self._check_visible(ax.get_yticklabels(), visible=False) for ax in [axes[0], axes[1]]: # top row self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) for ax in [axes[2], axes[3]]: # bottom row self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_df_grid_settings(self): # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 self._check_grid_settings( DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4]}), plotting._core._dataframe_kinds, kws={'x': 'a', 'y': 'b'}) def test_invalid_colormap(self): df = DataFrame(randn(3, 2), columns=['A', 'B']) with pytest.raises(ValueError): df.plot(colormap='invalid_colormap') def test_plain_axes(self): # supplied ax itself is a SubplotAxes, but figure contains also # a plain Axes object (GH11556) fig, ax = self.plt.subplots() fig.add_axes([0.2, 0.2, 0.2, 0.2]) Series(rand(10)).plot(ax=ax) # suppliad ax itself is a plain Axes, but because the cmap keyword # a new ax is created for the colorbar -> also multiples axes (GH11520) df = DataFrame({'a': randn(8), 'b': randn(8)}) fig = self.plt.figure() ax = fig.add_axes((0, 0, 1, 1)) df.plot(kind='scatter', ax=ax, x='a', y='b', c='a', cmap='hsv') # other examples fig, ax = self.plt.subplots() from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) Series(rand(10)).plot(ax=ax) Series(rand(10)).plot(ax=cax) fig, ax = self.plt.subplots() from mpl_toolkits.axes_grid.inset_locator import inset_axes iax = inset_axes(ax, width="30%", height=1., loc=3) Series(rand(10)).plot(ax=ax) Series(rand(10)).plot(ax=iax) def test_passed_bar_colors(self): import matplotlib as mpl color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] colormap = mpl.colors.ListedColormap(color_tuples) barplot = pd.DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap) assert color_tuples == [c.get_facecolor() for c in barplot.patches] def test_rcParams_bar_colors(self): import matplotlib as mpl color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] try: # mpl 1.5 with mpl.rc_context( rc={'axes.prop_cycle': mpl.cycler("color", color_tuples)}): barplot = pd.DataFrame([[1, 2, 3]]).plot(kind="bar") except (AttributeError, KeyError): # mpl 1.4 with mpl.rc_context(rc={'axes.color_cycle': color_tuples}): barplot = pd.DataFrame([[1, 2, 3]]).plot(kind="bar") assert color_tuples == [c.get_facecolor() for c in barplot.patches] @pytest.mark.parametrize('method', ['line', 'barh', 'bar']) def test_secondary_axis_font_size(self, method): # GH: 12565 df = (pd.DataFrame(np.random.randn(15, 2), columns=list('AB')) .assign(C=lambda df: df.B.cumsum()) .assign(D=lambda df: df.C * 1.1)) fontsize = 20 sy = ['C', 'D'] kwargs = dict(secondary_y=sy, fontsize=fontsize, mark_right=True) ax = getattr(df.plot, method)(**kwargs) self._check_ticks_props(axes=ax.right_ax, ylabelsize=fontsize) def _generate_4_axes_via_gridspec(): import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.gridspec # noqa gs = mpl.gridspec.GridSpec(2, 2) ax_tl = plt.subplot(gs[0, 0]) ax_ll = plt.subplot(gs[1, 0]) ax_tr = plt.subplot(gs[0, 1]) ax_lr = plt.subplot(gs[1, 1]) return gs, [ax_tl, ax_ll, ax_tr, ax_lr]
bsd-3-clause
sodafree/backend
build/ipython/docs/examples/parallel/dagdeps.py
6
3566
"""Example for generating an arbitrary DAG as a dependency map. This demo uses networkx to generate the graph. Authors ------- * MinRK """ import networkx as nx from random import randint, random from IPython import parallel def randomwait(): import time from random import random time.sleep(random()) return time.time() def random_dag(nodes, edges): """Generate a random Directed Acyclic Graph (DAG) with a given number of nodes and edges.""" G = nx.DiGraph() for i in range(nodes): G.add_node(i) while edges > 0: a = randint(0,nodes-1) b=a while b==a: b = randint(0,nodes-1) G.add_edge(a,b) if nx.is_directed_acyclic_graph(G): edges -= 1 else: # we closed a loop! G.remove_edge(a,b) return G def add_children(G, parent, level, n=2): """Add children recursively to a binary tree.""" if level == 0: return for i in range(n): child = parent+str(i) G.add_node(child) G.add_edge(parent,child) add_children(G, child, level-1, n) def make_bintree(levels): """Make a symmetrical binary tree with @levels""" G = nx.DiGraph() root = '0' G.add_node(root) add_children(G, root, levels, 2) return G def submit_jobs(view, G, jobs): """Submit jobs via client where G describes the time dependencies.""" results = {} for node in nx.topological_sort(G): with view.temp_flags(after=[ results[n] for n in G.predecessors(node) ]): results[node] = view.apply(jobs[node]) return results def validate_tree(G, results): """Validate that jobs executed after their dependencies.""" for node in G: started = results[node].metadata.started for parent in G.predecessors(node): finished = results[parent].metadata.completed assert started > finished, "%s should have happened after %s"%(node, parent) def main(nodes, edges): """Generate a random graph, submit jobs, then validate that the dependency order was enforced. Finally, plot the graph, with time on the x-axis, and in-degree on the y (just for spread). All arrows must point at least slightly to the right if the graph is valid. """ from matplotlib import pyplot as plt from matplotlib.dates import date2num from matplotlib.cm import gist_rainbow print("building DAG") G = random_dag(nodes, edges) jobs = {} pos = {} colors = {} for node in G: jobs[node] = randomwait client = parallel.Client() view = client.load_balanced_view() print("submitting %i tasks with %i dependencies"%(nodes,edges)) results = submit_jobs(view, G, jobs) print("waiting for results") view.wait() print("done") for node in G: md = results[node].metadata start = date2num(md.started) runtime = date2num(md.completed) - start pos[node] = (start, runtime) colors[node] = md.engine_id validate_tree(G, results) nx.draw(G, pos, node_list=colors.keys(), node_color=colors.values(), cmap=gist_rainbow, with_labels=False) x,y = zip(*pos.values()) xmin,ymin = map(min, (x,y)) xmax,ymax = map(max, (x,y)) xscale = xmax-xmin yscale = ymax-ymin plt.xlim(xmin-xscale*.1,xmax+xscale*.1) plt.ylim(ymin-yscale*.1,ymax+yscale*.1) return G,results if __name__ == '__main__': from matplotlib import pyplot as plt # main(5,10) main(32,96) plt.show()
bsd-3-clause
asoliveira/NumShip
scripts/plot/r-velo-r-zz-plt.py
1
3085
#!/usr/bin/env python # -*- coding: utf-8 -*- #É adimensional? adi = False #É para salvar as figuras(True|False)? save = True #Caso seja para salvar, qual é o formato desejado? formato = 'jpg' #Caso seja para salvar, qual é o diretório que devo salvar? dircg = 'fig-sen' #Caso seja para salvar, qual é o nome do arquivo? nome = 'r-velo-r-zz' #Qual título colocar no gráficos? titulo = ''#'Curva de ZigZag' titulo2='' #Qual a cor dos gráficos? pc = 'k' r1c = 'b' r2c = 'y' r3c = 'r' #Estilo de linha ps = '-' r1s = '-' r2s = '-' r3s = '-' import os import scipy as sp import matplotlib.pyplot as plt from libplot import * acelhis = sp.genfromtxt('../entrada/padrao/CurvaZigZag/velo.dat') acelhis2 = sp.genfromtxt('../entrada/r/saida1.1/CurvaZigZag/velo.dat') acelhis3 = sp.genfromtxt('../entrada/r/saida1.2/CurvaZigZag/velo.dat') acelhis4 = sp.genfromtxt('../entrada/r/saida1.3/CurvaZigZag/velo.dat') lemehis = sp.genfromtxt('../entrada/padrao/CurvaZigZag/leme.dat') lemehis2 = sp.genfromtxt('../entrada/r/saida1.1/CurvaZigZag/leme.dat') lemehis3 = sp.genfromtxt('../entrada/r/saida1.2/CurvaZigZag/leme.dat') lemehis4 = sp.genfromtxt('../entrada/r/saida1.3/CurvaZigZag/leme.dat') axl = [0, 1000, -0.7, 0.7] axl2 = [0, 1000, -25, 25]#do leme #Plotando a Curva de Giro if adi: ylabel = r'$t\prime$' xacellabel = r'$ r\prime$' else: ylabel = r'$\dot \psi \quad graus/s$' xacellabel = r'$t \quad segundos$' plt.subplot2grid((1,4),(0,0), colspan=3) #Padrao plt.plot(acelhis[:, 0], acelhis[:, 6] * (180/sp.pi), color = pc, linestyle = ps, linewidth = 2, label=ur'padrão') plt.plot(acelhis2[:, 0], acelhis2[:, 6] * (180/sp.pi), color = r1c,linestyle = r1s, linewidth = 2, label=ur'1.1--$r$') plt.plot(acelhis3[:, 0], acelhis3[:, 6] * (180/sp.pi), color = r2c, linestyle = r2s, linewidth = 2, label=ur'1.2--$r$') plt.plot(acelhis4[:, 0], acelhis4[:, 6] * (180/sp.pi), color = r3c, linestyle = r3s, linewidth = 2, label=ur'1.3--$r$') plt.title(titulo) plt.legend(bbox_to_anchor=(1.1, 1), loc=2, borderaxespad=0.) plt.ylabel(ylabel) plt.xlabel(xacellabel) plt.axis(axl) plt.grid(True) plt.twinx() plt.plot(lemehis[:, 0], lemehis[:, 1] * (180/sp.pi), color = pc, linestyle = "--", linewidth = 1, label=ur'leme--padrão') plt.plot(lemehis2[:, 0], lemehis2[:, 1] * (180/sp.pi), color = r1c, linestyle = "--", linewidth = 1, label=ur'leme--1.1$r$') plt.plot(lemehis3[:, 0], lemehis3[:, 1] * (180/sp.pi), color = r2c, linestyle = "--", linewidth = 1, label=ur'leme--1.2$r$') plt.plot(lemehis4[:, 0], lemehis4[:, 1] * (180/sp.pi), color = r3c, linestyle = "--", linewidth = 1, label=ur'leme--1.3$r$') plt.title(titulo2) plt.legend(bbox_to_anchor=(1.1, 0), loc=3, borderaxespad=0.) plt.ylabel(r"$\delta_R$") plt.axis(axl2) plt.grid(False) if save: if not os.path.exists(dircg): os.makedirs(dircg) if os.path.exists(dircg + '/' + nome + '.' + formato): os.remove(dircg + '/' + nome + '.' + formato) plt.savefig(dircg + '/' + nome + '.' + formato , format=formato) else: plt.show()
gpl-3.0
ogvalt/saturn
spiking_som.py
1
18544
from brian2 import * from pyqtgraph.Qt import QtGui, QtCore import numpy as np import pyqtgraph as pg import matplotlib.pyplot as plt from dataset import ArtificialDataSet class ReceptiveField: # Parameter that used in standard deviation definition gamma = 1.5 def __init__(self, bank_size=10, I_min=0.0, I_max=1.0): self.bank_size = bank_size self.field_mu = np.array([(I_min + ((2 * i - 2) / 2) * ((I_max - I_min) / (bank_size - 1))) for i in range(1, bank_size + 1)]) self.field_sigma = (1.0 / self.gamma) * (I_max - I_min) def float_to_membrane_potential(self, input_vector): try: input_vector = input_vector.reshape((input_vector.shape[0], 1)) except Exception as exc: print("Exception: {0}\nObject shape: {1}".format(repr(exc), input_vector.shape)) exit(1) temp = np.exp(-((input_vector - self.field_mu) ** 2) / (2 * self.field_sigma * self.field_sigma)) / \ (np.sqrt(2 * np.pi) * self.field_sigma) temp += np.exp(-((input_vector - 1 - self.field_mu) ** 2) / (2 * self.field_sigma * self.field_sigma)) / \ (np.sqrt(2 * np.pi) * self.field_sigma) temp += np.exp(-((input_vector + 1 - self.field_mu) ** 2) / (2 * self.field_sigma * self.field_sigma)) / \ (np.sqrt(2 * np.pi) * self.field_sigma) return temp if __name__ == "__main__": prefs.codegen.target = 'numpy' np.random.seed(1) seed(1) np.set_printoptions(suppress=True) bank_size = 10 diff_method = 'euler' # inputs = np.random.rand(3) # inputs = np.array([0.332, 0.167, 0.946]) # inputs = np.array([0.013, 0.3401, 0.2196]) # inputs = np.array([0.829, 0.7452, 0.6728]) # print(inputs) # N = inputs.shape[0] * bank_size N = 20 rf = ReceptiveField(bank_size=bank_size, I_min=0.05, I_max=0.95) # potential_input = rf.float_to_membrane_potential(inputs) # potential_input = potential_input.flatten() # TABLE 1 # (A) Neuronal parameters, used in (1) and (4) time_step = 0.01; tau_m = 10.0 * ms; tau_m_inh = 5 * ms; tau_m_som = 3 * ms theta_reset_u = -0.5; theta_reset_inh = -0.0; theta_reset_som = 0.0 theta_u = 0.5; theta_u_inh = 0.01; theta_som = 0.8 # (B) Synaptic parameters, used in (2) and (3) for different synapse types # temporal layer to som layer (u to v) tau_r_afferent = 0.2 * ms; tau_f_afferent = 1.0 * ms # temporal layer (u to inh exc, u to inh inh, inh to u) tau_r_exc = 0.4 * ms; tau_f_exc = 2.0 * ms; tau_r_inh = 0.2 * ms; tau_f_inh = 1.0 * ms tau_r_inh2u = 1.0 * ms; tau_f_inh2u = 5.0 * ms # som layer tau_r_lateral = 0.1 * ms; tau_f_lateral = 0.5 * ms # (C) Maximum magnitudes of synaptic connection strength w_syn_temporal_to_som_max = 2.2; w_syn_u2inh_exc_max = 1.0; w_syn_u2inh_inh_max = 1.0; w_syn_inh2u_max = 100.0 w_syn_som_to_som_max = 1.0 # (D) Neighbourhood parameters, used in (6) and (7), for layer v (som) a = 3.0; b = 3.0; X = 3.0; X_ = 3.0 # (E) Learning parameter, used in (5) # A_plus - Max synaptic strength, A_minus - max synaptic weakness; tau_plus, tau_minus - time constant of STDP A_plus = 0.0016; A_minus = 0.0055; tau_plus = 11; tau_minus = 10 # used in (7) T = 10.0; power_n = 2.0 # used in (6) pi = np.pi # size of the self-organizing map map_size = 10 temporal_layer_neuron_equ = ''' dtime/dt = 1 / ms : 1 # inhibition connection to u layer ds_inh2u/dt = (-s_inh2u)/tau_r_inh2u: 1 dw_inh2u/dt = (s_inh2u - w_inh2u)/tau_f_inh2u: 1 # membrane potential of u layer dv/dt = (-v + I_ext - w_inh2u) / tau_m: 1 I_ext : 1 ''' inhibition_neuron_equ = ''' dtime/dt = 1 / ms : 1 # inhibition connection # s_inh - internal variable # w_inh - output potential ds_inh/dt = (-s_inh)/tau_r_inh: 1 dw_inh/dt = (s_inh - w_inh)/tau_f_inh: 1 # excitation connection # s_exc - internal variable # w_exc - output potential ds_exc/dt = (-s_exc)/tau_r_exc: 1 dw_exc/dt = (s_exc - w_exc)/tau_f_exc: 1 # diff equation membrane potential of inhibition neuron dv/dt = (-v + w_exc - w_inh) / tau_m_inh: 1 ''' som_layer_neuron_equ = ''' dglobal_time/dt = 1 / ms : 1 dtime/dt = 1 / ms : 1 # Afferent connection (from temporal layer to som layer) ds_afferent/dt = (-s_afferent)/tau_r_afferent: 1 dw_afferent/dt = (s_afferent - w_afferent)/tau_f_afferent: 1 # lateral connection ds_lateral/dt = (-s_lateral)/tau_r_lateral: 1 dw_lateral/dt = (s_lateral - w_lateral)/tau_f_lateral: 1 # membrane potential of u layer dv/dt = (-v + w_lateral + w_afferent) / tau_m_som: 1 ''' temporal_layer = NeuronGroup(N, temporal_layer_neuron_equ, threshold='v>theta_u', method=diff_method, reset='''v = theta_reset_u; time = 0''') # temporal_layer.I_ext = potential_input # inhibition neuron inhibition_neuron = NeuronGroup(1, inhibition_neuron_equ, threshold='v>theta_u_inh', method=diff_method, reset='''v = theta_reset_inh; time = 0''') # self-organizing layer som_layer = NeuronGroup(map_size * map_size, som_layer_neuron_equ, threshold='v>theta_som', method=diff_method, reset='''v = theta_reset_som; time = 0''') # v to inh neuron, excitation connection u2inh_excitation = Synapses(temporal_layer, target=inhibition_neuron, method=diff_method, on_pre=''' s_exc += w_syn A_pre = (- w_syn) * A_minus * (1 - 1/tau_minus) ** time_post w_syn = clip(w_syn + plasticity * A_pre, 0, w_syn_u2inh_exc_max) ''', on_post=''' A_post = exp(-w_syn) * A_plus * (1 - 1/tau_plus) ** time_pre w_syn = clip(w_syn + plasticity * A_post, 0, w_syn_u2inh_exc_max) ''', model=''' w_syn : 1 # synaptic weight / synapse efficacy plasticity : boolean (shared) ''') u2inh_excitation.connect(i=np.arange(N), j=0) u2inh_excitation.w_syn = 'rand() * w_syn_u2inh_exc_max' # v to inh neuron, inhibition connection u2inh_inhibition = Synapses(temporal_layer, target=inhibition_neuron, method=diff_method, on_pre=''' s_inh += w_syn A_pre = (- w_syn) * A_minus * (1 - 1/tau_minus) * time_post w_syn = clip(w_syn + plasticity * A_pre, 0, w_syn_u2inh_inh_max) ''', on_post=''' A_post = exp(-w_syn) * A_plus * (1 - 1/tau_plus) * time_pre w_syn = clip(w_syn + plasticity * A_post, 0, w_syn_u2inh_inh_max) ''', model=''' w_syn : 1 # synaptic weight / synapse efficacy plasticity : boolean (shared) ''') u2inh_inhibition.connect(i=np.arange(N), j=0) u2inh_inhibition.w_syn = 'rand() * w_syn_u2inh_inh_max' # inh neuron to v, inhibition connection inh2u_inhibition = Synapses(inhibition_neuron, target=temporal_layer, method=diff_method, on_pre=''' s_inh2u += w_syn A_pre = (- w_syn) * A_minus * (1 - 1/tau_minus) * time_post w_syn = clip(w_syn + plasticity * A_pre, 0, w_syn_inh2u_max) ''', on_post=''' A_post = exp(-w_syn) * A_plus * (1 - 1/tau_plus) * time_pre w_syn = clip(w_syn + plasticity * A_post, 0, w_syn_inh2u_max) ''', model=''' w_syn : 1 # synaptic weight / synapse efficacy plasticity : boolean (shared) ''') inh2u_inhibition.connect(i=0, j=np.arange(N)) # inh2u_inhibition.w_syn = 'rand() * w_syn_inh2u_max' inh2u_inhibition.w_syn = 0.5 * w_syn_inh2u_max # som lateral connection som_synapse = Synapses(som_layer, target=som_layer, method=diff_method, on_pre=''' radius = X - (X - X_)/(1+(2**0.5 - 1)*((global_time/T)**(2 * power_n))) y_pre = floor(i / map_size) x_pre = i - y_pre * map_size y_post = floor(j/map_size) x_post = j - y_post * map_size dist = (x_post - x_pre)**2 + (y_post - y_pre)**2 G1 = (1 + a) * exp(- dist/(radius**2)) / (2 * pi * radius**2) G2 = a * exp(- dist/(b * radius)**2) / (2 * pi * (b * radius)**2) w_syn = clip(G1 + G2, 0, w_syn_som_to_som_max) s_lateral += w_syn ''', on_post=''' ''', model=''' w_syn : 1 # synaptic weight / synapse efficacy ''') som_synapse.connect(condition='i!=j') # som afferent connection temporal_to_som_synapse = Synapses(temporal_layer, target=som_layer, method=diff_method, on_pre=''' s_afferent += w_syn A_pre = (- w_syn) * A_minus * (1 - 1/tau_minus) ** time_post w_syn = clip(w_syn + plasticity * A_pre, 0, w_syn_temporal_to_som_max) ''', on_post=''' A_post = exp(-w_syn) * A_plus * (1 - 1/tau_plus) * time_pre w_syn = clip(w_syn + plasticity * A_post, 0, w_syn_temporal_to_som_max) ''', model=''' w_syn : 1 # synaptic weight / synapse efficacy plasticity : boolean (shared) ''') temporal_to_som_synapse.connect() temporal_to_som_synapse.w_syn = np.random.randint(low=40000, high=60000, size=N*map_size*map_size) \ * w_syn_temporal_to_som_max / 100000.0 # Visualization som_spike_mon = SpikeMonitor(som_layer) u_spike_mon = SpikeMonitor(temporal_layer) # u_state_mon_v = StateMonitor(temporal_layer, 'v', record=True) # u_state_mon_time = StateMonitor(temporal_layer, 'time', record=True) # u_state_mon_w = StateMonitor(temporal_layer, 'w_inh2u', record=True) inh_spike_mon = SpikeMonitor(inhibition_neuron) # inh_state_mon = StateMonitor(inhibition_neuron, 'v', record=True) # w_exc_neu_state = StateMonitor(inhibition_neuron, 'w_exc', record=True) # w_inh_neu_state = StateMonitor(inhibition_neuron, 'w_inh', record=True) # # w_syn_u2inh_exc = StateMonitor(u2inh_excitation, 'w_syn', record=True) defaultclock.dt = time_step * ms step = 2 plasticity_state = False u2inh_excitation.plasticity = plasticity_state u2inh_inhibition.plasticity = plasticity_state inh2u_inhibition.plasticity = plasticity_state temporal_to_som_synapse.plasticity = True # plasticity_state # simulation_time = 200 # run(simulation_time * ms, report='text') # weight visualization # simulation simulation_time = 50 attempts = 5 dataset = ArtificialDataSet(500, int(N/10)) dataset = dataset.generate_set() np.savetxt('dataset.txt', dataset, delimiter=';') plt.scatter(dataset[:, 0], dataset[:, 1], s=5) plt.show() net_model = Network(collect()) net_model.store() for vector in dataset: for it in range(attempts): net_model.restore() print("Input vector: {0}, attempt: {1}".format(vector, it)) potential_input = rf.float_to_membrane_potential(vector) potential_input = potential_input.flatten() temporal_layer.I_ext = potential_input net_model.run(simulation_time * ms, report='text') net_model.store() # visual app = QtGui.QApplication([]) win = pg.GraphicsWindow(title="som") win.resize(1000, 600) win.setWindowTitle('brain') # Enable antialiasing for prettier plots pg.setConfigOptions(antialias=True) p1 = win.addPlot(title="Region Selection") p1.plot(u_spike_mon.t / ms, u_spike_mon.i[:], pen=None, symbol='o', symbolPen=None, symbolSize=5, symbolBrush=(255, 255, 255, 255)) p1.showGrid(x=True, y=True) lr = pg.LinearRegionItem([0, simulation_time]) lr.setZValue(0) p1.addItem(lr) p2 = win.addPlot(title="Zoom on selected region") p2.plot(u_spike_mon.t / ms, u_spike_mon.i[:], pen=None, symbol='o', symbolPen=None, symbolSize=5, symbolBrush=(255, 255, 255, 255)) p2.showGrid(x=True, y=True) def updatePlot(): p2.setXRange(*lr.getRegion(), padding=0) def updateRegion(): lr.setRegion(p2.getViewBox().viewRange()[0]) lr.sigRegionChanged.connect(updatePlot) p2.sigXRangeChanged.connect(updateRegion) updatePlot() win.nextRow() p3 = win.addPlot(title="Region Selection") p3.plot(som_spike_mon.t / ms, som_spike_mon.i[:], pen=None, symbol='o', symbolPen=None, symbolSize=5, symbolBrush=(255, 255, 255, 255)) p3.showGrid(x=True, y=True) lr1 = pg.LinearRegionItem([0, 10]) lr1.setZValue(0) p3.addItem(lr1) p4 = win.addPlot(title="Zoom on selected region") p4.plot(som_spike_mon.t / ms, som_spike_mon.i[:], pen=None, symbol='o', symbolPen=None, symbolSize=5, symbolBrush=(255, 255, 255, 255)) p4.showGrid(x=True, y=True) def updatePlot2(): p4.setXRange(*lr1.getRegion(), padding=0) def updateRegion2(): lr1.setRegion(p4.getViewBox().viewRange()[0]) lr1.sigRegionChanged.connect(updatePlot2) p4.sigXRangeChanged.connect(updateRegion2) updatePlot2() u2som_syn_shape = temporal_to_som_synapse.w_syn[:].shape picture = temporal_to_som_synapse.w_syn[:].reshape(N, int(u2som_syn_shape[0] / N)) np.savetxt('weights.txt', picture, delimiter=';') win2 = QtGui.QMainWindow() win2.resize(800, 800) imv = pg.ImageView() win2.setCentralWidget(imv) win2.show() win2.setWindowTitle("SOM weights") imv.setImage(picture) # subplot(421) # # subplot(111) # title("Temporal layer spikes") # plot(u_spike_mon.t / ms, u_spike_mon.i, '.k') # xlabel('Time (ms)') # ylabel('Neuron index') # grid(True) # xticks(np.arange(0.0, simulation_time + step, step)) # yticks(np.arange(-1, N + 1, 1)) # # # show() # # subplot(422) # title("Inhibition neuron spikes") # plot(inh_spike_mon.t / ms, inh_spike_mon.i, '.k') # xlabel('Time (ms)') # ylabel('Neuron index') # grid(True) # xticks(np.arange(0.0, simulation_time + step, step)) # yticks(np.arange(-1, 1, 1)) # # subplot(423) # title("u membrane potential") # for item in u_state_mon_v: # plot(u_state_mon_v.t / ms, item.v) # # plot(u_state_mon_v.t / ms, u_state_mon_v[0].v) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # # subplot(424) # title("Inhibition neuron membrane potential") # plot(inh_state_mon.t / ms, inh_state_mon[0].v) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # # subplot(425) # title("Excitation/inhibition interaction") # plot(w_exc_neu_state.t / ms, w_exc_neu_state[0].w_exc, w_exc_neu_state.t / ms, w_inh_neu_state[0].w_inh, # w_exc_neu_state.t / ms, w_exc_neu_state[0].w_exc - w_inh_neu_state[0].w_inh) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # # subplot(426) # title("Inhibition to u potential") # plot(u_state_mon_w.t / ms, u_state_mon_w[0].w_inh2u) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # # subplot(427) # title("Synaptic Weight") # for item in w_syn_u2inh_exc: # plot(w_syn_u2inh_exc.t / ms, item.w_syn) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # yticks(np.arange(-0.1, 1.1, 0.1)) # # subplot(428) # title("Synaptic time pre spike") # for item in u_state_mon_time: # plot(w_syn_u2inh_exc.t / ms, item.time) # xlabel('Time (ms)') # ylabel('Potential') # xticks(np.arange(0.0, simulation_time + step, step)) # # show() # # # subplot(111) # title("Som layer spikes") # plot(som_spike_mon.t / ms, som_spike_mon.i, '.k') # xlabel('Time (ms)') # ylabel('Neuron index') # grid(True) # xticks(np.arange(0.0, simulation_time + step, step)) # yticks(np.arange(-1, map_size * map_size + 1, 1)) # # show() if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
mit
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/tests/test_backend_pdf.py
2
6994
# -*- encoding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import six import io import os import tempfile import pytest import numpy as np from matplotlib import checkdep_usetex, cm, rcParams from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt from matplotlib.testing.determinism import (_determinism_source_date_epoch, _determinism_check) from matplotlib.testing.decorators import image_comparison from matplotlib import dviread from matplotlib.testing.compare import compare_images import matplotlib as mpl needs_usetex = pytest.mark.xfail( not checkdep_usetex(True), reason="This test needs a TeX installation") @image_comparison(baseline_images=['pdf_use14corefonts'], extensions=['pdf']) def test_use14corefonts(): rcParams['pdf.use14corefonts'] = True rcParams['font.family'] = 'sans-serif' rcParams['font.size'] = 8 rcParams['font.sans-serif'] = ['Helvetica'] rcParams['pdf.compression'] = 0 text = '''A three-line text positioned just above a blue line and containing some French characters and the euro symbol: "Merci pépé pour les 10 €"''' fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_title('Test PDF backend with option use14corefonts=True') ax.text(0.5, 0.5, text, horizontalalignment='center', verticalalignment='bottom', fontsize=14) ax.axhline(0.5, linewidth=0.5) def test_type42(): rcParams['pdf.fonttype'] = 42 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(io.BytesIO()) def test_multipage_pagecount(): with PdfPages(io.BytesIO()) as pdf: assert pdf.get_pagecount() == 0 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(pdf, format="pdf") assert pdf.get_pagecount() == 1 pdf.savefig() assert pdf.get_pagecount() == 2 def test_multipage_keep_empty(): from matplotlib.backends.backend_pdf import PdfPages from tempfile import NamedTemporaryFile # test empty pdf files # test that an empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name assert os.path.exists(filename) os.remove(filename) # test if an empty pdf is deleting itself afterwards with keep_empty=False with PdfPages(filename, keep_empty=False) as pdf: pass assert not os.path.exists(filename) # test pdf files with content, they should never be deleted fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) # test that a non-empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename) # test that a non-empty pdf is left behind with keep_empty=False with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp, keep_empty=False) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename) def test_composite_image(): # Test that figures can be saved with and without combining multiple images # (on a single set of axes) into a single composite image. X, Y = np.meshgrid(np.arange(-5, 5, 1), np.arange(-5, 5, 1)) Z = np.sin(Y ** 2) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(0, 3) ax.imshow(Z, extent=[0, 1, 0, 1]) ax.imshow(Z[::-1], extent=[2, 3, 0, 1]) plt.rcParams['image.composite_image'] = True with PdfPages(io.BytesIO()) as pdf: fig.savefig(pdf, format="pdf") assert len(pdf._file._images) == 1 plt.rcParams['image.composite_image'] = False with PdfPages(io.BytesIO()) as pdf: fig.savefig(pdf, format="pdf") assert len(pdf._file._images) == 2 def test_source_date_epoch(): """Test SOURCE_DATE_EPOCH support for PDF output""" _determinism_source_date_epoch("pdf", b"/CreationDate (D:20000101000000Z)") def test_determinism_plain(): """Test for reproducible PDF output: simple figure""" _determinism_check('', format="pdf") def test_determinism_images(): """Test for reproducible PDF output: figure with different images""" _determinism_check('i', format="pdf") def test_determinism_hatches(): """Test for reproducible PDF output: figure with different hatches""" _determinism_check('h', format="pdf") def test_determinism_markers(): """Test for reproducible PDF output: figure with different markers""" _determinism_check('m', format="pdf") def test_determinism_all(): """Test for reproducible PDF output""" _determinism_check(format="pdf") @image_comparison(baseline_images=['hatching_legend'], extensions=['pdf']) def test_hatching_legend(): """Test for correct hatching on patches in legend""" fig = plt.figure(figsize=(1, 2)) a = plt.Rectangle([0, 0], 0, 0, facecolor="green", hatch="XXXX") b = plt.Rectangle([0, 0], 0, 0, facecolor="blue", hatch="XXXX") fig.legend([a, b, a, b], ["", "", "", ""]) @image_comparison(baseline_images=['grayscale_alpha'], extensions=['pdf']) def test_grayscale_alpha(): """Masking images with NaN did not work for grayscale images""" x, y = np.ogrid[-2:2:.1, -2:2:.1] dd = np.exp(-(x**2 + y**2)) dd[dd < .1] = np.nan fig, ax = plt.subplots() ax.imshow(dd, interpolation='none', cmap='gray_r') ax.set_xticks([]) ax.set_yticks([]) # This tests tends to hit a TeX cache lock on AppVeyor. @pytest.mark.flaky(reruns=3) @needs_usetex def test_missing_psfont(monkeypatch): """An error is raised if a TeX font lacks a Type-1 equivalent""" def psfont(*args, **kwargs): return dviread.PsFont(texname='texfont', psname='Some Font', effects=None, encoding=None, filename=None) monkeypatch.setattr(dviread.PsfontsMap, '__getitem__', psfont) rcParams['text.usetex'] = True fig, ax = plt.subplots() ax.text(0.5, 0.5, 'hello') with tempfile.TemporaryFile() as tmpfile, pytest.raises(ValueError): fig.savefig(tmpfile, format='pdf') @pytest.mark.style('default') def test_pdf_savefig_when_color_is_none(tmpdir): fig, ax = plt.subplots() plt.axis('off') ax.plot(np.sin(np.linspace(-5, 5, 100)), 'v', c='none') actual_image = tmpdir.join('figure.pdf') expected_image = tmpdir.join('figure.eps') fig.savefig(str(actual_image), format='pdf') fig.savefig(str(expected_image), format='eps') result = compare_images(str(actual_image), str(expected_image), 0) assert result is None
mit
miguelzuma/montepython_zuma
montepython/analyze.py
1
95056
""" .. module:: analyze :synopsis: Extract data from chains and produce plots .. moduleauthor:: Karim Benabed <benabed@iap.fr> .. moduleauthor:: Benjamin Audren <benjamin.audren@epfl.ch> Collection of functions needed to analyze the Markov chains. This module defines as well a class :class:`Information`, that stores useful quantities, and shortens the argument passing between the functions. .. note:: Some of the methods used in this module are directly adapted from the `CosmoPmc <http://www.cosmopmc.info>`_ code from Kilbinger et. al. """ import os import math import numpy as np from itertools import count # The root plotting module, to change options like font sizes, etc... import matplotlib # The following line suppresses the need for an X server matplotlib.use("Agg") # Module for handling display import matplotlib.pyplot as plt # Module to handle warnings from matplotlib import warnings import importlib import io_mp from itertools import ifilterfalse from itertools import ifilter import scipy.ndimage # Defined to remove the burnin for all the points that were produced before the # first time where -log-likelihood <= min-minus-log-likelihood+LOG_LKL_CUTOFF LOG_LKL_CUTOFF = 3 NUM_COLORS = 6 def analyze(command_line): """ Main function, does the entire analysis. It calls in turn all the other routines from this module. To limit the arguments of each function to a reasonnable size, a :class:`Information` instance is used. This instance is initialized in this function, then appended by the other routines. """ # Check if the scipy module has the interpolate method correctly # installed (should be the case on every linux distribution with # standard numpy) try: from scipy.interpolate import interp1d Information.has_interpolate_module = True except ImportError: Information.has_interpolate_module = False warnings.warn( 'No cubic interpolation done (no interpolate method found ' + 'in scipy), only linear') # Determine how many different folders are asked through the 'info' # command, and create as many Information instances files = separate_files(command_line.files) # Create an instance of the Information class for each subgroup found in # the previous function. They will each hold all relevant information, and # be used as a compact way of exchanging information between functions information_instances = [] for item in files: info = Information(command_line) information_instances.append(info) # Prepare the files, according to the case, load the log.param, and # prepare the output (plots folder, .covmat, .info and .log files). # After this step, info.files will contain all chains. status = prepare(item, info) # If the preparation step generated new files (for instance, # translating from NS or CH to Markov Chains) this routine should stop # now. if not status: return # Compute the mean, maximum of likelihood, 1-sigma variance for this # main folder. This will create the info.chain object, which contains # all the points computed stacked in one big array. convergence(info) # check if analyze() is called directly by the user, or by the mcmc loop during an updating phase try: # command_line.update is defined when called by the mcmc loop command_line.update except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False command_line.update = 0 # compute covariance matrix, excepted when we are in update mode and convergence is too bad or too good if command_line.update and (np.amax(info.R) > 3. or np.amax(info.R) < 0.4): print '--> Not computing covariance matrix' else: try: if command_line.want_covmat: print '--> Computing covariance matrix' info.covar = compute_covariance_matrix(info) # Writing it out in name_of_folder.covmat io_mp.write_covariance_matrix( info.covar, info.backup_names, info.cov_path) except: print '--> Computing covariance matrix failed' pass # Store an array, sorted_indices, containing the list of indices # corresponding to the line with the highest likelihood as the first # element, and then as decreasing likelihood info.sorted_indices = info.chain[:, 1].argsort(0) # Writing the best-fit model in name_of_folder.bestfit bestfit_line = [elem*info.scales[i, i] for i, elem in enumerate(info.chain[info.sorted_indices[0], 2:])] io_mp.write_bestfit_file(bestfit_line, info.backup_names, info.best_fit_path) if not command_line.minimal: # Computing 1,2 and 3-sigma errors, and plot. This will create the # triangle and 1d plot by default. compute_posterior(information_instances) print '--> Writing .info and .tex files' for info in information_instances: info.write_information_files() # when called by MCMC in update mode, return R values so that they can be written for information in the chains if command_line.update: return info.R def prepare(files, info): """ Scan the whole input folder, and include all chains in it. Since you can decide to analyze some file(s), or a complete folder, this function first needs to separate between the two cases. .. warning:: If someday you change the way the chains are named, remember to change here too, because this routine assumes the chains have a double underscore in their names. .. note:: Only files ending with .txt will be selected, to keep compatibility with CosmoMC format .. note:: New in version 2.0.0: if you ask to analyze a Nested Sampling sub-folder (i.e. something that ends in `NS` with capital letters), the analyze module will translate the output from Nested Sampling to standard chains for Monte Python, and stops. You can then run the `-- info` flag on the whole folder. **This procedure is not necessary if the run was complete, but only if the Nested Sampling run was killed before completion**. Parameters ---------- files : list list of potentially only one element, containing the files to analyze. This can be only one file, or the encompassing folder, files info : Information instance Used to store the result """ # First test if the folder is a Nested Sampling or CosmoHammer folder. If # so, call the module's own routine through the clean conversion function, # which will translate the output of this other sampling into MCMC chains # that can then be analyzed. modules = ['nested_sampling', 'cosmo_hammer'] tags = ['NS', 'CH'] for module_name, tag in zip(modules, tags): action_done = clean_conversion(module_name, tag, files[0]) if action_done: return False # If the input command was an entire folder, then grab everything in it. # Too small files (below 600 octets) and subfolders are automatically # removed. folder, files, basename = recover_folder_and_files(files) info.files = files info.folder = folder info.basename = basename # Check if the log.param file exists parameter_file_path = os.path.join(folder, 'log.param') if os.path.isfile(parameter_file_path): if os.path.getsize(parameter_file_path) == 0: raise io_mp.AnalyzeError( "The log param file %s " % os.path.join(folder, 'log.param') + "seems empty") else: raise io_mp.AnalyzeError( "The log param file %s " % os.path.join(folder, 'log.param') + "is missing in the analyzed folder?") # If the folder has no subdirectory, then go for a simple infoname, # otherwise, call it with the last name basename = (os.path.basename(folder) if os.path.basename(folder) != '.' else os.path.basename(os.path.abspath( os.path.join(folder, '..')))) info.v_info_path = os.path.join(folder, basename+'.v_info') info.h_info_path = os.path.join(folder, basename+'.h_info') info.tex_path = os.path.join(folder, basename+'.tex') info.cov_path = os.path.join(folder, basename+'.covmat') info.log_path = os.path.join(folder, basename+'.log') info.best_fit_path = os.path.join(folder, basename+'.bestfit') info.param_path = parameter_file_path return True def convergence(info): """ Compute convergence for the desired chains, using Gelman-Rubin diagnostic Chains have been stored in the info instance of :class:`Information`. Note that the G-R diagnostic can be computed for a single chain, albeit it will most probably give absurd results. To do so, it separates the chain into three subchains. """ # Recovering parameter names and scales, creating tex names, extract_parameter_names(info) # Now that the number of parameters is known, the array containing bounds # can be initialised info.bounds = np.zeros((len(info.ref_names), len(info.levels), 2)) # Circle through all files to find the global maximum of likelihood #print '--> Finding global maximum of likelihood' find_maximum_of_likelihood(info) # Restarting the circling through files, this time removing the burnin, # given the maximum of likelihood previously found and the global variable # LOG_LKL_CUTOFF. spam now contains all the accepted points that were # explored once the chain moved within min_minus_lkl - LOG_LKL_CUTOFF. # If the user asks for a keep_fraction <1, this is also the place where # a fraction (1-keep_fraction) is removed at the beginning of each chain. #print '--> Removing burn-in' spam = remove_bad_points(info) info.remap_parameters(spam) # Now that the list spam contains all the different chains removed of # their respective burn-in, proceed to the convergence computation # 2D arrays for mean and var, one column will contain the total (over # all chains) mean (resp. variance), and each other column the # respective chain mean (resp. chain variance). R only contains the # values for each parameter. Therefore, mean and var will have len(spam)+1 # as a first dimension mean = np.zeros((len(spam)+1, info.number_parameters)) var = np.zeros((len(spam)+1, info.number_parameters)) R = np.zeros(info.number_parameters) # Store the total number of points, and the total in each chain total = np.zeros(len(spam)+1) for j in xrange(len(spam)): total[j+1] = spam[j][:, 0].sum() total[0] = total[1:].sum() # Compute mean and variance for each chain print '--> Computing mean values' compute_mean(mean, spam, total) print '--> Computing variance' compute_variance(var, mean, spam, total) print '--> Computing convergence criterium (Gelman-Rubin)' # Gelman Rubin Diagnostic: # Computes a quantity linked to the ratio of the mean of the variances of # the different chains (within), and the variance of the means (between) # Note: This is not strictly speaking the Gelman Rubin test, defined for # same-length MC chains. Our quantity is defined without the square root, # which should not change much the result: a small sqrt(R) will still be a # small R. The same convention is used in CosmoMC, except for the weighted # average: we decided to do the average taking into account that longer # chains should count more within = 0 between = 0 for i in xrange(np.shape(mean)[1]): for j in xrange(len(spam)): within += total[j+1]*var[j+1, i] between += total[j+1]*(mean[j+1, i]-mean[0, i])**2 within /= total[0] between /= (total[0]-1) R[i] = between/within if i == 0: print ' -> R-1 is %.6f' % R[i], '\tfor ', info.ref_names[i] else: print ' %.6f' % R[i], '\tfor ', info.ref_names[i] # Log finally the total number of steps, and absolute loglikelihood with open(info.log_path, 'a') as log: log.write("--> Total number of steps: %d\n" % ( info.steps)) log.write("--> Total number of accepted steps: %d\n" % ( info.accepted_steps)) log.write("--> Minimum of -logLike : %.2f" % ( info.min_minus_lkl)) # Store the remaining members in the info instance, for further writing to # files, storing only the mean and total of all the chains taken together info.mean = mean[0] info.R = R info.total = total[0] # Create the main chain, which consists in all elements of spam # put together. This will serve for the plotting. info.chain = np.vstack(spam) def compute_posterior(information_instances): """ computes the marginalized posterior distributions, and optionnally plots them Parameters ---------- information_instances : list list of information objects, initialised on the given folders, or list of file, in input. For each of these instance, plot the 1d and 2d posterior distribution, depending on the flags stored in the instances, comming from command line arguments or read from a file. """ # For convenience, store as `conf` the first element of the list # information_instances, since it will be called often to check for # configuration parameters conf = information_instances[0] # Pre configuration of the output, note that changes to the font size # will occur later on as well, to obtain a nice scaling. matplotlib.rc('text', usetex=True) matplotlib.rc('font', size=11) matplotlib.rc('xtick', labelsize='8') matplotlib.rc('ytick', labelsize='8') # Recover max and min values for each instance, defining the a priori place # of ticks (in case of a comparison, this should change) for info in information_instances: info.define_ticks() # If plots/ folder in output folder does not exist, create it if os.path.isdir(os.path.join(info.folder, 'plots')) is False: os.mkdir(os.path.join(info.folder, 'plots')) # Determine the total number of parameters to plot, based on the list # without duplicates of the plotted parameters of all information instances plotted_parameters = [] # For printing not in latex ref_names = [] for info in information_instances: for index, name in enumerate(info.plotted_parameters): if name not in plotted_parameters: plotted_parameters.append(name) ref_names.append(info.ref_names[index]) if len(plotted_parameters) == 0: raise io_mp.AnalyzeError( "You provided no parameters to analyze, probably by selecting" " wrong parameters names in the '--extra' file.") # Find the appropriate number of columns and lines for the 1d posterior # plot if conf.num_columns_1d == None: num_columns = int(round(math.sqrt(len(plotted_parameters)))) else: num_columns = conf.num_columns_1d num_lines = int(math.ceil(len(plotted_parameters)*1.0/num_columns)) # For special needs, you can impose here a different number of columns and lines in the 1d plot # Here is a commented example: # if (len(plotted_parameters) == 10): # num_columns = 5 # num_lines = 2 # Create the figures # which will be 3*3 inches per subplot, quickly growing! if conf.plot: fig1d = plt.figure(num=1, figsize=( 3*num_columns, 3*num_lines), dpi=80) if conf.plot_2d: fig2d = plt.figure(num=2, figsize=( 3*len(plotted_parameters), 3*len(plotted_parameters)), dpi=80) # Create the name of the files, concatenating the basenames with # underscores. file_name = "_".join( [info.basename for info in information_instances]) # Loop over all the plotted parameters # There will be two indices at all time, the one running over the plotted # parameters, `index`, and the one corresponding to the actual column in # the actual file, `native_index`. For instance, if you try to plot only # two columns of a several columns file, index will vary from 0 to 1, but # the corresponding native indices might be anything. # Obviously, since plotted parameters contain potentially names not # contained in some files (in case of a comparison), native index might be # undefined. # Defined the legends object, which will store the plot style, to display # at the level of the figure legends = [None for _ in range(len(information_instances))] if not conf.legendnames: legend_names = [info.basename.replace('_', ' ') for info in information_instances] else: legend_names = conf.legendnames print '-----------------------------------------------' for index, name in enumerate(plotted_parameters): # Adding the subplots to the respective figures, this will correspond # to the diagonal on the triangle plot. if conf.plot_2d: ax2d = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), index*(len(plotted_parameters)+1)+1, yticks=[]) if conf.plot: ax1d = fig1d.add_subplot( num_lines, num_columns, index+1, yticks=[]) # check for each instance if the name is part of the list of plotted # parameters, and if yes, store the native_index. If not, store a flag # to ignore any further plotting or computing issues concerning this # particular instance. for info in information_instances: try: info.native_index = info.ref_names.index(name) info.ignore_param = False standard_name = info.backup_names[info.native_index] except ValueError: info.ignore_param = True # The limits might have been enforced by the user if name in conf.force_limits.iterkeys(): x_span = conf.force_limits[name][1]-conf.force_limits[name][0] tick_min = conf.force_limits[name][0] +0.1*x_span tick_max = conf.force_limits[name][1] -0.1*x_span ticks = np.linspace(tick_min, tick_max, info.ticknumber) for info in information_instances: if not info.ignore_param: info.x_range[info.native_index] = conf.force_limits[name] info.ticks[info.native_index] = ticks # otherwise, find them automatically else: adjust_ticks(name, information_instances) print ' -> Computing histograms for ', name for info in information_instances: if not info.ignore_param: # 1D posterior normalised to P_max=1 (first step) # # simply the histogram from the chains, with few bins # info.hist, info.bin_edges = np.histogram( info.chain[:, info.native_index+2], bins=info.bins, weights=info.chain[:, 0], normed=False, density=False) info.hist = info.hist/info.hist.max() info.bincenters = 0.5*(info.bin_edges[1:]+info.bin_edges[:-1]) # 1D posterior normalised to P_max=1 (second step) # # returns a histogram still normalised to one, but with a ten times finer sampling; # >> first, tries a method with spline interpolation between bin centers and extrapolation at the edges # >> if it fails, a simpler and more robust method of linear interpolation between bin centers is used # >> if the interpolation module is not installed, this step keeps the same posterior # info.interp_hist, info.interp_grid = cubic_interpolation( info, info.hist, info.bincenters) # minimum credible interval (method by Jan Haman). Fails for # multimodal histograms bounds = minimum_credible_intervals(info) info.bounds[info.native_index] = bounds # plotting for info in information_instances: if not info.ignore_param: # 1D posterior normalised to P_max=1 (third step, used only for plotting) # # apply gaussian smoothing # # factor by which the grid has been made thinner (10 means 10 times more bins) interpolation_factor = float(len(info.interp_grid))/float(len(info.bincenters)) # factor for gaussian smoothing sigma = interpolation_factor*info.gaussian_smoothing # smooth smoothed_interp_hist = scipy.ndimage.filters.gaussian_filter(info.interp_hist,sigma) # re-normalised smoothed_interp_hist = smoothed_interp_hist/smoothed_interp_hist.max() if conf.plot_2d: ################################################## # plot 1D posterior in diagonal of triangle plot # ################################################## plot = ax2d.plot( info.interp_grid, smoothed_interp_hist, linewidth=info.line_width, ls='-', color = info.MP_color_cycle[info.id][1], # the [1] picks up the color of the 68% contours # with [0] you would get that of the 95% contours alpha = info.alphas[info.id]) legends[info.id] = plot[0] ax2d.set_xticks(info.ticks[info.native_index]) if conf.legend_style == 'top': ax2d.set_title( '%s=$%.{0}g^{{+%.{0}g}}_{{%.{0}g}}$'.format( info.decimal) % ( info.tex_names[info.native_index], info.mean[info.native_index], info.bounds[info.native_index, 0, -1], info.bounds[info.native_index, 0, 0]), fontsize=info.fontsize) ax2d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) elif conf.legend_style == 'sides': # Except for the last 1d plot (bottom line), don't # print ticks if index == len(plotted_parameters)-1: ax2d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) ax2d.tick_params('x',direction='inout') ax2d.set_xlabel( info.tex_names[info.native_index], fontsize=info.fontsize) else: ax2d.set_xticklabels([]) ax2d.axis([info.x_range[info.native_index][0], info.x_range[info.native_index][1], 0, 1.05]) if conf.plot: if conf.short_title_1d: ax1d.set_title( '%s'.format(info.decimal) % ( info.tex_names[info.native_index]), fontsize=info.fontsize) else: # Note the use of double curly brackets {{ }} to produce # the desired LaTeX output. This is necessary because the # format function would otherwise understand single # brackets as fields. ax1d.set_title( '%s=$%.{0}g^{{+%.{0}g}}_{{%.{0}g}}$'.format( info.decimal) % ( info.tex_names[info.native_index], info.mean[info.native_index], info.bounds[info.native_index, 0, -1], info.bounds[info.native_index, 0, 0]), fontsize=info.fontsize) ax1d.set_xticks(info.ticks[info.native_index]) ax1d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) ax1d.axis([info.x_range[info.native_index][0], info.x_range[info.native_index][1], 0, 1.05]) # Execute some customisation scripts for the 1d plots if (info.custom1d != []): for elem in info.custom1d: execfile('plot_files/'+elem) ################################################## # plot 1D posterior in 1D plot # ################################################## ax1d.plot( info.interp_grid, # gaussian filtered 1d posterior: smoothed_interp_hist, # raw 1d posterior: #info.interp_hist, lw=info.line_width, ls='-', color = info.MP_color_cycle[info.id][1], # the [1] picks up the color of the 68% contours # with [0] you would get that of the 95% contours alpha = info.alphas[info.id]) # uncomment if you want to see the raw points from the histogram # (to check whether the inteprolation and smoothing generated artefacts) #ax1d.plot( # info.bincenters, # info.hist, # 'ro') if conf.mean_likelihood: for info in information_instances: if not info.ignore_param: try: # 1D mean likelihood normalised to P_max=1 (first step) # # simply the histogram from the chains, weighted by mutiplicity*likelihood # lkl_mean, _ = np.histogram( info.chain[:, info.native_index+2], bins=info.bin_edges, normed=False, weights=np.exp( conf.min_minus_lkl-info.chain[:, 1])*info.chain[:, 0]) lkl_mean /= lkl_mean.max() # 1D mean likelihood normalised to P_max=1 (second step) # # returns a histogram still normalised to one, but with a ten times finer sampling; # >> first, tries a method with spline interpolation between bin centers and extrapolation at the edges # >> if it fails, a simpler and more robust method of linear interpolation between bin centers is used # >> if the interpolation module is not installed, this step keeps the same posterior # interp_lkl_mean, interp_grid = cubic_interpolation( info, lkl_mean, info.bincenters) # 1D mean likelihood normalised to P_max=1 (third step, used only for plotting) # # apply gaussian smoothing # # smooth smoothed_interp_lkl_mean = scipy.ndimage.filters.gaussian_filter(interp_lkl_mean,sigma) # re-normalised smoothed_interp_lkl_mean = smoothed_interp_lkl_mean/smoothed_interp_lkl_mean.max() # Execute some customisation scripts for the 1d plots if (info.custom1d != []): for elem in info.custom1d: execfile('plot_files/'+elem) ######################################################## # plot 1D mean likelihood in diagonal of triangle plot # ######################################################## if conf.plot_2d: # raw mean likelihoods: #ax2d.plot(info.bincenter, lkl_mean, # ls='--', lw=conf.line_width, # color = info.MP_color_cycle[info.id][1], # alpha = info.alphas[info.id]) # smoothed and interpolated mean likelihoods: ax2d.plot(interp_grid, smoothed_interp_lkl_mean, ls='--', lw=conf.line_width, color = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id]) ######################################################## # plot 1D mean likelihood in 1D plot # ######################################################## if conf.plot: # raw mean likelihoods: #ax1d.plot(info.bincenters, lkl_mean, # ls='--', lw=conf.line_width, # color = info.MP_color_cycle[info.id][1], # alpha = info.alphas[info.id]) # smoothed and interpolated mean likelihoods: ax1d.plot(interp_grid, smoothed_interp_lkl_mean, ls='--', lw=conf.line_width, color = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id]) except: print 'could not find likelihood contour for ', print info.ref_parameters[info.native_index] if conf.subplot is True: if conf.plot_2d: extent2d = ax2d.get_window_extent().transformed( fig2d.dpi_scale_trans.inverted()) fig2d.savefig(os.path.join( conf.folder, 'plots', file_name+'.'+conf.extension), bbox_inches=extent2d.expanded(1.1, 1.4)) if conf.plot: extent1d = ax1d.get_window_extent().transformed( fig1d.dpi_scale_trans.inverted()) fig1d.savefig(os.path.join( conf.folder, 'plots', file_name+'.'+conf.extension), bbox_inches=extent1d.expanded(1.1, 1.4)) # Store the function in a file for info in information_instances: if not info.ignore_param: hist_file_name = os.path.join( info.folder, 'plots', info.basename+'_%s.hist' % ( standard_name)) write_histogram(hist_file_name, info.interp_grid, info.interp_hist) # Now do the rest of the triangle plot if conf.plot_2d: for second_index in xrange(index): second_name = plotted_parameters[second_index] for info in information_instances: if not info.ignore_param: try: info.native_second_index = info.ref_names.index( plotted_parameters[second_index]) info.has_second_param = True second_standard_name = info.backup_names[ info.native_second_index] except ValueError: info.has_second_param = False else: info.has_second_param = False ax2dsub = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), (index)*len(plotted_parameters)+second_index+1) for info in information_instances: if info.has_second_param: ax2dsub.axis([info.x_range[info.native_second_index][0], info.x_range[info.native_second_index][1], info.x_range[info.native_index][0], info.x_range[info.native_index][1]]) # 2D likelihood (first step) # # simply the histogram from the chains, with few bins only # info.n, info.xedges, info.yedges = np.histogram2d( info.chain[:, info.native_index+2], info.chain[:, info.native_second_index+2], weights=info.chain[:, 0], bins=(info.bins, info.bins), normed=False) info.extent = [ info.x_range[info.native_second_index][0], info.x_range[info.native_second_index][1], info.x_range[info.native_index][0], info.x_range[info.native_index][1]] info.x_centers = 0.5*(info.xedges[1:]+info.xedges[:-1]) info.y_centers = 0.5*(info.yedges[1:]+info.yedges[:-1]) # 2D likelihood (second step) # # like for 1D, interpolate to get a finer grid # TODO: we should not only interpolate between bin centers, but also extrapolate between side bin centers and bin edges # interp_y_centers = scipy.ndimage.zoom(info.y_centers,info.interpolation_smoothing, mode='reflect') interp_x_centers = scipy.ndimage.zoom(info.x_centers,info.interpolation_smoothing, mode='reflect') interp_likelihood = scipy.ndimage.zoom(info.n,info.interpolation_smoothing, mode='reflect') # 2D likelihood (third step) # # gaussian smoothing # sigma = info.interpolation_smoothing*info.gaussian_smoothing interp_smoothed_likelihood = scipy.ndimage.filters.gaussian_filter(interp_likelihood,[sigma,sigma], mode='reflect') # Execute some customisation scripts for the 2d contour plots if (info.custom2d != []): for elem in info.custom2d: execfile('plot_files/'+elem) # plotting contours, using the ctr_level method (from Karim # Benabed). Note that only the 1 and 2 sigma contours are # displayed (due to the line with info.levels[:2]) try: ########################### # plot 2D filled contours # ########################### if not info.contours_only: contours = ax2dsub.contourf( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[:2]), zorder=4, colors = info.MP_color_cycle[info.id], alpha=info.alphas[info.id]) # now add a thin darker line # around the 95% contour ax2dsub.contour( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[1:2]), zorder=4, colors = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id], linewidths=1) ########################### # plot 2D contours # ########################### if info.contours_only: contours = ax2dsub.contour( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[:2]), zorder=4, colors = info.MP_color_cycle[info.id], alpha = info.alphas[info.id], linewidths=info.line_width) except Warning: warnings.warn( "The routine could not find the contour of the " + "'%s-%s' 2d-plot" % ( info.plotted_parameters[info.native_index], info.plotted_parameters[info.native_second_index])) except ValueError as e: if str(e) == "Contour levels must be increasing": warnings.warn( "The routine could not find the contour of the " + "'%s-%s' 2d-plot. \n " % ( info.plotted_parameters[info.native_index], info.plotted_parameters[info.native_second_index]) + 'The error is: "Contour levels must be increasing"' + " but " + str(ctr_level(info.n, info.levels[:2])) + " were found. This may happen when most" + " points fall in the same bin.") else: warnings.warn( "The routine could not find the contour of the " + "'%s-%s' 2d-plot" % ( info.plotted_parameters[info.native_index], info.plotted_parameters[info.native_second_index])) ax2dsub.set_xticks(info.ticks[info.native_second_index]) ax2dsub.set_yticks(info.ticks[info.native_index]) ax2dsub.tick_params('both',direction='inout',top=True,bottom=True,left=True,right=True) if index == len(plotted_parameters)-1: ax2dsub.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_second_index]], fontsize=info.ticksize) if conf.legend_style == 'sides': ax2dsub.set_xlabel( info.tex_names[info.native_second_index], fontsize=info.fontsize) else: ax2dsub.set_xticklabels(['']) ax2dsub.set_yticks(info.ticks[info.native_index]) if second_index == 0: ax2dsub.set_yticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) else: ax2dsub.set_yticklabels(['']) if conf.legend_style == 'sides': if second_index == 0: ax2dsub.set_ylabel( info.tex_names[info.native_index], fontsize=info.fontsize) if conf.subplot is True: # Store the individual 2d plots. if conf.plot_2d: area = ax2dsub.get_window_extent().transformed( fig2d.dpi_scale_trans.inverted()) # Pad the saved area by 10% in the x-direction and 20% in # the y-direction fig2d.savefig(os.path.join( conf.folder, 'plots', file_name+'_2d_%s-%s.%s' % ( standard_name, second_standard_name, conf.extension)), bbox_inches=area.expanded(1.4, 1.4)) # store the coordinates of the points for further # plotting. store_contour_coordinates( conf, standard_name, second_standard_name, contours) for info in information_instances: if not info.ignore_param and info.has_second_param: info.hist_file_name = os.path.join( info.folder, 'plots', '{0}_2d_{1}-{2}.hist'.format( info.basename, standard_name, second_standard_name)) write_histogram_2d( info.hist_file_name, info.x_centers, info.y_centers, info.extent, info.n) print '-----------------------------------------------' if conf.plot: print '--> Saving figures to .{0} files'.format(info.extension) plot_name = '-vs-'.join([os.path.split(elem.folder)[-1] for elem in information_instances]) if conf.plot_2d: # Legend of triangle plot if ((conf.plot_legend_2d == None) and (len(legends) > 1)) or (conf.plot_legend_2d == True): # Create a virtual subplot in the top right corner, # just to be able to anchor the legend nicely ax2d = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), len(plotted_parameters), ) ax2d.axis('off') try: ax2d.legend(legends, legend_names, loc='upper right', borderaxespad=0., fontsize=info.legendsize) except TypeError: ax2d.legend(legends, legend_names, loc='upper right', borderaxespad=0., prop={'fontsize': info.legendsize}) fig2d.subplots_adjust(wspace=0, hspace=0) fig2d.savefig( os.path.join( conf.folder, 'plots', '{0}_triangle.{1}'.format( plot_name, info.extension)), bbox_inches='tight') # Legend of 1D plot if conf.plot: if ((conf.plot_legend_1d == None) and (len(legends) > 1)) or (conf.plot_legend_1d == True): # no space left: add legend to thr right if len(plotted_parameters)<num_columns*num_lines: fig1d.legend(legends, legend_names, loc= ((num_columns-0.9)/num_columns,0.1/num_columns), fontsize=info.legendsize) # space left in lower right part: add legend there else: fig1d.legend(legends, legend_names, loc= 'center right', bbox_to_anchor = (1.2,0.5), fontsize=info.legendsize) fig1d.tight_layout() fig1d.savefig( os.path.join( conf.folder, 'plots', '{0}_1d.{1}'.format( plot_name, info.extension)), bbox_inches='tight') def ctr_level(histogram2d, lvl, infinite=False): """ Extract the contours for the 2d plots (Karim Benabed) """ hist = histogram2d.flatten()*1. hist.sort() cum_hist = np.cumsum(hist[::-1]) cum_hist /= cum_hist[-1] alvl = np.searchsorted(cum_hist, lvl)[::-1] clist = [0]+[hist[-i] for i in alvl]+[hist.max()] if not infinite: return clist[1:] return clist def minimum_credible_intervals(info): """ Extract minimum credible intervals (method from Jan Haman) FIXME """ histogram = info.hist bincenters = info.bincenters levels = info.levels bounds = np.zeros((len(levels), 2)) j = 0 delta = bincenters[1]-bincenters[0] left_edge = max(histogram[0] - 0.5*(histogram[1]-histogram[0]), 0.) right_edge = max(histogram[-1] + 0.5*(histogram[-1]-histogram[-2]), 0.) failed = False for level in levels: norm = float( (np.sum(histogram)-0.5*(histogram[0]+histogram[-1]))*delta) norm += 0.25*(left_edge+histogram[0])*delta norm += 0.25*(right_edge+histogram[-1])*delta water_level_up = np.max(histogram)*1.0 water_level_down = np.min(histogram)*1.0 top = 0. iterations = 0 while (abs((top/norm)-level) > 0.0001) and not failed: top = 0. water_level = (water_level_up + water_level_down)/2. #ontop = [elem for elem in histogram if elem > water_level] indices = [i for i in range(len(histogram)) if histogram[i] > water_level] # check for multimodal posteriors if ((indices[-1]-indices[0]+1) != len(indices)): warnings.warn( "could not derive minimum credible intervals " + "for this multimodal posterior") warnings.warn( "please try running longer chains or reducing " + "the number of bins with --bins BINS (default: 20)") failed = True break top = (np.sum(histogram[indices]) - 0.5*(histogram[indices[0]]+histogram[indices[-1]]))*(delta) # left if indices[0] > 0: top += (0.5*(water_level+histogram[indices[0]]) * delta*(histogram[indices[0]]-water_level) / (histogram[indices[0]]-histogram[indices[0]-1])) else: if (left_edge > water_level): top += 0.25*(left_edge+histogram[indices[0]])*delta else: top += (0.25*(water_level + histogram[indices[0]]) * delta*(histogram[indices[0]]-water_level) / (histogram[indices[0]]-left_edge)) # right if indices[-1] < (len(histogram)-1): top += (0.5*(water_level + histogram[indices[-1]]) * delta*(histogram[indices[-1]]-water_level) / (histogram[indices[-1]]-histogram[indices[-1]+1])) else: if (right_edge > water_level): top += 0.25*(right_edge+histogram[indices[-1]])*delta else: top += (0.25*(water_level + histogram[indices[-1]]) * delta * (histogram[indices[-1]]-water_level) / (histogram[indices[-1]]-right_edge)) if top/norm >= level: water_level_down = water_level else: water_level_up = water_level # safeguard, just in case iterations += 1 if (iterations > 1000): warnings.warn( "the loop to check for sigma deviations was " + "taking too long to converge") failed = True break # min if failed: bounds[j][0] = np.nan elif indices[0] > 0: bounds[j][0] = bincenters[indices[0]] - delta*(histogram[indices[0]]-water_level)/(histogram[indices[0]]-histogram[indices[0]-1]) else: if (left_edge > water_level): bounds[j][0] = bincenters[0]-0.5*delta else: bounds[j][0] = bincenters[indices[0]] - 0.5*delta*(histogram[indices[0]]-water_level)/(histogram[indices[0]]-left_edge) # max if failed: bounds[j][1] = np.nan elif indices[-1] < (len(histogram)-1): bounds[j][1] = bincenters[indices[-1]] + delta*(histogram[indices[-1]]-water_level)/(histogram[indices[-1]]-histogram[indices[-1]+1]) else: if (right_edge > water_level): bounds[j][1] = bincenters[-1]+0.5*delta else: bounds[j][1] = bincenters[indices[-1]] + \ 0.5*delta*(histogram[indices[-1]]-water_level) / \ (histogram[indices[-1]]-right_edge) j += 1 for elem in bounds: for j in (0, 1): elem[j] -= info.mean[info.native_index] return bounds def write_h(info_file, indices, name, string, quantity, modifiers=None): """ Write one horizontal line of output """ info_file.write('\n '+name+'\t: ') for i in indices: info_file.write(string % quantity[i]+'\t') def cubic_interpolation(info, hist, bincenters): """ Small routine to accomodate the absence of the interpolate module """ # we start from a try becuase if anything goes wrong, we want to return the raw histogram rather than nothing try: # test that all elements are strictly positive, otherwise we could not take the log, and we must switch to the robust method for i,elem in enumerate(hist): if elem == 0.: hist[i] = 1.e-99 elif elem <0: print hist[i] raise exception() # One of our methods (using polyfit) does assume that the input histogram has a maximum value of 1. # If in a future version this is not guaranteedanymore, we should renormalise it here. # This is important for computing weights and thresholds. # The threshold below which the likelihood will be # approximated as zero is hard-codeed here (could become an # input parameter but that would not clearly be useful).: threshold = 1.e-3 # prepare the interpolation on log(Like): ln_hist = np.log(hist) # define a finer grid on a wider range (assuming that the following method is fine both for inter- and extra-polation) left = max(info.boundaries[info.native_index][0],bincenters[0]-2.5*(bincenters[1]-bincenters[0])) right = min(info.boundaries[info.native_index][1],bincenters[-1]+2.5*(bincenters[-1]-bincenters[-2])) interp_grid = np.linspace(left, right, (len(bincenters)+4)*10+1) ###################################### # polynomial fit method (default): # #####################################W if info.posterior_smoothing >= 2: # the points in the histogram with a very low likelihood (i.e. hist[i]<<1 hist is normalised to a maximum of one) # have a lot of Poisson noise and are unreliable. However, if we do nothing, they may dominate the outcome of the fitted polynomial. # Hence we can: # 1) give them less weight (weight = sqrt(hist) seems to work well) # 2) cut them at some threshold value and base the fit only on higher points # 3) both # the one working best seems to be 2). We also wrote 1) below, but copmmented out. # method 1): #f = np.poly1d(np.polyfit(bincenters,ln_hist,info.posterior_smoothing,w=np.sqrt(hist))) #interp_hist = f(interp_grid) # method 2): # find index values such that hist is negligble everywhere excepted in hist[sub_indices[0]], hist[sub_indices[-1]] sub_indices = [i for i,elem in enumerate(hist) if elem > threshold] # The interpolation is done precisely in this range: hist[sub_indices[0]] < x < hist[sub_indices[-1]] g = np.poly1d(np.polyfit(bincenters[sub_indices],ln_hist[sub_indices],info.posterior_smoothing)) #,w=np.sqrt(hist[sub_indices]))) # The extrapolation is done in a range including one more bin on each side, excepted when the boundarty is hit extrapolation_range_left = [info.boundaries[info.native_index][0] if sub_indices[0] == 0 else bincenters[sub_indices[0]-1]] extrapolation_range_right = [info.boundaries[info.native_index][1] if sub_indices[-1] == len(hist)-1 else bincenters[sub_indices[-1]+1]] # outisde of this range, log(L) is brutally set to a negligible value,e, log(1.e-10) interp_hist = [g(elem) if (elem > extrapolation_range_left and elem < extrapolation_range_right) else np.log(1.e-10) for elem in interp_grid] elif info.posterior_smoothing<0: raise io_mp.AnalyzeError( "You passed --posterior-smoothing %d, this value is not understood"%info.posterior_smoothing) ############################################################ # other methods: # # - linear inter/extra-polation if posterior_smoothing = 0 # # - cubic inter/extra-polation if posterior_smoothing = 0 # ############################################################ else: # try first inter/extra-polation try: # prepare to interpolate and extrapolate: if info.posterior_smoothing == 0: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='linear', fill_value='extrapolate') else: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='cubic', fill_value='extrapolate') interp_hist = f(interp_grid) # failure probably caused by old scipy not having the fill_value='extrapolate' argument. Then, only interpoolate. except: # define a finer grid but not a wider one left = max(info.boundaries[info.native_index][0],bincenters[0]) right = min(info.boundaries[info.native_index][1],bincenters[-1]) interp_grid = np.linspace(left, right, len(bincenters)*10+1) # prepare to interpolate only: if info.posterior_smoothing == 0: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='linear') else: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='cubic') interp_hist = f(interp_grid) # final steps used b y all methods # go back from ln_Like to Like interp_hist = np.exp(interp_hist) # re-normalise the interpolated curve interp_hist = interp_hist / interp_hist.max() return interp_hist, interp_grid except: # we will end up here if anything went wrong before # do nothing (raw histogram) warnings.warn( "The 1D posterior could not be processed normally, probably" + "due to incomplete or obsolete numpy and/or scipy versions." + "So the raw histograms will be plotted.") return hist, bincenters def write_histogram(hist_file_name, x_centers, hist): """ Store the posterior distribution to a file """ with open(hist_file_name, 'w') as hist_file: hist_file.write("# 1d posterior distribution\n") hist_file.write("\n# x_centers\n") hist_file.write(", ".join( [str(elem) for elem in x_centers])+"\n") hist_file.write("\n# Histogram\n") hist_file.write(", ".join( [str(elem) for elem in hist])+"\n") print 'wrote ', hist_file_name def read_histogram(histogram_path): """ Recover a stored 1d posterior """ with open(histogram_path, 'r') as hist_file: for line in hist_file: if line: if line.find("# x_centers") != -1: x_centers = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Histogram") != -1: hist = [float(elem) for elem in hist_file.next().split(",")] x_centers = np.array(x_centers) hist = np.array(hist) return x_centers, hist def write_histogram_2d(hist_file_name, x_centers, y_centers, extent, hist): """ Store the histogram information to a file, to plot it later """ with open(hist_file_name, 'w') as hist_file: hist_file.write("# Interpolated histogram\n") hist_file.write("\n# x_centers\n") hist_file.write(", ".join( [str(elem) for elem in x_centers])+"\n") hist_file.write("\n# y_centers\n") hist_file.write(", ".join( [str(elem) for elem in y_centers])+"\n") hist_file.write("\n# Extent\n") hist_file.write(", ".join( [str(elem) for elem in extent])+"\n") hist_file.write("\n# Histogram\n") for line in hist: hist_file.write(", ".join( [str(elem) for elem in line])+"\n") def read_histogram_2d(histogram_path): """ Read the histogram information that was stored in a file. To use it, call something like this: .. code:: x_centers, y_centers, extent, hist = read_histogram_2d_from_file(path) fig, ax = plt.subplots() ax.contourf( y_centers, x_centers, hist, extent=extent, levels=ctr_level(hist, [0.68, 0.95]), zorder=5, cma=plt.cm.autumn_r) plt.show() """ with open(histogram_path, 'r') as hist_file: length = 0 for line in hist_file: if line: if line.find("# x_centers") != -1: x_centers = [float(elem) for elem in hist_file.next().split(",")] length = len(x_centers) elif line.find("# y_centers") != -1: y_centers = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Extent") != -1: extent = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Histogram") != -1: hist = [] for index in range(length): hist.append([float(elem) for elem in hist_file.next().split(",")]) x_centers = np.array(x_centers) y_centers = np.array(y_centers) extent = np.array(extent) hist = np.array(hist) return x_centers, y_centers, extent, hist def clean_conversion(module_name, tag, folder): """ Execute the methods "convert" from the different sampling algorithms Returns True if something was made, False otherwise """ has_module = False subfolder_name = tag+"_subfolder" try: module = importlib.import_module(module_name) subfolder = getattr(module, subfolder_name) has_module = True except ImportError: # The module is not installed, the conversion can not take place pass if has_module and os.path.isdir(folder): # Remove any potential trailing slash folder = os.path.join( *[elem for elem in folder.split(os.path.sep) if elem]) if folder.split(os.path.sep)[-1] == subfolder: try: getattr(module, 'from_%s_output_to_chains' % tag)(folder) except IOError: raise io_mp.AnalyzeError( "You asked to analyze a %s folder which " % tag + "seems to come from an unfinished run, or to be empty " + "or corrupt. Please make sure the run went smoothly " + "enough.") warnings.warn( "The content of the %s subfolder has been " % tag + "translated for Monte Python. Please run an " "analysis of the entire folder now.") return True else: return False def separate_files(files): """ Separate the input files in folder Given all input arguments to the command line files entry, separate them in a list of lists, grouping them by folders. The number of identified folders will determine the number of information instances to create """ final_list = [] temp = [files[0]] folder = (os.path.dirname(files[0]) if os.path.isfile(files[0]) else files[0]) if len(files) > 1: for elem in files[1:]: new_folder = (os.path.dirname(elem) if os.path.isfile(elem) else elem) if new_folder == folder: temp.append(elem) else: folder = new_folder final_list.append(temp) temp = [elem] final_list.append(temp) return final_list def recover_folder_and_files(files): """ Distinguish the cases when analyze is called with files or folder Note that this takes place chronologically after the function `separate_files`""" # The following list defines the substring that a chain should contain for # the code to recognise it as a proper chain. substrings = ['.txt', '__'] # The following variable defines the substring that identify error_log # files and therefore there must not be taken into account in the analysis. substring_err = 'error_log' limit = 10 # If the first element is a folder, grab all chain files inside if os.path.isdir(files[0]): folder = os.path.normpath(files[0]) files = [os.path.join(folder, elem) for elem in os.listdir(folder) if not os.path.isdir(os.path.join(folder, elem)) and not os.path.getsize(os.path.join(folder, elem)) < limit and (substring_err not in elem) and all([x in elem for x in substrings])] # Otherwise, extract the folder from the chain file-name. else: # If the name is completely wrong, say it if not os.path.exists(files[0]): raise io_mp.AnalyzeError( "You provided a non-existant folder/file to analyze") folder = os.path.relpath( os.path.dirname(os.path.realpath(files[0])), os.path.curdir) files = [os.path.join(folder, elem) for elem in os.listdir(folder) if os.path.join(folder, elem) in np.copy(files) and not os.path.isdir(os.path.join(folder, elem)) and not os.path.getsize(os.path.join(folder, elem)) < limit and (substring_err not in elem) and all([x in elem for x in substrings])] basename = os.path.basename(folder) return folder, files, basename def extract_array(line): """ Return the array on the RHS of the line >>> extract_array("toto = ['one', 'two']\n") ['one', 'two'] >>> extract_array('toto = ["one", 0.2]\n') ['one', 0.2] """ # Recover RHS of the equal sign, and remove surrounding spaces rhs = line.split('=')[-1].strip() # Remove array signs rhs = rhs.strip(']').lstrip('[') # Recover each element of the list sequence = [e.strip().strip('"').strip("'") for e in rhs.split(',')] for index, elem in enumerate(sequence): try: sequence[index] = int(elem) except ValueError: try: sequence[index] = float(elem) except ValueError: pass return sequence def extract_dict(line): """ Return the key and value of the dictionary element contained in line >>> extract_dict("something['toto'] = [0, 1, 2, -2, 'cosmo']") 'toto', [0, 1, 2, -2, 'cosmo'] """ # recovering the array sequence = extract_array(line) # Recovering only the LHS lhs = line.split('=')[0].strip() # Recovering the name from the LHS name = lhs.split('[')[-1].strip(']') name = name.strip('"').strip("'") return name, sequence def extract_parameter_names(info): """ Reading the log.param, store in the Information instance the names """ backup_names = [] plotted_parameters = [] boundaries = [] ref_names = [] tex_names = [] scales = [] with open(info.param_path, 'r') as param: for line in param: if line.find('#') == -1: if line.find('data.experiments') != -1: info.experiments = extract_array(line) if line.find('data.parameters') != -1: name, array = extract_dict(line) original = name # Rename the names according the .extra file (opt) if name in info.to_change.iterkeys(): name = info.to_change[name] # If the name corresponds to a varying parameter (fourth # entry in the initial array being non-zero, or a derived # parameter (could be designed as fixed, it does not make # any difference)), then continue the process of analyzing. if array[3] != 0 or array[5] == 'derived': # The real name is always kept, to have still the class # names in the covmat backup_names.append(original) # With the list "to_plot", we can potentially restrict # the variables plotted. If it is empty, though, simply # all parameters will be plotted. if info.to_plot == []: plotted_parameters.append(name) else: if name in info.to_plot: plotted_parameters.append(name) # Append to the boundaries array boundaries.append([ None if elem == 'None' or (isinstance(elem, int) and elem == -1) else elem for elem in array[1:3]]) ref_names.append(name) # Take care of the scales scale = array[4] rescale = 1. if name in info.new_scales.iterkeys(): scale = info.new_scales[name] rescale = info.new_scales[name]/array[4] scales.append(rescale) # Given the scale, decide for the pretty tex name number = 1./scale tex_names.append( io_mp.get_tex_name(name, number=number)) scales = np.diag(scales) info.ref_names = ref_names info.tex_names = tex_names info.boundaries = boundaries info.backup_names = backup_names info.scales = scales # Beware, the following two numbers are different. The first is the total # number of parameters stored in the chain, whereas the second is for # plotting purpose only. info.number_parameters = len(ref_names) info.plotted_parameters = plotted_parameters def find_maximum_of_likelihood(info): """ Finding the global maximum of likelihood min_minus_lkl will be appended with all the maximum likelihoods of files, then will be replaced by its own maximum. This way, the global maximum likelihood will be used as a reference, and not each chain's maximum. """ min_minus_lkl = [] for chain_file in info.files: # cheese will brutally contain everything (- log likelihood) in the # file chain_file being scanned. # This could potentially be faster with pandas, but is already quite # fast # # This would read the chains including comment lines: #cheese = (np.array([float(line.split()[1].strip()) # for line in open(chain_file, 'r')])) # # This reads the chains excluding comment lines: with open(chain_file, 'r') as f: cheese = (np.array([float(line.split()[1].strip()) for line in ifilterfalse(iscomment,f)])) try: min_minus_lkl.append(cheese[:].min()) except ValueError: pass # beware, it is the min because we are talking about # '- log likelihood' # Selecting only the true maximum. try: min_minus_lkl = min(min_minus_lkl) except ValueError: raise io_mp.AnalyzeError( "No decently sized chain was found in the desired folder. " + "Please wait to have more accepted point before trying " + "to analyze it.") info.min_minus_lkl = min_minus_lkl def remove_bad_points(info): """ Create an array with all the points from the chains, after removing non-markovian, burn-in and fixed fraction """ # spam will brutally contain all the chains with sufficient number of # points, after the burn-in was removed. spam = list() # Recover the longest file name, for pleasing display max_name_length = max([len(e) for e in info.files]) # Total number of steps done: steps = 0 accepted_steps = 0 # Open the log file log = open(info.log_path, 'w') for index, chain_file in enumerate(info.files): # To improve presentation, and print only once the full path of the # analyzed folder, we recover the length of the path name, and # create an empty complementary string of this length total_length = 18+max_name_length empty_length = 18+len(os.path.dirname(chain_file))+1 basename = os.path.basename(chain_file) if index == 0: exec "print '--> Scanning file %-{0}s' % chain_file,".format( max_name_length) else: exec "print '%{0}s%-{1}s' % ('', basename),".format( empty_length, total_length-empty_length) # cheese will brutally contain everything in the chain chain_file being # scanned # # This would read the chains including comment lines: #cheese = (np.array([[float(elem) for elem in line.split()] # for line in open(chain_file, 'r')])) # # This read the chains excluding comment lines: with open(chain_file, 'r') as f: cheese = (np.array([[float(elem) for elem in line.split()] for line in ifilterfalse(iscomment,f)])) # If the file contains a broken line with a different number of # elements, the previous array generation might fail, and will not have # the correct shape. Hence the following command will fail. To avoid # that, the error is caught. try: local_min_minus_lkl = cheese[:, 1].min() except IndexError: raise io_mp.AnalyzeError( "Error while scanning %s." % chain_file + " This file most probably contains " "an incomplete line, rendering the analysis impossible. " "I think that the following line(s) is(are) wrong:\n %s" % ( '\n '.join( ['-> %s' % line for line in open(chain_file, 'r') if len(line.split()) != len(info.backup_names)+2]))) line_count = float(sum(1 for line in open(chain_file, 'r'))) # Logging the information obtained until now. number_of_steps = cheese[:, 0].sum() log.write("%s\t " % os.path.basename(chain_file)) log.write(" Number of steps:%d\t" % number_of_steps) log.write(" Steps accepted:%d\t" % line_count) log.write(" acc = %.2g\t" % (float(line_count)/number_of_steps)) log.write("min(-loglike) = %.2f\n" % local_min_minus_lkl) steps += number_of_steps accepted_steps += line_count # check if analyze() is called directly by the user, or by the mcmc loop during an updating phase try: # command_line.update is defined when called by the mcmc loop info.update except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False info.update = 0 # Removing non-markovian part, burn-in, and fraction= (1 - keep-fraction) start = 0 markovian=0 try: # Read all comments in chains about times when proposal was updated # The last of these comments gives the number of lines to be skipped in the files if info.markovian and not info.update: with open(chain_file, 'r') as f: for line in ifilter(iscomment,f): start = int(line.split()[2]) markovian = start # Remove burn-in, defined as all points until the likelhood reaches min_minus_lkl+LOG_LKL_CUTOFF while cheese[start, 1] > info.min_minus_lkl+LOG_LKL_CUTOFF: start += 1 burnin = start-markovian # Remove fixed fraction as requested by user (usually not useful if non-markovian is also removed) if info.keep_fraction < 1: start = start + int((1.-info.keep_fraction)*(line_count - start)) print ": Removed", if info.markovian: print "%d non-markovian points," % markovian, print "%d points of burn-in," % burnin, if info.keep_fraction < 1: print "and first %.0f percent," % (100.*(1-info.keep_fraction)), print "keep %d steps" % (line_count-start) except IndexError: print ': Removed everything: chain not converged' # ham contains cheese without the burn-in, if there are any points # left (more than 5) if np.shape(cheese)[0] > start+5: ham = np.copy(cheese[int(start)::]) # Deal with single file case if len(info.files) == 1: warnings.warn("Convergence computed for a single file") bacon = np.copy(cheese[::3, :]) egg = np.copy(cheese[1::3, :]) sausage = np.copy(cheese[2::3, :]) spam.append(bacon) spam.append(egg) spam.append(sausage) continue # Adding resulting table to spam spam.append(ham) # Test the length of the list if len(spam) == 0: raise io_mp.AnalyzeError( "No decently sized chain was found. " + "Please wait a bit to analyze this folder") # Applying now new rules for scales, if the name is contained in the # referenced names for name in info.new_scales.iterkeys(): try: index = info.ref_names.index(name) for i in xrange(len(spam)): spam[i][:, index+2] *= 1./info.scales[index, index] except ValueError: # there is nothing to do if the name is not contained in ref_names pass info.steps = steps info.accepted_steps = accepted_steps return spam def compute_mean(mean, spam, total): """ """ for i in xrange(np.shape(mean)[1]): for j in xrange(len(spam)): submean = np.sum(spam[j][:, 0]*spam[j][:, i+2]) mean[j+1, i] = submean / total[j+1] mean[0, i] += submean mean[0, i] /= total[0] def compute_variance(var, mean, spam, total): """ """ for i in xrange(np.shape(var)[1]): for j in xrange(len(spam)): var[0, i] += np.sum( spam[j][:, 0]*(spam[j][:, i+2]-mean[0, i])**2) var[j+1, i] = np.sum( spam[j][:, 0]*(spam[j][:, i+2]-mean[j+1, i])**2) / \ (total[j+1]-1) var[0, i] /= (total[0]-1) def compute_covariance_matrix(info): """ """ covar = np.zeros((len(info.ref_names), len(info.ref_names))) for i in xrange(len(info.ref_names)): for j in xrange(i, len(info.ref_names)): covar[i, j] = ( info.chain[:, 0]*( (info.chain[:, i+2]-info.mean[i]) * (info.chain[:, j+2]-info.mean[j]))).sum() if i != j: covar[j, i] = covar[i, j] covar /= info.total # Removing scale factors in order to store true parameter covariance covar = np.dot(info.scales.T, np.dot(covar, info.scales)) return covar def adjust_ticks(param, information_instances): """ """ if len(information_instances) == 1: return # Recovering all x_range and ticks entries from the concerned information # instances x_ranges = [] ticks = [] for info in information_instances: if not info.ignore_param: x_ranges.append(info.x_range[info.native_index]) ticks.append(info.ticks[info.native_index]) # The new x_range and tick should min/max all the existing ones new_x_range = np.array( [min([e[0] for e in x_ranges]), max([e[1] for e in x_ranges])]) temp_ticks = np.array( [min([e[0] for e in ticks]), max([e[-1] for e in ticks])]) new_ticks = np.linspace(temp_ticks[0], temp_ticks[1], info.ticknumber) for info in information_instances: if not info.ignore_param: info.x_range[info.native_index] = new_x_range info.ticks[info.native_index] = new_ticks def store_contour_coordinates(info, name1, name2, contours): """docstring""" file_name = os.path.join( info.folder, 'plots', '{0}_2d_{1}-{2}.dat'.format( info.basename, name1, name2)) with open(file_name, 'w') as plot_file: plot_file.write( '# contour for confidence level {0}\n'.format( info.levels[1])) for elem in contours.collections[0].get_paths(): points = elem.vertices for k in range(np.shape(points)[0]): plot_file.write("%.8g\t %.8g\n" % ( points[k, 0], points[k, 1])) # stop to not include the inner contours if k != 0: if all(points[k] == points[0]): plot_file.write("\n") break plot_file.write("\n\n") plot_file.write( '# contour for confidence level {0}\n'.format( info.levels[0])) for elem in contours.collections[1].get_paths(): points = elem.vertices for k in range(np.shape(points)[0]): plot_file.write("%.8g\t %.8g\n" % ( points[k, 0], points[k, 1])) if k != 0: if all(points[k] == points[0]): plot_file.write("\n") break plot_file.write("\n\n") def iscomment(s): """ Define what we call a comment in MontePython chain files """ return s.startswith('#') class Information(object): """ Hold all information for analyzing runs """ # Counting the number of instances, to choose the color map _ids = count(0) # Flag checking the absence or presence of the interp1d function has_interpolate_module = False # Actual pairs of colors used by MP. # For each pair, the first color is for the 95% contour, # and the second for the 68% contour + the 1d probability. # Note that, as with the other customisation options, you can specify new # values for this in the extra plot_file. MP_color = { 'Red':['#E37C80','#CE121F'], 'Blue':['#7A98F6','#1157EF'], 'Green':['#88B27A','#297C09'], 'Orange':['#F3BE82','#ED920F'], 'Grey':['#ABABAB','#737373'], 'Purple':['#B87294','#88004C'] } # order used when several directories are analysed MP_color_cycle = [ MP_color['Red'], MP_color['Blue'], MP_color['Green'], MP_color['Orange'], MP_color['Grey'], MP_color['Purple'] ] # in the same order, list of transparency levels alphas = [0.9, 0.9, 0.9, 0.9, 0.9, 0.9] def __init__(self, command_line, other=None): """ The following initialization creates the three tables that can be customized in an extra plot_file (see :mod:`parser_mp`). Parameters ---------- command_line : Namespace it contains the initialised command line arguments """ self.to_change = {} """ Dictionary whose keys are the old parameter names, and values are the new ones. For instance :code:`{'beta_plus_lambda':'beta+lambda'}` """ self.to_plot = [] """ Array of names of parameters to plot. If left empty, all will be plotted. .. warning:: If you changed a parameter name with :attr:`to_change`, you need to give the new name to this array """ self.new_scales = {} """ Dictionary that redefines some scales. The keys will be the parameter name, and the value its scale. """ # Assign a unique id to this instance self.id = self._ids.next() # Defining the sigma contours (1, 2 and 3-sigma) self.levels = np.array([68.26, 95.4, 99.7])/100. # Follows a bunch of initialisation to provide default members self.ref_names, self.backup_names = [], [] self.scales, self.plotted_parameters = [], [] self.spam = [] # Store directly all information from the command_line object into this # instance, except the protected members (begin and end with __) for elem in dir(command_line): if elem.find('__') == -1: setattr(self, elem, getattr(command_line, elem)) # initialise the legend flags self.plot_legend_1d = None self.plot_legend_2d = None # initialize the legend size to be the same as fontsize, but can be # altered in the extra file self.legendsize = self.fontsize self.legendnames = [] # initialize the customisation script flags self.custom1d = [] self.custom2d = [] # initialise the dictionary enmforcing limit self.force_limits = {} # Read a potential file describing changes to be done for the parameter # names, and number of paramaters plotted (can be let empty, all will # then be plotted), but also the style of the plot. Note that this # overrides the command line options if command_line.optional_plot_file: plot_file_vars = {'info': self,'plt': plt} execfile(command_line.optional_plot_file, plot_file_vars) # check and store keep_fraction if command_line.keep_fraction<=0 or command_line.keep_fraction>1: raise io_mp.AnalyzeError("after --keep-fraction you should pass a float >0 and <=1") self.keep_fraction = command_line.keep_fraction def remap_parameters(self, spam): """ Perform substitutions of parameters for analyzing .. note:: for arbitrary combinations of parameters, the prior will not necessarily be flat. """ if hasattr(self, 'redefine'): for key, value in self.redefine.iteritems(): # Check that the key was an original name if key in self.backup_names: print ' /|\ Transforming', key, 'into', value # We recover the indices of the key index_to_change = self.backup_names.index(key)+2 print('/_o_\ The new variable will be called ' + self.ref_names[self.backup_names.index(key)]) # Recover all indices of all variables present in the # remapping variable_names = [elem for elem in self.backup_names if value.find(elem) != -1] indices = [self.backup_names.index(name)+2 for name in variable_names] # Now loop over all files in spam for i in xrange(len(spam)): # Assign variables to their values for index, name in zip(indices, variable_names): exec("%s = spam[i][:, %i]" % (name, index)) # Assign to the desired index the combination exec("spam[i][:, %i] = %s" % (index_to_change, value)) def define_ticks(self): """ """ self.max_values = self.chain[:, 2:].max(axis=0) self.min_values = self.chain[:, 2:].min(axis=0) self.span = (self.max_values-self.min_values) # Define the place of ticks, given the number of ticks desired, stored # in conf.ticknumber self.ticks = np.array( [np.linspace(self.min_values[i]+self.span[i]*0.1, self.max_values[i]-self.span[i]*0.1, self.ticknumber) for i in range(len(self.span))]) # Define the x range (ticks start not exactly at the range boundary to # avoid display issues) self.x_range = np.array((self.min_values, self.max_values)).T # In case the exploration hit a boundary (as defined in the parameter # file), at the level of precision defined by the number of bins, the # ticks and x_range should be altered in order to display this # meaningful number instead. for i in range(np.shape(self.ticks)[0]): x_range = self.x_range[i] bounds = self.boundaries[i] # Left boundary if bounds[0] is not None: if abs(x_range[0]-bounds[0]) < self.span[i]/self.bins: self.ticks[i][0] = bounds[0] self.x_range[i][0] = bounds[0] # Right boundary if bounds[-1] is not None: if abs(x_range[-1]-bounds[-1]) < self.span[i]/self.bins: self.ticks[i][-1] = bounds[-1] self.x_range[i][-1] = bounds[-1] def write_information_files(self): # Store in info_names only the tex_names that were plotted, for this # instance, and in indices the corresponding list of indices. It also # removes the $ signs, for clarity self.info_names = [ name for index, name in enumerate(self.tex_names) if self.ref_names[index] in self.plotted_parameters] self.indices = [self.tex_names.index(name) for name in self.info_names] self.tex_names = [name for index, name in enumerate(self.tex_names) if self.ref_names[index] in self.plotted_parameters] self.info_names = [name.replace('$', '') for name in self.info_names] # Define the bestfit array self.bestfit = np.zeros(len(self.ref_names)) for i in xrange(len(self.ref_names)): self.bestfit[i] = self.chain[self.sorted_indices[0], :][2+i] # Write down to the .h_info file all necessary information self.write_h_info() self.write_v_info() self.write_tex() def write_h_info(self): with open(self.h_info_path, 'w') as h_info: h_info.write(' param names\t: ') for name in self.info_names: h_info.write("%-14s" % name) write_h(h_info, self.indices, 'R-1 values', '% .6f', self.R) write_h(h_info, self.indices, 'Best Fit ', '% .6e', self.bestfit) write_h(h_info, self.indices, 'mean ', '% .6e', self.mean) write_h(h_info, self.indices, 'sigma ', '% .6e', (self.bounds[:, 0, 1]-self.bounds[:, 0, 0])/2.) h_info.write('\n') write_h(h_info, self.indices, '1-sigma - ', '% .6e', self.bounds[:, 0, 0]) write_h(h_info, self.indices, '1-sigma + ', '% .6e', self.bounds[:, 0, 1]) write_h(h_info, self.indices, '2-sigma - ', '% .6e', self.bounds[:, 1, 0]) write_h(h_info, self.indices, '2-sigma + ', '% .6e', self.bounds[:, 1, 1]) write_h(h_info, self.indices, '3-sigma - ', '% .6e', self.bounds[:, 2, 0]) write_h(h_info, self.indices, '3-sigma + ', '% .6e', self.bounds[:, 2, 1]) # bounds h_info.write('\n') write_h(h_info, self.indices, '1-sigma > ', '% .6e', self.mean+self.bounds[:, 0, 0]) write_h(h_info, self.indices, '1-sigma < ', '% .6e', self.mean+self.bounds[:, 0, 1]) write_h(h_info, self.indices, '2-sigma > ', '% .6e', self.mean+self.bounds[:, 1, 0]) write_h(h_info, self.indices, '2-sigma < ', '% .6e', self.mean+self.bounds[:, 1, 1]) write_h(h_info, self.indices, '3-sigma > ', '% .6e', self.mean+self.bounds[:, 2, 0]) write_h(h_info, self.indices, '3-sigma < ', '% .6e', self.mean+self.bounds[:, 2, 1]) def write_v_info(self): """Write vertical info file""" with open(self.v_info_path, 'w') as v_info: v_info.write('%-15s\t: %-11s' % ('param names', 'R-1')) v_info.write(' '.join(['%-11s' % elem for elem in [ 'Best fit', 'mean', 'sigma', '1-sigma -', '1-sigma +', '2-sigma -', '2-sigma +', '1-sigma >', '1-sigma <', '2-sigma >', '2-sigma <']])) for index, name in zip(self.indices, self.info_names): v_info.write('\n%-15s\t: % .4e' % (name, self.R[index])) v_info.write(' '.join(['% .4e' % elem for elem in [ self.bestfit[index], self.mean[index], (self.bounds[index, 0, 1]-self.bounds[index, 0, 0])/2., self.bounds[index, 0, 0], self.bounds[index, 0, 1], self.bounds[index, 1, 0], self.bounds[index, 1, 1], self.mean[index]+self.bounds[index, 0, 0], self.mean[index]+self.bounds[index, 0, 1], self.mean[index]+self.bounds[index, 1, 0], self.mean[index]+self.bounds[index, 1, 1]]])) def write_tex(self): """Write a tex table containing the main results """ with open(self.tex_path, 'w') as tex: tex.write("\\begin{tabular}{|l|c|c|c|c|} \n \\hline \n") tex.write("Param & best-fit & mean$\pm\sigma$ ") tex.write("& 95\% lower & 95\% upper \\\\ \\hline \n") for index, name in zip(self.indices, self.tex_names): tex.write("%s &" % name) tex.write("$%.4g$ & $%.4g_{%.2g}^{+%.2g}$ " % ( self.bestfit[index], self.mean[index], self.bounds[index, 0, 0], self.bounds[index, 0, 1])) tex.write("& $%.4g$ & $%.4g$ \\\\ \n" % ( self.mean[index]+self.bounds[index, 1, 0], self.mean[index]+self.bounds[index, 1, 1])) tex.write("\\hline \n \\end{tabular} \\\\ \n") tex.write("$-\ln{\cal L}_\mathrm{min} =%.6g$, " % ( self.min_minus_lkl)) tex.write("minimum $\chi^2=%.4g$ \\\\ \n" % ( self.min_minus_lkl*2.))
mit
budnyjj/bsuir_magistracy
disciplines/OTOS/lab_1/lab.py
1
1813
#!/usr/bin/env python import functools import math import random import numpy as np import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') # 1D model def model(x): a = 2.7; d = 0.1; y_0 = 2 sigma = 0.001 result = y_0 - 0.04 * (x - a) - d * (x - a)**2 return result + random.gauss(0, sigma) def search_asymmetric(model, start_x, num_iter=100): next_x = cur_x = start_x vals_x = [cur_x] for k in range(num_iter): alpha = (k + 1) ** (-1/3) factor = (k + 1) ** (-2/3) next_x = cur_x + factor * (model(cur_x + alpha) - model(cur_x)) cur_x = next_x vals_x.append(cur_x) return vals_x def search_symmetric(model, start_x, num_iter=100): next_x = cur_x = start_x vals_x = [cur_x] for k in range(num_iter): alpha = (k + 1) ** (-1/3) factor = (k + 1) ** (-2/3) next_x = cur_x + factor * (model(cur_x + alpha) - model(cur_x - alpha)) cur_x = next_x vals_x.append(cur_x) return vals_x NUM_ITER = 1000 MIN_X = 1; MAX_X = 10; NUM_X = 100 VALS_X = np.linspace(MIN_X, MAX_X, NUM_X) model_vec = np.vectorize(model) plt.plot(VALS_X, model_vec(VALS_X), color='r', linestyle=' ', marker='.', markersize=5, label='model') search_asymmetric_x = search_asymmetric(model, MAX_X, NUM_ITER) plt.plot(search_asymmetric_x, model_vec(search_asymmetric_x), color='g', marker='x', markersize=5, label='asymmetric') search_symmetric_x = search_symmetric(model, MAX_X, NUM_ITER) plt.plot(search_symmetric_x, model_vec(search_symmetric_x), color='b', marker='x', markersize=5, label='symmetric') plt.xlabel('$ x $') plt.ylabel('$ y $') plt.grid(True) # plt.legend(loc=2) plt.savefig('plot.png', dpi=200)
gpl-3.0
u3099811/BaxterTictacToe
src/baxter_interface/src/joint_trajectory_action/bezier.py
3
13110
#! /usr/bin/python # Software License Agreement (BSD License) # # Copyright (c) 2013-2015, Rethink Robotics # All rights reserved. # # Copyright (c) 2011, Ian McMahon # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Ian McMahon nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # """ The Bezier library was implemented as a class project in CIS515, Fundamentals of Linear Algebra, taught by Professor Jean Gallier in the summer of 2011 at the University of Pennsylvania. For an excellent explanation of Cubic Bezier Curves, and the math represented in this library, see http://www.cis.upenn.edu/~cis515/proj1-12.pdf ~~~~~~~~~~~~~~~~~~~~~~~~ Bezier ~~~~~~~~~~~~~~~~~~~~~~~~ A library for computing Bezier Cubic Splines for an arbitrary set of control points in R2, R3, up to RN space. Cubic Segment: C(t) = (1 - t)^3*b0 + 3(1 - t)*b1 + 3(1 - t)*t^2*b2 + t^3*b3 Bezier Spline of Cubic Segments: B(t) = C_(i)(t-i+1), i-1 <= t <= i where C0 continuity exists: C_(i)(1) = C_(i+1)(0) where C1 continuity exists: C'_(i)(1) = C'_(i+1)(0) and where C2 continuity exists: C"_(i)(1) = C"_(i+1)(0) ex. usage: import numpy import bezier points_array = numpy.array([[1, 2, 3], [4, 4, 4], [6, 4, 6], [2, 5, 6], [5, 6, 7]]) d_pts = bezier.de_boor_control_pts(points_array) b_coeffs = bezier.bezier_coefficients(points_array, d_pts) b_curve = bezier.bezier_curve(b_coeffs, 50) # plotting example import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') #plot bezier curve ax.plot(b_curve[:,0], b_curve[:,1], b_curve[:,2]) #plot specified points ax.plot(points_array[:,0], points_array[:,1], points_array[:,2], 'g*') ax.set_title("Cubic Bezier Spline") ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") ax.legend(["Bezier Curve", "Control Points"], loc=2) plt.show() """ import numpy as np def de_boor_control_pts(points_array, d0=None, dN=None, natural=True): """ Compute the de Boor control points for a given set for control points params: points_array: array of user-supplied control points numpy.array of size N by k N is the number of input control points k is the number of dimensions for each point d0: the first control point - None if "natural" numpy.array of size 1 by k dN: the last control point - None if "natural" numpy.array of size 1 by k natural: flag to signify natural start/end conditions bool returns: d_pts: array of de Boor control points numpy.array of size N+3 by k """ # N+3 auxiliary points required to compute d_pts # dpts_(-1) = x_(0) # dpts_(N+1) = x_(N) # so it is only necessary to find N+1 pts, dpts_(0) to to dpts_(N) (rows, k) = np.shape(points_array) N = rows - 1 # minus 1 because list includes x_(0) # Compute A matrix if natural: if N > 2: A = np.zeros((N-1, N-1)) A[np.ix_([0], [0, 1])] = [4, 1] A[np.ix_([N-2], [N-3, N-2])] = [1, 4] else: A = 4.0 else: if N > 2: A = np.zeros((N-1, N-1)) A[np.ix_([0], [0, 1])] = [3.5, 1] A[np.ix_([N-2], [N-3, N-2])] = [1, 3.5] else: A = 3.5 for i in range(1, N-2): A[np.ix_([i], [i-1, i, i+1])] = [1, 4, 1] # Construct de Boor Control Points from A matrix d_pts = np.zeros((N+3, k)) for col in range(0, k): x = np.zeros((max(N-1, 1), 1)) if N > 2: # Compute start / end conditions if natural: x[N-2, 0] = 6*points_array[-2, col] - points_array[-1, col] x[0, 0] = 6*points_array[1, col] - points_array[0, col] else: x[N-2, 0] = 6*points_array[-2, col] - 1.5*dN[0, col] x[0, 0] = 6*points_array[1, col] - 1.5*d0[0, col] x[range(1, N-3+1), 0] = 6*points_array[range(2, N-2+1), col] # Solve bezier interpolation d_pts[2:N+1, col] = np.linalg.solve(A, x).T else: # Compute start / end conditions if natural: x[0, 0] = 6*points_array[1, col] - points_array[0, col] else: x[0, 0] = 6*points_array[1, col] - 1.5*d0[col] # Solve bezier interpolation d_pts[2, col] = x / A # Store off start and end positions d_pts[0, :] = points_array[0, :] d_pts[-1, :] = points_array[-1, :] # Compute the second to last de Boor point based on end conditions if natural: one_third = (1.0/3.0) two_thirds = (2.0/3.0) d_pts[1, :] = (two_thirds)*points_array[0, :] + (one_third)*d_pts[2, :] d_pts[N+1, :] = ((one_third)*d_pts[-3, :] + (two_thirds)*points_array[-1, :]) else: d_pts[1, :] = d0 d_pts[N+1, :] = dN return d_pts def bezier_coefficients(points_array, d_pts): """ Compute the Bezier coefficients for a given set for user-supplied control pts and de Boor control pts. These B coeffs are used to compute the cubic splines for each cubic spline segment as follows (where t is a percentage of time between b_coeff segments): C(t) = (1 - t)^3*b0 + 3(1 - t)*b1 + 3(1 - t)*t^2*b2 + t^3*b3 params: points_array: array of user-supplied control points numpy.array of size N by k N is the number of control points k is the number of dimensions for each point d_pts: array of de Boor control points numpy.array of size N+3 by k returns: b_coeffs: k-dimensional array of 4 Bezier coefficients for every control point numpy.array of size N by 4 by k """ (rows, k) = np.shape(points_array) N = rows - 1 # N minus 1 because points array includes x_0 b_coeffs = np.zeros(shape=(k, N, 4)) for i in range(0, N): points_array_i = i+1 d_pts_i = i + 2 if i == 0: for axis_pos in range(0, k): b_coeffs[axis_pos, i, 0] = points_array[points_array_i - 1, axis_pos] b_coeffs[axis_pos, i, 1] = d_pts[d_pts_i - 1, axis_pos] b_coeffs[axis_pos, i, 2] = (0.5 * d_pts[d_pts_i - 1, axis_pos] + 0.5 * d_pts[d_pts_i, axis_pos]) b_coeffs[axis_pos, i, 3] = points_array[points_array_i, axis_pos] elif i == N-1: for axis_pos in range(0, k): b_coeffs[axis_pos, i, 0] = points_array[points_array_i - 1, axis_pos] b_coeffs[axis_pos, i, 1] = (0.5 * d_pts[d_pts_i - 1, axis_pos] + 0.5 * d_pts[d_pts_i, axis_pos]) b_coeffs[axis_pos, i, 2] = d_pts[d_pts_i, axis_pos] b_coeffs[axis_pos, i, 3] = points_array[points_array_i, axis_pos] else: for axis_pos in range(0, k): b_coeffs[axis_pos, i, 0] = points_array[points_array_i - 1, axis_pos] b_coeffs[axis_pos, i, 1] = (2.0/3.0 * d_pts[d_pts_i - 1, axis_pos] + 1.0/3.0 * d_pts[d_pts_i, axis_pos]) b_coeffs[axis_pos, i, 2] = (1.0/3.0 * d_pts[d_pts_i - 1, axis_pos] + 2.0/3.0 * d_pts[d_pts_i, axis_pos]) b_coeffs[axis_pos, i, 3] = points_array[points_array_i, axis_pos] return b_coeffs def _cubic_spline_point(b_coeff, t): """ Internal convenience function for calculating a k-dimensional point defined by the supplied Bezier coefficients. Finds the point that describes the current position along the bezier segment for k dimensions. params: b_coeff => b0...b3: Four k-dimensional Bezier coefficients each one is a numpy.array of size k by 1, so b_coeff is a numpy array of size k by 4 k is the number of dimensions for each coefficient t: percentage of time elapsed for this segment 0 <= int <= 1.0 returns: current position in k dimensions numpy.array of size 1 by k """ return (pow((1-t), 3)*b_coeff[:, 0] + 3*pow((1-t), 2)*t*b_coeff[:, 1] + 3*(1-t)*pow(t, 2)*b_coeff[:, 2] + pow(t, 3)*b_coeff[:, 3] ) def bezier_point(b_coeffs, b_index, t): """ Finds the k values that describe the current position along the bezier curve for k dimensions. params: b_coeffs: k-dimensional array for every control point with 4 Bezier coefficients numpy.array of size k by N by 4 N is the number of control points k is the number of dimensions for each point b_index: index position out between two of the N b_coeffs for this point in time int t: percentage of time that has passed between the two control points 0 <= int <= 1.0 returns: b_point: current position in k dimensions numpy.array of size 1 by k """ if b_index <= 0: b_point = b_coeffs[:, 0, 0] elif b_index > b_coeffs.shape[1]: b_point = b_coeffs[:, -1, -1] else: t = 0.0 if t < 0.0 else t t = 1.0 if t > 1.0 else t b_coeff_set = b_coeffs[:, b_index-1, range(4)] b_point = _cubic_spline_point(b_coeff_set, t) return b_point def bezier_curve(b_coeffs, num_intervals): """ Iterpolation of the entire Bezier curve at once, using a specified number of intervals between control points (encapsulated by b_coeffs). params: b_coeffs: k-dimensional array of 4 Bezier coefficients for every control point numpy.array of size N by 4 by k N is the number of control points k is the number of dimensions for each point num_intervals: the number of intervals between control points int > 0 returns: b_curve: positions along the bezier curve in k-dimensions numpy.array of size N*num_interval+1 by k (the +1 is to include the start position on the curve) """ assert num_intervals > 0,\ "Invalid number of intervals chosen (must be greater than 0)" interval = 1.0 / num_intervals (num_axes, num_bpts, _) = np.shape(b_coeffs) b_curve = np.zeros((num_bpts*num_intervals+1, num_axes)) # Copy out initial point b_curve[0, :] = b_coeffs[:, 0, 0] for current_bpt in range(num_bpts): b_coeff_set = b_coeffs[:, current_bpt, range(4)] for iteration, t in enumerate(np.linspace(interval, 1, num_intervals)): b_curve[(current_bpt * num_intervals + iteration+1), :] = _cubic_spline_point(b_coeff_set, t) return b_curve
apache-2.0
jdavidrcamacho/Tests_GP
08 - Thesis results/speed_test6.py
1
5414
import Gedi as gedi import george import numpy as np; import matplotlib.pylab as pl; pl.close('all') from time import time,sleep import scipy.optimize as op import sys ##### INITIAL DATA ########################################################### nrep = 1 pontos=[] temposQP=[] temposmulti=[] georgeQP=[] sleeptime=10 lista=[10,20,50,100,200,500] #for i in np.arange(100,650,200): #for i in np.arange(100,1400,350): ### Functions george # Define the objective function (negative log-likelihood in this case). def nll(p): # Update the kernel parameters and compute the likelihood. gp.kernel[:] = p ll = gp.lnlikelihood(y, quiet=True) # The scipy optimizer doesn't play well with infinities. return -ll if np.isfinite(ll) else 1e25 # And the gradient of the objective function. def grad_nll(p): # Update the kernel parameters and compute the likelihood. gp.kernel[:] = p return -gp.grad_lnlikelihood(y, quiet=True) ### Functions gedi def nll_gedi(p): global kernel # Update the kernel parameters and compute the likelihood. kernel= gedi.kernel_optimization.new_kernel(kernel,np.exp(p)) ll = gedi.kernel_likelihood.likelihood(kernel,x,y,yerr) # The scipy optimizer doesn't play well with infinities. return -ll if np.isfinite(ll) else 1e25 # And the gradient of the objective function. def grad_nll_gedi(p): global kernel # Update the kernel parameters and compute the likelihood. kernel= gedi.kernel_optimization.new_kernel(kernel,np.exp(p)) return -np.array(gedi.kernel_likelihood.gradient_likelihood(kernel,x,y,yerr)) ############################################################################### ### Things to run for i0, i in enumerate(lista): f=open("{0}.txt".format(i),"w") sys.stdout = f print i pontos.append(i) print 'pontos', pontos x = 10 * np.sort(np.random.rand(2*i)) yerr = 0.2 * np.ones_like(x) y = np.sin(x) + yerr * np.random.randn(len(x)) av = [] for _ in range(nrep): start= time() kernel= gedi.kernel.QuasiPeriodic(15.0,2.0,1.0,10.0) print 'Initial gedi kernel =',kernel print 'Initial gedi likelihood =',gedi.kernel_likelihood.likelihood(kernel,x,y,yerr) # Run the optimization routine. p0_gedi = np.log(kernel.pars) results_gedi = op.minimize(nll_gedi, p0_gedi, jac=grad_nll_gedi) kernel= gedi.kernel_optimization.new_kernel(kernel,np.exp(results_gedi.x)) print 'Final gedi kernel =',kernel print 'Final gedi likelihood =',gedi.kernel_likelihood.likelihood(kernel,x,y,yerr) print tempo1= time() - start av.append(tempo1) temposQP.append(sum(av) / float(nrep)) print 'temposQP', temposQP sleep(sleeptime*i0) ############################################################################### av = [] for _ in range(nrep): start= time() kernel= gedi.kernel.ExpSineSquared(15.0, 2.0, 10.0)* \ gedi.kernel.ExpSquared(1.0,1.0) print 'Initial gedi kernel =',kernel print 'Initial gedi likelihood =',gedi.kernel_likelihood.likelihood(kernel,x,y,yerr) # Run the optimization routine. p0_gedi = np.log(kernel.pars) results_gedi = op.minimize(nll_gedi, p0_gedi, jac=grad_nll_gedi) kernel= gedi.kernel_optimization.new_kernel(kernel,np.exp(results_gedi.x)) print 'Final gedi kernel =',kernel print 'Final gedi likelihood =',gedi.kernel_likelihood.likelihood(kernel,x,y,yerr) print tempo1= time() - start av.append(tempo1) temposmulti.append(sum(av) / float(nrep)) print 'temposmult', temposmulti sleep(sleeptime*i0) av = [] for _ in range(nrep): start = time() # Calculation using george kernelg1 = 15.0**2*george.kernels.ExpSine2Kernel(2/2.0**2,10.0)* \ george.kernels.ExpSquaredKernel(1.0**2) # You need to compute the GP once before starting the optimization. gp = george.GP(kernelg1, mean=np.mean(y)) gp.compute(x,yerr) # Print the initial ln-likelihood. print 'Initial george kernel', kernelg1 print 'Initial george likelihood', gp.lnlikelihood(y) # Run the optimization routine. p0 = gp.kernel.vector results = op.minimize(nll, p0, jac=grad_nll) # Update the kernel and print the final log-likelihood. gp.kernel[:] = results.x print 'Final george kernel =',gp.kernel print 'Final george likelihood= ', gp.lnlikelihood(y) print tempog1= time() - start av.append(tempog1) georgeQP.append(sum(av) / float(nrep)) print 'georgeQP', georgeQP ########################################################################### sys.stdout = sys.__stdout__ f.close() sleep(sleeptime*i0) N = pontos pl.figure() pl.loglog(N, temposQP, 'r-') pl.loglog(N, temposmulti, 'b-o') pl.loglog(N, georgeQP, 'b--') pl.xlim(0.9*N[0], 1.1*N[-1]) pl.xlabel('Number of points') pl.ylabel('Time') #pl.title('Covariance matrix calculations') pl.legend(['gedi QP', 'gedi ESS*ES','george ESS*ES'],loc='upper left') pl.xticks(fontsize = 18);pl.yticks(fontsize=18) pl.savefig('speedtest_6.png') #pl.close('all')
mit
sujithvm/internationality-journals
src/get_journal_list_Aminer.py
3
1586
__author__ = 'Sukrit' import bson import pandas as pd import numpy as np #import matplotlib.pyplot as plt #from scipy.optimize import curve_fit ELElist = [] with open('../data/Elsevier_journal_list.csv', 'r') as file : x = file.readlines() for line in x : #print line line = line.replace('&','and') #converting & to 'and' [UGH] ELElist.append(line.rstrip()) #remove whitespaces import pymongo client = pymongo.MongoClient("localhost", 27017) # db name - aminer db = client.aminer # collection db.publications jlist = [] i = 0 flag = False for jname in ELElist : flag = False try : if db.publications.find_one(filter = {'publication' : jname},limit = 1) != None : flag = True except bson.errors.InvalidStringData : print "[ERROR] Could not insert value: " + jname else : if flag == True : jlist.append(jname) print "[INFO] Value found: " + jname i += 1 print i with open ("../output/both_journal_list.txt","w")as file: for line in jlist: file.write(line+"\n") ''' cursor = db.publications.find() for document in cursor : if document['publication'] not in jlist : if document['publication'] in ELElist : jlist.append(document['publication']) print document['publication'] ''' ''' citable_items = list(db.publications.find({"publication" : P}) citable_items_ids = [] for cite in citable_items : citable_items_ids.append(cite['index']) ''' #print "[DEBUG] Number of papers ", len(papers) #print papers
mit
hainm/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
MagnusS/mirage-bench
test-jitsu/plot.py
1
1208
#!/usr/bin/env python import sys print "# Creating graphs from stdin (requires matplotlib)" results = {} for filename in sys.argv[1:]: results[filename] = [] with open(filename) as f: for l in f: line = l.strip() if len(line) == 0 or line[0] == '#': continue if l[0] == "!": print "Warning: Some results are invalid:" print l continue results[filename].append(float(l) * 1000) print results import matplotlib.pyplot as plt import numpy as np #fig,ax = plt.subplots() name = {} name["processed_results_warm.dat"] = "Jitsu warm start" name["processed_results_cold.dat"] = "Jitsu cold start wo/synjitsu" name["processed_results_http_warm.dat"] = "Jitsu warm start (http)" name["processed_results_http_cold.dat"] = "Jitsu cold start wo/synjitsu (http)" plt.title('Time from DNS query to first packet of HTTP response') for t in results: title = t if t in name: title = name[t] r = results[t] print "Plotting",r,"==",len(r) maxval = 1500 bins = 20 binwidth = maxval / bins plt.hist(r, bins=range(1, maxval+binwidth, binwidth), label=title) plt.legend(loc="best") plt.ylabel("Results") plt.xlabel("Time in milliseconds") plt.savefig("jitsu.pdf") plt.show()
isc
fredhusser/scikit-learn
examples/calibration/plot_calibration_curve.py
225
5903
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.cross_validation import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration cuve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration cuve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
mworks/mworks
examples/Examples/FindTheCircle/analysis/Python/selection_counts.py
1
1241
import sys from matplotlib import pyplot import numpy sys.path.insert(0, '/Library/Application Support/MWorks/Scripting/Python') from mworks.data import MWKFile def selection_counts(filename): with MWKFile(filename) as f: r_codec = f.reverse_codec red_code = r_codec['red_selected'] green_code = r_codec['green_selected'] blue_code = r_codec['blue_selected'] red_count = 0 green_count = 0 blue_count = 0 for evt in f.get_events_iter(codes=[red_code, green_code, blue_code]): if evt.data: if evt.code == red_code: red_count += 1 elif evt.code == green_code: green_count += 1 else: assert evt.code == blue_code blue_count += 1 index = numpy.arange(3) pyplot.bar(index, [red_count, green_count, blue_count], 0.5, color = ['r', 'g', 'b'], align = 'center') pyplot.xticks(index, ['Red', 'Green', 'Blue']) pyplot.title('Selection Counts') pyplot.show() if __name__ == '__main__': selection_counts(sys.argv[1])
mit
vtsuperdarn/davitpy
davitpy/pydarn/proc/music/music.py
2
85275
# -*- coding: utf-8 -*- # Copyright (C) 2012 VT SuperDARN Lab # Full license can be found in LICENSE.txt # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """music processing module A module for running the MUltiple SIgnal Classification (MUSIC) algorithm for the detection of MSTIDs and wave-like structures in SuperDARN data. For usage examples, please see the iPython notebooks included in the docs folder of the DaViTPy distribution. References ---------- See Samson et al. [1990] and Bristow et al. [1994] for details regarding the MUSIC algorithm and SuperDARN-observed MSTIDs. Bristow, W. A., R. A. Greenwald, and J. C. Samson (1994), Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF Radar, J. Geophys. Res., 99(A1), 319-331, doi:10.1029/93JA01470. Samson, J. C., R. A. Greenwald, J. M. Ruohoniemi, A. Frey, and K. B. Baker (1990), Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere, J. Geophys. Res., 95(A6), 7693-7709, doi:10.1029/JA095iA06p07693. Module author:: Nathaniel A. Frissell, Fall 2013 Functions -------------------------------------------------------------------------------------------------------------------------- getDataSet get music data object from music array object stringify_signal convert dictionary to a string stringify_signal_list convert list of dictionaries into strings beamInterpolation interpolate music array object along beams defineLimits set limits for chosen data set checkDataQuality mark data as bad base on radar operations applyLimits remove data outside of limits determineRelativePosition find center of cell in music array object timeInterpolation interpolate music array object along time filterTimes calculate time range for data set detrend linear detrend of music array/data object nan_to_num convert undefined numbers to finite numbers windowData apply window to music array object calculateFFT calculate spectrum of an object calculateDlm calculate the cross-spectral matrix of a musicArray/musicDataObj object. calculateKarr calculate the two-dimensional horizontal wavenumber array of a musicArray/musicDataObj object. simulator insert a simulated MSTID into the processing chain. scale_karr scale/normalize kArr for plotting and signal detection. detectSignals detect local maxima of signals add_signal add signal to detected signal list del_signal remove signal from detected signal list -------------------------------------------------------------------------------------------------------------------------- Classes ----------------------------------------------------------- emptyObj create an empty object SigDetect information about detected signals musicDataObj basic container for holding MUSIC data. musicArray container object for holding musicDataObj's filter a filter object for VT sig/siStruct objects ----------------------------------------------------------- """ import numpy as np import datetime import time import copy import logging Re = 6378 #Earth radius def getDataSet(dataObj,dataSet='active'): """Returns a specified musicDataObj from a musicArray object. If the musicArray object has the exact attribute specified in the dataSet keyword, then that attribute is returned. If not, all attributes of the musicArray object will be searched for attributes which contain the string specified in the dataSet keyword. If more than one are found, the last attribute of a sorted list will be returned. If no attributes are found which contain the specified string, the 'active' dataSet is returned. Parameters ---------- dataObj : musicArray dataSet : Optional[str] which dataSet in the musicArray object to process Returns ------- currentData : musicDataObj object Written by Nathaniel A. Frissell, Fall 2013 """ lst = dir(dataObj) if dataSet not in lst: tmp = [] for item in lst: if dataSet in item: tmp.append(item) if len(tmp) == 0: dataSet = 'active' else: tmp.sort() dataSet = tmp[-1] currentData = getattr(dataObj,dataSet) return currentData class emptyObj(object): """Create an empty object. """ def __init__(self): pass def stringify_signal(sig): """Method to convert a signal information dictionary into a string. Parameters ---------- sig : dict Information about a detected signal. Returns ------- sigInfo : str String representation of the signal information. Written by Nathaniel A. Frissell, Fall 2013 """ sigInfo = {} if sig.has_key('order'): sigInfo['order'] = '%d' % sig['order'] #Order of signals by strength as detected by image detection algorithm if sig.has_key('kx'): sigInfo['kx'] = '%.5f' % sig['kx'] if sig.has_key('ky'): sigInfo['ky'] = '%.5f' % sig['ky'] if sig.has_key('k'): sigInfo['k'] = '%.3f' % sig['k'] if sig.has_key('lambda'): if np.isinf(sig['lambda']): sigInfo['lambda'] = 'inf' else: sigInfo['lambda'] = '%d' % np.round(sig['lambda']) # km if sig.has_key('lambda_x'): if np.isinf(sig['lambda_x']): sigInfo['lambda_x'] = 'inf' else: sigInfo['lambda_x'] = '%d' % np.round(sig['lambda_x']) # km if sig.has_key('lambda_y'): if np.isinf(sig['lambda_y']): sigInfo['lambda_y'] = 'inf' else: sigInfo['lambda_y'] = '%d' % np.round(sig['lambda_y']) # km if sig.has_key('azm'): sigInfo['azm'] = '%d' % np.round(sig['azm']) # degrees if sig.has_key('freq'): sigInfo['freq'] = '%.2f' % (sig['freq']*1000.) # mHz if sig.has_key('period'): sigInfo['period'] = '%d' % np.round(sig['period']/60.) # minutes if sig.has_key('vel'): if np.isinf(np.round(sig['vel'])): sigInfo['vel'] = 'Inf' else: sigInfo['vel'] = '%d' % np.round(sig['vel']) # km/s if sig.has_key('area'): sigInfo['area'] = '%d' % sig['area'] # Pixels if sig.has_key('max'): sigInfo['max'] = '%.4f' % sig['max'] # Value from kArr in arbitrary units, probably with some normalization if sig.has_key('maxpos'): sigInfo['maxpos'] = str(sig['maxpos']) # Index position in kArr of maximum value. if sig.has_key('labelInx'): sigInfo['labelInx'] = '%d' % sig['labelInx'] # Label value from image processing if sig.has_key('serialNr'): sigInfo['serialNr'] = '%d' % sig['serialNr'] # Label value from image processing return sigInfo def stringify_signal_list(signal_list,sort_key='order'): """Method to convert a list of signal dictionaries into strings. Parameters ---------- signal_list : list of dict Information about a detected signal. sort_key : Optional[string] Dictionary key to sort on, or None for no sort. 'order' will sort the signal list from strongest signal to weakest, as determined by the MUSIC algorithm. Returns ------- stringInfo : list of str String representation of the signal information. Written by Nathaniel A. Frissell, Fall 2013 """ string_info = [] if sort_key is not None: orders = [x[sort_key] for x in signal_list] orders.sort() for order in orders: for sig in signal_list: if sig[sort_key] == order: string_info.append(stringify_signal(sig)) signal_list.remove(sig) else: for sig in signal_list: string_info.append(stringify_signal(sig)) return string_info class SigDetect(object): """Class to hold information about detected signals. Methods ------- string reorder Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self): pass def string(self): """Method to convert a list of signal dictionaries into strings. Returns ------- stringInfo : list of str String representation of the signal information. Written by Nathaniel A. Frissell, Fall 2013 """ return stringify_signal_list(self.info) def reorder(self): """Method to sort items in .info by signal maximum value (from the scaled kArr) and update nrSignals. Written by Nathaniel A. Frissell, Fall 2013 """ #Do the sorting... from operator import itemgetter newlist = sorted(self.info,key=itemgetter('max'),reverse=True) #Put in the order numbers... order = 1 for item in newlist: item['order'] = order order = order + 1 #Save the list to the dataObj... self.info = newlist #Update the nrSigs self.nrSigs = len(newlist) class musicDataObj(object): """This class is the basic container for holding MUSIC data. Parameters ---------- time : list of datetime.datetime list of times corresponding to data data : numpy.array 3-dimensional array of data fov : Optional[pydarn.radar.radFov.fov] Radar field-of-view object. comment : Optional[str] String to be appended to the history of this object parent : Optional[musicArray] reference to parent musicArray object **metadata keywords sent to matplot lib, etc. Attributes ---------- time : numpy.array of datetime.datetime numpy array of times corresponding to data data : numpy.array 3-dimensional array of data fov : Optional[pydarn.radar.radFov.fov] Radar field-of-view object. metadata : dict keywords sent to matplot lib, etc. history : dict Methods --------- copy setActive nyquistFrequency samplePeriod applyLimits setMetadata printMetadata appendHistory printHistory Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self, time, data, fov=None, comment=None, parent=0, **metadata): self.parent = parent self.time = np.array(time) self.data = np.array(data) self.fov = fov self.metadata = {} for key in metadata: self.metadata[key] = metadata[key] self.history = {datetime.datetime.now():comment} def copy(self,newsig,comment): """Copy a musicDataObj object. This deep copies data and metadata, updates the serial number, and logs a comment in the history. Methods such as plot are kept as a reference. Parameters ---------- newsig : str Name for the new musicDataObj object. comment : str Comment describing the new musicDataObj object. Returns ------- newsigobj : musicDataObj Copy of the original musicDataObj with new name and history entry. Written by Nathaniel A. Frissell, Fall 2013 """ serial = self.metadata['serial'] + 1 newsig = '_'.join(['DS%03d' % serial,newsig]) setattr(self.parent,newsig,copy.copy(self)) newsigobj = getattr(self.parent,newsig) newsigobj.time = copy.deepcopy(self.time) newsigobj.data = copy.deepcopy(self.data) newsigobj.fov = copy.deepcopy(self.fov) newsigobj.metadata = copy.deepcopy(self.metadata) newsigobj.history = copy.deepcopy(self.history) newsigobj.metadata['dataSetName'] = newsig newsigobj.metadata['serial'] = serial newsigobj.history[datetime.datetime.now()] = '['+newsig+'] '+comment return newsigobj def setActive(self): """Sets this signal as the currently active signal. Written by Nathaniel A. Frissell, Fall 2013 """ self.parent.active = self def nyquistFrequency(self,timeVec=None): """Calculate the Nyquist frequency of a vt sigStruct signal. Parameters ---------- timeVec : Optional[list of datetime.datetime] List of datetime.datetime to use instead of self.time. Returns ------- nq : float Nyquist frequency of the signal in Hz. Written by Nathaniel A. Frissell, Fall 2013 """ dt = self.samplePeriod(timeVec=timeVec) nyq = float(1. / (2*dt)) return nyq def samplePeriod(self,timeVec=None): """Calculate the sample period of a vt sigStruct signal. Parameters ---------- timeVec : Optional[list of datetime.datetime] List of datetime.datetime to use instead of self.time. Returns ------- samplePeriod : float samplePeriod: sample period of signal in seconds. Written by Nathaniel A. Frissell, Fall 2013 """ if timeVec == None: timeVec = self.time diffs = np.diff(timeVec) diffs_unq = np.unique(diffs) self.diffs = diffs_unq if len(diffs_unq) == 1: samplePeriod = diffs[0].total_seconds() else: diffs_sec = np.array([x.total_seconds() for x in diffs]) maxDt = np.max(diffs_sec) avg = np.mean(diffs_sec) md = self.metadata warn = 'WARNING' if md.has_key('title'): warn = ' '.join([warn,'FOR','"'+md['title']+'"']) logging.warning(warn + ':') logging.warning(' Date time vector is not regularly sampled!') logging.warning(' Maximum difference in sampling rates is ' + str(maxDt) + ' sec.') logging.warning(' Using average sampling period of ' + str(avg) + ' sec.') samplePeriod = avg import ipdb; ipdb.set_trace() return samplePeriod def applyLimits(self,rangeLimits=None,gateLimits=None,timeLimits=None,newDataSetName='limitsApplied',comment='Limits Applied'): """Removes data outside of the rangeLimits, gateLimits, and timeLimits boundaries. Parameters ---------- rangeLimits : Optional[interable] Two-element array defining the maximum and minumum slant ranges to use. [km] gateLimits : Optional[iterable] Two-element array defining the maximum and minumum gates to use. timeLimits : Optional[] newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Returns ------- newMusicDataObj : musicDataObj New musicDataObj. The musicDataObj is also stored in it's parent musicArray object. Written by Nathaniel A. Frissell, Fall 2013 """ return applyLimits(self.parent,self.metadata['dataSetName'],rangeLimits=rangeLimits,gateLimits=gateLimits,timeLimits=timeLimits,newDataSetName=newDataSetName,comment=comment) def setMetadata(self,**metadata): """Adds information to the current musicDataObj's metadata dictionary. Metadata affects various plotting parameters and signal processing routinges. Parameters ---------- **metadata : keywords sent to matplot lib, etc. Written by Nathaniel A. Frissell, Fall 2013 """ self.metadata = dict(self.metadata.items() + metadata.items()) def printMetadata(self): """Nicely print all of the metadata associated with the current musicDataObj object. Written by Nathaniel A. Frissell, Fall 2013 """ keys = self.metadata.keys() keys.sort() for key in keys: print key+':',self.metadata[key] def appendHistory(self,comment): """Add an entry to the processing history dictionary of the current musicDataObj object. Parameters ---------- comment : string Infomation to add to history dictionary. Written by Nathaniel A. Frissell, Fall 2013 """ self.history[datetime.datetime.now()] = '['+self.metadata['dataSetName']+'] '+comment def printHistory(self): """Nicely print all of the processing history associated with the current musicDataObj object. Written by Nathaniel A. Frissell, Fall 2013 """ keys = self.history.keys() keys.sort() for key in keys: print key,self.history[key] class musicArray(object): """This class is the basic container for holding MUSIC data. Parameters ---------- myPtr : pydarn.sdio.radDataTypes.radDataPtr contains the pipeline to the data we are after sTime : Optional[datetime.datetime] start time UT (if None myPtr.sTime is used) eTime : Optional[datetime.datetime] end time UT (if None myPtr.eTime is used) param : Optional[str] Radar FIT parameter to load and process. Any appropriate attribute of the FIT data structure is allowed. gscat : Optional[int] Ground scatter flag. 0: all backscatter data 1: ground backscatter only 2: ionospheric backscatter only 3: all backscatter data with a ground backscatter flag. fovElevation : Optional[float] Passed directly to pydarn.radar.radFov.fov() fovModel : Optional[str] Scatter mapping model. GS : Ground Scatter Mapping Model. See Bristow et al. [1994] (default) IS : Standard SuperDARN scatter mapping model. S : Standard projection model E1 : for Chisham E-region 1/2-hop ionospheric projection model F1 : for Chisham F-region 1/2-hop ionospheric projection model F3 : for Chisham F-region 1 1/2-hop ionospheric projection model C : Chisham projection model None : if you trust your elevation or altitude values fovCoords : Optional[str] Map coordinate system. WARNING: 'geo' is curently only tested coordinate system. full_array : Optional[bool] If True, make the data array the full beam, gate dimensions listed in the hdw.dat file. If False, truncate the array to the maximum dimensions that there is actually data. False will save space without throwing out any data, but sometimes it is easier to work with the full-size array. Attributes ---------- messages : list prm : Methods ------- get_data_sets Example ------- #Set basic event parameters. rad ='wal' sTime = datetime.datetime(2011,5,9,8,0) eTime = datetime.datetime(2011,5,9,19,0) #Connect to a SuperDARN data source. myPtr = pydarn.sdio.radDataOpen(sTime,rad,eTime=eTime) #Create the musicArray Object. dataObj = music.musicArray(myPtr,fovModel='GS') References ---------- Bristow, W. A., R. A. Greenwald, and J. C. Samson (1994), Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF Radar, J. Geophys. Res., 99(A1), 319-331, doi:10.1029/93JA01470. Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self,myPtr,sTime=None,eTime=None,param='p_l',gscat=1, fovElevation=None,fovModel='GS',fovCoords='geo',full_array=False): from davitpy import pydarn # Create a list that can be used to store top-level messages. self.messages = [] no_data_message = 'No data for this time period.' # If no data, report and return. if myPtr is None: self.messages.append(no_data_message) return if sTime == None: sTime = myPtr.sTime if eTime == None: eTime = myPtr.eTime scanTimeList = [] dataList = [] cpidList = [] #Subscripts of columns in the dataList/dataArray scanInx = 0 dateInx = 1 beamInx = 2 gateInx = 3 dataInx = 4 beamTime = sTime scanNr = np.uint64(0) fov = None # Create a place to store the prm data. prm = emptyObj() prm.time = [] prm.mplgs = [] prm.nave = [] prm.noisesearch = [] prm.scan = [] prm.smsep = [] prm.mplgexs = [] prm.xcf = [] prm.noisesky = [] prm.rsep = [] prm.mppul = [] prm.inttsc = [] prm.frang = [] prm.bmazm = [] prm.lagfr = [] prm.ifmode = [] prm.noisemean = [] prm.tfreq = [] prm.inttus = [] prm.rxrise = [] prm.mpinc = [] prm.nrang = [] while beamTime < eTime: #Load one scan into memory. # myScan = pydarn.sdio.radDataRead.radDataReadScan(myPtr) myScan = myPtr.readScan() if myScan == None: break goodScan = False # This flag turns to True as soon as good data is found for the scan. for myBeam in myScan: #Calculate the field of view if it has not yet been calculated. if fov == None: radStruct = pydarn.radar.radStruct.radar(radId=myPtr.stid) site = pydarn.radar.radStruct.site(radId=myPtr.stid,dt=sTime) fov = pydarn.radar.radFov.fov(frang=myBeam.prm.frang, rsep=myBeam.prm.rsep, site=site,elevation=fovElevation,model=fovModel,coords=fovCoords) #Get information from each beam in the scan. beamTime = myBeam.time bmnum = myBeam.bmnum # Save all of the radar operational parameters. prm.time.append(beamTime) prm.mplgs.append(myBeam.prm.mplgs) prm.nave.append(myBeam.prm.nave) prm.noisesearch.append(myBeam.prm.noisesearch) prm.scan.append(myBeam.prm.scan) prm.smsep.append(myBeam.prm.smsep) prm.mplgexs.append(myBeam.prm.mplgexs) prm.xcf.append(myBeam.prm.xcf) prm.noisesky.append(myBeam.prm.noisesky) prm.rsep.append(myBeam.prm.rsep) prm.mppul.append(myBeam.prm.mppul) prm.inttsc.append(myBeam.prm.inttsc) prm.frang.append(myBeam.prm.frang) prm.bmazm.append(myBeam.prm.bmazm) prm.lagfr.append(myBeam.prm.lagfr) prm.ifmode.append(myBeam.prm.ifmode) prm.noisemean.append(myBeam.prm.noisemean) prm.tfreq.append(myBeam.prm.tfreq) prm.inttus.append(myBeam.prm.inttus) prm.rxrise.append(myBeam.prm.rxrise) prm.mpinc.append(myBeam.prm.mpinc) prm.nrang.append(myBeam.prm.nrang) #Get the fitData. fitDataList = getattr(myBeam.fit,param) slist = getattr(myBeam.fit,'slist') gflag = getattr(myBeam.fit,'gflg') if len(slist) > 1: for (gate,data,flag) in zip(slist,fitDataList,gflag): #Get information from each gate in scan. Skip record if the chosen ground scatter option is not met. if (gscat == 1) and (flag == 0): continue if (gscat == 2) and (flag == 1): continue tmp = (scanNr,beamTime,bmnum,gate,data) dataList.append(tmp) goodScan = True elif len(slist) == 1: gate,data,flag = (slist[0],fitDataList[0],gflag[0]) #Get information from each gate in scan. Skip record if the chosen ground scatter option is not met. if (gscat == 1) and (flag == 0): continue if (gscat == 2) and (flag == 1): continue tmp = (scanNr,beamTime,bmnum,gate,data) dataList.append(tmp) goodScan = True else: continue if goodScan: #Determine the start time for each scan and save to list. scanTimeList.append(min([x.time for x in myScan])) #Advance to the next scan number. scanNr = scanNr + 1 #Convert lists to numpy arrays. timeArray = np.array(scanTimeList) dataListArray = np.array(dataList) # If no data, report and return. if dataListArray.size == 0: self.messages.append(no_data_message) return #Figure out what size arrays we need and initialize the arrays... nrTimes = int(np.max(dataListArray[:,scanInx]) + 1) if full_array: nrBeams = int(fov.beams.max() + 1) nrGates = int(fov.gates.max() + 1) else: nrBeams = int(np.max(dataListArray[:,beamInx]) + 1) nrGates = int(np.max(dataListArray[:,gateInx]) + 1) #Make sure the FOV is the same size as the data array. if len(fov.beams) != nrBeams: fov.beams = fov.beams[0:nrBeams] fov.latCenter = fov.latCenter[0:nrBeams,:] fov.lonCenter = fov.lonCenter[0:nrBeams,:] fov.slantRCenter = fov.slantRCenter[0:nrBeams,:] fov.latFull = fov.latFull[0:nrBeams+1,:] fov.lonFull = fov.lonFull[0:nrBeams+1,:] fov.slantRFull = fov.slantRFull[0:nrBeams+1,:] if len(fov.gates) != nrGates: fov.gates = fov.gates[0:nrGates] fov.latCenter = fov.latCenter[:,0:nrGates] fov.lonCenter = fov.lonCenter[:,0:nrGates] fov.slantRCenter = fov.slantRCenter[:,0:nrGates] fov.latFull = fov.latFull[:,0:nrGates+1] fov.lonFull = fov.lonFull[:,0:nrGates+1] fov.slantRFull = fov.slantRFull[:,0:nrGates+1] #Convert the dataListArray into a 3 dimensional array. dataArray = np.ndarray([nrTimes,nrBeams,nrGates]) dataArray[:] = np.nan for inx in range(len(dataListArray)): dataArray[int(dataListArray[inx,scanInx]),int(dataListArray[inx,beamInx]),int(dataListArray[inx,gateInx])] = dataListArray[inx,dataInx] #Make metadata block to hold information about the processing. metadata = {} metadata['dType'] = myPtr.dType metadata['stid'] = myPtr.stid metadata['name'] = radStruct.name metadata['code'] = radStruct.code metadata['fType'] = myPtr.fType metadata['cp'] = myPtr.cp metadata['channel'] = myPtr.channel metadata['sTime'] = sTime metadata['eTime'] = eTime metadata['param'] = param metadata['gscat'] = gscat metadata['elevation'] = fovElevation metadata['model'] = fovModel metadata['coords'] = fovCoords dataSet = 'DS000_originalFit' metadata['dataSetName'] = dataSet metadata['serial'] = 0 comment = '['+dataSet+'] '+ 'Original Fit Data' #Save data to be returned as self.variables setattr(self,dataSet,musicDataObj(timeArray,dataArray,fov=fov,parent=self,comment=comment)) newSigObj = getattr(self,dataSet) setattr(newSigObj,'metadata',metadata) #Set the new data active. newSigObj.setActive() #Make prm data part of the object. self.prm = prm def get_data_sets(self): """Return a sorted list of musicDataObj's contained in this musicArray. Returns ------- dataSets : list of str Names of musicDataObj's contained in this musicArray. Written by Nathaniel A. Frissell, Fall 2013 """ attrs = dir(self) dataSets = [] for item in attrs: if item.startswith('DS'): dataSets.append(item) dataSets.sort() return dataSets def beamInterpolation(dataObj,dataSet='active',newDataSetName='beamInterpolated',comment='Beam Linear Interpolation'): """Interpolates the data in a musicArray object along the beams of the radar. This method will ensure that no rangegates are missing data. Ranges outside of metadata['gateLimits'] will be set to 0. The result is stored as a new musicDataObj in the given musicArray object. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Written by Nathaniel A. Frissell, Fall 2013 """ from scipy.interpolate import interp1d currentData = getDataSet(dataObj,dataSet) nrTimes = len(currentData.time) nrBeams = len(currentData.fov.beams) nrGates = len(currentData.fov.gates) interpArr = np.zeros([nrTimes,nrBeams,nrGates]) for tt in range(nrTimes): for bb in range(nrBeams): rangeVec = currentData.fov.slantRCenter[bb,:] input_x = copy.copy(rangeVec) input_y = currentData.data[tt,bb,:] #If metadata['gateLimits'], select only those measurements... if currentData.metadata.has_key('gateLimits'): limits = currentData.metadata['gateLimits'] gateInx = np.where(np.logical_and(currentData.fov.gates >= limits[0],currentData.fov.gates <= limits[1]))[0] if len(gateInx) < 2: continue input_x = input_x[gateInx] input_y = input_y[gateInx] good = np.where(np.isfinite(input_y))[0] if len(good) < 2: continue input_x = input_x[good] input_y = input_y[good] intFn = interp1d(input_x,input_y,bounds_error=False,fill_value=0) interpArr[tt,bb,:] = intFn(rangeVec) newDataSet = currentData.copy(newDataSetName,comment) newDataSet.data = interpArr newDataSet.setActive() def defineLimits(dataObj,dataSet='active',rangeLimits=None,gateLimits=None,beamLimits=None,timeLimits=None): """Sets the range, gate, beam, and time limits for the chosen data set. This method only changes metadata; it does not create a new data set or alter the data in any way. If you specify rangeLimits, they will be changed to correspond with the center value of the range cell. Gate limits always override range limits. Use the applyLimits() method to remove data outside of the data limits. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process rangeLimits : Optional[iterable] Two-element array defining the maximum and minumum slant ranges to use. [km] gateLimits : Optional[iterable] Two-element array defining the maximum and minumum gates to use. beamLimits : Optional[iterable] Two-element array defining the maximum and minumum beams to use. timeLimits : Optional[iterable] Two-element array of datetime.datetime objects defining the maximum and minumum times to use. Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) try: if (rangeLimits != None) or (gateLimits != None): if (rangeLimits != None) and (gateLimits == None): inx = np.where(np.logical_and(currentData.fov.slantRCenter >= rangeLimits[0],currentData.fov.slantRCenter <= rangeLimits[1])) gateLimits = [np.min(inx[1][:]),np.max(inx[1][:])] if gateLimits != None: rangeMin = np.int(np.min(currentData.fov.slantRCenter[:,gateLimits[0]])) rangeMax = np.int(np.max(currentData.fov.slantRCenter[:,gateLimits[1]])) rangeLimits = [rangeMin,rangeMax] currentData.metadata['gateLimits'] = gateLimits currentData.metadata['rangeLimits'] = rangeLimits if beamLimits != None: currentData.metadata['beamLimits'] = beamLimits if timeLimits != None: currentData.metadata['timeLimits'] = timeLimits except: logging.warning("An error occured while defining limits. No limits set. Check your input values.") def checkDataQuality(dataObj,dataSet='active',max_off_time=10,sTime=None,eTime=None): """Mark the data set as bad (metadata['good_period'] = False) if the radar was not operational within the chosen time period for a specified length of time. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process max_off_time : Optional[int/float] Maximum length in minutes radar may remain off. sTime : Optional[datetime.datetime] Starting time of checking period. If None, min(currentData.time) is used. eTime : Optional[datetime.datetime] End time of checking period. If None, max(currentData.time) is used. Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) if sTime is None: sTime = np.min(currentData.time) if eTime is None: eTime = np.max(currentData.time) time_vec = currentData.time[np.logical_and(currentData.time > sTime, currentData.time < eTime)] time_vec = np.concatenate(([sTime],time_vec,[eTime])) max_diff = np.max(np.diff(time_vec)) if max_diff > datetime.timedelta(minutes=max_off_time): currentData.setMetadata(good_period=False) else: currentData.setMetadata(good_period=True) return dataObj def applyLimits(dataObj,dataSet='active',rangeLimits=None,gateLimits=None,timeLimits=None,newDataSetName='limitsApplied',comment=None): """Removes data outside of the rangeLimits and gateLimits boundaries. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process rangeLimits : Optional[iterable] Two-element array defining the maximum and minumum slant ranges to use. [km] gateLimits : Optional[iterable] Two-element array defining the maximum and minumum gates to use. beamLimits : Optional[iterable] Two-element array defining the maximum and minumum beams to use. timeLimits : Optional[iterable] Two-element array of datetime.datetime objects defining the maximum and minumum times to use. newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). Returns ------- newData : musicDataObj Processed version of input musicDataObj (if succeeded), or the original musicDataObj (if failed). Written by Nathaniel A. Frissell, Fall 2013 """ if (rangeLimits != None) or (gateLimits != None) or (timeLimits != None): defineLimits(dataObj,dataSet='active',rangeLimits=rangeLimits,gateLimits=gateLimits,timeLimits=timeLimits) currentData = getDataSet(dataObj,dataSet) try: #Make a copy of the current data set. commentList = [] if (currentData.metadata.has_key('timeLimits') == False and currentData.metadata.has_key('beamLimits') == False and currentData.metadata.has_key('gateLimits') == False): return currentData newData = currentData.copy(newDataSetName,comment) #Apply the gateLimits if currentData.metadata.has_key('gateLimits'): limits = currentData.metadata['gateLimits'] gateInx = np.where(np.logical_and(currentData.fov.gates >= limits[0],currentData.fov.gates<= limits[1]))[0] newData.data = newData.data[:,:,gateInx] newData.fov.gates = newData.fov.gates[gateInx] newData.fov.latCenter = newData.fov.latCenter[:,gateInx] newData.fov.lonCenter = newData.fov.lonCenter[:,gateInx] newData.fov.slantRCenter = newData.fov.slantRCenter[:,gateInx] #Update the full FOV. #This works as long as we look at only consecutive gates. If we ever do something where we are not looking at consecutive gates #(typically for computational speed reasons), we will have to do something else. gateInxFull = np.append(gateInx,gateInx[-1]+1) #We need that extra gate since this is the full FOV. newData.fov.latFull = newData.fov.latFull[:,gateInxFull] newData.fov.lonFull = newData.fov.lonFull[:,gateInxFull] newData.fov.slantRFull = newData.fov.slantRFull[:,gateInxFull] commentList.append('gate: %i,%i' % tuple(limits)) rangeLim = (np.min(newData.fov.slantRCenter), np.max(newData.fov.slantRCenter)) commentList.append('range [km]: %i,%i' % rangeLim) #Remove limiting item from metadata. newData.metadata.pop('gateLimits') if newData.metadata.has_key('rangeLimits'): newData.metadata.pop('rangeLimits') #Apply the beamLimits. if currentData.metadata.has_key('beamLimits'): limits = currentData.metadata['beamLimits'] beamInx = np.where(np.logical_and(currentData.fov.beams >= limits[0],currentData.fov.beams <= limits[1]))[0] newData.data = newData.data[:,beamInx,:] newData.fov.beams = newData.fov.beams[beamInx] newData.fov.latCenter = newData.fov.latCenter[beamInx,:] newData.fov.lonCenter = newData.fov.lonCenter[beamInx,:] newData.fov.slantRCenter = newData.fov.slantRCenter[beamInx,:] #Update the full FOV. #This works as long as we look at only consecutive gates. If we ever do something where we are not looking at consecutive gates #(typically for computational speed reasons), we will have to do something else. beamInxFull = np.append(beamInx,beamInx[-1]+1) #We need that extra beam since this is the full FOV. newData.fov.latFull = newData.fov.latFull[beamInxFull,:] newData.fov.lonFull = newData.fov.lonFull[beamInxFull,:] newData.fov.slantRFull = newData.fov.slantRFull[beamInxFull,:] commentList.append('beam: %i,%i' % tuple(limits)) #Remove limiting item from metadata. newData.metadata.pop('beamLimits') #Apply the time limits. if currentData.metadata.has_key('timeLimits'): limits = currentData.metadata['timeLimits'] timeInx = np.where(np.logical_and(currentData.time >= limits[0],currentData.time <= limits[1]))[0] newData.data = newData.data[timeInx,:,:] newData.time = newData.time[timeInx] commentList.append('time: '+limits[0].strftime('%Y-%m-%d/%H:%M,')+limits[1].strftime('%Y-%m-%d/%H:%M')) #Remove limiting item from metadata. newData.metadata.pop('timeLimits') #Update the history with what limits were applied. comment = 'Limits Applied' commentStr = '['+newData.metadata['dataSetName']+'] '+comment+': '+'; '.join(commentList) key = max(newData.history.keys()) newData.history[key] = commentStr logging.debug(commentStr) newData.setActive() return newData except: if hasattr(dataObj,newDataSetName): delattr(dataObj,newDataSetName) # print 'Warning! Limits not applied.' return currentData def determineRelativePosition(dataObj,dataSet='active',altitude=250.): """Finds the center cell of the field-of-view of a musicArray data object. The range, azimuth, x-range, and y-range from the center to each cell in the FOV is calculated and saved to the FOV object. The following objects are added to dataObj.dataSet: fov.relative_centerInx: [beam, gate] index of the center cell fov.relative_azm: Azimuth relative to center cell [deg] fov.relative_range: Range relative to center cell [km] fov.relative_x: X-range relative to center cell [km] fov.relative_y: Y-range relative to center cell [km] Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process altitude : Optional[float] altitude added to Re = 6378.1 km [km] Returns ------- None Written by Nathaniel A. Frissell, Fall 2013 """ from davitpy import utils #Get the chosen dataset. currentData = getDataSet(dataObj,dataSet) #Determine center beam. ctrBeamInx = len(currentData.fov.beams)/2 ctrGateInx = len(currentData.fov.gates)/2 currentData.fov.relative_centerInx = [ctrBeamInx, ctrGateInx] #Set arrays of lat1/lon1 to the center cell value. Use this to calculate all other positions #with numpy array math. lat1 = np.zeros_like(currentData.fov.latCenter) lon1 = np.zeros_like(currentData.fov.latCenter) lat1[:] = currentData.fov.latCenter[ctrBeamInx,ctrGateInx] lon1[:] = currentData.fov.lonCenter[ctrBeamInx,ctrGateInx] #Make lat2/lon2 the center position array of the dataset. lat2 = currentData.fov.latCenter lon2 = currentData.fov.lonCenter #Calculate the azimuth and distance from the centerpoint to the endpoint. azm = utils.greatCircleAzm(lat1,lon1,lat2,lon2) dist = (Re + altitude)*utils.greatCircleDist(lat1,lon1,lat2,lon2) #Save calculated values to the current data object, as well as calculate the #X and Y relatvie positions of each cell. currentData.fov.relative_azm = azm currentData.fov.relative_range = dist currentData.fov.relative_x = dist * np.sin(np.radians(azm)) currentData.fov.relative_y = dist * np.cos(np.radians(azm)) return None def timeInterpolation(dataObj,dataSet='active',newDataSetName='timeInterpolated',comment='Time Linear Interpolation',timeRes=10,newTimeVec=None): """Interpolates the data in a musicArray object to a regular time grid. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. timeRes : Optional[float] time resolution of new time vector [seconds] newTimeVec : Optional[list of datetime.datetime] Sequence of datetime.datetime objects that data will be interpolated to. This overides timeRes. Written by Nathaniel A. Frissell, Fall 2013 """ from scipy.interpolate import interp1d from davitpy import utils currentData = getDataSet(dataObj,dataSet) sTime = currentData.time[0] sTime = datetime.datetime(sTime.year,sTime.month,sTime.day,sTime.hour,sTime.minute) #Make start time a round time. fTime = currentData.time[-1] #Create new time vector. if newTimeVec == None: newTimeVec = [sTime] while newTimeVec[-1] < fTime: newTimeVec.append(newTimeVec[-1] + datetime.timedelta(seconds=timeRes)) #Ensure that the new time vector is within the bounds of the actual data set. newTimeVec = np.array(newTimeVec) good = np.where(np.logical_and(newTimeVec > min(currentData.time),newTimeVec < max(currentData.time))) newTimeVec = newTimeVec[good] newEpochVec = utils.datetimeToEpoch(newTimeVec) #Initialize interpolated data. nrTimes = len(newTimeVec) nrBeams = len(currentData.fov.beams) nrGates = len(currentData.fov.gates) interpArr = np.zeros([nrTimes,nrBeams,nrGates]) for rg in range(nrGates): for bb in range(nrBeams): input_x = currentData.time[:] input_y = currentData.data[:,bb,rg] good = np.where(np.isfinite(input_y))[0] if len(good) < 2: continue input_x = input_x[good] input_y = input_y[good] input_x = utils.datetimeToEpoch(input_x) intFn = interp1d(input_x,input_y,bounds_error=False)#,fill_value=0) interpArr[:,bb,rg] = intFn(newEpochVec) newDataSet = currentData.copy(newDataSetName,comment) newDataSet.time = newTimeVec newDataSet.data = interpArr newDataSet.setActive() def filterTimes(sTime,eTime,timeRes,numTaps): """The linear filter is going to cause a delay in the signal and also won't get to the end of the signal. This function will calcuate the full time period of data that needs to be loaded in order to provide filtered data for the event requested. Parameters ---------- sTime : datetime.datetime Start time of event. eTime : datetime.datetime End time of event. timeRes : float Time resolution in seconds of data to be sent to filter. numtaps : int Length of the filter Returns ------- newSTime, newETime : datetime.datetime, datetime.datetime Start and end times of data that needs to be fed into the filter. Written by Nathaniel A. Frissell, Fall 2013 """ td = datetime.timedelta(seconds=(numTaps*timeRes/2.)) newSTime = sTime - td newETime = eTime + td return (newSTime, newETime) class filter(object): """Filter a VT sig/sigStruct object and define a FIR filter object. If only cutoff_low is defined, this is a high pass filter. If only cutoff_high is defined, this is a low pass filter. If both cutoff_low and cutoff_high is defined, this is a band pass filter. Uses scipy.signal.firwin() High pass and band pass filters inspired by Matti Pastell's page: http://mpastell.com/2010/01/18/fir-with-scipy/ Metadata keys: 'filter_cutoff_low' --> cutoff_low 'filter_cutoff_high' --> cutoff_high 'filter_numtaps' --> cutoff_numtaps Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process numtaps : Optional[int] Length of the filter (number of coefficients, i.e. the filter order + 1). `numtaps` must be even if a passband includes the Nyquist frequency. If dataObj.dataSet.metadata['filter_numptaps'] is set and this keyword is None, the metadata value will be used. cutoff_low : Optional[float, 1D array_like or None] High pass cutoff frequency of filter (expressed in the same units as `nyq`) OR an array of cutoff frequencies (that is, band edges). In the latter case, the frequencies in `cutoff` should be positive and monotonically increasing between 0 and `nyq`. The values 0 and `nyq` must not be included in `cutoff`. If None, a low-pass filter will not be applied. If dataObj.dataSet.metadata['filter_cutoff_low'] is set and this keyword is None, the metadata value will be used. cutoff_high : Optional[float, 1D array_like, or None] Like cutoff_low, but this is the low pass cutoff frequency of the filter. If dataObj.dataSet.metadata['filter_cutoff_high'] is set and this keyword is None, the metadata value will be used. width : Optional[float] If `width` is not None, then assume it is the approximate width of the transition region (expressed in the same units as `nyq`) for use in Kaiser FIR filter design. In this case, the `window` argument is ignored. window : Optional[string or tuple of string and parameter values] Desired window to use. See `scipy.signal.get_window` for a list of windows and required parameters. pass_zero : Optional[bool] If True, the gain at the frequency 0 (i.e. the "DC gain") is 1. Otherwise the DC gain is 0. scale : Optional[bool] Set to True to scale the coefficients so that the frequency response is exactly unity at a certain frequency. That frequency is either: 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True); nyq` (the Nyquist rate) if the first passband ends at `nyq` (i.e the filter is a single band highpass filter); center of first passband otherwise. Attributes ---------- comment : str cutoff_low : float, 1D array_like or None High pass cutoff frequency of filter (expressed in the same units as `nyq`) OR an array of cutoff frequencies (that is, band edges). cutoff_high : float, 1D array_like, or None Like cutoff_low, but this is the low pass cutoff frequency of the filter. nyq : float the Nyquist rate ir : Methods ------- plotTransferFunction plotImpulseResponse filter Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self, dataObj, dataSet='active', numtaps=None, cutoff_low=None, cutoff_high=None, width=None, window='blackman', pass_zero=True, scale=True,newDataSetName='filtered'): import scipy as sp sigObj = getattr(dataObj,dataSet) nyq = sigObj.nyquistFrequency() #Get metadata for cutoffs and numtaps. md = sigObj.metadata if cutoff_high == None: if md.has_key('filter_cutoff_high'): cutoff_high = md['filter_cutoff_high'] if cutoff_low == None: if md.has_key('filter_cutoff_low'): cutoff_low = md['filter_cutoff_low'] if numtaps == None: if md.has_key('filter_numtaps'): numtaps = md['filter_numtaps'] else: logging.warning('You must provide numtaps.') return if cutoff_high != None: #Low pass lp = sp.signal.firwin(numtaps=numtaps, cutoff=cutoff_high, width=width, window=window, pass_zero=pass_zero, scale=scale, nyq=nyq) d = lp if cutoff_low != None: #High pass hp = -sp.signal.firwin(numtaps=numtaps, cutoff=cutoff_low, width=width, window=window, pass_zero=pass_zero, scale=scale, nyq=nyq) hp[numtaps/2] = hp[numtaps/2] + 1 d = hp if cutoff_high != None and cutoff_low != None: d = -(lp+hp) d[numtaps/2] = d[numtaps/2] + 1 d = -1.*d #Needed to correct 180 deg phase shift. if cutoff_high == None and cutoff_low == None: logging.warning("You must define cutoff frequencies!") return self.comment = ' '.join(['Filter:',window+',','Nyquist:',str(nyq),'Hz,','Cuttoff:','['+str(cutoff_low)+', '+str(cutoff_high)+']','Hz,','Numtaps:',str(numtaps)]) self.cutoff_low = cutoff_low self.cutoff_high = cutoff_high self.nyq = nyq self.ir = d self.filter(dataObj,dataSet=dataSet,newDataSetName=newDataSetName) def __str__(self): return self.comment def plotTransferFunction(self,xmin=0,xmax=None,ymin_mag=-150,ymax_mag=5,ymin_phase=None,ymax_phase=None,worN=None,fig=None): import scipy as sp """Plot the frequency and phase response of the filter object. Parameters ---------- xmin : Optional[float] Minimum value for x-axis. xmax : Optional[float] Maximum value for x-axis. ymin_mag : Optional[float] Minimum value for y-axis for the frequency response plot. ymax_mag : Optional[float] Maximum value for y-axis for the frequency response plot. ymin_phase : Optional[float] Minimum value for y-axis for the phase response plot. ymax_phase : Optional[float] Maximum value for y-axis for the phase response plot. worN : Optional[int] passed to scipy.signal.freqz() If None, then compute at 512 frequencies around the unit circle. If the len(filter) > 512, then compute at len(filter) frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN fig : Optional[matplotlib.Figure] Figure object on which to plot. If None, a figure will be created. Returns ------- fig : matplotlib.Figure Figure object containing the plot. Written by Nathaniel A. Frissell, Fall 2013 """ if fig == None: from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) if worN == None: if len(self.ir) > 512: worN = len(self.ir) else: worN = None else: pass w,h = sp.signal.freqz(self.ir,1,worN=worN) h_dB = 20 * np.log10(abs(h)) axis = fig.add_subplot(211) #Compute frequency vector. w = w/max(w) * self.nyq axis.plot(w,h_dB,'.-') #mp.axvline(x=self.fMax,color='r',ls='--',lw=2) if xmin is not None: axis.set_xlim(xmin=xmin) if xmax is not None: axis.set_xlim(xmax=xmax) if ymin_mag is not None: axis.set_ylim(ymin=ymin_mag) if ymax_mag is not None: axis.set_ylim(ymax=ymax_mag) axis.set_xlabel(r'Frequency (Hz)') axis.set_ylabel('Magnitude (db)') axis.set_title(r'Frequency response') axis = fig.add_subplot(212) h_Phase = np.unwrap(np.arctan2(np.imag(h),np.real(h))) axis.plot(w,h_Phase,'.-') if xmin is not None: axis.set_xlim(xmin=xmin) if xmax is not None: axis.set_xlim(xmax=xmax) if ymin_phase is not None: axis.set_ylim(ymin=ymin_phase) if ymax_phase is not None: axis.set_ylim(ymax=ymax_phase) axis.set_ylabel('Phase (radians)') axis.set_xlabel(r'Frequency (Hz)') axis.set_title(r'Phase response') fig.suptitle(self.comment) fig.subplots_adjust(hspace=0.5) return fig def plotImpulseResponse(self,xmin=None,xmax=None,ymin_imp=None,ymax_imp=None,ymin_step=None,ymax_step=None,fig=None): import scipy as sp """Plot the frequency and phase response of the filter object. Parameters ---------- xmin : Optional[float] Minimum value for x-axis. xmax : Optional[float] Maximum value for x-axis. ymin_imp : Optional[float] Minimum value for y-axis for the impulse response plot. ymax_imp : Optional[float] Maximum value for y-axis for the impulse response plot. ymin_step : Optional[float] Minimum value for y-axis for the step response plot. ymax_step : Optional[float] Maximum value for y-axis for the step response plot. fig : Optional[matplotlib.Figure] Figure object on which to plot. If None, a figure will be created. Returns ------- fig : matplotlib.Figure Figure object containing the plot. Written by Nathaniel A. Frissell, Fall 2013 """ if fig == None: from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) l = len(self.ir) impulse = np.repeat(0.,l); impulse[0] =1. x = np.arange(0,l) response = sp.signal.lfilter(self.ir,1,impulse) axis = fig.add_subplot(211) axis.stem(x, response) axis.set_ylabel('Amplitude') axis.set_xlabel(r'n (samples)') axis.set_title(r'Impulse response') axis = fig.add_subplot(212) step = np.cumsum(response) axis.stem(x, step) axis.set_ylabel('Amplitude') axis.set_xlabel(r'n (samples)') axis.set_title(r'Step response') fig.suptitle(self.comment) fig.subplots_adjust(hspace=0.5) return fig def filter(self,dataObj,dataSet='active',newDataSetName='filtered'): """Apply the filter to a vtsig object. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. Written by Nathaniel A. Frissell, Fall 2013 """ import scipy as sp sigobj = getattr(dataObj,dataSet) vtsig = sigobj.parent nrTimes,nrBeams,nrGates = np.shape(sigobj.data) #Filter causes a delay in the signal and also doesn't get the tail end of the signal... Shift signal around, provide info about where the signal is valid. shift = np.int32(-np.floor(len(self.ir)/2.)) start_line = np.zeros(nrTimes) start_line[0] = 1 start_line = np.roll(start_line,shift) tinx0 = abs(shift) tinx1 = np.where(start_line == 1)[0][0] val_tm0 = sigobj.time[tinx0] val_tm1 = sigobj.time[tinx1] filteredData = np.zeros_like(sigobj.data) #Apply filter for bm in range(nrBeams): for rg in range(nrGates): tmp = sp.signal.lfilter(self.ir,[1.0],sigobj.data[:,bm,rg]) tmp = np.roll(tmp,shift) filteredData[:,bm,rg] = tmp[:] #Create new signal object. newsigobj = sigobj.copy(newDataSetName,self.comment) #Put in the filtered data. newsigobj.data = copy.copy(filteredData) newsigobj.time = copy.copy(sigobj.time) #Clear out ymin and ymax from metadata; make sure meta data block exists. #If not, create it. if hasattr(newsigobj,'metadata'): delMeta = ['ymin','ymax','ylim'] for key in delMeta: if newsigobj.metadata.has_key(key): del newsigobj.metadata[key] else: newsigobj.metadata = {} newsigobj.metadata['timeLimits'] = (val_tm0,val_tm1) key = 'title' if newsigobj.metadata.has_key(key): newsigobj.metadata[key] = ' '.join(['Filtered',newsigobj.metadata[key]]) else: newsigobj.metadata[key] = 'Filtered' newsigobj.metadata['fir_filter'] = (self.cutoff_low,self.cutoff_high) newsigobj.setActive() def detrend(dataObj,dataSet='active',newDataSetName='detrended',comment=None,type='linear'): """Linearly detrend a data in a musicArray/musicDataObj object. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). type : Optional[str] The type of detrending. If type == 'linear' (default), the result of a linear least-squares fit to data is subtracted from data. If type == 'constant', only the mean of data is subtracted. Written by Nathaniel A. Frissell, Fall 2013 """ import scipy as sp currentData = getDataSet(dataObj,dataSet) currentData = currentData.applyLimits() nrTimes, nrBeams, nrGates = np.shape(currentData.data) newDataArr= np.zeros_like(currentData.data) for bm in range(nrBeams): for rg in range(nrGates): try: newDataArr[:,bm,rg] = sp.signal.detrend(currentData.data[:,bm,rg],type=type) except: newDataArr[:,bm,rg] = np.nan if comment == None: comment = type.capitalize() + ' detrend (scipy.signal.detrend)' newDataSet = currentData.copy(newDataSetName,comment) newDataSet.data = newDataArr newDataSet.setActive() def nan_to_num(dataObj,dataSet='active',newDataSetName='nan_to_num',comment=None): """Convert all NANs and INFs to finite numbers using numpy.nan_to_num(). Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) currentData = currentData.applyLimits() if comment == None: comment = 'numpy.nan_to_num' newDataSet = currentData.copy(newDataSetName,comment) newDataSet.data = np.nan_to_num(currentData.data) newDataSet.setActive() def windowData(dataObj,dataSet='active',newDataSetName='windowed',comment=None,window='hann'): """Apply a window to a musicArray object. The window is calculated using scipy.signal.get_window(). Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). window : Optional[str] boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation) Written by Nathaniel A. Frissell, Fall 2013 """ import scipy as sp currentData = getDataSet(dataObj,dataSet) currentData = currentData.applyLimits() nrTimes, nrBeams, nrGates = np.shape(currentData.data) win = sp.signal.get_window(window,nrTimes,fftbins=False) newDataArr= np.zeros_like(currentData.data) for bm in range(nrBeams): for rg in range(nrGates): newDataArr[:,bm,rg] = currentData.data[:,bm,rg] * win if comment == None: comment = window.capitalize() + ' window applied (scipy.signal.get_window)' newDataSet = currentData.copy(newDataSetName,comment) newDataSet.data = newDataArr newDataSet.setActive() def calculateFFT(dataObj,dataSet='active',comment=None): """Calculate the spectrum of an object. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). Written by Nathaniel A. Frissell, Fall 2013 """ import scipy as sp currentData = getDataSet(dataObj,dataSet) currentData = currentData.applyLimits() nrTimes, nrBeams, nrGates = np.shape(currentData.data) #Determine frequency axis. nyq = currentData.nyquistFrequency() freq_ax = np.arange(nrTimes,dtype='f8') freq_ax = (freq_ax / max(freq_ax)) - 0.5 freq_ax = freq_ax * 2. * nyq #Use complex64, not complex128! If you use complex128, too much numerical noise will accumulate and the final plot will be bad! newDataArr= np.zeros((nrTimes,nrBeams,nrGates),dtype=np.complex64) for bm in range(nrBeams): for rg in range(nrGates): newDataArr[:,bm,rg] = sp.fftpack.fftshift(sp.fftpack.fft(currentData.data[:,bm,rg])) / np.size(currentData.data[:,bm,rg]) currentData.freqVec = freq_ax currentData.spectrum = newDataArr # Calculate the dominant frequency ############################################# posFreqInx = np.where(currentData.freqVec >= 0)[0] posFreqVec = currentData.freqVec[posFreqInx] npf = len(posFreqVec) #Number of positive frequencies data = np.abs(currentData.spectrum[posFreqInx,:,:]) #Use the magnitude of the positive frequency data. #Average Power Spectral Density avg_psd = np.zeros(npf) for x in range(npf): avg_psd[x] = np.mean(data[x,:,:]) currentData.dominantFreq = posFreqVec[np.argmax(avg_psd)] currentData.appendHistory('Calculated FFT') def calculateDlm(dataObj,dataSet='active',comment=None): """Calculate the cross-spectral matrix of a musicaArray object. FFT must already have been calculated. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) nrTimes, nrBeams, nrGates = np.shape(currentData.data) nCells = nrBeams * nrGates currentData.llLookupTable = np.zeros([5,nCells]) currentData.Dlm = np.zeros([nCells,nCells],dtype=np.complex128) #Only use positive frequencies... posInx = np.where(currentData.freqVec > 0)[0] #Explicitly write out gate/range indices... llList = [] for gg in xrange(nrGates): for bb in xrange(nrBeams): llList.append((bb,gg)) for ll in range(nCells): llAI = llList[ll] ew_dist = currentData.fov.relative_x[llAI] ns_dist = currentData.fov.relative_y[llAI] currentData.llLookupTable[:,ll] = [ll, currentData.fov.beams[llAI[0]], currentData.fov.gates[llAI[1]],ns_dist,ew_dist] spectL = currentData.spectrum[posInx,llAI[0],llAI[1]] for mm in range(nCells): mmAI = llList[mm] spectM = currentData.spectrum[posInx,mmAI[0],mmAI[1]] currentData.Dlm[ll,mm] = np.sum(spectL * np.conj(spectM)) currentData.appendHistory('Calculated Cross-Spectral Matrix Dlm') def calculateKarr(dataObj,dataSet='active',kxMax=0.05,kyMax=0.05,dkx=0.001,dky=0.001,threshold=0.15): """Calculate the two-dimensional horizontal wavenumber array of a musicArray/musicDataObj object. Cross-spectrum array Dlm must already have been calculated. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process kxMax : Optional[float] Maximum kx (East-West) wavenumber to calculate [rad/km] kyMax : Optional[float] Maximum ky (North-South) wavenumber to calculate [rad/km] dkx : Optional[float] kx resolution [rad/km] dky : Optional[float] ky resolution [rad/km] threshold : Optional[float] threshold of signals to detect as a fraction of the maximum eigenvalue Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) nrTimes, nrBeams, nrGates = np.shape(currentData.data) #Calculate eigenvalues, eigenvectors eVals,eVecs = np.linalg.eig(np.transpose(dataObj.active.Dlm)) nkx = np.ceil(2*kxMax/dkx) if (nkx % 2) == 0: nkx = nkx+1 kxVec = kxMax * (2*np.arange(nkx)/(nkx-1) - 1) nky = np.ceil(2*kyMax/dky) if (nky % 2) == 0: nky = nky+1 kyVec = kyMax * (2*np.arange(nky)/(nky-1) - 1) nkx = int(nkx) nky = int(nky) xm = currentData.llLookupTable[4,:] #x is in the E-W direction. ym = currentData.llLookupTable[3,:] #y is in the N-S direction. threshold = 0.15 maxEval = np.max(np.abs(eVals)) minEvalsInx = np.where(eVals <= threshold*maxEval)[0] cnt = np.size(minEvalsInx) maxEvalsInx = np.where(eVals > threshold*maxEval)[0] nSigs = np.size(maxEvalsInx) if cnt < 3: logging.warning('Not enough small eigenvalues!') import ipdb; ipdb.set_trace() logging.info('K-Array: ' + str(nkx) + ' x ' + str(nky)) logging.info('Kx Max: ' + str(kxMax)) logging.info('Kx Res: ' + str(dkx)) logging.info('Ky Max: ' + str(kyMax)) logging.info('Ky Res: ' + str(dky)) logging.info('') logging.info('Signal Threshold: ' + str(threshold)) logging.info('Number of Det Signals: ' + str(nSigs)) logging.info('Number of Noise Evals: ' + str(cnt)) logging.info('Starting kArr Calculation...') t0 = datetime.datetime.now() def vCalc(um,v): return np.dot( np.conj(um), v) * np.dot( np.conj(v), um) vList = [eVecs[:,minEvalsInx[ee]] for ee in xrange(cnt)] kArr = np.zeros((nkx,nky),dtype=np.complex64) for kk_kx in xrange(nkx): kx = kxVec[kk_kx] for kk_ky in xrange(nky): ky = kyVec[kk_ky] um = np.exp(1j*(kx*xm + ky*ym)) kArr[kk_kx,kk_ky]= 1. / np.sum(map(lambda v: vCalc(um,v), vList)) t1 = datetime.datetime.now() logging.info('Finished kArr Calculation. Total time: ' + str(t1-t0)) currentData.karr = kArr currentData.kxVec = kxVec currentData.kyVec = kyVec currentData.appendHistory('Calculated kArr') def simulator(dataObj, dataSet='active',newDataSetName='simulated',comment=None,keepLocalRange=True,sigs=None,noiseFactor=0): """Replace SuperDARN Data with simulated MSTID(s). This is useful for understanding how the signal processing routines of this module affect ideal data. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process newDataSetName : Optional[str] Name of the new musicDataObj to be created in the current musicArray object as a result of this processing. comment : Optional[str] String to be appended to the history of this object. Set to None for the Default comment (recommended). keepLocalRange : Optional[bool] If true, the locations calculated for the actual radar field of view will be used. If false, a linearly-spaced will replace the true grid. sigs : Optional[list of tuples] A list of tuples defining the characteristics of the simulated signal. Sample list is as follows. If this keyword is None, the values in this sample list are used as the default values.:: sigs = [] # (amp, kx, ky, f, phi, dcOffset) sigs.append(( 5, 0.01, -0.010, 0.0004, 0, 5.)) sigs.append(( 5, 0.022, -0.023, 0.0004, 0, 5.)) Each signal is evaluated as a cosine and then summed together. The cosine evaluated is:: sig = amp * np.cos(kx*xgrid + ky*ygrid - 2.*np.pi*f*t + phi) + dc noiseFactor : Optional[float] Add white gaussian noise to the simulated signal. noiseFactor is a scalar such that: noise = noiseFactor*np.random.standard_normal(nSteps) Written by Nathaniel A. Frissell, Fall 2013 """ from davitpy import utils currentData = getDataSet(dataObj,dataSet) #Typical TID Parameters: # Frequency: 0.0003 mHz # Period: 55.5 min # H. Wavelength: 314 km # k: 0.02 /km if keepLocalRange == True: nx, ny = np.shape(currentData.fov.relative_x) xRange = np.max(currentData.fov.relative_x) - np.min(currentData.fov.relative_x) yRange = np.max(currentData.fov.relative_y) - np.min(currentData.fov.relative_y) xgrid = currentData.fov.relative_x ygrid = currentData.fov.relative_y else: nx = 16 xRange = 800. ny = 25 yRange = 600. xvec = np.linspace(-xRange/2.,xRange/2.,nx) yvec = np.linspace(-yRange/2.,yRange/2.,ny) dx = np.diff(xvec)[0] dy = np.diff(yvec)[0] xaxis = np.append(xvec,xvec[-1]+dx) yayis = np.append(yvec,yvec[-1]+dy) xgrid = np.zeros((nx,ny)) ygrid = np.zeros((nx,ny)) for kk in xrange(nx): ygrid[kk,:] = yvec[:] for kk in xrange(ny): xgrid[kk,:] = yvec[:] if sigs == None: #Set some default signals. sigs = [] # (amp, kx, ky, f, phi, dcOffset) sigs.append(( 5, 0.01, -0.010, 0.0004, 0, 5.)) sigs.append(( 5, 0.022, -0.023, 0.0004, 0, 5.)) secVec = np.array(utils.datetimeToEpoch(currentData.time)) secVec = secVec - secVec[0] nSteps = len(secVec) dt = currentData.samplePeriod() dataArr = np.zeros((nSteps,nx,ny)) for step in xrange(nSteps): t = secVec[step] for kk in xrange(len(sigs)): amp = sigs[kk][0] kx = sigs[kk][1] ky = sigs[kk][2] f = sigs[kk][3] phi = sigs[kk][4] dc = sigs[kk][5] if 1./dt <= 2.*f: logging.warning('Nyquist Violation in f.') logging.warning('Signal #: %i' % kk) # if 1./dx <= 2.*kx/(2.*np.pi): # print 'WARNING: Nyquist Violation in kx.' # print 'Signal #: %i' % kk # # if 1./dy <= 2.*ky/(2.*np.pi): # print 'WARNING: Nyquist Violation in ky.' # print 'Signal #: %i' % kk temp = amp * np.cos(kx*xgrid + ky*ygrid - 2.*np.pi*f*t + phi) + dc dataArr[step,:,:] = dataArr[step,:,:] + temp #Signal RMS sig_rms = np.zeros((nx,ny)) for xx in xrange(nx): for yy in xrange(ny): sig_rms[xx,yy] = np.sqrt(np.mean((dataArr[:,xx,yy])**2.)) noise_rms = np.zeros((nx,ny)) if noiseFactor > 0: nf = noiseFactor #Temporal White Noise for xx in xrange(nx): for yy in xrange(ny): noise = nf*np.random.standard_normal(nSteps) noise_rms[xx,yy] = np.sqrt(np.mean(noise**2)) dataArr[:,xx,yy] = dataArr[:,xx,yy] + noise xx = np.arange(ny) mu = (ny-1.)/2. sigma2 = 10.0 sigma = np.sqrt(sigma2) rgDist = 1./(sigma*np.sqrt(2.*np.pi)) * np.exp(-0.5 * ((xx-mu)/sigma)**2) rgDist = rgDist / np.max(rgDist) mask = np.zeros((nx,ny)) for nn in xrange(nx): mask[nn,:] = rgDist[:] mask3d = np.zeros((nSteps,nx,ny)) for nn in xrange(nSteps): mask3d[nn,:,:] = mask[:] #Apply Range Gate Dependence dataArr = dataArr * mask3d snr = (sig_rms/noise_rms)**2 snr_db = 10.*np.log10(snr) if comment == None: comment = 'Simulated data injected.' newDataSet = currentData.copy(newDataSetName,comment) newDataSet.data = dataArr newDataSet.setActive() #OPENW,unit,'simstats.txt',/GET_LUN,WIDTH=300 #stats$ = ' Mean: ' + NUMSTR(MEAN(sig_rms),3) $ # + ' STDDEV: ' + NUMSTR(STDDEV(sig_rms),3) $ # + ' Var: ' + NUMSTR(STDDEV(sig_rms)^2,3) #PRINTF,unit,'SIG_RMS' #PRINTF,unit,stats$ #PRINTF,unit,sig_rms # #PRINTF,unit,'' #PRINTF,unit,'NOISE_RMS' #stats$ = ' Mean: ' + NUMSTR(MEAN(noise_rms),3) $ # + ' STDDEV: ' + NUMSTR(STDDEV(noise_rms),3) $ # + ' Var: ' + NUMSTR(STDDEV(noise_rms)^2,3) #PRINTF,unit,stats$ #PRINTF,unit,noise_rms # #PRINTF,unit,'' #PRINTF,unit,'SNR_DB' #stats$ = ' Mean: ' + NUMSTR(MEAN(snr_db),3) $ # + ' STDDEV: ' + NUMSTR(STDDEV(snr_db),3) $ # + ' Var: ' + NUMSTR(STDDEV(snr_db)^2,3) #PRINTF,unit,stats$ #PRINTF,unit,snr_db #CLOSE,unit def scale_karr(kArr): from scipy import stats """Scale/normalize kArr for plotting and signal detection. Parameters ---------- kArr : 2D numpy.array Two-dimensional horizontal wavenumber array of a musicArray/musicDataObj object. Returns ------- data : 2D numpy.array Scaled and normalized version of kArr. Written by Nathaniel A. Frissell, Fall 2013 """ data = np.abs(kArr) - np.min(np.abs(kArr)) #Determine scale for colorbar. scale = [0.,1.] sd = stats.nanstd(data,axis=None) mean = stats.nanmean(data,axis=None) scMax = mean + 6.5*sd data = data / scMax return data def detectSignals(dataObj,dataSet='active',threshold=0.35,neighborhood=(10,10)): """Automatically detects local maxima/signals in a calculated kArr. This routine uses the watershed algorithm from the skimage image processing library. Results are automatically stored in dataObj.dataSet.sigDetect. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process threshold : Optional[float] Scaled input data must be above this value to be detected. A higher number will reduce the number of signals detected. neighborhood : Optional[tuple] Local region in which to search for peaks at every point in the image/array. (10,10) will search a 10x10 pixel area. Returns ------- currentData : musicDataObj object Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) ################################################################################ #Feature detection... #Now lets do a little image processing... from scipy import ndimage from skimage.morphology import watershed from skimage.feature import peak_local_max #sudo pip install cython #sudo pip install scikit-image data = scale_karr(currentData.karr) mask = data > threshold labels, nb = ndimage.label(mask) distance = ndimage.distance_transform_edt(mask) local_maxi = peak_local_max(distance,footprint=np.ones(neighborhood),indices=False) markers,nb = ndimage.label(local_maxi) labels = watershed(-distance,markers,mask=mask) areas = ndimage.sum(mask,labels,xrange(1,labels.max()+1)) maxima = ndimage.maximum(data,labels,xrange(1, labels.max()+1)) order = np.argsort(maxima)[::-1] + 1 maxpos = ndimage.maximum_position(data,labels,xrange(1, labels.max()+1)) sigDetect = SigDetect() sigDetect.mask = mask sigDetect.labels = labels sigDetect.nrSigs = nb sigDetect.info = [] for x in xrange(labels.max()): info = {} info['labelInx'] = x+1 info['order'] = order[x] info['area'] = areas[x] info['max'] = maxima[x] info['maxpos'] = maxpos[x] info['kx'] = currentData.kxVec[info['maxpos'][0]] info['ky'] = currentData.kyVec[info['maxpos'][1]] info['k'] = np.sqrt( info['kx']**2 + info['ky']**2 ) info['lambda_x'] = 2*np.pi / info['kx'] info['lambda_y'] = 2*np.pi / info['ky'] info['lambda'] = 2*np.pi / info['k'] info['azm'] = np.degrees(np.arctan2(info['kx'],info['ky'])) info['freq'] = currentData.dominantFreq info['period'] = 1./currentData.dominantFreq info['vel'] = (2.*np.pi/info['k']) * info['freq'] * 1000. sigDetect.info.append(info) currentData.appendHistory('Detected KArr Signals') currentData.sigDetect = sigDetect return currentData def add_signal(kx,ky,dataObj,dataSet='active',frequency=None): """Manually add a signal to the detected signal list. All signals will be re-ordered according to value in the scaled kArr. Added signals can be distinguished from autodetected signals because 'labelInx' and 'area' will both be set to -1. Parameters ---------- kx : float Value of kx of new signal. ky : float Value of ky of new signal. dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process frequency : Optional[float] Frequency to use to calculate period, phase velocity, etc. If None, the calculated dominant frequency will be used. Returns ------- currentData : musicDataObj object Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) data = scale_karr(currentData.karr) def find_nearest_inx(array,value): return (np.abs(array-value)).argmin() kx_inx = find_nearest_inx(currentData.kxVec,kx) ky_inx = find_nearest_inx(currentData.kyVec,ky) maxpos = (kx_inx,ky_inx) value = data[kx_inx,ky_inx] true_value = currentData.karr[kx_inx,ky_inx] #Get the unscaled kArr value. if frequency == None: freq = currentData.dominantFreq else: freq = frequency info = {} info['labelInx'] = -1 info['area'] = -1 info['order'] = -1 info['max'] = value info['true_max'] = true_value #Unscaled kArr value info['maxpos'] = maxpos info['kx'] = currentData.kxVec[info['maxpos'][0]] info['ky'] = currentData.kyVec[info['maxpos'][1]] info['k'] = np.sqrt( info['kx']**2 + info['ky']**2 ) info['lambda_x'] = 2*np.pi / info['kx'] info['lambda_y'] = 2*np.pi / info['ky'] info['lambda'] = 2*np.pi / info['k'] info['azm'] = np.degrees(np.arctan2(info['kx'],info['ky'])) info['freq'] = freq info['period'] = 1./freq info['vel'] = (2.*np.pi/info['k']) * info['freq'] * 1000. currentData.sigDetect.info.append(info) currentData.sigDetect.reorder() currentData.appendHistory('Appended Signal to sigDetect List') return currentData def del_signal(order,dataObj,dataSet='active'): """Remove a signal to the detected signal list. Parameters ---------- order : Single value of list of signal orders (ID's) to be removed from the list. dataObj : musicArray object dataSet : Optional[str] which dataSet in the musicArray object to process Returns ------- currentData : musicDataObj object Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) data = scale_karr(currentData.karr) orderArr = np.array(order) for item in list(currentData.sigDetect.info): if item['order'] in orderArr: currentData.sigDetect.info.remove(item) currentData.sigDetect.reorder() currentData.appendHistory('Deleted Signals from sigDetect List') return currentData
gpl-3.0
acmaheri/sms-tools
lectures/8-Sound-transformations/plots-code/stftFiltering-orchestra.py
3
1648
import numpy as np import time, os, sys import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import utilFunctions as UF import stftTransformations as STFTT import stft as STFT (fs, x) = UF.wavread('../../../sounds/orchestra.wav') w = np.hamming(2048) N = 2048 H = 512 # design a band stop filter using a hanning window startBin = int(N*500.0/fs) nBins = int(N*2000.0/fs) bandpass = (np.hanning(nBins) * 65.0) - 60 filt = np.zeros(N/2)-60 filt[startBin:startBin+nBins] = bandpass y = STFTT.stftFiltering(x, fs, w, N, H, filt) mX,pX = STFT.stftAnal(x, fs, w, N, H) mY,pY = STFT.stftAnal(y, fs, w, N, H) plt.figure(1, figsize=(12, 9)) plt.subplot(311) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(N/2)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX)) plt.title('mX (orchestra.wav)') plt.autoscale(tight=True) plt.subplot(312) plt.plot(fs*np.arange(N/2)/float(N), filt, 'k', lw=1.3) plt.axis([0, fs/2, -60, 7]) plt.title('filter shape') plt.subplot(313) numFrames = int(mY[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(N/2)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mY)) plt.title('mY') plt.autoscale(tight=True) plt.tight_layout() UF.wavwrite(y, fs, 'orchestra-stft-filtering.wav') plt.savefig('stftFiltering-orchestra.png') plt.show()
agpl-3.0
JWarmenhoven/seaborn
seaborn/tests/test_linearmodels.py
4
19116
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import nose.tools as nt import numpy.testing as npt import pandas.util.testing as pdt from numpy.testing.decorators import skipif from nose import SkipTest try: import statsmodels.regression.linear_model as smlm _no_statsmodels = False except ImportError: _no_statsmodels = True from . import PlotTestCase from .. import linearmodels as lm from .. import algorithms as algo from .. import utils from ..palettes import color_palette rs = np.random.RandomState(0) class TestLinearPlotter(PlotTestCase): rs = np.random.RandomState(77) df = pd.DataFrame(dict(x=rs.normal(size=60), d=rs.randint(-2, 3, 60), y=rs.gamma(4, size=60), s=np.tile(list("abcdefghij"), 6))) df["z"] = df.y + rs.randn(60) df["y_na"] = df.y.copy() df.loc[[10, 20, 30], 'y_na'] = np.nan def test_establish_variables_from_frame(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y="y") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_frame_equal(p.data, self.df) def test_establish_variables_from_series(self): p = lm._LinearPlotter() p.establish_variables(None, x=self.df.x, y=self.df.y) pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) nt.assert_is(p.data, None) def test_establish_variables_from_array(self): p = lm._LinearPlotter() p.establish_variables(None, x=self.df.x.values, y=self.df.y.values) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y) nt.assert_is(p.data, None) def test_establish_variables_from_mix(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y=self.df.y) pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_frame_equal(p.data, self.df) def test_establish_variables_from_bad(self): p = lm._LinearPlotter() with nt.assert_raises(ValueError): p.establish_variables(None, x="x", y=self.df.y) def test_dropna(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y_na="y_na") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y_na, self.df.y_na) p.dropna("x", "y_na") mask = self.df.y_na.notnull() pdt.assert_series_equal(p.x, self.df.x[mask]) pdt.assert_series_equal(p.y_na, self.df.y_na[mask]) class TestRegressionPlotter(PlotTestCase): rs = np.random.RandomState(49) grid = np.linspace(-3, 3, 30) n_boot = 100 bins_numeric = 3 bins_given = [-1, 0, 1] df = pd.DataFrame(dict(x=rs.normal(size=60), d=rs.randint(-2, 3, 60), y=rs.gamma(4, size=60), s=np.tile(list(range(6)), 10))) df["z"] = df.y + rs.randn(60) df["y_na"] = df.y.copy() bw_err = rs.randn(6)[df.s.values] * 2 df.y += bw_err p = 1 / (1 + np.exp(-(df.x * 2 + rs.randn(60)))) df["c"] = [rs.binomial(1, p_i) for p_i in p] df.loc[[10, 20, 30], 'y_na'] = np.nan def test_variables_from_frame(self): p = lm._RegressionPlotter("x", "y", data=self.df, units="s") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_series_equal(p.units, self.df.s) pdt.assert_frame_equal(p.data, self.df) def test_variables_from_series(self): p = lm._RegressionPlotter(self.df.x, self.df.y, units=self.df.s) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y) npt.assert_array_equal(p.units, self.df.s) nt.assert_is(p.data, None) def test_variables_from_mix(self): p = lm._RegressionPlotter("x", self.df.y + 1, data=self.df) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y + 1) pdt.assert_frame_equal(p.data, self.df) def test_dropna(self): p = lm._RegressionPlotter("x", "y_na", data=self.df) nt.assert_equal(len(p.x), pd.notnull(self.df.y_na).sum()) p = lm._RegressionPlotter("x", "y_na", data=self.df, dropna=False) nt.assert_equal(len(p.x), len(self.df.y_na)) def test_ci(self): p = lm._RegressionPlotter("x", "y", data=self.df, ci=95) nt.assert_equal(p.ci, 95) nt.assert_equal(p.x_ci, 95) p = lm._RegressionPlotter("x", "y", data=self.df, ci=95, x_ci=68) nt.assert_equal(p.ci, 95) nt.assert_equal(p.x_ci, 68) @skipif(_no_statsmodels) def test_fast_regression(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fit with the "fast" function, which just does linear algebra yhat_fast, _ = p.fit_fast(self.grid) # Fit using the statsmodels function with an OLS model yhat_smod, _ = p.fit_statsmodels(self.grid, smlm.OLS) # Compare the vector of y_hat values npt.assert_array_almost_equal(yhat_fast, yhat_smod) @skipif(_no_statsmodels) def test_regress_poly(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fit an first-order polynomial yhat_poly, _ = p.fit_poly(self.grid, 1) # Fit using the statsmodels function with an OLS model yhat_smod, _ = p.fit_statsmodels(self.grid, smlm.OLS) # Compare the vector of y_hat values npt.assert_array_almost_equal(yhat_poly, yhat_smod) def test_regress_logx(self): x = np.arange(1, 10) y = np.arange(1, 10) grid = np.linspace(1, 10, 100) p = lm._RegressionPlotter(x, y, n_boot=self.n_boot) yhat_lin, _ = p.fit_fast(grid) yhat_log, _ = p.fit_logx(grid) nt.assert_greater(yhat_lin[0], yhat_log[0]) nt.assert_greater(yhat_log[20], yhat_lin[20]) nt.assert_greater(yhat_lin[90], yhat_log[90]) @skipif(_no_statsmodels) def test_regress_n_boot(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fast (linear algebra) version _, boots_fast = p.fit_fast(self.grid) npt.assert_equal(boots_fast.shape, (self.n_boot, self.grid.size)) # Slower (np.polyfit) version _, boots_poly = p.fit_poly(self.grid, 1) npt.assert_equal(boots_poly.shape, (self.n_boot, self.grid.size)) # Slowest (statsmodels) version _, boots_smod = p.fit_statsmodels(self.grid, smlm.OLS) npt.assert_equal(boots_smod.shape, (self.n_boot, self.grid.size)) @skipif(_no_statsmodels) def test_regress_without_bootstrap(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot, ci=None) # Fast (linear algebra) version _, boots_fast = p.fit_fast(self.grid) nt.assert_is(boots_fast, None) # Slower (np.polyfit) version _, boots_poly = p.fit_poly(self.grid, 1) nt.assert_is(boots_poly, None) # Slowest (statsmodels) version _, boots_smod = p.fit_statsmodels(self.grid, smlm.OLS) nt.assert_is(boots_smod, None) def test_numeric_bins(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_numeric) npt.assert_equal(len(bins), self.bins_numeric) npt.assert_array_equal(np.unique(x_binned), bins) def test_provided_bins(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_given) npt.assert_array_equal(np.unique(x_binned), self.bins_given) def test_bin_results(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_given) nt.assert_greater(self.df.x[x_binned == 0].min(), self.df.x[x_binned == -1].max()) nt.assert_greater(self.df.x[x_binned == 1].min(), self.df.x[x_binned == 0].max()) def test_scatter_data(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x, y = p.scatter_data npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y) x, y = p.scatter_data npt.assert_array_equal(x, self.df.d) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y, x_jitter=.1) x, y = p.scatter_data nt.assert_true((x != self.df.d).any()) npt.assert_array_less(np.abs(self.df.d - x), np.repeat(.1, len(x))) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y, y_jitter=.05) x, y = p.scatter_data npt.assert_array_equal(x, self.df.d) npt.assert_array_less(np.abs(self.df.y - y), np.repeat(.1, len(y))) def test_estimate_data(self): p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean) x, y, ci = p.estimate_data npt.assert_array_equal(x, np.sort(np.unique(self.df.d))) npt.assert_array_almost_equal(y, self.df.groupby("d").y.mean()) npt.assert_array_less(np.array(ci)[:, 0], y) npt.assert_array_less(y, np.array(ci)[:, 1]) def test_estimate_cis(self): # set known good seed to avoid the test stochastically failing np.random.seed(123) p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=95) _, _, ci_big = p.estimate_data p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=50) _, _, ci_wee = p.estimate_data npt.assert_array_less(np.diff(ci_wee), np.diff(ci_big)) p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=None) _, _, ci_nil = p.estimate_data npt.assert_array_equal(ci_nil, [None] * len(ci_nil)) def test_estimate_units(self): # Seed the RNG locally np.random.seed(345) p = lm._RegressionPlotter("x", "y", data=self.df, units="s", x_bins=3) _, _, ci_big = p.estimate_data ci_big = np.diff(ci_big, axis=1) p = lm._RegressionPlotter("x", "y", data=self.df, x_bins=3) _, _, ci_wee = p.estimate_data ci_wee = np.diff(ci_wee, axis=1) npt.assert_array_less(ci_wee, ci_big) def test_partial(self): x = self.rs.randn(100) y = x + self.rs.randn(100) z = x + self.rs.randn(100) p = lm._RegressionPlotter(y, z) _, r_orig = np.corrcoef(p.x, p.y)[0] p = lm._RegressionPlotter(y, z, y_partial=x) _, r_semipartial = np.corrcoef(p.x, p.y)[0] nt.assert_less(r_semipartial, r_orig) p = lm._RegressionPlotter(y, z, x_partial=x, y_partial=x) _, r_partial = np.corrcoef(p.x, p.y)[0] nt.assert_less(r_partial, r_orig) @skipif(_no_statsmodels) def test_logistic_regression(self): p = lm._RegressionPlotter("x", "c", data=self.df, logistic=True, n_boot=self.n_boot) _, yhat, _ = p.fit_regression(x_range=(-3, 3)) npt.assert_array_less(yhat, 1) npt.assert_array_less(0, yhat) @skipif(_no_statsmodels) def test_robust_regression(self): p_ols = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) _, ols_yhat, _ = p_ols.fit_regression(x_range=(-3, 3)) p_robust = lm._RegressionPlotter("x", "y", data=self.df, robust=True, n_boot=self.n_boot) _, robust_yhat, _ = p_robust.fit_regression(x_range=(-3, 3)) nt.assert_equal(len(ols_yhat), len(robust_yhat)) @skipif(_no_statsmodels) def test_lowess_regression(self): p = lm._RegressionPlotter("x", "y", data=self.df, lowess=True) grid, yhat, err_bands = p.fit_regression(x_range=(-3, 3)) nt.assert_equal(len(grid), len(yhat)) nt.assert_is(err_bands, None) def test_regression_options(self): with nt.assert_raises(ValueError): lm._RegressionPlotter("x", "y", data=self.df, lowess=True, order=2) with nt.assert_raises(ValueError): lm._RegressionPlotter("x", "y", data=self.df, lowess=True, logistic=True) def test_regression_limits(self): f, ax = plt.subplots() ax.scatter(self.df.x, self.df.y) p = lm._RegressionPlotter("x", "y", data=self.df) grid, _, _ = p.fit_regression(ax) xlim = ax.get_xlim() nt.assert_equal(grid.min(), xlim[0]) nt.assert_equal(grid.max(), xlim[1]) p = lm._RegressionPlotter("x", "y", data=self.df, truncate=True) grid, _, _ = p.fit_regression() nt.assert_equal(grid.min(), self.df.x.min()) nt.assert_equal(grid.max(), self.df.x.max()) class TestRegressionPlots(PlotTestCase): rs = np.random.RandomState(56) df = pd.DataFrame(dict(x=rs.randn(90), y=rs.randn(90) + 5, z=rs.randint(0, 1, 90), g=np.repeat(list("abc"), 30), h=np.tile(list("xy"), 45), u=np.tile(np.arange(6), 15))) bw_err = rs.randn(6)[df.u.values] df.y += bw_err def test_regplot_basic(self): f, ax = plt.subplots() lm.regplot("x", "y", self.df) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) def test_regplot_selective(self): f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, scatter=False, ax=ax) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 1) ax.clear() f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, fit_reg=False) nt.assert_equal(len(ax.lines), 0) nt.assert_equal(len(ax.collections), 1) ax.clear() f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, ci=None) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 1) ax.clear() def test_regplot_scatter_kws_alpha(self): f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_is(ax.collections[0]._alpha, None) nt.assert_equal(ax.collections[0]._facecolors[0, 3], 0.5) f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_equal(ax.collections[0]._alpha, 0.8) f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color, 'alpha': 0.4}) nt.assert_equal(ax.collections[0]._alpha, 0.4) f, ax = plt.subplots() color = 'r' ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_equal(ax.collections[0]._alpha, 0.8) def test_regplot_binned(self): ax = lm.regplot("x", "y", self.df, x_bins=5) nt.assert_equal(len(ax.lines), 6) nt.assert_equal(len(ax.collections), 2) def test_lmplot_basic(self): g = lm.lmplot("x", "y", self.df) ax = g.axes[0, 0] nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) def test_lmplot_hue(self): g = lm.lmplot("x", "y", data=self.df, hue="h") ax = g.axes[0, 0] nt.assert_equal(len(ax.lines), 2) nt.assert_equal(len(ax.collections), 4) def test_lmplot_markers(self): g1 = lm.lmplot("x", "y", data=self.df, hue="h", markers="s") nt.assert_equal(g1.hue_kws, {"marker": ["s", "s"]}) g2 = lm.lmplot("x", "y", data=self.df, hue="h", markers=["o", "s"]) nt.assert_equal(g2.hue_kws, {"marker": ["o", "s"]}) with nt.assert_raises(ValueError): lm.lmplot("x", "y", data=self.df, hue="h", markers=["o", "s", "d"]) def test_lmplot_marker_linewidths(self): if mpl.__version__ == "1.4.2": raise SkipTest g = lm.lmplot("x", "y", data=self.df, hue="h", fit_reg=False, markers=["o", "+"]) c = g.axes[0, 0].collections nt.assert_equal(c[0].get_linewidths()[0], 0) rclw = mpl.rcParams["lines.linewidth"] nt.assert_equal(c[1].get_linewidths()[0], rclw) def test_lmplot_facets(self): g = lm.lmplot("x", "y", data=self.df, row="g", col="h") nt.assert_equal(g.axes.shape, (3, 2)) g = lm.lmplot("x", "y", data=self.df, col="u", col_wrap=4) nt.assert_equal(g.axes.shape, (6,)) g = lm.lmplot("x", "y", data=self.df, hue="h", col="u") nt.assert_equal(g.axes.shape, (1, 6)) def test_lmplot_hue_col_nolegend(self): g = lm.lmplot("x", "y", data=self.df, col="h", hue="h") nt.assert_is(g._legend, None) def test_lmplot_scatter_kws(self): g = lm.lmplot("x", "y", hue="h", data=self.df, ci=None) red_scatter, blue_scatter = g.axes[0, 0].collections red, blue = color_palette(n_colors=2) npt.assert_array_equal(red, red_scatter.get_facecolors()[0, :3]) npt.assert_array_equal(blue, blue_scatter.get_facecolors()[0, :3]) def test_residplot(self): x, y = self.df.x, self.df.y ax = lm.residplot(x, y) resid = y - np.polyval(np.polyfit(x, y, 1), x) x_plot, y_plot = ax.collections[0].get_offsets().T npt.assert_array_equal(x, x_plot) npt.assert_array_almost_equal(resid, y_plot) @skipif(_no_statsmodels) def test_residplot_lowess(self): ax = lm.residplot("x", "y", self.df, lowess=True) nt.assert_equal(len(ax.lines), 2) x, y = ax.lines[1].get_xydata().T npt.assert_array_equal(x, np.sort(self.df.x)) def test_three_point_colors(self): x, y = np.random.randn(2, 3) ax = lm.regplot(x, y, color=(1, 0, 0)) color = ax.collections[0].get_facecolors() npt.assert_almost_equal(color[0, :3], (1, 0, 0))
bsd-3-clause
AliShug/RoboVis
robovis/load_histogram.py
1
3645
import numpy as np # from matplotlib import pyplot as plt from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * class RVLoadHistogram(QGraphicsView): '''A histogram for the maximum load across the reachable area''' def __init__(self, ik): width = 330 height = 120 self.scene = QGraphicsScene(0,-15,width,height-15) super(RVLoadHistogram, self).__init__(self.scene) self.setBackgroundBrush(QBrush(Qt.white)) self.setRenderHints(QPainter.Antialiasing) self.setFrameStyle(0) self.setAlignment(Qt.AlignCenter) self.setFixedSize(width, height) self.setSceneRect(0, 0, width, height) self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scale(1, -1) self.subscribers = { 'mouseEnter' : [], 'mouseLeave' : [], 'mouseMove' : [] } self.lines = [] self.hist = [] self.edges = [] self.config = ik.config self.update(ik) self.setMouseTracking(True) def update(self, ik=None): if ik is not None: self.ik = ik self.min_load = self.config['min_load'].value for line in self.lines: self.scene.removeItem(line) self.lines = [] width = self.width() height = self.height() loads = np.ma.masked_invalid(self.ik.loads*self.ik.partial_ok) loads = np.ma.masked_where(loads == 0, loads).compressed() self.hist, self.edges = np.histogram(loads, bins='auto') buckets = len(self.hist) self.screen_step = width/np.max(self.edges) max_count = np.max(self.hist) # Display histogram for i in range(buckets): x = self.edges[i] * self.screen_step w = max(1, (self.edges[i+1] - self.edges[i]) * self.screen_step) l = (self.edges[i] + self.edges[i + 1]) / 2 count = self.hist[i] if l < self.min_load: color = QColor(100,100,100) else: color = QColor(200, 180, 100) # print(count) line = self.scene.addLine(x, 5, x, 5 + (height-5) * count/max_count, QPen(color, w)) self.lines.append(line) # Setpoint shows the configuration's minimum load setpoint = self.config['min_load'].value * self.screen_step line = self.scene.addLine(setpoint, 0, setpoint, height, QPen(QColor(150, 150, 255), 2)) self.lines.append(line) def setMinimumLoad(self, val): self.min_load = val self.update() def subscribe(self, event, function): self.subscribers[event].append(function) def enterEvent(self, event): for func in self.subscribers['mouseEnter']: func(event) def leaveEvent(self, event): self.setMinimumLoad(self.config['min_load'].value) for func in self.subscribers['mouseLeave']: func(event) def mouseMoveEvent(self, event): if event.buttons() == Qt.LeftButton: self.click(event.pos()) else: pt = self.mapToScene(event.pos()) self.setMinimumLoad(pt.x()/self.screen_step) for func in self.subscribers['mouseMove']: func(event) def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.click(event.pos()) def click(self, pos): pt = self.mapToScene(pos) self.config['min_load'].value = pt.x()/self.screen_step self.config.notifyChange()
mit
cgrima/rsr
rsr/fit.py
1
4401
""" Various tools for extracting signal components from a fit of the amplitude distribution """ from . import pdf from .Classdef import Statfit import numpy as np import time import random import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from lmfit import minimize, Parameters, report_fit def param0(sample, method='basic'): """Estimate initial parameters for HK fitting Arguments --------- sample : sequence amplitudes Keywords -------- method : string method to compute the initial parameters """ if method == 'basic': a = np.nanmean(sample) s = np.nanstd(sample) mu = 1. return {'a':a, 's':s, 'mu':mu} def lmfit(sample, fit_model='hk', bins='auto', p0 = None, xtol=1e-4, ftol=1e-4): """Lmfit Arguments --------- sample : sequence amplitudes between 0 and 1. Keywords -------- fit_model : string name of the function (in pdf module) to use for the fit bins : string method to compute the bin width (inherited from numpy.histogram) p0 : dict Initial parameters. If None, estimated automatically. xtol : float ?? ftol : float ?? Return ------ A Statfit Class """ start = time.time() winsize = len(sample) bad = False #-------------------------------------------------------------------------- # Clean sample #-------------------------------------------------------------------------- sample = np.array(sample) sample = sample[np.isfinite(sample)] if len(sample) == 0: bad = True sample = np.zeros(10)+1 #-------------------------------------------------------------------------- # Make the histogram #-------------------------------------------------------------------------- # n, edges, patches = hist(sample, bins=bins, normed=True) n, edges = np.histogram(sample, bins=bins, density=True) # plt.clf() x = ((np.roll(edges, -1) + edges)/2.)[0:-1] #-------------------------------------------------------------------------- # Initial Parameters for the fit #-------------------------------------------------------------------------- if p0 is None: p0 = param0(sample) prm0 = Parameters() # (Name, Value, Vary, Min, Max, Expr) prm0.add('a', p0['a'], True, 0, 1, None) prm0.add('s', p0['s'], True, 0, 1, None) prm0.add('mu', p0['mu'], True, .5, 10, None) prm0.add('pt', np.average(sample)**2,False, 0, 1, 'a**2+2*s**2*mu') #if fit_model == 'hk': # # From [Dutt and Greenleaf. 1994, eq.14] # prm0.add('a4', np.average(sample)**4,False, 0, 1, # '8*(1+1/mu)*s**4 + 8*s**2*s**2 + a**4') #-------------------------------------------------------------------------- # Fit #-------------------------------------------------------------------------- pdf2use = getattr(pdf, fit_model) # use 'lbfgs' fit if error with 'leastsq' fit try: p = minimize(pdf2use, prm0, args=(x, n), method='leastsq', xtol=xtol, ftol=ftol) except KeyboardInterrupt: raise except: print('!! Error with LEASTSQ fit, use L-BFGS-B instead') p = minimize(pdf2use, prm0, args=(x, n), method='lbfgs') #-------------------------------------------------------------------------- # Output #-------------------------------------------------------------------------- elapsed = time.time() - start values = {} # Create values dict For lmfit >0.9.0 compatibility since it is no longer # in the minimize output for i in p.params.keys(): values[i] = p.params[i].value # Results result = Statfit(sample, pdf2use, values, p.params, p.chisqr, p.redchi, elapsed, p.nfev, p.message, p.success, p.residual, x, n, edges, bins=bins) # Identify bad results if bad is True: result.success = False result.values['a'] = 0 result.values['s'] = 0 result.values['mu'] = 0 result.values['pt'] = 0 result.chisqr = 0 result.redchi = 0 result.message = 'No valid data in the sample' result.residual = 0 return result
mit
PedroMDuarte/thesis-hubbard-lda_evap
qmc.py
1
16230
""" This file provides a way to obtain thermodynamic quantities from an interpolation of available QMC solutions """ import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib import rc rc('font', **{'family':'serif'}) rc('text', usetex=True) import glob import os import ldaconf basedir = ldaconf.basedir from scipy.spatial import Delaunay from scipy.interpolate import CloughTocher2DInterpolator, LinearNDInterpolator from scipy.interpolate.interpnd import _ndim_coords_from_arrays import logging # create logger logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) #logger.disabled = True def get_qty_mu( dat, mu, MUCOL, COL, **kwargs ): # Control the interpolation between availble # density points here #~qtyinterp = 'nearest' qtyinterp = 'linear' msg = kwargs.get('msg', None) DENSCOL = 1 ENTRCOL = 2 SPICOL = 3 CMPRCOL = 4 if COL == SPICOL: default_minus = 1.0 default_plus = 0.0 elif COL == ENTRCOL: default_minus = 0.0 default_plus = 0.0 elif COL == DENSCOL: default_minus = 0.0 default_plus = 2.0 elif COL == CMPRCOL: default_minus = 0.0 default_plus = 0.0 else: raise ValueError("Column not defined: COL = {:d}".format(COL) ) CAREFUL = kwargs.get('careful', True) if CAREFUL and (mu < -10. or mu > 60.): CAREFUL = False if qtyinterp == 'nearest': index = np.argmin( np.abs(dat[:, MUCOL] - mu )) qtyresult = dat[index,COL] else: # find the two closest chemical potentials that # stride the point mudat = dat[:,MUCOL] verbose = False if np.all(mu < mudat): qtyresult = default_minus if COL == DENSCOL or COL == ENTRCOL: if verbose: print "QTY=", COL, print "===>>> mu={:0.2f} ".format(mu), msg if dat[:,DENSCOL].min() < 0.1 : qtyresult = default_minus elif CAREFUL: return 'out-of-bounds' #print "====>>> BE CAREFUL : Using default density" + \ # " n=%.2f"%default_minus + \ # " at mu={:0.2f} ".format(mu), #if msg is not None: # print msg #raise ValueError('density error') elif np.all( mu > mudat): qtyresult = default_plus if COL == DENSCOL or COL == ENTRCOL: if verbose: print "QTY=", COL, print "====>>> mu={:0.2f} ".format(mu), msg if dat[:,DENSCOL].max() > 1.9 : qtyresult = default_plus elif CAREFUL: return 'out-of-bounds' #print "====>>> BE CAREFUL : Using default density" + \ # " n=%.2f"%default_plus + \ # " at mu={:0.2f} ".format(mu), #if msg is not None: # print msg #raise ValueError('density error') else: # since the mu's are ordered we can do: index0 = np.where( mudat <=mu )[0][-1] index1 = np.where( mudat > mu )[0][0] qty0 = dat[ index0, COL ] qty1 = dat[ index1, COL ] mu0 = dat[ index0, MUCOL ] mu1 = dat[ index1, MUCOL ] qtyresult = qty0 + (mu-mu0) * (qty1-qty0) / (mu1-mu0) return qtyresult #print #print " mu = ", mu #print "index0 = ", index0 #print "index1 = ", index1 #print "Doing linear interpolation for the qty" #print " mu0 = ", mu0 #print " mu1 = ", mu1 #print "qty0 = ", qty0 #print "qty1 = ", qty1 #print "qtyresult = ", qtyresult def find_closest_qmc( U=8, T=0.67, mu=4.0, **kwargs): """ This function finds the closest values of U and T in the QMC data that straddle the values U and T given as arguments. """ nUs = 4 nTs = 3 ALLPTS = kwargs.get('ALLPTS', False) # select which quantity will be returned, options are # spi and entropy QTY = kwargs.get('QTY', 'spi' ) if QTY == 'spi': datadir = basedir + 'COMB_Final_Spi/' elif QTY == 'entropy': datadir = basedir + 'COMB_Final_Entr/' elif QTY == 'density': datadir = basedir + 'COMB_Final_Spi/' elif QTY == 'kappa': datadir = basedir + 'COMB_Final_Spi/' else: raise ValueError('Quantity not defined:' + str(QTY) ) fname = datadir + 'U*' us = [ float(u.split('/U')[-1]) for u in glob.glob(fname) ] du = [ np.abs(U-u) for u in us ] index = np.argsort(du) if ALLPTS: Ulist0 = range(len(index)) else: Ulist0 = range( nUs ) us = [ us[index[i]] for i in Ulist0] #print us #print du #print index #print "Closest Us = ", us datfiles = [] for u in us: # For the Spi and Stheta data if QTY == 'spi' or QTY == 'density' or QTY == 'kappa': fname = datadir + 'U{U:02d}/T*dat'.format(U=int(u)) fs = sorted(glob.glob(fname)) Ts = [ float(f.split('T')[1].split('.dat')[0]) for f in fs ] elif QTY=='entropy': fname = datadir + 'U{U:02d}/S*dat'.format(U=int(u)) fs = sorted(glob.glob(fname)) Ts = [ float(f.split('S')[1].split('.dat')[0]) for f in fs ] Ts_g = [] ; Ts_l = []; for t in Ts: if t > T: Ts_g.append(t) else: Ts_l.append(t) order_g = np.argsort( [ np.abs( T -t ) for t in Ts_g ] ) order_l = np.argsort( [ np.abs( T -t ) for t in Ts_l ] ) try: Tpts = [ Ts_g[ order_g[0]] , Ts_l[ order_l[0]] ] except: #print #print "problem adding U=",u, "T=",Ts #print "available T data does not stride the point" #print "T =", T #print "Ts =", Ts #print "will add nearest Ts nevertheless" Tpts = [ ] #raise ValueError("QMC data not available.") dT = [ np.abs( T - t) for t in Ts ] index = np.argsort(dT) if ALLPTS: Tlist0 = range(len(Ts)) else: Tlist0 = range( min(nTs , len(Ts))) for i in Tlist0: Tnew = Ts[index[i]] if Tnew not in Tpts: Tpts.append(Tnew) for Tpt in Tpts: index = Ts.index( Tpt ) try: datfiles.append( [ fs[ index ], u, Ts[index] ] ) except: print "problem adding U=",u, "T=",Ts raise # Need to make sure that selected T values stride both # sides of the point #print #print u #print Ts #print dT #print index #print fs # for i in range(min(3, len(Ts))): # try: # datfiles.append( [ fs[index[i]], u, Ts[index[i]] ] ) # except: # print "problem adding U=",u, "T=",Ts # raise # #datfiles.append( [ fs[index[1]], u, Ts[index[1]] ] ) #print datfiles MUCOL = 0 DENSCOL = 1 ENTRCOL = 2 SPICOL = 3 CMPRCOL = 4 if QTY == 'spi': COL = SPICOL elif QTY == 'entropy': COL = ENTRCOL elif QTY == 'density': COL = DENSCOL elif QTY == 'kappa': COL = CMPRCOL msg0 = 'U={:0.2f}, T={:0.2f}'.format(U,T) logger.debug("number of nearby points = " + str(len(datfiles))) basedat = [] basedaterr = [] datserr = [] for mm, f in enumerate(datfiles): # f[0] is the datafile name # f[1] is U # f[2] is T radius = kwargs.get('radius', np.nan ) msg = 'U={:0.2f}, T={:0.2f}'.format(U,T) + \ ' mu={:0.2f}, r={:0.2f}, Upt={:0.3f}, Tpt={:0.3f}'.\ format(mu, radius, f[1], f[2]) try: dat = np.loadtxt(f[0]) spival = get_qty_mu( dat, mu, MUCOL, COL, msg=msg ) # Toggle the false here to plot all of the out of bounds if spival == 'out-of-bounds': #spival_symmetry = logger.info('qty is out of bounds') basedaterr.append( [f[1], f[2], np.nan] ) datserr.append( dat ) if False: fig = plt.figure( figsize=(3.5,3.5)) gs = matplotlib.gridspec.GridSpec( 1,1 ,\ left=0.15, right=0.96, bottom=0.12, top=0.88) ax = fig.add_subplot( gs[0] ) ax.grid(alpha=0.5) ax.plot( dat[:,MUCOL], dat[:,COL], '.-') ax.axvline( mu ) ax.text( 0.5, 1.05, msg, ha='center', va='bottom', \ transform=ax.transAxes, fontsize=6.) if matplotlib.get_backend() == 'agg': fig.savefig('err_mu_%02d.png'%mm, dpi=200) plt.close(fig) else: plt.show() plt.close(fig) continue else: basedat.append( [f[1], f[2], spival] ) except Exception as e : print "Failed to get data from file = ", f # toggle plotting, not implemented yet: if True: fig = plt.figure( figsize=(3.5,3.5)) gs = matplotlib.gridspec.GridSpec( 1,1 ,\ left=0.15, right=0.96, bottom=0.12, top=0.88) ax = fig.add_subplot( gs[0] ) ax.grid(alpha=0.5) ax.plot( dat[:,MUCOL], dat[:,COL], '.-') ax.axvline( mu ) ax.text( 0.5, 1.05, msg, ha='center', va='bottom', \ transform=ax.transAxes) if matplotlib.get_backend() == 'agg': fig.savefig('err_mu_%02d.png'%mm, dpi=200) else: plt.show() raise e logger.debug("number of nearby valid points = " + str(len(basedat))) error = False points = None # MAKE THE TRIANGULATION basedat = np.array(basedat) Us = np.unique(basedat[:,0] ) Ts = np.unique(basedat[:,1] ) validTriang = not ( len(Us) ==1 or len(Ts) == 1 ) #print "#Us={:d}, #Ts={:d}".format( len(Us), len(Ts) ) #print msg if validTriang: points = _ndim_coords_from_arrays(( basedat[:,0] , basedat[:,1])) #print "Closest dat = ", basedat #finterp = CloughTocher2DInterpolator(points, basedat[:,2]) finterp = LinearNDInterpolator( points, basedat[:,2] ) else: logerr = 'not enough finterp points, QTY=%s'%QTY + '\n' + msg + '\n' \ + "number of basedat pts = " + str(len(basedat)) print basedat print "len Us = ", len(Us) print "len Ts = ", len(Ts) print "len 'out-of-bounds' = ", len( basedaterr ) if len( basedaterr ) > 0: for bb, bdaterr in enumerate(basedaterr): msgbb = 'U={:0.2f}, T={:0.2f}'.format(U,T) +\ ' mu={:0.2f}, r={:0.2f}, Upt={:0.3f}, Tpt={:0.3f}'.\ format(mu, radius, basedaterr[bb][0], basedaterr[bb][1] ) daterr = datserr[bb] fig = plt.figure( figsize=(3.5,3.5)) gs = matplotlib.gridspec.GridSpec( 1,1 ,\ left=0.15, right=0.96, bottom=0.12, top=0.88) ax = fig.add_subplot( gs[0] ) ax.grid(alpha=0.5) ax.plot( daterr[:,MUCOL], daterr[:,COL], '.-') ax.axvline( mu ) ax.text( 0.5, 1.05, msgbb, ha='center', va='bottom', \ transform=ax.transAxes, fontsize=6.) if matplotlib.get_backend() == 'agg': fig.savefig('err_mu_%02d.png'%bb, dpi=200) plt.close(fig) else: plt.show() plt.close(fig) logger.exception(logerr) raise ValueError('finterp') if points == None: logger.warning( "points object is None" ) if error == False: try: result = finterp( U,T ) if np.isnan(result): if U >= 30.0 and U <=32.5: result = finterp( 29.99, T ) logger.warning(" qmc: U={:0.1f} replaced to U=29.99 ".\ format(U) ) if np.isnan(result): raise Exception("\n!!!! qmc: Invalid result, QTY:%s!!!!\n"%QTY \ + msg0) except Exception as e: if kwargs.get('error_nan', False): return np.nan else: error = True logger.exception("Invalid QTY result!") if error == False: if result >= 8. and QTY == 'spi' : print " Obtained Spi > 8. : U={:0.2f}, T={:0.2f}, mu={:0.2f}".\ format( U, T, mu ), print " ==> Spi={:0.2f}".format(float(result)) error = True elif result >=4. and QTY == 'entropy': print " Obtained Ent > 4. : U={:0.2f}, T={:0.2f}, mu={:0.2f}".\ format( U, T, mu ), print " ==> Result={:0.2f}".format(float(result)) error = True logger.debug("error status = " + str(error)) if error or kwargs.get('showinterp',False): logger.debug("Inside error if statement...") if kwargs.get('error_nan', False): pass #return np.nan #print "Interp points:" #print basedat if len(basedat) == 0 and len(basedaterr) > 0 : basedaterr = np.array(basedaterr) Userr = np.unique(basedaterr[:,0] ) Tserr = np.unique(basedaterr[:,1] ) validTriangerr = not ( len(Userr) ==1 or len(Tserr) == 1 ) points = _ndim_coords_from_arrays(( basedaterr[:,0] , basedaterr[:,1])) tri = Delaunay(points) else: tri = Delaunay(points) fig = plt.figure( figsize=(3.5,3.5)) gs = matplotlib.gridspec.GridSpec( 1,1 ,\ left=0.15, right=0.96, bottom=0.12, top=0.88) ax = fig.add_subplot( gs[0] ) ax.grid(alpha=0.5) ax.triplot(points[:,0], points[:,1], tri.simplices.copy()) ax.plot(points[:,0], points[:,1], 'o') ax.plot( U, T, 'o', ms=6., color='red') xlim = ax.get_xlim() dx = (xlim[1]-xlim[0])/10. ax.set_xlim( xlim[0]-dx, xlim[1]+dx ) ylim = ax.get_ylim() dy = (ylim[1]-ylim[0])/10. ax.set_ylim( ylim[0]-dy, ylim[1]+dy ) ax.set_xlabel('$U/t$') ax.set_ylabel('$T/t$',rotation=0,labelpad=8) tt = kwargs.get('title_text','') ax.set_title( tt + '$U/t={:.2f}$'.format(U) + \ ',\ \ ' + '$T/t={:.2f}$'.format(T), \ ha='center', va='bottom', fontsize=10) save_err = kwargs.get('save_err',None) if save_err is not None: print "Saving png." fig.savefig( save_err, dpi=300) if matplotlib.get_backend() == 'agg': fig.savefig('err.png', dpi=200) print "Saved error to err.png" else: plt.show() if not kwargs.get('single', False): raise ValueError("Could not interpolate using QMC data.") if ALLPTS: if 'savepath' in kwargs.keys(): fig.savefig( kwargs.get('savepath',None) , dpi=300) if error: raise return result
mit
phobson/statsmodels
docs/sphinxext/numpy_ext/docscrape_sphinx.py
62
7703
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
buntyke/GPy
doc/sphinxext/ipython_directive.py
12
27263
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party try: import matplotlib matplotlib.use('Agg') except ImportError: print "Couldn't find matplotlib" import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
mit
idlead/scikit-learn
examples/text/document_classification_20newsgroups.py
27
10521
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='navy') plt.barh(indices + .3, training_time, .2, label="training time", color='c') plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
cokelaer/colormap
src/colormap/colors.py
1
32584
# -*- python -*- # -*- coding: utf-8 -*- # # This file is part of the colormap software # # Copyright (c) 2011-20134 # # File author(s): Thomas Cokelaer <cokelaer@gmail.com> # # Distributed under the GPLv3 License. # See accompanying file LICENSE.txt or copy at # http://www.gnu.org/licenses/gpl-3.0.html # # Website: https://github.com/cokelaer/colormap # Documentation: http://packages.python.org/colormap # ############################################################################## """Utilities provided in this module can be found either in the standard Python module called :mod:`colorsys` or in matplotlib.colors (e.g rgb2hex) or are original to this module (e.g., rgb2huv) """ # matplotlib dependence is only inside Colormap class import colorsys from easydev.tools import check_param_in_list, swapdict, check_range from colormap.xfree86 import XFree86_colors __all__ = ["HEX", "Color", "hex2web", "web2hex", "hex2rgb", "hex2dec", "rgb2hex", "rgb2hsv", "hsv2rgb", "rgb2hls", "hls2rgb","yuv2rgb", "rgb2yuv", "to_intensity", "yuv2rgb_int", "rgb2yuv_int", "Colormap" ] def hex2web(hexa): """Convert hexadecimal string (6 digits) into *web* version (3 digits) .. doctest:: >>> from colormap.colors import hex2web >>> hex2web("#FFAA11") '#FA1' .. seealso:: :func:`web2hex`, :func:`hex2rgb` :func:`rgb2hex`, :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ hexa = HEX().get_standard_hex_color(hexa) return "#" + hexa[1::2] def web2hex(web): """Convert *web* hexadecimal string (3 digits) into 6 digits version .. doctest:: >>> from colormap.colors import web2hex >>> web2hex("#FA1") '#FFAA11' .. seealso:: :func:`hex2web`, :func:`hex2rgb` :func:`rgb2hex`, :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ return HEX().get_standard_hex_color(web) def hex2rgb(hexcolor, normalise=False): """This function converts a hex color triplet into RGB Valid hex code are: * #FFF * #0000FF * 0x0000FF * 0xFA1 .. doctest:: >>> from colormap.colors import hex2rgb >>> hex2rgb("#FFF", normalise=False) (255, 255, 255) >>> hex2rgb("#FFFFFF", normalise=True) (1.0, 1.0, 1.0) .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`rgb2hex`, :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ hexcolor = HEX().get_standard_hex_color(hexcolor)[1:] r, g, b = int(hexcolor[0:2], 16), int(hexcolor[2:4], 16), int(hexcolor[4:6], 16) if normalise: r, g, b = _normalise(r, g, b) return r, g, b def rgb2hex(r, g, b, normalised=False): """Convert RGB to hexadecimal color :param: can be a tuple/list/set of 3 values (R,G,B) :return: a hex vesion ofthe RGB 3-tuple .. doctest:: >>> from colormap.colors import rgb2hex >>> rgb2hex(0,0,255, normalised=False) '#0000FF' >>> rgb2hex(0,0,1, normalised=True) '#0000FF' .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` , :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ if normalised: r, g, b = _denormalise(r, g, b, mode="rgb") r = int(r) g = int(g) b = int(b) check_range(r, 0, 255) check_range(g, 0, 255) check_range(b, 0, 255) return '#%02X%02X%02X' % (r, g, b) def rgb2hls(r, g, b, normalised=True): """Convert an RGB value to an HLS value. :param bool normalised: if *normalised* is True, the input RGB triplet should be in the range 0-1 (0-255 otherwise) :return: the HLS triplet. If *normalised* parameter is True, the output triplet is in the range 0-1; otherwise, H in the range 0-360 and LS in the range 0-100. .. doctest:: >>> from colormap.colors import rgb2hls >>> rgb2hls(255,255,255, normalised=False) (0.0, 1.0, 0.0) .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` :func:`rgb2hex`, :func:`hsv2rgb`, :func:`hls2rgb` """ # rgb_to_hsv expects normalised values ! if normalised: upper = 1 else: upper = 255 check_range(r, 0, upper) check_range(g, 0, upper) check_range(b, 0, upper) if normalised==False: r, g, b = _normalise(r, g, b) h, l, s = colorsys.rgb_to_hls(r, g, b) return h, l, s def rgb2hsv(r, g, b, normalised=True): """Convert an RGB value to an HSV value. :param bool normalised: if *normalised* is True, the input RGB triplet should be in the range 0-1 (0-255 otherwise) :return: the HSV triplet. If *normalised* parameter is True, the output triplet is in the range 0-1; otherwise, H in the range 0-360 and LS in the range 0-100. .. doctest:: >>> from colormap.colors import rgb2hsv >>> rgb2hsv(0.5,0,1) (0.75, 1, 1) .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` :func:`rgb2hex`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ # rgb_to_hsv expects normalised values ! if normalised: upper = 1 else: upper = 255 check_range(r, 0, upper) check_range(g, 0, upper) check_range(b, 0, upper) if normalised==False: r, g, b = _normalise(r, g, b) h, s, v = colorsys.rgb_to_hsv(r, g, b) return h,s,v def hsv2rgb(h, s, v, normalised=True): """Convert a hue-saturation-value (HSV) value to a red-green-blue (RGB). :param bool normalised: If *normalised* is True, the input HSV triplet should be in the range 0-1; otherwise, H in the range 0-360 and LS in the range 0-100. :return: the RGB triplet. The output triplet is in the range 0-1 whether the input is normalised or not. .. doctest:: >>> from colormap.colors import hsv2rgb >>> hsv2rgb(0.5,1,1, normalised=True) # doctest: +SKIP (0, 1, 1) .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` :func:`rgb2hex`, :func:`rgb2hsv`, :func:`rgb2hls`, :func:`hls2rgb` .. seealso:: :func:`rgb2hex` """ if normalised: upper = 1 else: upper = 100 if normalised: uppera = 1 else: uppera = 360 check_range(h, 0, uppera) check_range(s, 0, upper) check_range(v, 0, upper) if normalised == False: h, s, v = _normalise(h, s, v, mode="hsv") return colorsys.hsv_to_rgb(h, s, v) def hls2rgb(h, l, s, normalised=True): """Convert an HLS value to a RGB value. :param bool normalised: If *normalised* is True, the input HLS triplet should be in the range 0-1; otherwise, H in the range 0-360 and LS in the range 0-100. :return: the RGB triplet. The output triplet is in the range 0-1 whether the input is normalised or not. .. doctest:: >>> from colormap.colors import hls2rgb >>> hls2rgb(360, 50, 60, normalised=False) # doctest: +SKIP (0.8, 0.2, 0.2) .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` :func:`rgb2hex`, :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, """ if normalised: upper = 1 else: upper = 100 if normalised: uppera = 1 else: uppera = 360 check_range(h, 0, uppera) check_range(s, 0, upper) check_range(l, 0, upper) if normalised == False: h, l, s = _normalise(h, l, s, mode="hls") return colorsys.hls_to_rgb(h, l, s) def hex2dec(data): """convert hexadecimal string (data) into a float in the [0-65536] inclusive range""" if data[0] == '#': data.replace('#', '') return int(data, 16)/255. def rgb2yuv(r, g, b): """Convert RGB triplet into YUV :return: YUV triplet with values between 0 and 1 `YUV wikipedia <http://en.wikipedia.org/wiki/YUV>`_ .. warning:: expected input must be between 0 and 1 .. note:: the constants referenc used is Rec. 601 """ check_range(r, 0, 1) check_range(g, 0, 1) check_range(b, 0, 1) #y = int(0.299 * r + 0.587 * g + 0.114 * b) #u = int(-0.14713 * r + -0.28886 * g + 0.436 * b) #v = int(0.615 * r + -0.51499 * g + -0.10001 * b) y = 0.299 * r + 0.587 * g + 0.114 * b u = -32591.0/221500.0 * r + -63983.0/221500.0 * g + 0.436 * b v = 0.615 * r + -72201./140200 * g + -7011/70100. * b return (y, u, v) def yuv2rgb(y, u, v): """Convert YUV triplet into RGB `YUV <http://en.wikipedia.org/wiki/YUV>`_ .. warning:: expected input must be between 0 and 255 (not normalised) """ check_range(y, 0,1) check_range(u, 0, 1) check_range(v, 0, 1) A, B, C, D = 701.0/615.0, 25251.0/63983.0, 209599.0/361005.0, 443.0/218.0 r = y + A * v g = y - B * u - C * v b = y + D * u return (r, g, b) def rgb2yuv_int(r, g, b): """Convert RGB triplet into YUV `YUV wikipedia <http://en.wikipedia.org/wiki/YUV>`_ .. warning:: expected input must be between 0 and 255 (not normalised) """ check_range(r, 0, 255) check_range(g, 0, 255) check_range(b, 0, 255) y = int(0.299 * r + 0.587 * g + 0.114 * b) u = int(-32591.0/221500.0 * r + -63983.0/221500.0 * g + 0.436 * b) v = int(0.615 * r + -72201./140200 * g + -7011/70100. * b) return (y, u, v) def yuv2rgb_int(y, u, v): """Convert YUV triplet into RGB `YUV <http://en.wikipedia.org/wiki/YUV>`_ .. warning:: expected input must be between 0 and 255 (not normalised) """ check_range(y, 0, 255) check_range(u, 0, 255) check_range(v, 0, 255) r = int(y + 1.13983 * v) g = int(y - 0.39465 * u - 0.58060 * v) b = int(y + 2.03211 * u) return (r, g, b) def _denormalise(r, g, b, mode="rgb"): check_param_in_list(mode, ["rgb", "hls", "hsv"]) if mode == "rgb": return r*255., g*255., b*255. elif mode in ["hls", "hsv"]: return r*360., g*100., b*100. def _normalise(r, g, b, mode="rgb"): check_param_in_list(mode, ["rgb", "hls", "hsv"]) if mode == "rgb": return r/255., g/255., b/255. elif mode in ["hls", "hsv"]: return r/360., g/100., b/100. def to_intensity(n): """Return intensity :param n: value between 0 and 1 :return: value between 0 and 255; round(n*127.5+127.5) """ check_range(n, 0, 1) return int(round(n * 127.5 + 127.5)) class HEX(object): """Class to check the validity of an hexadecimal string and get standard string By standard, we mean #FFFFFF (6 digits) :: >>> h = HEX() >>> h.is_valid_hex_color("#FFFF00") True """ def __init__(self): pass def is_valid_hex_color(self, value, verbose=True): """Return True is the string can be interpreted as hexadecimal color Valid formats are * #FFF * #0000FF * 0x0000FF * 0xFA1 """ try: self.get_standard_hex_color(value) return True except Exception as err: if verbose: print(err) return False def get_standard_hex_color(self, value): """Return standard hexadecimal color By standard, we mean a string that starts with # sign followed by 6 character, e.g. #AABBFF """ if isinstance(value, str)==False: raise TypeError("value must be a string") if len(value) <= 3: raise ValueError("input string must be of type 0xFFF, 0xFFFFFF or #FFF or #FFFFFF") if value.startswith("0x") or value.startswith("0X"): value = value[2:] elif value.startswith("#"): value = value[1:] else: raise ValueError("hexa string must start with a '#' sign or '0x' string") value = value.upper() # Now, we have either FFFFFF or FFF # now check the length for x in value: if x not in "0123456789ABCDEF": raise ValueError("Found invalid hexa character {0}".format(x)) if len(value) == 6 or len(value) == 8: value = "#" + value[0:6] elif len(value) == 3: value = "#" + value[0]*2 + value[1]*2 + value[2]*2 else: raise ValueError("hexa string should be 3, 6 or 8 digits. if 8 digits, last 2 are ignored") return value class Color(HEX): """Class to ease manipulation and conversion between color codes You can create an instance in many differen ways. You can either use a human-readable name as long as it is part of the `XFree86 list <http://en.wikipedia.org/wiki/X11_color_names>`_ You can also provide a hexadecimal string (either 3 or 6 digits). You can use triplets of values corresponding to the RGB, HSV or HLS conventions. Here are some examples: .. doctest:: from colormap import Color Color("red") # human XFree86 compatible representation Color("#f00") # standard 3 hex digits Color("#ff0000") # standard 6 hex digits Color(hsv=(0,1,0.5)) Color(hls=(0, 1, 0.5)) # HLS triplet Color(rgb=(1, 0, 0)) # RGB triplet Color(Color("red")) # using an instance of :class:`Color` Note that the RGB, HLS and HSV triplets use normalised values. If you need to normalise the triplet, you can use :mod:`colormap.colors._normalise` that provides a function to normalise RGB, HLS and HSV triplets:: colors._normalise(*(255, 255, 0), mode="rgb") colors._normalise(*(360, 50, 100), mode="hls") If you provide a string, it has to be a valid string from XFree86. In addition to the official names, the lower case names are valid. Besides, there are names with spaces. The equivalent names without space are also valid. Therefore the name "Spring Green", which is an official name can be provided as "Spring Green", "spring green", "springgreen" or "SpringGreen". """ # Get official color names colors = XFree86_colors.copy() # add color names without spaces aliases = dict([(x.replace(" ", ""),x) for x in colors.keys() if " " in x]) # add color names without spaces in lower cases aliases.update([(x.replace(" ", "").lower(),x) for x in colors.keys() if " " in x]) # add color names in lower case aliases.update(dict([(x.lower(),x) for x in colors.keys()])) aliases.update(dict([(x,x) for x in colors.keys()])) # keep track of all possible names color_names = sorted(list(set(list(colors.keys()) +list( aliases.keys())))) def __init__(self, name=None, rgb=None, hls=None, hsv=None): super(Color, self).__init__() self._name = None self._mode = None self._rgb = None # Does the user provided the name argument (first one) as a string ? if isinstance(name, str): # if so, it can be a valid human name (e.g., red) or an hex # assuming that valid hexadecimal starts with # or 0x, # if we can interpret the string as an hexadecimal, we are done if self.is_valid_hex_color(name, verbose=False): self.hex = name else: # if not, then, the user probably provided a valid color name # the property will check the validity. self.name = name[:] #all other input parameters are ignored elif name == None: if rgb: self.rgb = rgb elif hls: self.hls = hls elif hsv: self.hsv = hsv else: raise ValueError("You must set one of the parameter") elif isinstance(name, Color): self.rgb = name.rgb else: raise ValueError("name parameter must be a string") def _get_name(self): return self._name def _set_name(self, name): check_param_in_list(name, self.color_names) name = self.aliases[name] self._name = name # set hex and rgb at the same time based on the name self.hex = self.colors[name] name = property(_get_name, _set_name) color = property(_get_name, _set_name) def _get_hex(self): return self._hex def _set_hex(self, value): # hex is an approximation made of 255 bits so do not define rgb here if self.is_valid_hex_color(value): value = self.get_standard_hex_color(value) self._hex = value if self._hex in self.colors.values(): self._name = swapdict(self.colors, check_ambiguity=False)[self._hex] else: self._name = "undefined" self._rgb = hex2rgb(self._hex, normalise=True) else: # just to warn the user self.get_standard_hex_color(value) hex = property(_get_hex, _set_hex, doc="getter/setter the hexadecimal value.") def _get_rgb(self): return self._rgb def _set_rgb(self, value): # set name, hex and rgb self.hex = rgb2hex(*value , normalised=True) # must reset rgb with its real value (set_hex may round the rgb) # in _set_hex self._rgb = value rgb = property(_get_rgb, _set_rgb, doc="getter/setter the RGB values (3-length tuple)") def _get_hsv(self): hsv = rgb2hsv(*self.rgb) return hsv def _set_hsv(self, value): # TODO: value must be normalised self.rgb = hsv2rgb(*value) hsv = property(_get_hsv, _set_hsv, doc="getter/setter the HSV values (3-length tuple)") def _get_hls(self): hls = rgb2hls(*self.rgb) return hls def _set_hls(self, value): #hls = _normalise(*value, mode="hls") #else: hls = value self.rgb = hls2rgb(*hls) hls = property(_get_hls, _set_hls, doc="getter/setter the HLS values (3-length tuple)") def _get_lightness(self): return self.hls[1] def _set_lightness(self, lightness): h, l, s = self.hls self.hls = (h, lightness, s) lightness = property(_get_lightness, _set_lightness, doc="getter/setter the lightness in the HLS triplet") def _get_saturation_hls(self): return self.hls[2] def _set_saturation_hls(self, saturation): h, l, s = self.hls self.hls = (h, l, saturation) saturation_hls = property(_get_saturation_hls, _set_saturation_hls, doc="getter/setter the saturation in the HLS triplet") def _get_hue(self): return self.hls[0] def _set_hue(self, hue): h, l, s = self.hls self.hls = (hue, l, s) hue = property(_get_hue, _set_hue, doc="getter/setter the saturation in the HLS triplet") def _get_red(self): return self.rgb[0] def _set_red(self, red): r, g, b = self.rgb self.rgb = (red,g,b) red = property(_get_red, _set_red, doc="getter/setter for the red color in RGB triplet") def _get_green(self): return self.rgb[1] def _set_green(self, green): r, g, b = self.rgb self.rgb = (r, green, b) green = property(_get_green, _set_green, doc="getter/setter for the green color in RGB triplet") def _get_blue(self): return self.rgb[2] def _set_blue(self, blue): r, g, b = self.rgb self.rgb = (r, g, blue) blue = property(_get_blue, _set_blue, doc="getter/setter for the blue color in RGB triplet") def _get_value(self): return self.hls[0] def _set_value(self, value): h, s, v = self.hsv self.hsv = (h, s, value) value = property(_get_value, _set_value, doc="getter/setter the value in the HSV triplet") def _get_yiq(self): return colorsys.rgb_to_yiq(*self.rgb) yiq = property(_get_yiq, doc="Getter for the YIQ triplet") def __str__(self): txt = 'Color {0}\n'.format(self.name) txt+= ' hexa code: {0}\n'.format(self.hex) txt+= ' RGB code: {0}\n'.format(self.rgb) txt+= ' RGB code (un-normalised): {0}\n\n'.format([x*255 for x in self.rgb]) txt+= ' HSV code: {0}\n'.format(self.hsv) txt+= ' HSV code: (un-normalised) {0} {1} {2}\n\n'.format(self.hsv[0]*360, self.hsv[1]*100, self.hsv[2]*100) txt+= ' HLS code: {0}\n'.format(self.hls) txt+= ' HLS code: (un-normalised) {0} {1} {2}\n\n'.format(self.hls[0]*360, self.hls[1]*100, self.hls[2]*100) return txt class Colormap(object): """Class to create matplotlib colormap This example show how to get the pre-defined colormap called *heat* .. plot:: :include-source: from pylab import * from colormap.colors import Colormap c = Colormap() cmap = c.get_cmap_heat() c.test_colormap(cmap) You may be more interested in building your own colormap:: # design your own colormap d = {'blue': [0,0,0,1,1,1,0], 'green':[0,1,1,1,0,0,0], 'red': [1,1,0,0,0,1,1]} cmap = c.cmap(d, reverse=False) # see the results c.test_colormap(cmap) If you want a simple linear colormap, you can use the example above, or use the :meth:`cmap_linear`. For instance for a diverging colormap from red to green (with with color in between):: cmap = c.cmap_linear("red", "white", "green") c.test_colormap(cmap) Even simpler, you can use a bicolor colormap :meth:`cmap_bicolor`. For instance for a red to green colormap:: cmap = c.cmap_bicolor("red", "green") c.test_colormap(cmap) From matplotlib documentation, colormaps falls into 4 categories: #. Sequential schemes for unipolar data that progresses from low to high #. Diverging schemes for bipolar data that emphasizes positive or negative deviations from acentral value #. Cyclic schemes meant for plotting values that wrap around at the endpoints, such as phase angle, wind direction, or time of day #. Qualitative schemes for nominal data that has no inherent ordering, where color is used only to distinguish categories :references: matplotlib documentation and examples http://matplotlib.org/examples/color/colormaps_reference.html """ def _get_colormap_mpl(self): try: from matplotlib.pyplot import colormaps as _cmaps return _cmaps() except: return [] colormaps = property(_get_colormap_mpl) def _get_sequentials(self): return ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'OrRd', 'Oranges', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'] sequentials = property(_get_sequentials) def _get_sequentials2(self): return ['afmhot', 'autumn', 'bone', 'cool', 'copper', 'gist_heat', 'gray', 'hot', 'pink', 'spring', 'summer', 'winter'] sequentials2 = property(_get_sequentials2) def _get_diverging(self): return ['BrBG', 'PRGn', 'PiYG', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral', 'bwr', 'coolwarm', 'seismic'] diverging = property(_get_diverging) def _get_diverging_black(self): return ['red_black_sky', 'red_black_blue', 'red_black_green', 'yellow_black_blue', 'yellow_black_sky', 'red_black_orange', 'pink_black_green(w3c)' ] diverging_black = property(_get_diverging_black) def _get_qualitative(self): return ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3'] qualitative = property(_get_qualitative) def _get_misc(self): return ['gist_earth', 'terrain', 'ocean', 'gist_stern', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'gist_ncar', 'nipy_spectral', 'jet', 'rainbow', 'gist_rainbow', 'hsv', 'flag', 'prism'] misc = property(_get_misc) def plot_rgb_from_hex_list(self, cols): """This functions takes a list of hexadecimal values and plots the RGB curves. This can be handy to figure out the RGB functions to be used in the :meth:`get_cmap`. .. plot:: :include-source: :width: 60% from colormap.colors import Colormap c = Colormap() t = ['#FF0000FF', '#FF4D00FF', '#FF9900FF', '#FFE500FF', '#CCFF00FF', '#80FF00FF', '#33FF00FF', '#00FF19FF', '#00FF66FF', '#00FFB2FF', '#00FFFFFF', '#00B3FFFF', '#0066FFFF', '#001AFFFF', '#3300FFFF', '#7F00FFFF', '#CC00FFFF','#FF00E6FF','#FF0099FF', '#FF004DFF'] c.plot_rgb_from_hex_list(t) """ import pylab red = [hex2rgb(x)[0]/255. for x in cols] blue = [hex2rgb(x)[2]/255. for x in cols] green = [hex2rgb(x)[1]/255. for x in cols] x = pylab.linspace(0, 1, len(cols)) pylab.clf() pylab.plot(x, red, 'ro-', alpha=0.5) pylab.plot(x, green, 'gs-', alpha=0.5, markersize=15) pylab.plot(x, blue, 'bx-', alpha=0.5, markersize=15) pylab.ylim([-0.1, 1.1]) def cmap_bicolor(self, color1, color2, reverse=False, N=256): """Provide 3 colors in format accepted by :class:`Color` :: >>> red = Color('red') >>> white = Color('white') >>> cmap = cmap_bicolor(red, white) """ c1 = Color(color1) c2 = Color(color2) dico = {'red': [c1.red, c2.red], 'green':[c1.green, c2.green], 'blue':[c1.blue, c2.blue]} return self.cmap(dico, reverse=reverse, N=N) def cmap_linear(self, color1, color2, color3, reverse=False, N=256): """Provide 3 colors in format accepted by :class:`Color` :: red = Color('red') cmap = cmap_linear(red, 'white', '#0000FF') """ c1 = Color(color1) c2 = Color(color2) c3 = Color(color3) dico = {'red': [c1.red, c2.red, c3.red], 'green':[c1.green, c2.green, c3.green], 'blue':[c1.blue, c2.blue, c3.blue]} return self.cmap(dico, reverse=reverse, N=N) def cmap(self, colors=None, reverse=False, N=256): """Return a colormap object to be used within matplotlib :param dict colors: a dictionary that defines the RGB colors to be used in the colormap. See :meth:`get_cmap_heat` for an example. :param bool reverse: reverse the colormap is set to True (defaults to False) :param int N: Defaults to 50 """ # matplotlib colormaps if colors in self.colormaps: if reverse and colors.endswith("_r") is False: colors += "_r" from matplotlib.cm import get_cmap return get_cmap(colors) # custom ones elif colors in self.diverging_black: c1, c2, c3 = colors.split("_") # special case of sky, which does not exists c3 = c3.replace("sky", "deep sky blue") return self.cmap_linear(c1, c2, c3) elif colors == 'heat': return self.get_cmap_heat() elif colors == 'heat_r': return self.get_cmap_heat_r() # Keep these dependencies inside the function to allow # installation of colormap without those dependencies # FIXME remove numpy dependencies import numpy as np # extracted from R, heat.colors(20) if reverse: for k in colors.keys(): colors[k].reverse() # If index not given, RGB colors are evenly-spaced in colormap. index = np.linspace(0, 1, len(colors['red'])) # Adapt color_data to the form expected by LinearSegmentedColormap. color_data = dict((key, [(x, y, y) for x, y in zip(index, value)]) for key, value in list(colors.items())) import matplotlib f = matplotlib.colors.LinearSegmentedColormap m = f('my_color_map', color_data, N) return m def get_cmap_heat(self): """Return a heat colormap matplotlib-compatible colormap This heat colormap should be equivalent to heat.colors() in R. :: >>> from colormap.colors import Colormap >>> cmap = Colormap.get_cmap_heat() You can generate the colormap based solely on this information for the RGB functions along:: d= { 'blue':[0,0,0,0,1], 'green':[0,.35,.7,1,1], 'red':[1,1,1,1,1]} cmap = Colormap.get_cmap(d) """ return self.cmap( { 'blue':[0, 0, 0, 0, 1], 'green':[0, .35, .7, 1, 1], 'red':[1, 1, 1, 1, 1]}, reverse=False) def get_cmap_heat_r(self): """Return a heat colormap matplotlib-compatible colormap Same as :meth:`get_cmap_heat` but reversed """ return self.cmap( { 'blue':[0, 0, 0, 0, 1], 'green':[0, .35, .7, 1, 1], 'red':[1, 1, 1, 1, 1]}, reverse=True) def get_cmap_rainbow(self): """colormap similar to rainbow colormap from R .. note:: The red is actually appearing on both sides... Yet this looks like what is coded in R 3.0.1 """ return self.cmap( { 'blue': [0, 0, 0, 1, 1, 1, 0], 'green':[0, 1, 1, 1, 0, 0, 0], 'red': [1, 1, 0, 0, 0, 1, 1]}, reverse=False) def get_cmap_red_green(self): return self.cmap( { 'green': [0, 0.4, 0.6, .75, .8, .9, 1, .9, .8, .6], 'blue' : [0, .4, .6, .75, .8, .7, .6, .35, .17, .1], 'red': [1, 1, 1, 1, 1, .9, .8, .6, .3, .1]}, reverse=True) def test_colormap(self, cmap=None): """plot one colormap for testing By default, test the :meth:`get_cmap_heat` """ if cmap is None: cmap = self.get_cmap_heat() import numpy as np from pylab import clf, pcolor, colorbar, show, linspace, axis A, B = np.meshgrid(linspace(0, 10, 100), linspace(0, 10, 100)) clf() pcolor((A-5)**2+(B-5)**2, cmap=cmap) colorbar() show() axis('off') def plot_colormap(self, cmap_list=None): """cmap_list list of valid cmap or name of a set (sequential, diverging,) if none, plot all known colors .. .. plot:: .. :width:80% .. :include-source: .. from colormap import Colormap .. c = Colormap() .. c.plot_colormap('sequential') """ from pylab import subplots if isinstance(cmap_list, str): if cmap_list in ['sequentials','sequentials2','qualitative', 'misc','diverging', 'diverging_black']: cmap_list = getattr(self, cmap_list) else: cmap_list = [cmap_list] if isinstance(cmap_list, list) is not True: raise TypeError("""input must be a list of srtings or a single string. Each string should be found. For a user-defined cmap, use test_colormap""") for this in cmap_list: if this not in self.colormaps and this not in self.diverging_black: raise ValueError("unknown colormap name. Please check valid names in colormaps attribute") nrows = len(cmap_list) gradient = [x/255. for x in range(0,256)] gradient = [gradient, gradient] #np.vstack((gradient, gradient)) fig, axes = subplots(nrows=nrows) fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.8) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect='auto', cmap=self.cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[2] + 0.08 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='left', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off()
bsd-3-clause
sonusz/PhasorToolBox
examples/freq_meter.py
1
1820
#!/usr/bin/env python3 """ This is an real-time frequency meter of two PMUs. This code connects to two PMUs, plot the frequency of the past 300 time-stamps and update the plot in real-time. """ from phasortoolbox import PDC,Client import matplotlib.pyplot as plt import numpy as np import gc import logging logging.basicConfig(level=logging.DEBUG) class FreqMeter(object): def __init__(self): x = np.linspace(-10.0, 0.0, num=300, endpoint=False) y = [60.0]*300 plt.ion() self.fig = plt.figure() self.ax1 = self.fig.add_subplot(211) self.line1, = self.ax1.plot(x, y) plt.title('PMU1 Frequency Plot') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') self.ax2 = self.fig.add_subplot(212) self.line2, = self.ax2.plot(x, y) plt.title('PMU2 Frequency Plot') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') plt.tight_layout() def update_plot(self, synchrophasors): y_data = [[],[]] for synchrophasor in synchrophasors: for i, msg in enumerate(synchrophasor): y_data[i].append(msg.data.pmu_data[0].freq) self.line1.set_ydata(y_data[0]) self.line2.set_ydata(y_data[1]) self.ax1.set_ylim(min(y_data[0]),max(y_data[0])) self.ax2.set_ylim(min(y_data[1]),max(y_data[1])) self.fig.canvas.draw() self.fig.canvas.flush_events() del(synchrophasors) gc.collect() if __name__ == '__main__': pmu_client1 = Client(remote_ip='10.0.0.1', remote_port=4722, idcode=1, mode='TCP') pmu_client2 = Client(remote_ip='10.0.0.2', remote_port=4722, idcode=2, mode='TCP') fm = FreqMeter() pdc = PDC(clients=[pmu_client1,pmu_client2],history=300) pdc.callback = fm.update_plot pdc.run()
mit
subutai/htmresearch
projects/sequence_prediction/continuous_sequence/data/processTaxiData.py
12
2451
import pandas as pd import numpy as np from matplotlib import pyplot as plt import os from pygeocoder import Geocoder plt.ion() year = 2015 record_num = [] aggregation_rule = {'Sum': sum} ts_all = None aggregation_window = "1min" print " aggregate data at" + aggregation_window + "resolution" for year in [2014, 2015]: for month in xrange(1, 13): datafileName = 'yellow_tripdata_' + str(year) + '-' + "{:0>2d}".format(month) + '.csv' if os.path.isfile(datafileName): print " Load Datafile: ", datafileName # df = pd.read_csv(datafileName, header=0, nrows=100, usecols=[1, 3, 5, 6], # names=['pickup_datetime', 'passenger_count', 'pickup_longitude', 'pickup_latitude']) # # postcode = np.zeros(len(df)) # for i in xrange(len(df)): # try: # results = Geocoder.reverse_geocode(df['pickup_latitude'][i], df['pickup_longitude'][i]) # postcode[i] = results.postal_code # except: # pass df = pd.read_csv(datafileName, header=0, usecols=[1, 3], names=['pickup_datetime', 'passenger_count']) record_num.append(len(df)) ts = pd.Series(np.array(df.passenger_count), index=pd.to_datetime(df.pickup_datetime)) del df ts_aggregate = ts.resample(aggregation_window, how=aggregation_rule) if ts_all is not None: print " concat ts_all" ts_all = pd.concat([ts_all, ts_aggregate]) else: print " initialize ts_all" ts_all = ts_aggregate else: print datafileName, " not exist" print "include time of day and day of week as input field" date = ts_all.index dayofweek = (date.dayofweek) timeofday = (date.hour*60 + date.minute) passenger_count = np.array(ts_all['Sum']) seq = pd.DataFrame(np.transpose(np.array([passenger_count, timeofday, dayofweek])), columns=['passenger_count', 'timeofday', 'dayofweek'], index=ts_all.index) plt.close('all') plt.figure(1) plt.plot(seq.index, seq.passenger_count) import csv outputFileName = "nyc_taxi_" + aggregation_window + ".csv" outputFile = open(outputFileName,"w") csvWriter = csv.writer(outputFile) csvWriter.writerow(['timestamp', 'passenger_count', 'timeofday', 'dayofweek']) csvWriter.writerow(['datetime', 'int', 'int', 'string']) csvWriter.writerow(['T', '', '', '']) for i in range(len(ts_all)): csvWriter.writerow([seq.index[i], seq.passenger_count[i], seq.timeofday[i], seq.dayofweek[i]]) outputFile.close()
agpl-3.0
fishroot/nemoa
nemoa/file/nplot.py
1
16627
# -*- coding: utf-8 -*- """Common function for creating plots with matplotlib.""" __author__ = 'Patrick Michl' __email__ = 'frootlab@gmail.com' __license__ = 'GPLv3' __docformat__ = 'google' import numpy as np from nemoa.types import OptDict class Plot: """Base class for matplotlib plots. Export classes like Histogram, Heatmap or Graph share a common interface to matplotlib, as well as certain plotting attributes. This base class is intended to provide a unified interface to access matplotlib and those attributes. Attributes: """ _default: dict = { 'fileformat': 'pdf', 'figure_size': (10.0, 6.0), 'dpi': None, 'bg_color': 'none', 'usetex': False, 'font_family': 'sans-serif', 'style': 'seaborn-white', 'title': None, 'show_title': True, 'title_fontsize': 14.0 } _config: dict = {} _kwds: dict = {} _plt = None _fig = None _axes = None def __init__(self, **kwds): """ """ try: import matplotlib except ImportError as err: raise ImportError( "requires package matplotlib: " "https://matplotlib.org") from err # merge config from defaults, current config and keyword arguments self._kwds = kwds self._config = {**self._default, **self._config, **kwds} # update global matplotlib settings matplotlib.rc('text', usetex=self._config['usetex']) matplotlib.rc('font', family=self._config['font_family']) # link matplotlib.pyplot import matplotlib.pyplot as plt self._plt = plt # close previous figures plt.close('all') # update plot settings plt.style.use(self._config['style']) # create figure self._fig = plt.figure( figsize=self._config['figure_size'], dpi=self._config['dpi'], facecolor=self._config['bg_color']) # create subplot (matplotlib.axes.Axes) self._axes = self._fig.add_subplot(111) def set_default(self, config: OptDict = None) -> bool: """Set default values.""" self._config = {**self._config, **(config or {}), **self._kwds} return True def plot_title(self) -> bool: """Plot title.""" if not self._config['show_title']: return False title = self._config['title'] or 'Unknown' fontsize = self._config['title_fontsize'] getattr(self._plt, 'title')(title, fontsize=fontsize) return True def show(self) -> None: """Show plot.""" getattr(self._plt, 'show')() def save(self, path, **kwds): """Save plot to file.""" return self._fig.savefig(path, dpi=self._config['dpi'], **kwds) def release(self): """Clear current plot.""" return self._fig.clear() class Heatmap(Plot): """ """ _config = { 'interpolation': 'nearest', 'grid': True } def plot(self, array): """ """ try: from matplotlib.cm import hot_r except ImportError as err: raise ImportError( "requires package matplotlib: " "https://matplotlib.org") from err # plot grid self._axes.grid(self._config['grid']) # plot heatmap cax = self._axes.imshow( array, cmap=hot_r, interpolation=self._config['interpolation'], extent=(0, array.shape[1], 0, array.shape[0])) # create labels for axis max_font_size = 12. x_labels = [] for label in self._config['x_labels']: if ':' in label: label = label.split(':', 1)[1] x_labels.append(get_texlabel(label)) y_labels = [] for label in self._config['y_labels']: if ':' in label: label = label.split(':', 1)[1] y_labels.append(get_texlabel(label)) fontsize = min(max_font_size, \ 400. / float(max(len(x_labels), len(y_labels)))) self._plt.xticks( np.arange(len(x_labels)) + 0.5, tuple(x_labels), fontsize=fontsize, rotation=65) self._plt.yticks( len(y_labels) - np.arange(len(y_labels)) - 0.5, tuple(y_labels), fontsize=fontsize) # create colorbar cbar = self._fig.colorbar(cax) for tick in cbar.ax.get_yticklabels(): tick.set_fontsize(9) # (optional) plot title self.plot_title() return True class Histogram(Plot): """ """ _config = { 'bins': 100, 'facecolor': 'lightgrey', 'edgecolor': 'black', 'histtype': 'bar', 'linewidth': 0.5, 'grid': True } def plot(self, array): """ """ # plot grid self._axes.grid(self._config['grid']) # plot histogram self._axes.hist( array, bins=self._config['bins'], facecolor=self._config['facecolor'], histtype=self._config['histtype'], linewidth=self._config['linewidth'], edgecolor=self._config['edgecolor']) # (optional) plot title self.plot_title() return True class Scatter2D(Plot): """ """ _config = { 'grid': True, 'pca': True } @staticmethod def _pca2d(array): """Calculate projection to largest two principal components.""" # get dimension of array dim = array.shape[1] # calculate covariance matrix cov = np.cov(array.T) # calculate eigevectors and eigenvalues vals, vecs = np.linalg.eig(cov) # sort eigevectors by absolute eigenvalues pairs = [(np.abs(vals[i]), vecs[:, i]) for i in range(len(vals))] pairs.sort(key=lambda x: x[0], reverse=True) # calculate projection matrix proj = np.hstack( [pairs[0][1].reshape(dim, 1), pairs[1][1].reshape(dim, 1)]) # calculate projection parray = np.dot(array, proj) return parray def plot(self, array): """ """ # test arguments if array.shape[1] != 2: if self._config['pca']: array = self._pca2d(array) else: raise TypeError( "first argument is required to be an array of shape (n, 2)") x, y = array[:, 0], array[:, 1] # plot grid self._axes.grid(self._config['grid']) # plot scattered data self._axes.scatter(x, y) # (optional) plot title self.plot_title() return True class Graph(Plot): _config = { 'padding': (0.1, 0.1, 0.1, 0.1), 'show_legend': False, 'legend_fontsize': 9.0, 'graph_layout': 'layer', 'graph_direction': 'right', 'node_style': 'o', 'edge_width_enabled': True, 'edge_curvature': 1.0 } def plot(self, G): """Plot graph. Args: G: networkx graph instance figure_size (tuple): figure size in inches (11.69,8.27) for A4, (16.53,11.69) for A3 edge_attribute (string): name of edge attribute, that determines the edge colors by its sign and the edge width by its absolute value. default: 'weight' edge_color (bool): flag for colored edges True: edge colors are determined by the sign of the attribute 'weight' False: edges are black edge_poscolor (string): name of color for edges with positive signed attribute. For a full list of specified color names see nemoa.base.nplot.get_color() edge_negcolor (string): name of color for edges with negative signed attribute. For a full list of specified color names see nemoa.base.nplot.get_color() edge_curvature (float): value within the intervall [-1, 1], that determines the curvature of the edges. Thereby 1 equals max convexity and -1 max concavity. direction (string): string within the list ['up', 'down', 'left', 'right'], that dermines the plot direction of the graph. 'up' means, the first layer is at the bottom. edge_style (string): '-', '<-', '<->', '->', '<|-', '<|-|>', '-|>', '|-', '|-|', '-|', ']-', ']-[', '-[', 'fancy', 'simple', 'wedge' Returns: Boolen value which is True if no error occured. """ try: import matplotlib.patches except ImportError as err: raise ImportError( "requires package matplotlib: " "https://matplotlib.org") from err try: import networkx as nx except ImportError as err: raise ImportError( "requires package networkx: " "https://networkx.github.io") from err from nemoa.base import ndict from nemoa.math import graph # adjust size of subplot fig = self._fig ax = self._axes ax.set_autoscale_on(False) figsize = fig.get_size_inches() * fig.dpi ax.set_xlim(0., figsize[0]) ax.set_ylim(0., figsize[1]) ax.set_aspect('equal', 'box') ax.axis('off') # get node positions and sizes layout_params = ndict.crop(self._config, 'graph_') del layout_params['layout'] pos = graph.get_layout( G, layout=self._config['graph_layout'], size=figsize, padding=self._config['padding'], **layout_params) sizes = graph.get_layout_normsize(pos) node_size = sizes.get('node_size', None) node_radius = sizes.get('node_radius', None) line_width = sizes.get('line_width', None) edge_width = sizes.get('edge_width', None) font_size = sizes.get('font_size', None) # get nodes and groups sorted by node attribute group_id groups = graph.get_groups(G, attribute='group') sorted_groups = sorted( list(groups.keys()), key=lambda g: 0 if not isinstance(g, list) or not g \ else G.node.get(g[0], {}).get('group_id', 0)) # draw nodes, labeled by groups for group in sorted_groups: gnodes = groups.get(group, []) if not gnodes: continue refnode = G.node.get(gnodes[0]) label = refnode['description'] or refnode['group'] or str(group) # draw nodes in group node_obj = nx.draw_networkx_nodes( G, pos, nodelist=gnodes, linewidths=line_width, node_size=node_size, node_shape=self._config['node_style'], node_color=get_color(refnode['color'], 'white'), label=label) node_obj.set_edgecolor( get_color(refnode['border_color'], 'black')) # draw node labels for node, data in G.nodes(data=True): # determine label, fontsize and color node_label = data.get('label', str(node).title()) node_label_format = get_texlabel(node_label) node_label_size = np.sqrt(get_texlabel_width(node_label)) font_color = get_color(data['font_color'], 'black') # draw node label nx.draw_networkx_labels( G, pos, labels={node: node_label_format}, font_size=font_size / node_label_size, font_color=font_color, font_family='sans-serif', font_weight='normal') # patch node for edges circle = matplotlib.patches.Circle( pos.get(node), alpha=0., radius=node_radius) ax.add_patch(circle) G.node[node]['patch'] = circle # draw edges seen = {} if graph.is_directed(G): default_edge_style = '-|>' else: default_edge_style = '-' for (u, v, data) in G.edges(data=True): weight = data['weight'] if weight == 0.: continue # calculate edge curvature from node positions # parameter rad describes the height in the normalized triangle if (u, v) in seen: rad = seen.get((u, v)) rad = -(rad + float(np.sign(rad)) * .2) else: scale = 1. / np.amax(np.array(figsize)) vec = scale * (np.array(pos[v]) - np.array(pos[u])) rad = vec[0] * vec[1] / np.sqrt(2 * np.sum(vec ** 2)) if self._config['graph_layout'] == 'layer': gdir = self._config['graph_direction'] if gdir in ['left', 'right']: rad *= -1 seen[(u, v)] = rad # determine style of edge from edge weight if weight is None: linestyle = '-' linewidth = 0.5 * edge_width alpha = 0.5 elif not self._config['edge_width_enabled']: linestyle = '-' linewidth = edge_width alpha = np.amin([np.absolute(weight), 1.0]) else: linestyle = '-' linewidth = np.absolute(weight) * edge_width alpha = np.amin([np.absolute(weight), 1.0]) # draw edge node_a = G.node[u]['patch'] node_b = G.node[v]['patch'] arrow = matplotlib.patches.FancyArrowPatch( posA=node_a.center, posB=node_b.center, patchA=node_a, patchB=node_b, arrowstyle=default_edge_style, connectionstyle='arc3,rad=%s' % rad, mutation_scale=linewidth * 12., linewidth=linewidth, linestyle=linestyle, color=get_color(data.get('color', 'black')), alpha=alpha) ax.add_patch(arrow) # (optional) draw legend if self._config['show_legend']: num_groups = np.sum([1 for g in list(groups.values()) \ if isinstance(g, list) and g]) markerscale = 0.6 * self._config['legend_fontsize'] / font_size ax.legend( numpoints=1, loc='lower center', ncol=num_groups, borderaxespad=0., framealpha=0., bbox_to_anchor=(0.5, -0.1), fontsize=self._config['legend_fontsize'], markerscale=markerscale) # (optional) plot title self.plot_title() return True def get_color(*args): """Convert color name of XKCD color name survey to RGBA tuple. Args: List of color names. If the list is empty, a full list of available color names is returned. Otherwise the first valid color in the list is returned as RGBA tuple. If no color is valid None is returned. """ try: from matplotlib import colors except ImportError as err: raise ImportError( "requires package matplotlib: " "https://matplotlib.org") from err if not args: clist = list(colors.get_named_colors_mapping().keys()) return sorted([cname[5:].title() \ for cname in clist if cname[:5] == 'xkcd:']) rgb = None for cname in args: try: rgb = colors.to_rgb('xkcd:%s' % cname) break except ValueError: continue return rgb def get_texlabel(string): """Return formated node label as used for plots.""" lstr = string.rstrip('1234567890') if len(lstr) == len(string): return '${%s}$' % (string) rnum = int(string[len(lstr):]) lstr = lstr.strip('_') return '${%s}_{%i}$' % (lstr, rnum) def get_texlabel_width(string): """Return estimated width for formated node labels.""" lstr = string.rstrip('1234567890') if len(lstr) == len(string): return len(string) lstr = lstr.strip('_') rstr = str(int(string[len(lstr):])) return len(lstr) + 0.7 * len(rstr) def filetypes(): """Return supported image filetypes.""" try: import matplotlib.pyplot as plt except ImportError as err: raise ImportError( "requires package matplotlib: " "https://matplotlib.org") from err return plt.gcf().canvas.get_supported_filetypes()
gpl-3.0
e-koch/VLA_Lband
14B-088/HI/imaging/sd_regridding/sd_comparison.py
1
3520
''' Compare the regridded versions of the SD datasets. ''' from spectral_cube import SpectralCube import matplotlib.pyplot as plt import os from corner import hist2d from radio_beam import Beam import astropy.units as u import numpy as np from paths import fourteenB_HI_data_path, data_path from galaxy_params import gal # Load in the 4 cubes and run. vla_cube = SpectralCube.read(fourteenB_HI_data_path("M33_14B-088_HI.clean.image.fits")) arecibo_path = os.path.join(data_path, "Arecibo") # Spectral interpolation, followed by reprojection. arecibo_name = \ os.path.join(arecibo_path, "14B-088_items_new/m33_arecibo_14B088.fits") arecibo_cube = SpectralCube.read(arecibo_name) ebhis_path = os.path.join(data_path, "EBHIS") # Spectral interpolation, followed by reprojection. ebhis_name = os.path.join(ebhis_path, "14B-088_items/m33_ebhis_14B088.fits") ebhis_cube = SpectralCube.read(ebhis_name) gbt_path = os.path.join(data_path, "GBT") gbt_name = os.path.join(gbt_path, "14B-088_items/m33_gbt_vlsr_highres_Tmb_14B088.fits") gbt_cube = SpectralCube.read(gbt_name) gbt_lowres_name = os.path.join(gbt_path, "14B-088_items/m33_gbt_vlsr_Tmb_14B088.fits") gbt_lowres_cube = SpectralCube.read(gbt_lowres_name) # Compare total emission in the cubes. vla_mask = np.isfinite(vla_cube[0]) arecibo_sum = arecibo_cube.with_mask(vla_mask).sum() ebhis_sum = ebhis_cube.with_mask(vla_mask).sum() gbt_sum = gbt_cube.with_mask(vla_mask).sum() gbt_lowres_sum = gbt_lowres_cube.with_mask(vla_mask).sum() plt.plot(arecibo_sum, ebhis_sum, gbt_sum, gbt_lowres_sum) # Compare intensities in one plane # arecibo_plane = arecibo_cube[500] # ebhis_plane = ebhis_cube[500] # gbt_plane = gbt_cube[500] # gbt_plane[np.isnan(gbt_plane)] = 0.0 * u.K # gbt_lowres_plane = gbt_lowres_cube[500] # # Convolve GBT to match EBHIS # beam_fwhm = lambda diam: ((1.2 * 21 * u.cm) / diam.to(u.cm)) * u.rad # gbt_90m_beam = Beam(beam_fwhm(90 * u.m)) # gbt_plane._beam = gbt_90m_beam # gbt_plane_convolved = gbt_plane.convolve_to(ebhis_plane.beam) # gbt_100m_beam = Beam(beam_fwhm(100 * u.m)) # gbt_plane._beam = gbt_100m_beam # gbt_plane_convolved_100 = gbt_plane.convolve_to(ebhis_plane.beam) # ax = plt.subplot(131) # hist2d(gbt_plane.value.ravel(), ebhis_plane.value.ravel(), ax=ax) # plt.plot([0, 15], [0, 15]) # ax2 = plt.subplot(132) # hist2d(gbt_plane_convolved.value.ravel(), ebhis_plane.value.ravel(), ax=ax2) # plt.plot([0, 15], [0, 15]) # ax3 = plt.subplot(133) # hist2d(gbt_plane_convolved_100.value.ravel(), ebhis_plane.value.ravel(), ax=ax3) # plt.plot([0, 15], [0, 15]) # Best match for GBT is with a 106 m beam, convolved to the 80 m of EBHIS. # Well, something is wrong here. It has to be that the difference between the # data is a 80 m deconvolved w/ a 106 m beam. The EBHIS beam size should then # be slightly smaller? # Now convolve the Arecibo down to the GBT. # gbt_90m_beam = Beam(beam_fwhm(90 * u.m)) # arecibo_plane_convolved = arecibo_plane.convolve_to(gbt_90m_beam) # gbt_100m_beam = Beam(beam_fwhm(100 * u.m)) # arecibo_plane_convolved_100 = arecibo_plane.convolve_to(gbt_100m_beam) # ax = plt.subplot(131) # hist2d(arecibo_plane.value.ravel(), gbt_plane.value.ravel(), ax=ax) # plt.plot([0, 15], [0, 15]) # ax2 = plt.subplot(132) # hist2d(arecibo_plane_convolved.value.ravel(), gbt_plane.value.ravel(), ax=ax2) # plt.plot([0, 15], [0, 15]) # ax3 = plt.subplot(133) # hist2d(arecibo_plane_convolved_100.value.ravel(), gbt_plane.value.ravel(), ax=ax3) # plt.plot([0, 15], [0, 15])
mit
transientlunatic/minke
minke/mdctools.py
1
34706
""" 88b d88 88 88 888b d888 "" 88 88`8b d8'88 88 88 `8b d8' 88 88 8b,dPPYba, 88 ,d8 ,adPPYba, 88 `8b d8' 88 88 88P' `"8a 88 ,a8" a8P_____88 88 `8b d8' 88 88 88 88 8888[ 8PP""""""" 88 `888' 88 88 88 88 88`"Yba, "8b, ,aa 88 `8' 88 88 88 88 88 `Y8a `"Ybbd8"' -------------------------------------------------------- This file is a part of Minke, a tool for generating simulated gravitational wave signals, used for characterising and training search algorithms. Minke was created by Daniel Williams, based on work started by Chris Pankow and others, and is built around the LALSimulation library. """ from glue.ligolw import ligolw, utils, lsctables lsctables.use_in(ligolw.LIGOLWContentHandler); import numpy import lalburst, lalsimulation, lalmetaio from minke.antenna import response from lal import TimeDelayFromEarthCenter as XLALTimeDelayFromEarthCenter #from pylal.xlal.datatypes.ligotimegps import LIGOTimeGPS from lal import LIGOTimeGPS from glue.ligolw.utils import process import glue import glue.ligolw import gzip import lal, lalframe import numpy as np import pandas as pd import os import os.path import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import re import random import minke from minke import sources sourcemap = {} for classin in dir(sources): classin = sources.__dict__[classin] if hasattr(classin, "waveform"): sourcemap[classin.waveform] = classin def source_from_row(row): waveform = row.waveform sourceobj = sourcemap[row.waveform].__new__(sourcemap[row.waveform]) sourceobj.numrel_data = str("") params = {} for attr in dir(row): if not attr[0] == "_" and not attr[:3] =="get": #print attr try: params[attr] = getattr(row, attr) setattr(sourceobj, attr, getattr(row, attr)) except AttributeError: print("Error processing the {} column".format(attr)) sourceobj.params = params try: sourceobj.time = row.time_geocent_gps except: sourceobj.time = row.geocent_start_time pass return sourceobj def source_from_dict(params): sourceobj = sourcemap[params['morphology']].__new__(sourcemap[params['morphology']]) sourceobj.numrel_data = str("") params = {} for attr in dir(row): if not attr[0] == "_" and not attr[:3] =="get": #print attr params[attr] = getattr(row, attr) setattr(sourceobj, attr, getattr(row, attr)) sourceobj.params = params try: sourceobj.time = row.time_geocent_gps except: sourceobj.time = row.geocent_start_time pass return sourceobj table_types = { # Ad-Hoc "ga" : lsctables.SimBurstTable, "sg" : lsctables.SimBurstTable, "wnb" : lsctables.SimBurstTable, "sc" : lsctables.SimBurstTable, # Supernova Families "d08" : lsctables.SimBurstTable, "s10" : lsctables.SimBurstTable, "m12" : lsctables.SimBurstTable, "o13" : lsctables.SimBurstTable, "y10" : lsctables.SimBurstTable, # Long Duration "adi" : lsctables.SimBurstTable, # Ringdown "rng" : lsctables.SimRingdownTable, "gng" : lsctables.SimRingdownTable, } tables = { "burst" : lsctables.SimBurstTable, "ringdown" : lsctables.SimRingdownTable } def mkdir(path): """ Make all of the tree of directories in a given path if they don't already exist. Parameters ---------- path : str The path to the desired directory. """ sub_path = os.path.dirname(path) if not os.path.exists(sub_path): mkdir(sub_path) if not os.path.exists(path): os.mkdir(path) class TableTypeError(Exception): pass class MDCSet(): inj_families_names = {'ga' : 'Gaussian', 'sg' : 'SineGaussian', 'wnb': 'BTLWNB', "sc" : "StringCusp", # Supernova families 'd08' : 'Dimmelmeier+08', 's10' : 'Scheidegger+10', 'm12' : 'Mueller+12', 'o13' : 'Ott+13', 'y10' : "Yakunin+10", # Long-duration 'adi' : 'ADI', # Ringdown 'rng' : "BBHRingdown", 'gng' : "GenericRingdown", } inj_families_abb = dict((v,k) for k,v in list(inj_families_names.items())) hist_parameters = { "StringCusp": ["amplitude", "ra", "dec"], "SineGaussian": ["hrss", "psi", "ra", "dec"], "Gaussian": ["hrss", "psi", "ra", "dec"], "BTLWNB": ["hrss", "ra", "dec"], "Dimmelmeier+08": ['hrss', 'ra', 'dec'] } waveforms = [] def __init__(self, detectors, name='MDC Set', table_type = "burst"): """ Represents an MDC set, stored in an XML SimBurstTable file. Parameters ---------- detectors : list A list of detector names where the injections should be made. name : str A name for the MDC Set. Defaults to 'MDC Set'. table_type : str The type of table which should be generated. Default is `burst`, which generates a SimBurstTable. """ self.detectors = detectors self.waveforms = [] self.strains = [] self.egw = [] self.times = [] self.name = name self.times = np.array(self.times) self.table_type = tables[table_type] def __add__(self, waveform): """ Handle a waveform being added to the MDC set. Parameters ---------- waveform : Waveform object The waveform which should be added to the MDC set. """ # Check that this type of waveform can go into this type of # XML file. if not table_types[self.inj_families_abb[waveform.waveform]] == self.table_type: raise TableTypeError() self.waveforms.append(waveform) self.times = np.append(self.times, waveform.time) def save_xml(self, filename): """ Save the MDC set as an XML SimBurstTable. Parameters ---------- filename : str The location to save the xml file. The output is gzipped, so ending it with a ".gz" would stick with convention. """ xmldoc = ligolw.Document() lw = xmldoc.appendChild(ligolw.LIGO_LW()) sim = lsctables.New(self.table_type) lw.appendChild(sim) # This needs to be given the proper metadata once the package has the maturity to # write something sensible. for waveform in self.waveforms: procrow = process.register_to_xmldoc(xmldoc, "minke_burst_mdc+{}".format(minke.__version__), {}) # waveform.params) try: waveform_row = waveform._row(sim) waveform_row.process_id = procrow.process_id except: row = sim.RowType() for a in list(self.table_type.validcolumns.keys()): if a in list(waveform.params.keys()): setattr(row, a, waveform.params[a]) else: if not hasattr(waveform, a): setattr(row, a, 0) else: setattr(row, a, getattr(waveform, a)) row.waveform = waveform.waveform if self.table_type == lsctables.SimBurstTable: # Fill in the time row.set_time_geocent(GPS(float(waveform.time))) # Get the sky locations row.ra, row.dec, row.psi = waveform.ra, waveform.dec, waveform.psi row.simulation_id = waveform.simulation_id row.waveform_number = random.randint(0,int(2**32)-1) ### !! This needs to be updated. row.process_id = "process:process_id:0" #procrow.process_id waveform_row = row sim.append(waveform_row) #del waveform_row # Write out the xml and gzip it. utils.write_filename(xmldoc, filename, gz=True) def load_xml(self, filename, full=True, start=None, stop=None): """Load the MDC Set from an XML file containing the SimBurstTable. Parameters ---------- filename : str The filename of the XML file. full : bool If this is true (which is the default) then all of the calculated parameters are computed from the waveform definintion. start : float The time at which the xml read-in should start. The default is "None", in which case the xml file will be read-in from the start. end : float The last time to be read from the xml file. The default is None, which causes the xml to be read right-up to the last time in the file. To Do ----- A the moment this loads the information in to the object, but it doesn't produce waveform objects for each of the injections in the file. This should be fixed so that the object works symmetrically. """ i = 0 #sim_burst_table = lalburst.SimBurstTableFromLIGOLw(filename, start, stop) xml = glue.ligolw.utils.load_filename(filename, contenthandler = glue.ligolw.ligolw.LIGOLWContentHandler, verbose = True) sim_burst_table = glue.ligolw.table.get_table(xml, self.table_type.tableName) for i,simrow in enumerate(sim_burst_table): # This is an ugly kludge to get around the poor choice of wavform name in the xmls, and if simrow.waveform[:3]=="s15": self.numrel_file = str(sim_burst_table.waveform) sim_burst_table.waveform = "Dimmelmeier+08" self.waveforms.append(source_from_row(simrow)) if full: self._measure_hrss(i) self._measure_egw_rsq(i) if self.table_type == tables["burst"]: self.times = np.append(self.times, float(simrow.time_geocent_gps)) def _generate_burst(self,row,rate=16384.0): """ Generate the burst described in a given row, so that it can be measured. Parameters ---------- row : SimBurst Row The row of the waveform to be measured rate : float The sampling rate of the signal, in Hz. Defaults to 16384.0Hz Returns ------- hp : The strain in the + polarisation hx : The strain in the x polarisation hp0 : A copy of the strain in the + polarisation hx0 : A copy of the strain in the x polarisation """ row = self.waveforms[row] hp, hx, hp0, hx0 = row._generate() return hp, hx, hp0, hx0 def _getDetector(self, det): """ A method to return a LALDetector object corresponding to a detector's X#-style name, e.g. 'H1' as the Hanford 4km detector. Parameters ---------- det : str A string describing the detector in the format letter-number, e.g "H1" would be the Hanford 4km detector, "L1" would be the Livingston 4km, and so-forth. Returns ------- detector : LALDetector The LAL object describing the detector """ # get detector return lalsimulation.DetectorPrefixToLALDetector(det) #if det not in lal.cached_detector_by_prefix.keys(): # raise ValueError, "%s is not a cached detector. "\ # "Cached detectors are: %s" % (det, inject.cached_detector.keys()) #return lal.cached_detector_by_prefix[det] def _timeDelayFromGeocenter(self, detector, ra, dec, gpstime): """ Calculate the time delay between the geocentre and a given detector for a signal from some sky location. Parameters ---------- detector : str A string describing the detector, e.g. H1 is the Hanford 4km detector. ra : float The right-ascension of the observation in radians dec : float The declination of the obser """ if isinstance(detector, str): detector = self._getDetector(detector) gpstime = LIGOTimeGPS(float(gpstime)) return XLALTimeDelayFromEarthCenter(detector.location, ra, dec, gpstime) def directory_path(self): """ Generate the directory where the frames from this MDC should be stored, so, e.g. Gaussians 0d100 would go in "ga/ga0d100/" Returns ------- str the folder structure """ name = self._simID(0) abb = self.inj_families_abb[self.waveforms[0].waveform].lower() return "{}/{}".format(abb, name) def _simID(self, row): """ Generate a name for an injection set in the format expected by cWB Parameters ---------- row : SimBurst The simburst table row describing the injection Returns ------- str The name of the injection in the cWB format """ row = self.waveforms[row] name = '' numberspart = '' if row.waveform in ("Dimmelmeier+08", "Scheidegger+10", "Mueller+12", "Ott+13", "Yakunin+10"): #print row numberspart = os.path.basename(row.params['numrel_data']).split('.')[0] if row.waveform == "Gaussian": numberspart = "{:.3f}".format(row.duration * 1e3) elif row.waveform == "SineGaussian": if row.pol_ellipse_e==1.0: pol="linear" elif row.pol_ellipse_e==0.0: pol="circular" elif 0.0<row.pol_ellipse_e<1.0: pol = "elliptical" else: pol = "inclined" numberspart = "f{:.0f}_q{:.0f}_{}".format(row.frequency, row.q, pol) elif row.waveform == "BTLWNB": numberspart = "{}b{}tau{}".format(row.frequency, row.bandwidth, row.duration) name += '{}_{}'.format(self.inj_families_abb[row.waveform].lower(), numberspart).replace('.','d') return name def _measure_hrss(self, row, rate=16384.0): """ Measure the various components of hrss (h+^2, hx^2, hphx) for a given input row. This is accomplished by generating the burst and calling the SWIG wrapped XLALMeasureHrss in lalsimulation. Parameters ---------- row : int The row number of the waveforms to be measured rate : float The sampling rate of the signal, in Hz. Defaults to 16384.0Hz Returns ------- hrss : float The measured hrss of the waveform amplitude: sqrt(|Hp|^2 + |Hx|^2) hphp : float The hrss of the + polarisation only. hxhx : float The hrss of the x polarisation only. hphx : float The hrss of |HpHx| """ row = self.waveforms[row] hp, hx, hp0, hx0 = row._generate() #self._generate_burst(row)# self.hp, self.hx, self.hp0, self.hx0 hp0.data.data *= 0 hx0.data.data *= 0 # H+ hrss only hphp = lalsimulation.MeasureHrss(hp, hx0)**2 # Hx hrss only hxhx = lalsimulation.MeasureHrss(hp0, hx)**2 # sqrt(|Hp|^2 + |Hx|^2) hrss = lalsimulation.MeasureHrss(hp, hx) hp.data.data = numpy.abs(hx.data.data) + numpy.abs(hp.data.data) # |H+Hx| hphx = (lalsimulation.MeasureHrss(hp, hx0)**2 - hrss**2)/2 #print hrss self.strains.append([hrss, hphp, hxhx, hphx]) def _measure_egw_rsq(self, row, rate=16384.0): """ Measure the energy emitted in gravitational waves divided by the distance squared in M_solar / pc^2. This is accomplished by generating the burst and calling the SWIG wrapped XLALMeasureHrss in lalsimulation. Parameters ---------- row : int The row number of the waveforms to be measured rate : float The sampling rate of the signal, in Hz. Defaults to 16384.0Hz Returns ------- egw : float The energy emitted in gravitational waves divided by the distance squared in M_solar / pc^2. """ hp, hx, _, _ = self._generate_burst(row) self.egw.append(lalsimulation.MeasureEoverRsquared(hp, hx)) def _responses(self, row): """ Calculate the antenna repsonses for each detector to the waveform. Parameters ---------- row : int The row number of the waveforms to be measured Returns ------- responses : list of lists A list containing the lists of antenna responses, with the first element of each list containing the detector acronym. """ output = [] row = self.waveforms[row] for detector in self.detectors: time = row.time_geocent_gps + self._timeDelayFromGeocenter(detector, row.ra, row.dec, row.time_geocent_gps) time = np.float64(time) rs = response(time, row.ra, row.dec, 0, row.psi, 'radians', detector) output.append([detector, time, rs[0], rs[1]] ) return output def plot_skymap(self): """ Plot a skymap of the injections distribution in RA and DEC on a Hammer projection. Returns ------- matplotlib figure """ fig = plt.figure() # Load the ra and dec numbers out of the waveforms dec = [getattr(s, 'dec') for s in self.waveforms] ra = [getattr(s, 'ra') for s in self.waveforms] # Make the plot on a hammer projection plt.subplot(111, projection='hammer') H, x, y = np.histogram2d(ra, dec, [50, 25], range=[[0, 2*np.pi], [-np.pi/2, np.pi/2]]) dist = plt.pcolormesh(x-np.pi,y, H.T, cmap="viridis") plt.title("Sky distribution") plt.colorbar(dist, orientation='horizontal') return fig def plot_hist(self, parameter): """ Plot a histogram of a waveform parameter. Parameters ---------- parameter : str The name of the simburst table parameter which is desired for the plot. Returns ------- matplotlib figure """ fig = plt.figure() prms = [getattr(s, parameter) for s in self.waveforms] ax2 = plt.subplot(111) ax2.set_title("{} distribution".format(parameter)) ax2.set_xlabel(parameter) ax2.hist(prms, bins=100, log=True, histtype="stepfilled", alpha=0.6); return fig def gravEn_row(self, row, frame): """ Produces a gravEn-style log row for a row of the simBurstTable. Parameters ---------- row : int The row number of the waveforms to be measured Returns ------- str A string in the gravEn format which describes the injection. """ strains = self.strains[row] rowname = self._simID(row) responses = self._responses(row) energy = self.egw[row] row = self.waveforms[row] output = [] if not row.incl: cosincl = "" else: cosincl = np.cos(row.incl) output.append(self.name) # GravEn_SimID output.append(strains[0]) # SimHrss output.append(energy) # SimEgwR2 output.append(strains[0]) # GravEn_Ampl output.append(cosincl) # Internal_x the cosine of the angle the LOS makes with axis of angular momentum output.append(row.phi) # Intenal_phi angle between source x-axis and the LOS output.append(np.cos(np.pi/2.0 - row.dec)) # cos(External_x) # this needs to be the co-declination output.append(row.ra if row.ra < np.pi else row.ra - 2*np.pi) # ^ External_phi # This is the RA projected onto an Earth-based coordinate system output.append(row.psi) # External_psi # source's polarisation angle output.append(frame.start) # FrameGPS output.append(row.time_geocent_gps) # EarthCtrGPS output.append(rowname) # SimName output.append(strains[1]) # SimHpHp output.append(strains[2]) # SimHcHc output.append(strains[3]) # SimHpHp output.append(" ".join(" ".join(map(str,l)) for l in responses)) return ' '.join(str(e) for e in output) class Frame(): """ Represents a frame, in order to prepare the injection frames """ def __init__(self, start, duration, ifo, number = -1): """ Parameters ---------- number : int The frame's number within the project. Defaults to -1. """ self.start = start self.duration = duration self.end = self.start + duration self.ifos = ifo self.number = -1 def __repr__(self): out = '' out += "MDC Frame \n" for ifo in self.ifos: out += "{} {} {} \n".format(ifo, self.start, self.duration) return out def get_rowlist(self,mdcs): """ Return the rows from an MDC set which correspond to this frame. Parameters ---------- mdcs : MDCSet object The set of MDCs from which the rows are to be found. """ return np.where((mdcs.times<self.end)&(mdcs.times>self.start))[0] def calculate_n_injections(self, mdcs): return len(mdcs.times[(mdcs.times<self.end)&(mdcs.times>self.start)]) def generate_log(self,mdc): log = '# GravEn_SimID SimHrss SimEgwR2 GravEn_Ampl Internal_x Internal_phi External_x External_phi External_psi FrameGPS EarthCtrGPS SimName SimHpHp SimHcHc SimHpHc H1 H1ctrGPS H1fPlus H1fCross L1 L1ctrGPS L1fPlus L1fCross\n' rowlist = self.get_rowlist(mdc) for row in rowlist: log += mdc.gravEn_row(row, self) log += "\n" return log def generate_gwf(self, mdc, directory, project = "Minke", channel="SCIENCE", force=False, rate=16384.0): """ Produce the gwf file which corresponds to the MDC set over the period of this frame. Parameters ---------- mdc : MDCSet object The MDC set which should be used to produce this frame. directory : str The root directory where all of the frames are to be stored, for example "/home/albert.einstein/data/mdc/frames/" would cause the SineGaussian injections to be made in the directories under "/home/albert.einstein/data/mdc/frames/sg" project : str The name of the project which this frame is a part of. Defaults to 'Minke'. channel : str The name of the channel which the injections should be made into. This is prepended by the initials for each interferometer, so there will be a channel for each interferometer in the gwf. force : bool If true this forces the recreation of a GWF file even if it already exists. Outputs ------- gwf The GWF file for this frame. """ ifosstr = "".join(set(ifo[0] for ifo in self.ifos)) family = mdc.waveforms[0].waveform epoch = lal.LIGOTimeGPS(self.start) filename = "{}-{}-{}-{}.gwf".format(ifosstr, family, self.start, self.duration) self.frame = lalframe.FrameNew(epoch = epoch, duration = self.duration, project='', run=1, frnum=1, detectorFlags=lal.LALDETECTORTYPE_ABSENT) ifobits = np.array([getattr(lal,"{}_DETECTOR_BIT".format(lal.cached_detector_by_prefix[ifo].frDetector.name.upper())) for ifo in self.ifos]) ifoflag = numpy.bitwise_or.reduce(ifobits) RUN_NUM = -1 # Simulated data should have a negative run number head_date = str(self.start)[:5] frameloc = directory+"/"+mdc.directory_path()+"/"+head_date+"/" mkdir(frameloc) if not os.path.isfile(frameloc + filename) or force: epoch = lal.LIGOTimeGPS(self.start) frame = lalframe.FrameNew(epoch, self.duration, project, RUN_NUM, self.number, ifoflag) data = [] # Loop through each interferometer for ifo in self.ifos: # Calculate the number of samples in the timeseries nsamp = int((self.end-self.start)*rate) # Make the timeseries h_resp = lal.CreateREAL8TimeSeries("{}:{}".format(ifo, channel), epoch, 0, 1.0/rate, lal.StrainUnit, nsamp) # Loop over all of the injections corresponding to this frame rowlist = self.get_rowlist(mdc) if len(rowlist)==0: return for row in rowlist: sim_burst = mdc.waveforms[row]._row() if sim_burst.hrss > 1: distance = sim_burst.amplitude else: distance = None #hp, hx = lalburst.GenerateSimBurst(sim_burst, 1.0/rate); hp, hx, _, _ = mdc.waveforms[row]._generate(rate=rate, half=True, distance=distance) # Apply detector response det = lalsimulation.DetectorPrefixToLALDetector(ifo) # Produce the total strains h_tot = lalsimulation.SimDetectorStrainREAL8TimeSeries(hp, hx, sim_burst.ra, sim_burst.dec, sim_burst.psi, det) # Inject the waveform into the overall timeseries lalsimulation.SimAddInjectionREAL8TimeSeries(h_resp, h_tot, None) lalframe.FrameAddREAL8TimeSeriesSimData(frame, h_resp) # Make the directory in which to store the files # if it doesn't exist already mkdir(frameloc) # Write out the frame file lalframe.FrameWrite(frame, frameloc+filename) class HWInj(Frame): """ Represents a hardware injection frame. Injection frames must be an ASCII file of the hoft sampled at the antenna sampling rate, appropriately convolved with an antenna response function. As a result of the simplicity of this specific output format we do not need information such as start-time in the file itself, however we should have a sensible naming scheme for the ASCII files since they will need to be produced as sidecars for an xml file. """ def __init__(self, ifos): """We'll need to know the start-time, the duration, and the ifo for each which is to be used for hardware injections in order to keep consistency with the data in the xml file, and so that the appropriate waveform is injected into the appropriate detector. Parameters ---------- ifos : list The name of the interferometers, e.g. "L1" for the Livingston, LA LIGO detector. """ self.ifos = ifos def __repr__(self): """ The printable representation of this object. """ out = "" out += "Hardware MDC Frame \n" for ifo in self.ifos: out += "{} \n".format(ifo) return out def generate_pcal(self, mdc, directory, force = False, rate=16384): """ Produce the PCAL-ready hardware injection files as an ASCII list sampled at the detector's sample rate. Parameters ---------- mdc : MDCSet object The signal set which should be used to generate the frame. directory : str The root directory where all of the frames are to be stored, for example "/home/albert.einstein/data/mdc/frames/" would cause the SineGaussian injections to be made in the directories under "/home/albert.einstein/data/mdc/frames/sg" force : bool If true this forces the regeneration of the file, even if it already exists. Outputs ------- ascii file The ASCII file containing the correctly sampled waveform convolved with the antenna pattern. """ family = mdc.waveforms[0].waveform frameloc = os.path.join(directory, (mdc.directory_path())) #rowlist = self.get_rowlist(mdc) # Unlike with a conventional frame, we need to produce a separate file # for each IFO. for ifo in self.ifos: for sim_burst in mdc.waveforms: #sim_burst = mdc.waveforms[row] # Check if the file exists, or if we're forcing the creation filename = "{}_{}_{}.txt".format(family, sim_burst.time, ifo) if not os.path.isfile(frameloc + filename) or force: data = [] epoch = lal.LIGOTimeGPS(sim_burst.time) duration = 10 nsamp = duration*rate h_tot = sim_burst._generate_for_detector([ifo], sample_rate=rate) data = np.array(h_tot.data.data) np.savetxt(filename, data) class HWFrameSet(): def __init__(self, ifos=["H1", "L1"]): """ A collection of hardware injection frames. Parameters ---------- frame_list : str The filespath of a CSV file containing the list of frames, and the parameters required to produce them: the start and duration times, and the interferometers they describe. """ self.frames = [] self.frames = [HWInj(ifos)] #self.frames.append(frame) def full_frameset(self, mdc, directory, force=False): """ Produce the gwf files which corresponds to the MDC set over the period of the frames in this collection. Parameters ---------- mdc : MDCSet object The MDC set which should be used to produce this frame. directory : str The root directory where all of the frames are to be stored, for example "/home/albert.einstein/data/mdc/frames/" would cause the SineGaussian injections to be made in the directories under "/home/albert.einstein/data/mdc/frames/sg" force : bool If true this forces the recreation of a GWF file even if it already exists. Outputs ------- ascii files The ASCII files for these hardware injections. """ for frame in self.frames: frame.generate_pcal(mdc, directory, force) class FrameSet(): def __init__(self, frame_list): """ A collection of frames. Parameters ---------- frame_list : str The filespath of a CSV file containing the list of frames, and the parameters required to produce them: the start and duration times, and the interferometers they describe. """ self.frames = [] self.frame_list = frame_list = pd.read_csv(frame_list) for frame in frame_list.iterrows(): frame = frame[1] ifos = frame['ifo'].replace("['",'').replace("']",'').replace("'",'').split(' ') frame = Frame(frame['start time'],frame['duration'],ifos) self.frames.append(frame) def full_frameset(self, mdc, directory, channel="SCIENCE", force=False): """ Produce the gwf files which corresponds to the MDC set over the period of the frames in this collection. Parameters ---------- mdc : MDCSet object The MDC set which should be used to produce this frame. directory : str The root directory where all of the frames are to be stored, for example "/home/albert.einstein/data/mdc/frames/" would cause the SineGaussian injections to be made in the directories under "/home/albert.einstein/data/mdc/frames/sg" channel : str The name of the channel which the injections should be made into. This is prepended by the initials for each interferometer, so there will be a channel for each interferometer in the gwf. force : bool If true this forces the recreation of a GWF file even if it already exists. Outputs ------- gwf files The GWF files for these frames. """ for frame in self.frames: frame.generate_gwf(mdc, directory, channel, force) def full_logfile(self, mdc, location): """ Produce a log file for the entire frame set """ full_log = '' for frame in self.frames: full_log += frame.generate_log(mdc) with open(location, "w") as text_file: text_file.write(full_log)
isc
njwilson23/rasterio
rasterio/tool.py
1
5429
""" Implementations of various common operations, like `show()` for displaying an array or with matplotlib, and `stats()` for computing min/max/avg. Most can handle a numpy array or `rasterio.Band()`. Primarily supports `$ rio insp`. """ from __future__ import absolute_import import code import collections import logging import warnings try: import matplotlib.pyplot as plt except ImportError: plt = None except RuntimeError as e: # Certain environment configurations can trigger a RuntimeError like: # Trying to import matplotlibRuntimeError: Python is not installed as a # framework. The Mac OS X backend will not be able to function correctly # if Python is not installed as a framework. See the Python ... warnings.warn(str(e), RuntimeWarning, stacklevel=2) plt = None import numpy import rasterio from rasterio.five import zip_longest logger = logging.getLogger('rasterio') Stats = collections.namedtuple('Stats', ['min', 'max', 'mean']) # Collect dictionary of functions for use in the interpreter in main() funcs = locals() def show(source, cmap='gray', with_bounds=True): """ Display a raster or raster band using matplotlib. Parameters ---------- source : array-like or (raster dataset, bidx) If array-like, should be of format compatible with matplotlib.pyplot.imshow. If the tuple (raster dataset, bidx), selects band `bidx` from raster. cmap : str (opt) Specifies the colormap to use in plotting. See matplotlib.Colors.Colormap. Default is 'gray'. with_bounds : bool (opt) Whether to change the image extent to the spatial bounds of the image, rather than pixel coordinates. Only works when source is (raster dataset, bidx). """ if isinstance(source, tuple): arr = source[0].read(source[1]) xs = source[0].res[0] / 2. ys = source[0].res[1] / 2. if with_bounds: extent = (source[0].bounds.left - xs, source[0].bounds.right - xs, source[0].bounds.bottom - ys, source[0].bounds.top - ys) else: extent = None else: arr = source extent = None if plt is not None: imax = plt.imshow(arr, cmap=cmap, extent=extent) fig = plt.gcf() fig.show() else: raise ImportError("matplotlib could not be imported") def stats(source): """Return a tuple with raster min, max, and mean. """ if isinstance(source, tuple): arr = source[0].read(source[1]) else: arr = source return Stats(numpy.min(arr), numpy.max(arr), numpy.mean(arr)) def show_hist(source, bins=10, masked=True, title='Histogram'): """ Easily display a histogram with matplotlib. Parameters ---------- bins : int, optional Compute histogram across N bins. data : np.array or rasterio.Band or tuple(dataset, bidx) Input data to display. The first three arrays in multi-dimensional arrays are plotted as red, green, and blue. masked : bool, optional When working with a `rasterio.Band()` object, specifies if the data should be masked on read. title : str, optional Title for the figure. """ if plt is None: raise ImportError("Could not import matplotlib") if isinstance(source, (tuple, rasterio.Band)): arr = source[0].read(source[1], masked=masked) else: arr = source # The histogram is computed individually for each 'band' in the array # so we need the overall min/max to constrain the plot rng = arr.min(), arr.max() if len(arr.shape) is 2: arr = [arr] colors = ['gold'] else: colors = ('red', 'green', 'blue', 'violet', 'gold', 'saddlebrown') # If a rasterio.Band() is given make sure the proper index is displayed # in the legend. if isinstance(source, (tuple, rasterio.Band)): labels = [str(source[1])] else: labels = (str(i + 1) for i in range(len(arr))) # This loop should add a single plot each band in the input array, # regardless of if the number of bands exceeds the number of colors. # The colors slicing ensures that the number of iterations always # matches the number of bands. # The goal is to provide a curated set of colors for working with # smaller datasets and let matplotlib define additional colors when # working with larger datasets. for bnd, color, label in zip_longest(arr, colors[:len(arr)], labels): plt.hist( bnd.flatten(), bins=bins, alpha=0.5, color=color, label=label, range=rng ) plt.legend(loc="upper right") plt.title(title, fontweight='bold') plt.grid(True) plt.xlabel('DN') plt.ylabel('Frequency') fig = plt.gcf() fig.show() def main(banner, dataset, alt_interpreter=None): """ Main entry point for use with python interpreter """ local = dict(funcs, src=dataset, np=numpy, rio=rasterio, plt=plt) if not alt_interpreter: code.interact(banner, local=local) elif alt_interpreter == 'ipython': import IPython IPython.InteractiveShell.banner1 = banner IPython.start_ipython(argv=[], user_ns=local) else: raise ValueError("Unsupported interpreter '%s'" % alt_interpreter) return 0
bsd-3-clause
Harhoy/transport
transport.py
1
9259
from __future__ import division import numpy as np import math as m from easygui import multenterbox import pandas as pd import matplotlib.pyplot as plt import math as m def import_xl(file_path): df = pd.read_excel(file_path,header = None) df = df.values return df def export_xl(file_path,sheets): writer = pd.ExcelWriter(file_path) for sheet,name in sheets.items(): df = pd.DataFrame(name) df.to_excel(writer,sheet) writer.save() #Henter ut en kolonne def column(matrix, i): return [row[i] for row in matrix] #Henter ut en rad def row(matrix, i): return [column[i] for column in matrix] #Selection sort O(n2) def selection_sort(array): n = len(array) for i in range(0,n): smallest = i for j in range(i,n): if array[j]<array[smallest]: smallest = j copy = array[i] array[i] = array[smallest] array[smallest] = copy return array #Leser om to lister inneholder minst ett felles tall def common_node(array_1,array_2): x = selection_sort(array_1) y = selection_sort(array_2) i = 0 j = 0 share = 0 stop = max([len(x),len(y)])-1 while min([i,j])< stop: if x[i]>y[j]: j+=1 elif x[i]<y[j]: i+=1 else: share = 1 j = 10**6 i = 10**6 return share def common_node_count(array_1,array_2): x = selection_sort(array_1) y = selection_sort(array_2) i = 0 j = 0 share = 0 while i < len(x) and j < len(y): if x[i]>y[j]: j+=1 elif x[i]<y[j]: i+=1 else: share += 1 j +=1 i +=1 return share #KORTERSTE RUTE FUNKSJONER #Lager en graf fra lenke-liste def make_graph(array): #nodes = common_node_count(column(array,0),column(array,1)) nodes = 35 matrix = np.full((nodes,nodes),10**6) #Lager matrise med store tall som byttes for i in range(0,len(array)): #Hovedloop #Trekker fra en for sammenlignbarhet med python-arrays matrix[array[i][1]-1][array[i][0]-1] = array[i][2] matrix[array[i][0]-1][array[i][1]-1] = array[i][2] np.fill_diagonal(matrix, 0) return matrix #Lager lengdematrise n x n def floyd_warshall(array): matrix = make_graph(array) #nodes = common_node_count(column(array,0),column(array,1)) nodes = 35 pred = np.full((nodes,nodes),-1) for i in range(0,nodes): for j in range(0,nodes): if i != j: pred[i][j] = i for k in range(0,nodes): for i in range(0,nodes): for j in range(0,nodes): if matrix[i][j] > matrix[i][k] + matrix[k][j]: matrix[i][j] = matrix[i][k] + matrix[k][j] pred[i][j] = pred[k][j] return matrix,pred #Laster inn data fra en csv fil til et nettverksarray def get_network(net_csv): graf = open(net_csv,'r') lenker=0 for line in graf: lenker+=1 graf_edit = np.full((lenker, 3),0) graf = open(net_csv,'r') k = 0 for line in graf: stuff = line.split(";") graf_edit[k][0] = float(stuff[0]) graf_edit[k][1] = float(stuff[1]) temp = stuff[2].split('\n')[0] graf_edit[k][2] = float(temp) k+=1 return graf_edit #Lager en path-vektor def path(p,i,j,path_vec): if i == j: path_vec.append(i) else: path(p, i, p[i][j],path_vec) path_vec.append(j) #Henter en spesifikk path def get_path(p,i,j): #j = j + 1 path_vec=[] path(p,i,j,path_vec) #for i in range(1,len(path_vec)): # path_vec[i] = path_vec[i] - 1 return path_vec #Lager adjecency-matrise (ikke ferdig) def build_adj(pred): adj_mat = np.zeros((len(pred),len(pred))) array_a = [] array_b = [] for i in range(1,len(pred)): for j in range(1,len(pred)): array_a = get_path(pred,i,j) print array_a array_b = get_path(pred,2,10) print array_b try: adj_mat[1][j] = common_node(array_a,array_b) except: adj_mat[1][j] = 0 print adj_mat[1][j] return adj_mat #Nettverkslaster #Argumenter: (1) Forgjenger-matrise (2) antall noder (3) nettverksfil (4) od-matrise def network_loader(graf,net,od,pred): #Antall noder n = len(od)-1 #Redigering for k in range(0,len(net)): net[k][3]=0 #Nulllstiller antall reiser net[k][2]=graf[k][2] #Legger inn oppdaterteavstander fra grafen #Legger ut reiser paa nettet for i in range(0,n): for j in range(0,n): path = get_path(pred,i,j) len_path=get_len_path(path) for h in range(0,len_path): for k in range(0,len(net)): if net[k][0] == path[h]+1 and net[k][1] == path[1+h]+1: net[k][3] += int(od[i][j]) elif net[k][1] == path[h]+1 and net[k][0] == path[1+h]+1: net[k][3] += int(od[i][j]) return net #a=get_path(pred,5,12) #GRAVITASJONSFUNKSJONER def deter_mat_make(length_mat): deter_mat = np.zeros((len(length_mat),len(length_mat))) for i in range(0,len(length_mat)): for j in range(0,len(length_mat)): deter_mat[i][j] = deter(length_mat[i][j]) return deter_mat def deter(length): return 2.71**(beta*length) def sumproduct(list1,list2): sums = 0 for i in range(0,len(list1)): sums += list1[i]*list2[i] return sums def gravity(origin, destination, length_mat): #Initialization deter_mat = deter_mat_make(length_mat) #Lager matrise med forvitring dimension = len(origin) #Henter ut matrisedimensjonene alpha = [1]*(dimension) #Intitierer alpha-vektor beta = [1]*(dimension) #Intitierer beta-vektor largest = 10**6 #Intitierer storste avvik alpha_last = alpha #Intitierer alpha -1 beta_last = beta #Intitierer beta -1 k = 0 #Intitierer tellevariabler for iterasjoner iterasjoner = [] #Hovedlokke while largest > .00001: #Oppdaterer faktorene for p in range(0,dimension): alpha[p] = origin[p]/(sumproduct(beta_last,column(deter_mat,p))) beta[p] = destination[p]/(sumproduct(alpha,row(deter_mat,p))) largest = 0 #Looper for aa finne storste element for j in range(0,dimension): current = alpha[j]*sumproduct(beta,column(deter_mat,j))-origin[j] if current>largest: largest = current #Setter forrige beta beta_last = beta iterasjoner.append(largest) #Legger til en iterasjon k+=1 print "Konvergens, Gravitasjonsmodell", largest if k == maxiter: largest = 0 return alpha,beta,k,iterasjoner def create_od(origin,destination, length_mat): alpha,beta,k,iterasjoner = gravity(origin, destination, length_mat) deter_mat = deter_mat_make(length_mat) od = np.zeros((len(origin),len(origin))) for i in range(0,len(origin)): for j in range(0,len(origin)): od[i][j] = alpha[i]*beta[j]*deter_mat[i][j] return od,alpha,beta,k,iterasjoner def calc_pt_matrix(od,length_mat): out_od = np.zeros((len(od),len(od))) for i in range(0,len(od)): for j in range(0,len(od)): out_od[i][j] = int(out_od[i][j])*length_mat[i][j] return out_od def get_min(net): smallest = 10**6 smallest_id = 10**6 for i in range(0,len(net)): if net[i][3]/net[i][2]<smallest and net[i][5]==0: smallest = net[i][3]/net[i][2] smallest_id = i return smallest_id,smallest def change_graph(graph,net): graph_out = graph for i in range(0,len(net)): if net[i][5]==1: graph_out[i][2]=k_just*graph_out[i][2] return graph_out def production(net): sumcost = 0 for i in range(0,len(net)): if net[i][5]!=1: sumcost += (net[i][3]/capacity)*net[i][2] return sumcost def sum_pass(net): sumpass = 0 for i in range(0,len(net)): sumpass+=net[i][3] return sumpass def get_len_path(path): len_path = 0 if len(path) < 3: len_path = 0 elif len(path) == 3: len_path = 2 else: len_path=int(len(path)/2)+int(len(path)%2)+1 return len_path def obj(od,length_mat,net,prodgoal): return (production(net)*kmk*dogn-prodgoal)**2*(k_just-1)*capacity/.9+time_cost(od,length_mat) def time_cost(od,length_mat): cost = 0 for i in range(0,len(od)-1): for j in range(0,len(od)-1): cost += od[i][j]*length_mat[i][j] return cost def get_zero_net(net): zero_net = np.zeros((len(net),6)) for i in range(0,len(net)): zero_net[i][2] = net[i][2] zero_net[i][3] = net[i][3] zero_net[i][5] = net[i][5] return zero_net def update_zero_net(net,zero_net): for i in range(0,len(net)): zero_net[i][5] = net[i][5] return zero_net
mit
lalitkumarj/NEXT-psych
next/apps/TupleBanditsPureExploration/Dashboard.py
1
3313
""" TupleBanditsPureExplorationDashboard author: Nick Glattard, n.glattard@gmail.com last updated: 4/24/2015 ###################################### TupleBanditsPureExplorationDashboard """ import json import numpy import numpy.random import matplotlib.pyplot as plt from datetime import datetime from datetime import timedelta from next.utils import utils from next.apps.AppDashboard import AppDashboard class TupleBanditsPureExplorationDashboard(AppDashboard): def __init__(self,db,ell): AppDashboard.__init__(self,db,ell) def get_app_supported_stats(self): """ Returns a list of dictionaries describing the identifier (stat_id) and necessary params inputs to be used when calling getStats Expected output (list of dicts, each with fields): (string) stat_id : the identiifer of the statistic (string) description : docstring of describing outputs (list of string) necessary_params : list where each string describes the type of param input like 'alg_label' or 'task' """ stat_list = self.get_supported_stats() stat = {} stat['stat_id'] = 'most_current_ranking' stat['description'] = self.most_current_ranking.__doc__ stat['necessary_params'] = ['alg_label'] stat_list.append(stat) return stat_list def most_current_ranking(self,app_id,exp_uid,alg_label): """ Description: Returns a ranking of arms in the form of a list of dictionaries, which is conveneint for downstream applications Expected input: (string) alg_label : must be a valid alg_label contained in alg_list list of dicts The 'headers' contains a list of dictionaries corresponding to each column of the table with fields 'label' and 'field' where 'label' is the label of the column to be put on top of the table, and 'field' is the name of the field in 'data' that the column correpsonds to Expected output (in dict): plot_type : 'columnar_table' headers : [ {'label':'Rank','field':'rank'}, {'label':'Target','field':'index'} ] (list of dicts with fields) data (each dict is a row, each field is the column for that row): (int) index : index of target (int) ranking : rank (0 to number of targets - 1) representing belief of being best arm """ alg_list,didSucceed,message = self.db.get(app_id+':experiments',exp_uid,'alg_list') for algorithm in alg_list: if algorithm['alg_label'] == alg_label: alg_id = algorithm['alg_id'] alg_uid = algorithm['alg_uid'] list_of_log_dict,didSucceed,message = self.ell.get_logs_with_filter(app_id+':ALG-EVALUATION',{'alg_uid':alg_uid}) list_of_log_dict = sorted(list_of_log_dict, key=lambda k: k['num_reported_answers'] ) print didSucceed, message item = list_of_log_dict[-1] return_dict = {} return_dict['headers'] = [{'label':'Rank','field':'rank'},{'label':'Target','field':'index'},{'label':'Score','field':'score'},{'label':'Precision','field':'precision'}] return_dict['data'] = item['targets'] return_dict['plot_type'] = 'columnar_table' return return_dict
apache-2.0
jgowans/correlation_plotter
rfi_looker.py
1
1835
#!/usr/bin/env python import os, time import numpy as np import matplotlib.pyplot as plt import scipy.signal results_directory = os.getenv('HOME') + "/rfi_capture_results/" SAMPLE_FREQUENCY = 3600.0 # MHz and us ADC_SCALE_VALUE = 707.94 # algorithm: # open a .npy file (or do the disk buffer thing) filename = raw_input("what file should be open? [most recent] ") if filename == "": # default to the most recent file filename = "/tmp/rfi_signal.npy" else: filename = results_directory + filename signal = np.load(filename) decimation_factor = int(len(signal)/2**20) + 1 print "decimation factor: " + str(decimation_factor) if decimation_factor >= 2 : signal_decimated = scipy.signal.decimate(signal, decimation_factor, n=1, ftype="fir") else: signal_decimated = signal print "len : " + str(len(signal_decimated)) axis = np.linspace(0, decimation_factor * len(signal_decimated)/SAMPLE_FREQUENCY, len(signal_decimated), endpoint=False) plt.plot(axis, signal_decimated, "b.") plt.show() # plot the signal decimated by a paramamter (defualt: 1) # ask the user to input a subplot time start_time = float(raw_input("At what time (microseconds) does the signal start? ")) end_time = float(raw_input("At what time (microseconds) does the signal end? ")) start_sample = int( start_time * SAMPLE_FREQUENCY ) end_sample = int( end_time * SAMPLE_FREQUENCY ) subsignal = signal[start_sample:end_sample] subsignal_axis = np.linspace(start_time, end_time, len(subsignal), endpoint=False) spectrum = np.fft.rfft(subsignal) spectrum_axis = np.linspace(0, SAMPLE_FREQUENCY/2, len(spectrum), endpoint=False) plt.subplot(211) plt.plot(subsignal_axis, subsignal) plt.subplot(212) plt.plot(spectrum_axis, 10*np.log10( np.abs(spectrum) / (ADC_SCALE_VALUE*len(spectrum) ))) plt.show() # plot the subplot and the fft of the subplot
mit
dblN/misc
utils.py
1
3046
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from keras.layers import Dense from keras.preprocessing.image import apply_transform import matplotlib.pyplot as plt def take_glimpses(image, location, sizes): glimpses = [] resize = sizes[0] for size in sizes: glimpse = tf.image.extract_glimpse(image, size=size, offsets=location, normalized=True, centered=True, uniform_noise=False) glimpses += [tf.image.resize_images(glimpse, resize)] return glimpses def glimpse_network(image, location, sizes, activation="relu", glimpse_num_features=128, location_num_features=128, output_dim=256): assert len(sizes) == 3 with tf.variable_scope("glimpse_network"): glimpses = [] resize = sizes[0] for size in sizes: glimpse = tf.image.extract_glimpse(image, size=size, offsets=location, uniform_noise=False, normalized=True, centered=True) glimpses += [tf.image.resize_images(glimpse, resize[0], resize[1])] glimpse = tf.concat(-1, glimpses) glimpse = tf.reshape(glimpse, (-1, np.prod(resize) * len(sizes))) glimpse_feature = Dense(glimpse_num_features, activation=activation)(glimpse) location_feature = Dense(location_num_features, activation=activation)(location) feature = Dense(output_dim, activation=activation)(glimpse_feature + location_feature) return feature, glimpses def accuracy_score(y_preds, y_true): return np.sum((y_preds == y_true).astype(np.float32)) / y_preds.shape[0] def translate(batch_x, size=(128, 128)): """Make translated mnist""" height = batch_x.shape[1] width = batch_x.shape[2] X = np.zeros((batch_x.shape[0],) + size + (1,), dtype=batch_x.dtype) X[:, :height, :width, :] = batch_x for i, x in enumerate(X[:]): tx = np.random.uniform(-(size[1] - width), 0) ty = np.random.uniform(-(size[0] - height), 0) translation_matrix = np.asarray([ [1, 0, tx], [0, 1, ty], [0, 0, 1] ], dtype=batch_x.dtype) X[i, :, :, :] = apply_transform(x, translation_matrix, channel_index=2, fill_mode="nearest", cval=0.) return X def plot_glimpse(images, locations, name="glimpse.png"): image = images[0] location = locations[:, 0, :] fig = plt.figure() plt.imshow(image, cmap=plt.get_cmap("gray")) plt.plot(location[:, 0], location[:, 1]) for i, (x, y) in enumerate(location): plt.annotate("t=%d" % i, xy=(x, y), xytext=(-10, 10), textcoords="offset points", ha="right", va="bottom", bbox=dict(boxstyle="round, pad=0.5", fc="white", alpha=0.5), arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=0")) plt.savefig(name) plt.gcf().clear() plt.close("all")
mit
pyxll/pyxll-examples
matplotlib/interactiveplot.py
1
3441
""" Example code showing how to draw an interactive matplotlib figure in Excel. While the figure is displayed Excel is still useable in the background and the chart may be updated with new data by calling the same function again. """ from pyxll import xl_func from pandas.stats.moments import ewma # matplotlib imports from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure # Qt imports from PySide import QtCore, QtGui import timer # for polling the Qt application # dict to keep track of any chart windows _plot_windows = {} @xl_func("string figname, numpy_column<float> xs, numpy_column<float> ys, int span: string") def mpl_plot_ewma(figname, xs, ys, span): """ Show a matplotlib line plot of xs vs ys and ewma(ys, span) in an interactive window. :param figname: name to use for this plot's window :param xs: list of x values as a column :param ys: list of y values as a column :param span: ewma span """ # Get the Qt app. # Note: no need to 'exec' this as it will be polled in the main windows loop. app = get_qt_app() # create the figure and axes for the plot fig = Figure(figsize=(600, 600), dpi=72, facecolor=(1, 1, 1), edgecolor=(0, 0, 0)) ax = fig.add_subplot(111) # calculate the moving average ewma_ys = ewma(ys, span=span) # plot the data ax.plot(xs, ys, alpha=0.4, label="Raw") ax.plot(xs, ewma_ys, label="EWMA") ax.legend() # generate the canvas to display the plot canvas = FigureCanvas(fig) # Get or create the Qt windows to show the chart in. if figname in _plot_windows: # get from the global dict and clear any previous widgets window = _plot_windows[figname] layout = window.layout() if layout: for i in reversed(range(layout.count())): layout.itemAt(i).widget().setParent(None) else: # create a new window for this plot and store it for next time window = QtGui.QWidget() window.resize(800, 600) window.setWindowTitle(figname) _plot_windows[figname] = window # create the navigation toolbar toolbar = NavigationToolbar(canvas, window) # add the canvas and toolbar to the window layout = window.layout() or QtGui.QVBoxLayout() layout.addWidget(canvas) layout.addWidget(toolbar) window.setLayout(layout) window.show() return "[Plotted '%s']" % figname # # Taken from the ui/qt.py example # def get_qt_app(): """ returns the global QtGui.QApplication instance and starts the event loop if necessary. """ app = QtCore.QCoreApplication.instance() if app is None: # create a new application app = QtGui.QApplication([]) # use timer to process events periodically processing_events = {} def qt_timer_callback(timer_id, time): if timer_id in processing_events: return processing_events[timer_id] = True try: app = QtCore.QCoreApplication.instance() if app is not None: app.processEvents(QtCore.QEventLoop.AllEvents, 300) finally: del processing_events[timer_id] timer.set_timer(100, qt_timer_callback) return app
unlicense
nateGeorge/IDmyDog
process_ims/other/2d_haralick_map.py
1
3493
from __future__ import print_function import pandas as pd import pickle as pk import cv2 import os import re import progressbar import imutils import numpy as np import matplotlib.pyplot as plt import seaborn as sns from mahotas.features import haralick import json from sklearn.decomposition import PCA plt.style.use('seaborn-dark') def get_fg_bg_rects(fg): b, g, r, a = cv2.split(fg) h, w = fg.shape[:2] h -= 1 w -= 1 # to avoid indexing problems rectDims = [10, 10] # h, w of rectangles hRects = h / rectDims[0] wRects = w / rectDims[1] fgRects = [] bgRects = [] for i in range(wRects): for j in range(hRects): pt1 = (i * rectDims[0], j * rectDims[1]) pt2 = ((i + 1) * rectDims[0], (j + 1) * rectDims[1]) # alpha is 255 over the part of the dog if a[pt1[1], pt1[0]] == 255 and a[pt2[1], pt2[0]] == 255: fgRects.append([pt1, pt2]) #cv2.rectangle(fgcp, pt1, pt2, [0, 0, 255], 2) # for debugging elif a[pt1[1], pt1[0]] == 0 and a[pt2[1], pt2[0]] == 0: bgRects.append([pt1, pt2]) #cv2.rectangle(bgcp, pt1, pt2, [0, 0, 255], 2) return fgRects, bgRects def get_avg_hara(im, rects): # returns the haralick texture averaged over all rectangles in an image if len(rects)==0: return None im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) hara = 0 for r in rects: # slice images as: img[y0:y1, x0:x1] hara += haralick(im[r[0][1]:r[1][1], r[0][0]:r[1][0]]).mean(0) hara /= (len(rects)) return hara def make_hara_map(im, rects): # draws heatmap of haralick texture PCA dim1 variance if len(rects)==0: return None gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) hara = [] for r in rects: # slice images as: img[y0:y1, x0:x1] hara.append(pcaFG.transform(haralick(im[r[0][1]:r[1][1], r[0][0]:r[1][0]]).mean(0).reshape(1, -1))) hara = np.array(hara) haraMean = np.mean(hara, axis=0) haraStd = np.std(hara, axis=0) haraMins = np.min(hara, axis=0) haraMaxs = np.max(hara, axis=0) norm = (haraMaxs-haraMins) copy = im.copy() copy = cv2.cvtColor(copy, cv2.COLOR_BGRA2RGBA) im = cv2.cvtColor(im, cv2.COLOR_BGRA2RGBA) for i in range(hara.shape[0]): brightScale = 255*(hara[i] - haraMins)/norm bright = brightScale[0][0] r = rects[i] cv2.rectangle(copy, r[0], r[1], [0, bright, 0, 255], -1) f, axarr = plt.subplots(2, 1) axarr[0].imshow(copy) axarr[1].imshow(im) plt.show() # load configuration with open('../../config.json', 'rb') as f: config = json.load(f) mainImPath = config['image_dir'] pDir = config['pickle_dir'] pcaFG = pk.load(open(pDir + 'pcaFG.pk', 'rb')) bb = pk.load(open(pDir + 'pDogs-bounding-boxes-clean.pd.pk', 'rb')) bb.dropna(inplace=True) # do something like sorted(bb.breed.unique().tolist())[50:] to check another breed for breed in sorted(bb.breed.unique().tolist())[50:]: print('breed:', breed) cropDir = mainImPath + breed + '/grabcut/' fgDir = cropDir + 'fg/' fgFiles = os.listdir(fgDir) for fi in fgFiles: try: fg = cv2.imread(fgDir + fi, -1) # -1 tells it to load alpha channel except Exception as err: print('exception:', err) continue fgRects, bgRects = get_fg_bg_rects(fg) make_hara_map(fg, fgRects)
mit
eduardoftoliveira/oniomMacGyver
scripts/draw_PES.py
2
3836
#!/usr/bin/env python import matplotlib as mpl from matplotlib import pyplot as plt import argparse def add_adiabatic_map_to_axis(axis, style, energies, color): """ add single set of energies to plot """ # Energy horizontal decks x = style['START'] for energy in energies: axis.plot([x, x+style['WIDTH']], [energy, energy], '-%s' % color, linewidth=2) x += style['SPACING'] # Connect steps x = style['START'] for i in range(1, len(energies)): x1 = x + style['WIDTH'] x2 = x + style['SPACING'] y1 = energies[i-1] y2 = energies[i] axis.plot([x1, x2], [y1, y2], '-%s' % color) x += style['SPACING'] def getargs(): parser = argparse.ArgumentParser(description=""" Make plot from user provided energies. Can read multiple sets of energies.""", formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument('-o', '--output', default='PES.svg', help='File name of output figure') parser.add_argument('--dpi', default=300, type=int, help='Resolution for bitmaps') parser.add_argument('-e', '--energies', nargs='+', type=float, action='append', help='Energies for any number of stationary points') parser.add_argument('-l', '--labels', nargs='+', help='Name of stationary points') parser.add_argument('-c', '--colors', nargs='+', help='Color codes') args = parser.parse_args() # less colors than PES ? add 'k' if args.colors: missing_colors = len(args.energies) - len(args.colors) missing_colors = (missing_colors > 0) * missing_colors args.colors += 'k' * missing_colors return args def makelabels(N): """ Make automatic labels: TS1, INT1, TS2, etc..""" labels = ['R'] n_ts = N / 2 n_i = (N - 2) / 2 n_i = n_i * (n_i > 0) # becomes zero if negative for i in range(n_ts + n_i): if i % 2: labels.append('INT%d' % (i/2+1)) else: labels.append('TS%d' % (i/2+1)) if N % 2 and N >= 3: labels.append('P') return labels def configure_axis_limits(axis, style, energies): # Appearance ymin, ymax = float('+inf'), float('-inf') maxlen = 0 for energy_set in energies: ymin = min(ymin, min(energy_set)) ymax = max(ymax, max(energy_set)) maxlen = max(len(energy_set), maxlen) yrange = ymax-ymin axis.set_ylim(ymin-0.1*yrange, ymax+0.1*yrange) xmax = style['START']*2 + style['WIDTH'] + (maxlen-1)*style['SPACING'] axis.set_xlim(0, xmax) axis.set_xticks([ style['START']+i*style['SPACING']+style['WIDTH']/2.0 for i in range(maxlen)]) return maxlen def main(): # get user input args = getargs() # important style features style = { 'WIDTH' : 4, # width of horizontal bars 'SPACING' : 10, # spacing between center of horizontal bars 'START' : 3 # x-offset from y-axis } # Configure Figure fig = plt.gcf() fig.set_size_inches(3.3, 2.5) mpl.rcParams.update({'font.size': 7, 'axes.linewidth':0.5}) plt.subplots_adjust(bottom=.15) plt.subplots_adjust(left=.15) plt.ylabel('Energy (kcal/mol)') plt.xlabel('Reaction coordinate') ax = fig.gca() ax.grid(True) maxlen = configure_axis_limits(ax, style, args.energies) if not args.labels: args.labels = makelabels(maxlen) ax.set_xticklabels(args.labels) # plot stuff color = 'k' for j,energies in enumerate(args.energies): if args.colors: color = args.colors[j] add_adiabatic_map_to_axis(ax, style, energies, color) plt.savefig(args.output, dpi=args.dpi) if __name__ == '__main__': main()
gpl-3.0
sambitgaan/nupic
examples/opf/clients/hotgym/prediction/one_gym/nupic_output.py
32
6059
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Provides two classes with the same signature for writing data out of NuPIC models. (This is a component of the One Hot Gym Prediction Tutorial.) """ import csv from collections import deque from abc import ABCMeta, abstractmethod # Try to import matplotlib, but we don't have to. try: import matplotlib matplotlib.use('TKAgg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.dates import date2num except ImportError: pass WINDOW = 100 class NuPICOutput(object): __metaclass__ = ABCMeta def __init__(self, names, showAnomalyScore=False): self.names = names self.showAnomalyScore = showAnomalyScore @abstractmethod def write(self, timestamps, actualValues, predictedValues, predictionStep=1): pass @abstractmethod def close(self): pass class NuPICFileOutput(NuPICOutput): def __init__(self, *args, **kwargs): super(NuPICFileOutput, self).__init__(*args, **kwargs) self.outputFiles = [] self.outputWriters = [] self.lineCounts = [] headerRow = ['timestamp', 'kw_energy_consumption', 'prediction'] for name in self.names: self.lineCounts.append(0) outputFileName = "%s_out.csv" % name print "Preparing to output %s data to %s" % (name, outputFileName) outputFile = open(outputFileName, "w") self.outputFiles.append(outputFile) outputWriter = csv.writer(outputFile) self.outputWriters.append(outputWriter) outputWriter.writerow(headerRow) def write(self, timestamps, actualValues, predictedValues, predictionStep=1): assert len(timestamps) == len(actualValues) == len(predictedValues) for index in range(len(self.names)): timestamp = timestamps[index] actual = actualValues[index] prediction = predictedValues[index] writer = self.outputWriters[index] if timestamp is not None: outputRow = [timestamp, actual, prediction] writer.writerow(outputRow) self.lineCounts[index] += 1 def close(self): for index, name in enumerate(self.names): self.outputFiles[index].close() print "Done. Wrote %i data lines to %s." % (self.lineCounts[index], name) class NuPICPlotOutput(NuPICOutput): def __init__(self, *args, **kwargs): super(NuPICPlotOutput, self).__init__(*args, **kwargs) # Turn matplotlib interactive mode on. plt.ion() self.dates = [] self.convertedDates = [] self.actualValues = [] self.predictedValues = [] self.actualLines = [] self.predictedLines = [] self.linesInitialized = False self.graphs = [] plotCount = len(self.names) plotHeight = max(plotCount * 3, 6) fig = plt.figure(figsize=(14, plotHeight)) gs = gridspec.GridSpec(plotCount, 1) for index in range(len(self.names)): self.graphs.append(fig.add_subplot(gs[index, 0])) plt.title(self.names[index]) plt.ylabel('KW Energy Consumption') plt.xlabel('Date') plt.tight_layout() def initializeLines(self, timestamps): for index in range(len(self.names)): print "initializing %s" % self.names[index] # graph = self.graphs[index] self.dates.append(deque([timestamps[index]] * WINDOW, maxlen=WINDOW)) self.convertedDates.append(deque( [date2num(date) for date in self.dates[index]], maxlen=WINDOW )) self.actualValues.append(deque([0.0] * WINDOW, maxlen=WINDOW)) self.predictedValues.append(deque([0.0] * WINDOW, maxlen=WINDOW)) actualPlot, = self.graphs[index].plot( self.dates[index], self.actualValues[index] ) self.actualLines.append(actualPlot) predictedPlot, = self.graphs[index].plot( self.dates[index], self.predictedValues[index] ) self.predictedLines.append(predictedPlot) self.linesInitialized = True def write(self, timestamps, actualValues, predictedValues, predictionStep=1): assert len(timestamps) == len(actualValues) == len(predictedValues) # We need the first timestamp to initialize the lines at the right X value, # so do that check first. if not self.linesInitialized: self.initializeLines(timestamps) for index in range(len(self.names)): self.dates[index].append(timestamps[index]) self.convertedDates[index].append(date2num(timestamps[index])) self.actualValues[index].append(actualValues[index]) self.predictedValues[index].append(predictedValues[index]) # Update data self.actualLines[index].set_xdata(self.convertedDates[index]) self.actualLines[index].set_ydata(self.actualValues[index]) self.predictedLines[index].set_xdata(self.convertedDates[index]) self.predictedLines[index].set_ydata(self.predictedValues[index]) self.graphs[index].relim() self.graphs[index].autoscale_view(True, True, True) plt.draw() plt.legend(('actual','predicted'), loc=3) def close(self): plt.ioff() plt.show() NuPICOutput.register(NuPICFileOutput) NuPICOutput.register(NuPICPlotOutput)
agpl-3.0
tsherwen/AC_tools
Scripts/2D_GEOSChem_slice_subregion_plotter_example.py
1
2934
#!/usr/bin/python # -*- coding: utf-8 -*- """ Plotter for 2D slices of GEOS-Chem output NetCDFs files. NOTES --- - This is setup for Cly, but many other options (plot/species) are availible by just updating passed variables/plotting function called. """ import AC_tools as AC import numpy as np import matplotlib.pyplot as plt def main(): """ Basic plotter of NetCDF files using AC_tools """ # --- Local settings hardwired here... fam = 'Cly' # Family to plot # print species in family for reference... print((AC.GC_var(fam))) # --- Get working directory etc from command line (as a dictionary object) # (1st argument is fil directory with folder, 2nd is filename) Var_rc = AC.get_default_variable_dict() # Get details on extracted data (inc. resolution) Data_rc = AC.get_shared_data_as_dict(Var_rc=Var_rc) # --- extract data and units of data for family/species... arr, units = AC.fam_data_extractor(wd=Var_rc['wd'], fam=fam, res=Data_rc['res'], rtn_units=True, annual_mean=False) # --- Process data (add and extra processing of data here... ) # take average over time print((arr.shape)) arr = arr.mean(axis=-1) # Select surface values print((arr.shape)) arr = arr[..., 0] # convert to pptv arr = arr*1E12 units = 'pptv' # --- Plot up data... print((arr.shape)) # - Plot a (very) simple plot ... # AC.map_plot( arr.T, res=Data_rc['res'] ) # - plot a slightly better plot... # (loads of options here - just type help(AC.plot_spatial_figure) in ipython) # set range for data... fixcb = np.array([0., 100.]) # number of ticks on colorbar (make sure the fixcb range divides by this) nticks = 6 interval = (1/3.) # number of lat/lon labels... (x*15 degrees... ) # set limits of plot lat_min = 5. lat_max = 75. lon_min = -30. lon_max = 60. left_cb_pos = 0.85 # set X (fractional) position axis_titles = True # add labels for lat and lon # title for plot title = "Plot of annual average {}".format(fam) # save as pdf (just set to True) or show? # figsize = (7,5) # figsize to use? (e.g. square or rectangular plot) # call plotter... AC.plot_spatial_figure(arr, res=Data_rc['res'], units=units, fixcb=fixcb, lat_min=lat_min, lat_max=lat_max, lon_min=lon_min, lon_max=lon_max, axis_titles=axis_titles, left_cb_pos=left_cb_pos, nticks=nticks, interval=interval, title=title, show=False) # are the spacings right? - if not just up bottom = 0.1 top = 0.9 left = 0.1 right = 0.9 fig = plt.gcf() fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right) # show and save as PDF? plt.savefig('pete_plot.png') AC.show_plot() if __name__ == "__main__": main()
mit