minhanhto09
commited on
Commit
•
6be63ab
1
Parent(s):
51b6c32
Upload NuCLS_dataset.py
Browse files- NuCLS_dataset.py +201 -0
NuCLS_dataset.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Tue Mar 12 16:13:56 2024
|
5 |
+
|
6 |
+
@author: tominhanh
|
7 |
+
"""
|
8 |
+
|
9 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
# Test 6
|
24 |
+
|
25 |
+
import pandas as pd
|
26 |
+
from PIL import Image
|
27 |
+
import datasets
|
28 |
+
from datasets import DatasetBuilder, GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Image, ClassLabel, Value, Sequence, load_dataset, SplitGenerator
|
29 |
+
import os
|
30 |
+
import io
|
31 |
+
from typing import Tuple, Dict, List
|
32 |
+
import numpy as np
|
33 |
+
import zipfile
|
34 |
+
import requests
|
35 |
+
import random
|
36 |
+
from io import BytesIO
|
37 |
+
import csv
|
38 |
+
|
39 |
+
_CITATION = """\
|
40 |
+
https://arxiv.org/abs/2102.09099
|
41 |
+
"""
|
42 |
+
|
43 |
+
_DESCRIPTION = """\
|
44 |
+
The comprehensive dataset contains over 220,000 single-rater and multi-rater labeled nuclei from breast cancer images
|
45 |
+
obtained from TCGA, making it one of the largest datasets for nucleus detection, classification, and segmentation in hematoxylin and eosin-stained
|
46 |
+
digital slides of breast cancer. This version of the dataset is a revised single-rater dataset, featuring over 125,000 nucleus csvs.
|
47 |
+
These nuclei were annotated through a collaborative effort involving pathologists, pathology residents, and medical students, using the Digital Slide Archive.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://sites.google.com/view/nucls/home?authuser=0"
|
51 |
+
|
52 |
+
_LICENSE = "CC0 1.0 license"
|
53 |
+
|
54 |
+
_URL = "https://www.dropbox.com/scl/fi/srq574rdgvp7f5gwr60xw/NuCLS_dataset.zip?rlkey=qjc9q8shgvnqpfy4bktbqybd1&dl=1"
|
55 |
+
|
56 |
+
class NuCLSDataset(GeneratorBasedBuilder):
|
57 |
+
"""The NuCLS dataset."""
|
58 |
+
|
59 |
+
VERSION = datasets.Version("1.1.0")
|
60 |
+
|
61 |
+
def _info(self):
|
62 |
+
"""Returns the dataset info."""
|
63 |
+
|
64 |
+
# Define the classes for the classifications
|
65 |
+
raw_classification = ClassLabel(names=[
|
66 |
+
'apoptotic_body', 'ductal_epithelium', 'eosinophil','fibroblast', 'lymphocyte',
|
67 |
+
'macrophage', 'mitotic_figure', 'myoepithelium', 'neutrophil',
|
68 |
+
'plasma_cell','tumor', 'unlabeled', 'vascular_endothelium'
|
69 |
+
])
|
70 |
+
main_classification = ClassLabel(names=[
|
71 |
+
'AMBIGUOUS', 'lymphocyte', 'macrophage', 'nonTILnonMQ_stromal',
|
72 |
+
'plasma_cell', 'tumor_mitotic', 'tumor_nonMitotic',
|
73 |
+
])
|
74 |
+
super_classification = ClassLabel(names=[
|
75 |
+
'AMBIGUOUS','nonTIL_stromal','sTIL', 'tumor_any',
|
76 |
+
])
|
77 |
+
type = ClassLabel(names=['rectangle', 'polyline'])
|
78 |
+
|
79 |
+
# Assuming a maximum length for polygon coordinates.
|
80 |
+
max_polygon_length = 20
|
81 |
+
|
82 |
+
# Define features
|
83 |
+
features = Features({
|
84 |
+
# Images will be loaded as arrays; you'll dynamically handle the varying sizes in the generator function
|
85 |
+
'rgb_image': Image(decode=False),
|
86 |
+
'mask_image': Image(decode=False),
|
87 |
+
'visualization_image': Image(decode=False),
|
88 |
+
|
89 |
+
# Annotation coordinates
|
90 |
+
'annotation_coordinates': Features({
|
91 |
+
'raw_classification': raw_classification,
|
92 |
+
'main_classification': main_classification,
|
93 |
+
'super_classification': super_classification,
|
94 |
+
'type': type,
|
95 |
+
'xmin': Value('int64'),
|
96 |
+
'ymin': Value('int64'),
|
97 |
+
'xmax': Value('int64'),
|
98 |
+
'ymax': Value('int64'),
|
99 |
+
'coords_x': Sequence(Value('float32')),
|
100 |
+
'coords_y': Sequence(Value('float32')),
|
101 |
+
})
|
102 |
+
})
|
103 |
+
|
104 |
+
return DatasetInfo(
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=features,
|
107 |
+
supervised_keys=None,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
114 |
+
# Download source data
|
115 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
116 |
+
|
117 |
+
# Directory paths
|
118 |
+
rgb_dir = os.path.join(data_dir, "rgb")
|
119 |
+
visualization_dir = os.path.join(data_dir, "visualization")
|
120 |
+
mask_dir = os.path.join(data_dir, "mask")
|
121 |
+
csv_dir = os.path.join(data_dir, "csv")
|
122 |
+
|
123 |
+
# Generate a list of unique filenames (without extensions)
|
124 |
+
unique_filenames = [os.path.splitext(f)[0] for f in os.listdir(rgb_dir)]
|
125 |
+
|
126 |
+
# Split filenames into training and testing sets
|
127 |
+
random.shuffle(unique_filenames)
|
128 |
+
split_idx = int(0.8 * len(unique_filenames))
|
129 |
+
train_filenames = unique_filenames[:split_idx]
|
130 |
+
test_filenames = unique_filenames[split_idx:]
|
131 |
+
|
132 |
+
# Map filenames to file paths for each split
|
133 |
+
train_filepaths = self._map_filenames_to_paths(train_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir)
|
134 |
+
test_filepaths = self._map_filenames_to_paths(test_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir)
|
135 |
+
|
136 |
+
# Create the split generators
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TRAIN,
|
140 |
+
gen_kwargs={"filepaths": train_filepaths}
|
141 |
+
),
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TEST,
|
144 |
+
gen_kwargs={"filepaths": test_filepaths}
|
145 |
+
),
|
146 |
+
]
|
147 |
+
|
148 |
+
def _map_filenames_to_paths(self, filenames, rgb_dir, visualization_dir, mask_dir, csv_dir):
|
149 |
+
"""Maps filenames to file paths for each split."""
|
150 |
+
filepaths = {}
|
151 |
+
for filename in filenames:
|
152 |
+
filepaths[filename] = {
|
153 |
+
'fov': os.path.join(rgb_dir, filename + '.png'),
|
154 |
+
'visualization': os.path.join(visualization_dir, filename + '.png'),
|
155 |
+
'mask': os.path.join(mask_dir, filename + '.png'),
|
156 |
+
'csv': os.path.join(csv_dir, filename + '.csv'),
|
157 |
+
}
|
158 |
+
return filepaths
|
159 |
+
|
160 |
+
|
161 |
+
def _generate_examples(self, filepaths):
|
162 |
+
"""Yield examples as (key, example) tuples."""
|
163 |
+
|
164 |
+
for key, paths in filepaths.items():
|
165 |
+
# Initialize an example dictionary
|
166 |
+
example = {
|
167 |
+
'rgb_image': self._read_image_file(paths['fov']),
|
168 |
+
'mask_image': self._read_image_file(paths['mask']),
|
169 |
+
'visualization_image': self._read_image_file(paths['visualization']),
|
170 |
+
'annotation_coordinates': self._read_csv_file(paths['csv']),
|
171 |
+
}
|
172 |
+
|
173 |
+
yield key, example
|
174 |
+
|
175 |
+
def _read_image_file(self, file_path: str) -> PilImage:
|
176 |
+
"""Reads an image file and returns it as a PIL Image object."""
|
177 |
+
try:
|
178 |
+
with open(file_path, 'rb') as f:
|
179 |
+
return PilImage.open(f)
|
180 |
+
except Exception as e:
|
181 |
+
print(f"Error reading image file {file_path}: {e}")
|
182 |
+
return None
|
183 |
+
|
184 |
+
def _read_csv_file(self, file_path: str):
|
185 |
+
"""Reads a CSV file and returns the contents in the expected format."""
|
186 |
+
try:
|
187 |
+
csv_df = pd.read_csv(file_path)
|
188 |
+
if csv_df.empty:
|
189 |
+
print(f"Warning: CSV file {file_path} is empty.")
|
190 |
+
return None
|
191 |
+
else:
|
192 |
+
# Convert the DataFrame into the structure that matches your features' annotation_coordinates
|
193 |
+
return self._process_csv_data(csv_df)
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Error reading CSV file {file_path}: {e}")
|
196 |
+
return None
|
197 |
+
|
198 |
+
# Implement this method to process and convert CSV data into the format expected by your dataset's features
|
199 |
+
def _process_csv_data(self, csv_df):
|
200 |
+
# Process the DataFrame and return the data in the correct format
|
201 |
+
pass
|