Datasets:
Tasks:
Audio Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
Tags:
SER
Speech Emotion Recognition
Speech Emotion Classification
Audio Classification
Audio
Emotion
License:
Upload parquet2csv_wav.py
Browse files- parquet2csv_wav.py +12 -8
parquet2csv_wav.py
CHANGED
@@ -16,6 +16,10 @@ n_cores = str(os.cpu_count())
|
|
16 |
os.environ['OMP_NUM_THREADS'] = n_cores
|
17 |
os.environ['MKL_NUM_THREADS'] = n_cores
|
18 |
|
|
|
|
|
|
|
|
|
19 |
# Create the wavs dir if it does not exist
|
20 |
if not os.path.isdir('wavs'):
|
21 |
os.makedirs('wavs')
|
@@ -23,13 +27,13 @@ if not os.path.isdir('wavs'):
|
|
23 |
# All columns from the parquet file except the one with the audio numpy arrays (it is huge)
|
24 |
columns = ['ytid', 'ytid_seg', 'start', 'end', 'sentiment', 'happiness', 'sadness', 'anger', 'fear', 'disgust', 'surprise']
|
25 |
|
26 |
-
### Add replace line here to change the paths from the ytid_seg column ###
|
27 |
-
# https://pola-rs.github.io/polars/py-polars/html/reference/expressions/api/polars.Expr.str.replace.html
|
28 |
-
# replace the subtring '/home/emoman/Downloads/mosei/samples' with the actual path
|
29 |
-
|
30 |
# Read the parquet file with polars
|
31 |
df = pl.read_parquet('sqe_messai.parquet', columns = columns)
|
32 |
|
|
|
|
|
|
|
|
|
33 |
# Export the csv file (excluding the last column)
|
34 |
df.write_csv('sqe_messai_nowav.csv')
|
35 |
print(df)
|
@@ -40,15 +44,15 @@ columns2 = ['ytid_seg', 'wav2numpy']
|
|
40 |
# Read the parquet file with polars (this will take a while)
|
41 |
df2 = pl.read_parquet('sqe_messai.parquet', use_pyarrow=False, columns = columns2)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
# Function to convert the numpy arrays to wav files stored in the wavs folders
|
48 |
def numpy2wav(row):
|
49 |
segment = os.path.splitext(os.path.basename(os.path.normpath(row[0])))[0]
|
50 |
print('PROCESSED:', segment)
|
51 |
-
write(
|
52 |
return segment
|
53 |
|
54 |
# Apply the function (this will take a while)
|
|
|
16 |
os.environ['OMP_NUM_THREADS'] = n_cores
|
17 |
os.environ['MKL_NUM_THREADS'] = n_cores
|
18 |
|
19 |
+
# Define directory to store the samples
|
20 |
+
cwd = os.getcwd()
|
21 |
+
sample_dir = str(cwd) + '/wavs/'
|
22 |
+
|
23 |
# Create the wavs dir if it does not exist
|
24 |
if not os.path.isdir('wavs'):
|
25 |
os.makedirs('wavs')
|
|
|
27 |
# All columns from the parquet file except the one with the audio numpy arrays (it is huge)
|
28 |
columns = ['ytid', 'ytid_seg', 'start', 'end', 'sentiment', 'happiness', 'sadness', 'anger', 'fear', 'disgust', 'surprise']
|
29 |
|
|
|
|
|
|
|
|
|
30 |
# Read the parquet file with polars
|
31 |
df = pl.read_parquet('sqe_messai.parquet', columns = columns)
|
32 |
|
33 |
+
# Replace the generic path with the actual path
|
34 |
+
bad_dir = df.row(0)[1].rsplit('/', 1)[0] + '/'
|
35 |
+
df = df.with_columns(pl.col('ytid_seg').str.replace_all(bad_dir, sample_dir))
|
36 |
+
|
37 |
# Export the csv file (excluding the last column)
|
38 |
df.write_csv('sqe_messai_nowav.csv')
|
39 |
print(df)
|
|
|
44 |
# Read the parquet file with polars (this will take a while)
|
45 |
df2 = pl.read_parquet('sqe_messai.parquet', use_pyarrow=False, columns = columns2)
|
46 |
|
47 |
+
# Replace the generic path with the actual path
|
48 |
+
bad_dir = df2.row(0)[0].rsplit('/', 1)[0] + '/'
|
49 |
+
df2 = df2.with_columns(pl.col('ytid_seg').str.replace_all(bad_dir, sample_dir))
|
50 |
|
51 |
# Function to convert the numpy arrays to wav files stored in the wavs folders
|
52 |
def numpy2wav(row):
|
53 |
segment = os.path.splitext(os.path.basename(os.path.normpath(row[0])))[0]
|
54 |
print('PROCESSED:', segment)
|
55 |
+
write(sample_dir + segment + '.wav', 16000, np.array(row[1]))
|
56 |
return segment
|
57 |
|
58 |
# Apply the function (this will take a while)
|