fix: update readme and move testing stuff into a different directory
Browse files- README.md +416 -7
- checker.ipynb +470 -219
- dataset_infos.json β test-stuff/dataset_infos.json +0 -0
- test.json β test-stuff/test.json +0 -0
README.md
CHANGED
@@ -1,13 +1,422 @@
|
|
1 |
---
|
2 |
-
pretty_name: "Zillow"
|
3 |
-
license: "other"
|
4 |
language:
|
5 |
-
|
|
|
6 |
task_categories:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Housing Data Provided by Zillow (In Progress)
|
|
|
1 |
---
|
|
|
|
|
2 |
language:
|
3 |
+
- en
|
4 |
+
license: other
|
5 |
task_categories:
|
6 |
+
- tabular-regression
|
7 |
+
- time-series-forecasting
|
8 |
+
pretty_name: Zillow
|
9 |
+
description: 'This dataset is comprised of seven different configurations of data
|
10 |
+
covering different aspects of the housing market in the United States. All data
|
11 |
+
is provided by Zillow. The seven configurations are: home_values_forecasts, new_construction,
|
12 |
+
for_sale_listings, rentals, sales, home_values, and days_on_market. Each configuration
|
13 |
+
has a different set of features and target variables. The data is provided in JSONL
|
14 |
+
format.'
|
15 |
+
homepage: https://www.zillow.com/research/data/
|
16 |
+
dataset_info:
|
17 |
+
- config_name: days_on_market
|
18 |
+
features:
|
19 |
+
- name: Region ID
|
20 |
+
dtype: string
|
21 |
+
id: Region ID
|
22 |
+
- name: Size Rank
|
23 |
+
dtype: int32
|
24 |
+
id: Size Rank
|
25 |
+
- name: Region
|
26 |
+
dtype: string
|
27 |
+
id: Region
|
28 |
+
- name: Region Type
|
29 |
+
dtype:
|
30 |
+
class_label:
|
31 |
+
names:
|
32 |
+
'0': country
|
33 |
+
'1': msa
|
34 |
+
- name: State
|
35 |
+
dtype: string
|
36 |
+
id: State
|
37 |
+
- name: Home Type
|
38 |
+
dtype:
|
39 |
+
class_label:
|
40 |
+
names:
|
41 |
+
'0': SFR
|
42 |
+
'1': all homes (SFR + Condo)
|
43 |
+
- name: Date
|
44 |
+
dtype: string
|
45 |
+
id: Date
|
46 |
+
- name: Mean Listings Price Cut Amount (Smoothed)
|
47 |
+
dtype: float32
|
48 |
+
id: Mean Listings Price Cut Amount (Smoothed)
|
49 |
+
- name: Percent Listings Price Cut
|
50 |
+
dtype: float32
|
51 |
+
id: Percent Listings Price Cut
|
52 |
+
- name: Mean Listings Price Cut Amount
|
53 |
+
dtype: float32
|
54 |
+
id: Mean Listings Price Cut Amount
|
55 |
+
- name: Percent Listings Price Cut (Smoothed)
|
56 |
+
dtype: float32
|
57 |
+
id: Percent Listings Price Cut (Smoothed)
|
58 |
+
- name: Median Days on Pending (Smoothed)
|
59 |
+
dtype: float32
|
60 |
+
id: Median Days on Pending (Smoothed)
|
61 |
+
- name: Median Days on Pending
|
62 |
+
dtype: float32
|
63 |
+
id: Median Days on Pending
|
64 |
+
splits:
|
65 |
+
- name: train
|
66 |
+
num_bytes: 53627604
|
67 |
+
num_examples: 586714
|
68 |
+
download_size: 232641668
|
69 |
+
dataset_size: 53627604
|
70 |
+
- config_name: for_sale_listings
|
71 |
+
features:
|
72 |
+
- name: Region ID
|
73 |
+
dtype: string
|
74 |
+
id: Region ID
|
75 |
+
- name: Size Rank
|
76 |
+
dtype: int32
|
77 |
+
id: Size Rank
|
78 |
+
- name: Region
|
79 |
+
dtype: string
|
80 |
+
id: Region
|
81 |
+
- name: Region Type
|
82 |
+
dtype:
|
83 |
+
class_label:
|
84 |
+
names:
|
85 |
+
'0': country
|
86 |
+
'1': msa
|
87 |
+
- name: State
|
88 |
+
dtype: string
|
89 |
+
id: State
|
90 |
+
- name: Home Type
|
91 |
+
dtype:
|
92 |
+
class_label:
|
93 |
+
names:
|
94 |
+
'0': SFR
|
95 |
+
'1': all homes
|
96 |
+
- name: Date
|
97 |
+
dtype: string
|
98 |
+
id: Date
|
99 |
+
- name: Median Listing Price
|
100 |
+
dtype: float32
|
101 |
+
id: Median Listing Price
|
102 |
+
- name: Median Listing Price (Smoothed)
|
103 |
+
dtype: float32
|
104 |
+
id: Median Listing Price (Smoothed)
|
105 |
+
- name: New Listings
|
106 |
+
dtype: int32
|
107 |
+
id: New Listings
|
108 |
+
- name: New Listings (Smoothed)
|
109 |
+
dtype: int32
|
110 |
+
id: New Listings (Smoothed)
|
111 |
+
- name: New Pending (Smoothed)
|
112 |
+
dtype: int32
|
113 |
+
id: New Pending (Smoothed)
|
114 |
+
- name: New Pending
|
115 |
+
dtype: int32
|
116 |
+
id: New Pending
|
117 |
+
splits:
|
118 |
+
- name: train
|
119 |
+
num_bytes: 52884116
|
120 |
+
num_examples: 578653
|
121 |
+
download_size: 179627939
|
122 |
+
dataset_size: 52884116
|
123 |
+
- config_name: gem_data_split
|
124 |
+
features:
|
125 |
+
- name: gem_id
|
126 |
+
dtype: string
|
127 |
+
- name: id
|
128 |
+
dtype: string
|
129 |
+
- name: title
|
130 |
+
dtype: string
|
131 |
+
- name: context
|
132 |
+
dtype: string
|
133 |
+
- name: question
|
134 |
+
dtype: string
|
135 |
+
- name: target
|
136 |
+
dtype: string
|
137 |
+
- name: references
|
138 |
+
list: string
|
139 |
+
- name: answers
|
140 |
+
sequence:
|
141 |
+
- name: text
|
142 |
+
dtype: string
|
143 |
+
- name: answer_start
|
144 |
+
dtype: int32
|
145 |
+
splits:
|
146 |
+
- name: test
|
147 |
+
num_bytes: 14716686
|
148 |
+
num_examples: 13922
|
149 |
+
download_size: 159207580
|
150 |
+
dataset_size: 150788555
|
151 |
+
- config_name: home_values
|
152 |
+
features:
|
153 |
+
- name: Region ID
|
154 |
+
dtype: string
|
155 |
+
id: Region ID
|
156 |
+
- name: Size Rank
|
157 |
+
dtype: int32
|
158 |
+
id: Size Rank
|
159 |
+
- name: Region
|
160 |
+
dtype: string
|
161 |
+
id: Region
|
162 |
+
- name: Region Type
|
163 |
+
dtype:
|
164 |
+
class_label:
|
165 |
+
names:
|
166 |
+
'0': state
|
167 |
+
- name: State
|
168 |
+
dtype: string
|
169 |
+
id: State
|
170 |
+
- name: Home Type
|
171 |
+
dtype:
|
172 |
+
class_label:
|
173 |
+
names:
|
174 |
+
'0': all homes (SFR/condo)
|
175 |
+
'1': SFR
|
176 |
+
'2': condo
|
177 |
+
- name: Bedroom Count
|
178 |
+
dtype:
|
179 |
+
class_label:
|
180 |
+
names:
|
181 |
+
'0': 1-Bedroom
|
182 |
+
'1': 2-Bedrooms
|
183 |
+
'2': 3-Bedrooms
|
184 |
+
'3': 4-Bedrooms
|
185 |
+
'4': 5+-Bedrooms
|
186 |
+
'5': All Bedrooms
|
187 |
+
- name: Date
|
188 |
+
dtype: string
|
189 |
+
id: Date
|
190 |
+
- name: Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
191 |
+
dtype: float32
|
192 |
+
id: Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
193 |
+
- name: Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
194 |
+
dtype: float32
|
195 |
+
id: Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
196 |
+
- name: Top Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
197 |
+
dtype: float32
|
198 |
+
id: Top Tier ZHVI (Smoothed) (Seasonally Adjusted)
|
199 |
+
splits:
|
200 |
+
- name: train
|
201 |
+
num_bytes: 10085231
|
202 |
+
num_examples: 117912
|
203 |
+
download_size: 42082517
|
204 |
+
dataset_size: 10085231
|
205 |
+
- config_name: home_values_forecasts
|
206 |
+
features:
|
207 |
+
- name: Region ID
|
208 |
+
dtype: string
|
209 |
+
id: Region ID
|
210 |
+
- name: Size Rank
|
211 |
+
dtype: int32
|
212 |
+
id: Size Rank
|
213 |
+
- name: Region
|
214 |
+
dtype: string
|
215 |
+
id: Region
|
216 |
+
- name: Region Type
|
217 |
+
dtype:
|
218 |
+
class_label:
|
219 |
+
names:
|
220 |
+
'0': zip
|
221 |
+
'1': country
|
222 |
+
'2': msa
|
223 |
+
- name: State
|
224 |
+
dtype: string
|
225 |
+
id: State
|
226 |
+
- name: City
|
227 |
+
dtype: string
|
228 |
+
id: City
|
229 |
+
- name: Metro
|
230 |
+
dtype: string
|
231 |
+
id: Metro
|
232 |
+
- name: County
|
233 |
+
dtype: string
|
234 |
+
id: County
|
235 |
+
- name: Date
|
236 |
+
dtype: string
|
237 |
+
id: Date
|
238 |
+
- name: Month Over Month % (Smoothed) (Seasonally Adjusted)
|
239 |
+
dtype: float32
|
240 |
+
id: Month Over Month % (Smoothed) (Seasonally Adjusted)
|
241 |
+
- name: Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)
|
242 |
+
dtype: float32
|
243 |
+
id: Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)
|
244 |
+
- name: Year Over Year % (Smoothed) (Seasonally Adjusted)
|
245 |
+
dtype: float32
|
246 |
+
id: Year Over Year % (Smoothed) (Seasonally Adjusted)
|
247 |
+
- name: Month Over Month %
|
248 |
+
dtype: float32
|
249 |
+
id: Month Over Month %
|
250 |
+
- name: Quarter Over Quarter %
|
251 |
+
dtype: float32
|
252 |
+
id: Quarter Over Quarter %
|
253 |
+
- name: Year Over Year %
|
254 |
+
dtype: float32
|
255 |
+
id: Year Over Year %
|
256 |
+
splits:
|
257 |
+
- name: train
|
258 |
+
num_bytes: 4167993
|
259 |
+
num_examples: 31854
|
260 |
+
download_size: 14050125
|
261 |
+
dataset_size: 4167993
|
262 |
+
- config_name: new_construction
|
263 |
+
features:
|
264 |
+
- name: Region ID
|
265 |
+
dtype: string
|
266 |
+
id: Region ID
|
267 |
+
- name: Size Rank
|
268 |
+
dtype: int32
|
269 |
+
id: Size Rank
|
270 |
+
- name: Region
|
271 |
+
dtype: string
|
272 |
+
id: Region
|
273 |
+
- name: Region Type
|
274 |
+
dtype:
|
275 |
+
class_label:
|
276 |
+
names:
|
277 |
+
'0': country
|
278 |
+
'1': msa
|
279 |
+
- name: State
|
280 |
+
dtype: string
|
281 |
+
id: State
|
282 |
+
- name: Home Type
|
283 |
+
dtype:
|
284 |
+
class_label:
|
285 |
+
names:
|
286 |
+
'0': SFR
|
287 |
+
'1': all homes
|
288 |
+
'2': condo/co-op only
|
289 |
+
- name: Date
|
290 |
+
dtype: string
|
291 |
+
id: Date
|
292 |
+
- name: Median Sale Price
|
293 |
+
dtype: float32
|
294 |
+
id: Median Sale Price
|
295 |
+
- name: Median Sale Price per Sqft
|
296 |
+
dtype: float32
|
297 |
+
id: Sale Price per Sqft
|
298 |
+
- name: Sales Count
|
299 |
+
dtype: int32
|
300 |
+
id: Sales Count
|
301 |
+
splits:
|
302 |
+
- name: train
|
303 |
+
num_bytes: 3921553
|
304 |
+
num_examples: 49487
|
305 |
+
download_size: 10903095
|
306 |
+
dataset_size: 3921553
|
307 |
+
- config_name: rentals
|
308 |
+
features:
|
309 |
+
- name: Region ID
|
310 |
+
dtype: string
|
311 |
+
id: Region ID
|
312 |
+
- name: Size Rank
|
313 |
+
dtype: int32
|
314 |
+
id: Size Rank
|
315 |
+
- name: Region
|
316 |
+
dtype: string
|
317 |
+
id: Region
|
318 |
+
- name: Region Type
|
319 |
+
dtype:
|
320 |
+
class_label:
|
321 |
+
names:
|
322 |
+
'0': county
|
323 |
+
'1': city
|
324 |
+
'2': zip
|
325 |
+
'3': country
|
326 |
+
'4': msa
|
327 |
+
- name: State
|
328 |
+
dtype: string
|
329 |
+
id: State
|
330 |
+
- name: Home Type
|
331 |
+
dtype:
|
332 |
+
class_label:
|
333 |
+
names:
|
334 |
+
'0': all homes plus multifamily
|
335 |
+
'1': SFR
|
336 |
+
'2': multifamily
|
337 |
+
- name: Date
|
338 |
+
dtype: string
|
339 |
+
id: Date
|
340 |
+
- name: Rent (Smoothed)
|
341 |
+
dtype: float32
|
342 |
+
id: Rent (Smoothed)
|
343 |
+
- name: Rent (Smoothed) (Seasonally Adjusted)
|
344 |
+
dtype: float32
|
345 |
+
id: Rent (Smoothed) (Seasonally Adjusted)
|
346 |
+
splits:
|
347 |
+
- name: train
|
348 |
+
num_bytes: 100467121
|
349 |
+
num_examples: 1258740
|
350 |
+
download_size: 446166329
|
351 |
+
dataset_size: 100467121
|
352 |
+
- config_name: sales
|
353 |
+
features:
|
354 |
+
- name: Region ID
|
355 |
+
dtype: string
|
356 |
+
id: Region ID
|
357 |
+
- name: Size Rank
|
358 |
+
dtype: int32
|
359 |
+
id: Size Rank
|
360 |
+
- name: Region
|
361 |
+
dtype: string
|
362 |
+
id: Region
|
363 |
+
- name: Region Type
|
364 |
+
dtype:
|
365 |
+
class_label:
|
366 |
+
names:
|
367 |
+
'0': country
|
368 |
+
'1': msa
|
369 |
+
- name: State
|
370 |
+
dtype: string
|
371 |
+
id: State
|
372 |
+
- name: Home Type
|
373 |
+
dtype:
|
374 |
+
class_label:
|
375 |
+
names:
|
376 |
+
'0': SFR
|
377 |
+
'1': all homes
|
378 |
+
- name: Date
|
379 |
+
dtype: string
|
380 |
+
id: Date
|
381 |
+
- name: Mean Sale to List Ratio (Smoothed)
|
382 |
+
dtype: float32
|
383 |
+
id: Mean Sale to List Ratio (Smoothed)
|
384 |
+
- name: Median Sale to List Ratio
|
385 |
+
dtype: float32
|
386 |
+
id: Median Sale to List Ratio
|
387 |
+
- name: Median Sale Price
|
388 |
+
dtype: float32
|
389 |
+
id: Median Sale Price
|
390 |
+
- name: Median Sale Price (Smoothed) (Seasonally Adjusted)
|
391 |
+
dtype: float32
|
392 |
+
id: Median Sale Price (Smoothed) (Seasonally Adjusted)
|
393 |
+
- name: Median Sale Price (Smoothed)
|
394 |
+
dtype: float32
|
395 |
+
id: Median Sale Price (Smoothed)
|
396 |
+
- name: Median Sale to List Ratio (Smoothed)
|
397 |
+
dtype: float32
|
398 |
+
id: Median Sale to List Ratio (Smoothed)
|
399 |
+
- name: '% Sold Below List'
|
400 |
+
dtype: float32
|
401 |
+
id: '% Sold Below List'
|
402 |
+
- name: '% Sold Below List (Smoothed)'
|
403 |
+
dtype: float32
|
404 |
+
id: '% Sold Below List (Smoothed)'
|
405 |
+
- name: '% Sold Above List'
|
406 |
+
dtype: float32
|
407 |
+
id: '% Sold Above List'
|
408 |
+
- name: '% Sold Above List (Smoothed)'
|
409 |
+
dtype: float32
|
410 |
+
id: '% Sold Above List (Smoothed)'
|
411 |
+
- name: Mean Sale to List Ratio
|
412 |
+
dtype: float32
|
413 |
+
id: Mean Sale to List Ratio
|
414 |
+
splits:
|
415 |
+
- name: train
|
416 |
+
num_bytes: 28618183
|
417 |
+
num_examples: 255024
|
418 |
+
download_size: 139042553
|
419 |
+
dataset_size: 28618183
|
420 |
---
|
421 |
|
422 |
# Housing Data Provided by Zillow (In Progress)
|
checker.ipynb
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [
|
18 |
{
|
@@ -40,103 +40,127 @@
|
|
40 |
" <th>Size Rank</th>\n",
|
41 |
" <th>Region</th>\n",
|
42 |
" <th>Region Type</th>\n",
|
43 |
-
" <th>Home Type</th>\n",
|
44 |
" <th>State</th>\n",
|
45 |
-
" <th>
|
46 |
-
" <th>State Code FIPS</th>\n",
|
47 |
-
" <th>Municipal Code FIPS</th>\n",
|
48 |
" <th>Date</th>\n",
|
49 |
-
" <th>
|
50 |
-
" <th>
|
51 |
-
" <th>
|
52 |
-
" <th>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
" </tr>\n",
|
54 |
" </thead>\n",
|
55 |
" <tbody>\n",
|
56 |
" <tr>\n",
|
57 |
" <th>0</th>\n",
|
58 |
-
" <td>
|
59 |
-
" <td>
|
60 |
-
" <td>
|
61 |
-
" <td>
|
62 |
-
" <td>all homes plus multifamily</td>\n",
|
63 |
-
" <td>Ada County</td>\n",
|
64 |
-
" <td>Boise City, ID</td>\n",
|
65 |
-
" <td>16.0</td>\n",
|
66 |
-
" <td>1.0</td>\n",
|
67 |
-
" <td>2015-01-31</td>\n",
|
68 |
-
" <td>927.493763</td>\n",
|
69 |
-
" <td>927.493763</td>\n",
|
70 |
" <td>None</td>\n",
|
71 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
" </tr>\n",
|
73 |
" <tr>\n",
|
74 |
" <th>1</th>\n",
|
75 |
-
" <td>
|
76 |
-
" <td>
|
77 |
-
" <td>
|
78 |
-
" <td>
|
79 |
-
" <td>all homes plus multifamily</td>\n",
|
80 |
-
" <td>Ada County</td>\n",
|
81 |
-
" <td>Boise City, ID</td>\n",
|
82 |
-
" <td>16.0</td>\n",
|
83 |
-
" <td>1.0</td>\n",
|
84 |
-
" <td>2015-02-28</td>\n",
|
85 |
-
" <td>931.690623</td>\n",
|
86 |
-
" <td>931.690623</td>\n",
|
87 |
" <td>None</td>\n",
|
88 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
" </tr>\n",
|
90 |
" <tr>\n",
|
91 |
" <th>2</th>\n",
|
92 |
-
" <td>
|
93 |
-
" <td>
|
94 |
-
" <td>
|
95 |
-
" <td>
|
96 |
-
" <td>all homes plus multifamily</td>\n",
|
97 |
-
" <td>Ada County</td>\n",
|
98 |
-
" <td>Boise City, ID</td>\n",
|
99 |
-
" <td>16.0</td>\n",
|
100 |
-
" <td>1.0</td>\n",
|
101 |
-
" <td>2015-03-31</td>\n",
|
102 |
-
" <td>932.568601</td>\n",
|
103 |
-
" <td>932.568601</td>\n",
|
104 |
" <td>None</td>\n",
|
105 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
" </tr>\n",
|
107 |
" <tr>\n",
|
108 |
" <th>3</th>\n",
|
109 |
-
" <td>
|
110 |
-
" <td>
|
111 |
-
" <td>
|
112 |
-
" <td>
|
113 |
-
" <td>all homes plus multifamily</td>\n",
|
114 |
-
" <td>Ada County</td>\n",
|
115 |
-
" <td>Boise City, ID</td>\n",
|
116 |
-
" <td>16.0</td>\n",
|
117 |
-
" <td>1.0</td>\n",
|
118 |
-
" <td>2015-04-30</td>\n",
|
119 |
-
" <td>933.148134</td>\n",
|
120 |
-
" <td>933.148134</td>\n",
|
121 |
" <td>None</td>\n",
|
122 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
" </tr>\n",
|
124 |
" <tr>\n",
|
125 |
" <th>4</th>\n",
|
126 |
-
" <td>
|
127 |
-
" <td>
|
128 |
-
" <td>
|
129 |
-
" <td>
|
130 |
-
" <td>all homes plus multifamily</td>\n",
|
131 |
-
" <td>Ada County</td>\n",
|
132 |
-
" <td>Boise City, ID</td>\n",
|
133 |
-
" <td>16.0</td>\n",
|
134 |
-
" <td>1.0</td>\n",
|
135 |
-
" <td>2015-05-31</td>\n",
|
136 |
-
" <td>941.045724</td>\n",
|
137 |
-
" <td>941.045724</td>\n",
|
138 |
" <td>None</td>\n",
|
139 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
" </tr>\n",
|
141 |
" <tr>\n",
|
142 |
" <th>...</th>\n",
|
@@ -154,189 +178,239 @@
|
|
154 |
" <td>...</td>\n",
|
155 |
" <td>...</td>\n",
|
156 |
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
157 |
" </tr>\n",
|
158 |
" <tr>\n",
|
159 |
-
" <th>
|
160 |
-
" <td>
|
161 |
-
" <td>
|
162 |
-
" <td>
|
163 |
-
" <td>
|
164 |
-
" <td>
|
165 |
-
" <td>
|
166 |
-
" <td>
|
167 |
-
" <td>
|
168 |
-
" <td>
|
169 |
-
" <td>
|
170 |
-
" <td>
|
171 |
-
" <td>
|
172 |
-
" <td>
|
173 |
-
" <td>
|
|
|
|
|
|
|
|
|
174 |
" </tr>\n",
|
175 |
" <tr>\n",
|
176 |
-
" <th>
|
177 |
-
" <td>
|
178 |
-
" <td>
|
179 |
-
" <td>
|
180 |
-
" <td>
|
181 |
-
" <td>
|
182 |
-
" <td>
|
183 |
-
" <td>
|
184 |
-
" <td>
|
185 |
-
" <td>
|
186 |
-
" <td>
|
187 |
-
" <td>
|
188 |
-
" <td>
|
189 |
-
" <td>
|
190 |
-
" <td>
|
|
|
|
|
|
|
|
|
191 |
" </tr>\n",
|
192 |
" <tr>\n",
|
193 |
-
" <th>
|
194 |
-
" <td>
|
195 |
-
" <td>
|
196 |
-
" <td>
|
197 |
-
" <td>
|
198 |
-
" <td>
|
199 |
-
" <td>
|
200 |
-
" <td>
|
201 |
-
" <td>
|
202 |
-
" <td>
|
203 |
-
" <td>
|
204 |
-
" <td>
|
205 |
-
" <td>
|
206 |
-
" <td>
|
207 |
-
" <td>
|
|
|
|
|
|
|
|
|
208 |
" </tr>\n",
|
209 |
" <tr>\n",
|
210 |
-
" <th>
|
211 |
-
" <td>
|
212 |
-
" <td>
|
213 |
-
" <td>
|
214 |
-
" <td>
|
215 |
-
" <td>
|
216 |
-
" <td>
|
217 |
-
" <td>
|
218 |
-
" <td>
|
219 |
-
" <td>
|
220 |
-
" <td>
|
221 |
-
" <td>
|
222 |
-
" <td>
|
223 |
-
" <td>
|
224 |
-
" <td>
|
|
|
|
|
|
|
|
|
225 |
" </tr>\n",
|
226 |
" <tr>\n",
|
227 |
-
" <th>
|
228 |
-
" <td>
|
229 |
-
" <td>
|
230 |
-
" <td>
|
231 |
-
" <td>
|
232 |
-
" <td>
|
233 |
-
" <td>
|
234 |
-
" <td>
|
235 |
-
" <td>
|
236 |
-
" <td>
|
237 |
-
" <td>
|
238 |
-
" <td>
|
239 |
-
" <td>
|
240 |
-
" <td>
|
241 |
-
" <td>
|
|
|
|
|
|
|
|
|
242 |
" </tr>\n",
|
243 |
" </tbody>\n",
|
244 |
"</table>\n",
|
245 |
-
"<p>
|
246 |
"</div>"
|
247 |
],
|
248 |
"text/plain": [
|
249 |
-
"
|
250 |
-
"0
|
251 |
-
"1
|
252 |
-
"2
|
253 |
-
"3
|
254 |
-
"4
|
255 |
-
"...
|
256 |
-
"
|
257 |
-
"
|
258 |
-
"
|
259 |
-
"
|
260 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
"\n",
|
262 |
-
"
|
263 |
-
"0
|
264 |
-
"1
|
265 |
-
"2
|
266 |
-
"3
|
267 |
-
"4
|
268 |
-
"...
|
269 |
-
"
|
270 |
-
"
|
271 |
-
"
|
272 |
-
"
|
273 |
-
"
|
274 |
"\n",
|
275 |
-
"
|
276 |
-
"0
|
277 |
-
"1
|
278 |
-
"2
|
279 |
-
"3
|
280 |
-
"4
|
281 |
-
"...
|
282 |
-
"
|
283 |
-
"
|
284 |
-
"
|
285 |
-
"
|
286 |
-
"
|
287 |
"\n",
|
288 |
-
"
|
289 |
-
"0
|
290 |
-
"1
|
291 |
-
"2
|
292 |
-
"3
|
293 |
-
"4
|
294 |
-
"... ...
|
295 |
-
"
|
296 |
-
"
|
297 |
-
"
|
298 |
-
"
|
299 |
-
"
|
300 |
"\n",
|
301 |
-
"
|
302 |
-
"0
|
303 |
-
"1
|
304 |
-
"2
|
305 |
-
"3
|
306 |
-
"4
|
307 |
-
"...
|
308 |
-
"
|
309 |
-
"
|
310 |
-
"
|
311 |
-
"
|
312 |
-
"
|
313 |
"\n",
|
314 |
-
"[
|
315 |
]
|
316 |
},
|
317 |
-
"execution_count":
|
318 |
"metadata": {},
|
319 |
"output_type": "execute_result"
|
320 |
}
|
321 |
],
|
322 |
"source": [
|
323 |
"# read the data\n",
|
324 |
-
"x = pd.read_json(\"processed/
|
325 |
"x"
|
326 |
]
|
327 |
},
|
328 |
{
|
329 |
"cell_type": "code",
|
330 |
-
"execution_count":
|
331 |
"metadata": {},
|
332 |
"outputs": [
|
333 |
{
|
334 |
"data": {
|
335 |
"text/plain": [
|
336 |
-
"array(['
|
337 |
]
|
338 |
},
|
339 |
-
"execution_count":
|
340 |
"metadata": {},
|
341 |
"output_type": "execute_result"
|
342 |
}
|
@@ -348,16 +422,16 @@
|
|
348 |
},
|
349 |
{
|
350 |
"cell_type": "code",
|
351 |
-
"execution_count":
|
352 |
"metadata": {},
|
353 |
"outputs": [
|
354 |
{
|
355 |
"data": {
|
356 |
"text/plain": [
|
357 |
-
"array(['
|
358 |
]
|
359 |
},
|
360 |
-
"execution_count":
|
361 |
"metadata": {},
|
362 |
"output_type": "execute_result"
|
363 |
}
|
@@ -386,6 +460,183 @@
|
|
386 |
"source": [
|
387 |
"x[\"Bedroom Count\"].unique()"
|
388 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
}
|
390 |
],
|
391 |
"metadata": {
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 30,
|
16 |
"metadata": {},
|
17 |
"outputs": [
|
18 |
{
|
|
|
40 |
" <th>Size Rank</th>\n",
|
41 |
" <th>Region</th>\n",
|
42 |
" <th>Region Type</th>\n",
|
|
|
43 |
" <th>State</th>\n",
|
44 |
+
" <th>Home Type</th>\n",
|
|
|
|
|
45 |
" <th>Date</th>\n",
|
46 |
+
" <th>Median Sale to List Ratio</th>\n",
|
47 |
+
" <th>Median Sale Price</th>\n",
|
48 |
+
" <th>Median Sale Price (Smoothed) (Seasonally Adjusted)</th>\n",
|
49 |
+
" <th>Median Sale Price (Smoothed)</th>\n",
|
50 |
+
" <th>% Sold Below List (Smoothed)</th>\n",
|
51 |
+
" <th>Median Sale to List Ratio (Smoothed)</th>\n",
|
52 |
+
" <th>% Sold Above List</th>\n",
|
53 |
+
" <th>Mean Sale to List Ratio (Smoothed)</th>\n",
|
54 |
+
" <th>Mean Sale to List Ratio</th>\n",
|
55 |
+
" <th>% Sold Below List</th>\n",
|
56 |
+
" <th>% Sold Above List (Smoothed)</th>\n",
|
57 |
" </tr>\n",
|
58 |
" </thead>\n",
|
59 |
" <tbody>\n",
|
60 |
" <tr>\n",
|
61 |
" <th>0</th>\n",
|
62 |
+
" <td>102001</td>\n",
|
63 |
+
" <td>0</td>\n",
|
64 |
+
" <td>United States</td>\n",
|
65 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
" <td>None</td>\n",
|
67 |
+
" <td>SFR</td>\n",
|
68 |
+
" <td>2008-02-02</td>\n",
|
69 |
+
" <td>NaN</td>\n",
|
70 |
+
" <td>172000.0</td>\n",
|
71 |
+
" <td>NaN</td>\n",
|
72 |
+
" <td>NaN</td>\n",
|
73 |
+
" <td>NaN</td>\n",
|
74 |
+
" <td>NaN</td>\n",
|
75 |
+
" <td>NaN</td>\n",
|
76 |
+
" <td>NaN</td>\n",
|
77 |
+
" <td>NaN</td>\n",
|
78 |
+
" <td>NaN</td>\n",
|
79 |
+
" <td>NaN</td>\n",
|
80 |
" </tr>\n",
|
81 |
" <tr>\n",
|
82 |
" <th>1</th>\n",
|
83 |
+
" <td>102001</td>\n",
|
84 |
+
" <td>0</td>\n",
|
85 |
+
" <td>United States</td>\n",
|
86 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
" <td>None</td>\n",
|
88 |
+
" <td>SFR</td>\n",
|
89 |
+
" <td>2008-02-09</td>\n",
|
90 |
+
" <td>NaN</td>\n",
|
91 |
+
" <td>165400.0</td>\n",
|
92 |
+
" <td>NaN</td>\n",
|
93 |
+
" <td>NaN</td>\n",
|
94 |
+
" <td>NaN</td>\n",
|
95 |
+
" <td>NaN</td>\n",
|
96 |
+
" <td>NaN</td>\n",
|
97 |
+
" <td>NaN</td>\n",
|
98 |
+
" <td>NaN</td>\n",
|
99 |
+
" <td>NaN</td>\n",
|
100 |
+
" <td>NaN</td>\n",
|
101 |
" </tr>\n",
|
102 |
" <tr>\n",
|
103 |
" <th>2</th>\n",
|
104 |
+
" <td>102001</td>\n",
|
105 |
+
" <td>0</td>\n",
|
106 |
+
" <td>United States</td>\n",
|
107 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
" <td>None</td>\n",
|
109 |
+
" <td>SFR</td>\n",
|
110 |
+
" <td>2008-02-16</td>\n",
|
111 |
+
" <td>NaN</td>\n",
|
112 |
+
" <td>168000.0</td>\n",
|
113 |
+
" <td>NaN</td>\n",
|
114 |
+
" <td>NaN</td>\n",
|
115 |
+
" <td>NaN</td>\n",
|
116 |
+
" <td>NaN</td>\n",
|
117 |
+
" <td>NaN</td>\n",
|
118 |
+
" <td>NaN</td>\n",
|
119 |
+
" <td>NaN</td>\n",
|
120 |
+
" <td>NaN</td>\n",
|
121 |
+
" <td>NaN</td>\n",
|
122 |
" </tr>\n",
|
123 |
" <tr>\n",
|
124 |
" <th>3</th>\n",
|
125 |
+
" <td>102001</td>\n",
|
126 |
+
" <td>0</td>\n",
|
127 |
+
" <td>United States</td>\n",
|
128 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
" <td>None</td>\n",
|
130 |
+
" <td>SFR</td>\n",
|
131 |
+
" <td>2008-02-23</td>\n",
|
132 |
+
" <td>NaN</td>\n",
|
133 |
+
" <td>167600.0</td>\n",
|
134 |
+
" <td>NaN</td>\n",
|
135 |
+
" <td>167600.0</td>\n",
|
136 |
+
" <td>NaN</td>\n",
|
137 |
+
" <td>NaN</td>\n",
|
138 |
+
" <td>NaN</td>\n",
|
139 |
+
" <td>NaN</td>\n",
|
140 |
+
" <td>NaN</td>\n",
|
141 |
+
" <td>NaN</td>\n",
|
142 |
+
" <td>NaN</td>\n",
|
143 |
" </tr>\n",
|
144 |
" <tr>\n",
|
145 |
" <th>4</th>\n",
|
146 |
+
" <td>102001</td>\n",
|
147 |
+
" <td>0</td>\n",
|
148 |
+
" <td>United States</td>\n",
|
149 |
+
" <td>country</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
" <td>None</td>\n",
|
151 |
+
" <td>SFR</td>\n",
|
152 |
+
" <td>2008-03-01</td>\n",
|
153 |
+
" <td>NaN</td>\n",
|
154 |
+
" <td>168100.0</td>\n",
|
155 |
+
" <td>NaN</td>\n",
|
156 |
+
" <td>168100.0</td>\n",
|
157 |
+
" <td>NaN</td>\n",
|
158 |
+
" <td>NaN</td>\n",
|
159 |
+
" <td>NaN</td>\n",
|
160 |
+
" <td>NaN</td>\n",
|
161 |
+
" <td>NaN</td>\n",
|
162 |
+
" <td>NaN</td>\n",
|
163 |
+
" <td>NaN</td>\n",
|
164 |
" </tr>\n",
|
165 |
" <tr>\n",
|
166 |
" <th>...</th>\n",
|
|
|
178 |
" <td>...</td>\n",
|
179 |
" <td>...</td>\n",
|
180 |
" <td>...</td>\n",
|
181 |
+
" <td>...</td>\n",
|
182 |
+
" <td>...</td>\n",
|
183 |
+
" <td>...</td>\n",
|
184 |
+
" <td>...</td>\n",
|
185 |
" </tr>\n",
|
186 |
" <tr>\n",
|
187 |
+
" <th>255019</th>\n",
|
188 |
+
" <td>845160</td>\n",
|
189 |
+
" <td>198</td>\n",
|
190 |
+
" <td>Prescott Valley, AZ</td>\n",
|
191 |
+
" <td>msa</td>\n",
|
192 |
+
" <td>AZ</td>\n",
|
193 |
+
" <td>all homes</td>\n",
|
194 |
+
" <td>2023-11-11</td>\n",
|
195 |
+
" <td>0.985132</td>\n",
|
196 |
+
" <td>515000.0</td>\n",
|
197 |
+
" <td>480020.0</td>\n",
|
198 |
+
" <td>480020.0</td>\n",
|
199 |
+
" <td>0.651221</td>\n",
|
200 |
+
" <td>0.982460</td>\n",
|
201 |
+
" <td>0.080000</td>\n",
|
202 |
+
" <td>0.978546</td>\n",
|
203 |
+
" <td>0.983288</td>\n",
|
204 |
+
" <td>0.680000</td>\n",
|
205 |
+
" <td>0.119711</td>\n",
|
206 |
" </tr>\n",
|
207 |
" <tr>\n",
|
208 |
+
" <th>255020</th>\n",
|
209 |
+
" <td>845160</td>\n",
|
210 |
+
" <td>198</td>\n",
|
211 |
+
" <td>Prescott Valley, AZ</td>\n",
|
212 |
+
" <td>msa</td>\n",
|
213 |
+
" <td>AZ</td>\n",
|
214 |
+
" <td>all homes</td>\n",
|
215 |
+
" <td>2023-11-18</td>\n",
|
216 |
+
" <td>0.972559</td>\n",
|
217 |
+
" <td>510000.0</td>\n",
|
218 |
+
" <td>476901.0</td>\n",
|
219 |
+
" <td>476901.0</td>\n",
|
220 |
+
" <td>0.659583</td>\n",
|
221 |
+
" <td>0.980362</td>\n",
|
222 |
+
" <td>0.142857</td>\n",
|
223 |
+
" <td>0.972912</td>\n",
|
224 |
+
" <td>0.958341</td>\n",
|
225 |
+
" <td>0.625000</td>\n",
|
226 |
+
" <td>0.120214</td>\n",
|
227 |
" </tr>\n",
|
228 |
" <tr>\n",
|
229 |
+
" <th>255021</th>\n",
|
230 |
+
" <td>845160</td>\n",
|
231 |
+
" <td>198</td>\n",
|
232 |
+
" <td>Prescott Valley, AZ</td>\n",
|
233 |
+
" <td>msa</td>\n",
|
234 |
+
" <td>AZ</td>\n",
|
235 |
+
" <td>all homes</td>\n",
|
236 |
+
" <td>2023-11-25</td>\n",
|
237 |
+
" <td>0.979644</td>\n",
|
238 |
+
" <td>484500.0</td>\n",
|
239 |
+
" <td>496540.0</td>\n",
|
240 |
+
" <td>496540.0</td>\n",
|
241 |
+
" <td>0.669387</td>\n",
|
242 |
+
" <td>0.979179</td>\n",
|
243 |
+
" <td>0.088235</td>\n",
|
244 |
+
" <td>0.971177</td>\n",
|
245 |
+
" <td>0.973797</td>\n",
|
246 |
+
" <td>0.705882</td>\n",
|
247 |
+
" <td>0.107185</td>\n",
|
248 |
" </tr>\n",
|
249 |
" <tr>\n",
|
250 |
+
" <th>255022</th>\n",
|
251 |
+
" <td>845160</td>\n",
|
252 |
+
" <td>198</td>\n",
|
253 |
+
" <td>Prescott Valley, AZ</td>\n",
|
254 |
+
" <td>msa</td>\n",
|
255 |
+
" <td>AZ</td>\n",
|
256 |
+
" <td>all homes</td>\n",
|
257 |
+
" <td>2023-12-02</td>\n",
|
258 |
+
" <td>0.978261</td>\n",
|
259 |
+
" <td>538000.0</td>\n",
|
260 |
+
" <td>510491.0</td>\n",
|
261 |
+
" <td>510491.0</td>\n",
|
262 |
+
" <td>0.678777</td>\n",
|
263 |
+
" <td>0.978899</td>\n",
|
264 |
+
" <td>0.126761</td>\n",
|
265 |
+
" <td>0.970576</td>\n",
|
266 |
+
" <td>0.966876</td>\n",
|
267 |
+
" <td>0.704225</td>\n",
|
268 |
+
" <td>0.109463</td>\n",
|
269 |
" </tr>\n",
|
270 |
" <tr>\n",
|
271 |
+
" <th>255023</th>\n",
|
272 |
+
" <td>845160</td>\n",
|
273 |
+
" <td>198</td>\n",
|
274 |
+
" <td>Prescott Valley, AZ</td>\n",
|
275 |
+
" <td>msa</td>\n",
|
276 |
+
" <td>AZ</td>\n",
|
277 |
+
" <td>all homes</td>\n",
|
278 |
+
" <td>2023-12-09</td>\n",
|
279 |
+
" <td>0.981498</td>\n",
|
280 |
+
" <td>485000.0</td>\n",
|
281 |
+
" <td>503423.0</td>\n",
|
282 |
+
" <td>503423.0</td>\n",
|
283 |
+
" <td>0.658777</td>\n",
|
284 |
+
" <td>0.977990</td>\n",
|
285 |
+
" <td>0.100000</td>\n",
|
286 |
+
" <td>0.970073</td>\n",
|
287 |
+
" <td>0.981278</td>\n",
|
288 |
+
" <td>0.600000</td>\n",
|
289 |
+
" <td>0.114463</td>\n",
|
290 |
" </tr>\n",
|
291 |
" </tbody>\n",
|
292 |
"</table>\n",
|
293 |
+
"<p>255024 rows Γ 18 columns</p>\n",
|
294 |
"</div>"
|
295 |
],
|
296 |
"text/plain": [
|
297 |
+
" Region ID Size Rank Region Region Type State \\\n",
|
298 |
+
"0 102001 0 United States country None \n",
|
299 |
+
"1 102001 0 United States country None \n",
|
300 |
+
"2 102001 0 United States country None \n",
|
301 |
+
"3 102001 0 United States country None \n",
|
302 |
+
"4 102001 0 United States country None \n",
|
303 |
+
"... ... ... ... ... ... \n",
|
304 |
+
"255019 845160 198 Prescott Valley, AZ msa AZ \n",
|
305 |
+
"255020 845160 198 Prescott Valley, AZ msa AZ \n",
|
306 |
+
"255021 845160 198 Prescott Valley, AZ msa AZ \n",
|
307 |
+
"255022 845160 198 Prescott Valley, AZ msa AZ \n",
|
308 |
+
"255023 845160 198 Prescott Valley, AZ msa AZ \n",
|
309 |
+
"\n",
|
310 |
+
" Home Type Date Median Sale to List Ratio Median Sale Price \\\n",
|
311 |
+
"0 SFR 2008-02-02 NaN 172000.0 \n",
|
312 |
+
"1 SFR 2008-02-09 NaN 165400.0 \n",
|
313 |
+
"2 SFR 2008-02-16 NaN 168000.0 \n",
|
314 |
+
"3 SFR 2008-02-23 NaN 167600.0 \n",
|
315 |
+
"4 SFR 2008-03-01 NaN 168100.0 \n",
|
316 |
+
"... ... ... ... ... \n",
|
317 |
+
"255019 all homes 2023-11-11 0.985132 515000.0 \n",
|
318 |
+
"255020 all homes 2023-11-18 0.972559 510000.0 \n",
|
319 |
+
"255021 all homes 2023-11-25 0.979644 484500.0 \n",
|
320 |
+
"255022 all homes 2023-12-02 0.978261 538000.0 \n",
|
321 |
+
"255023 all homes 2023-12-09 0.981498 485000.0 \n",
|
322 |
+
"\n",
|
323 |
+
" Median Sale Price (Smoothed) (Seasonally Adjusted) \\\n",
|
324 |
+
"0 NaN \n",
|
325 |
+
"1 NaN \n",
|
326 |
+
"2 NaN \n",
|
327 |
+
"3 NaN \n",
|
328 |
+
"4 NaN \n",
|
329 |
+
"... ... \n",
|
330 |
+
"255019 480020.0 \n",
|
331 |
+
"255020 476901.0 \n",
|
332 |
+
"255021 496540.0 \n",
|
333 |
+
"255022 510491.0 \n",
|
334 |
+
"255023 503423.0 \n",
|
335 |
"\n",
|
336 |
+
" Median Sale Price (Smoothed) % Sold Below List (Smoothed) \\\n",
|
337 |
+
"0 NaN NaN \n",
|
338 |
+
"1 NaN NaN \n",
|
339 |
+
"2 NaN NaN \n",
|
340 |
+
"3 167600.0 NaN \n",
|
341 |
+
"4 168100.0 NaN \n",
|
342 |
+
"... ... ... \n",
|
343 |
+
"255019 480020.0 0.651221 \n",
|
344 |
+
"255020 476901.0 0.659583 \n",
|
345 |
+
"255021 496540.0 0.669387 \n",
|
346 |
+
"255022 510491.0 0.678777 \n",
|
347 |
+
"255023 503423.0 0.658777 \n",
|
348 |
"\n",
|
349 |
+
" Median Sale to List Ratio (Smoothed) % Sold Above List \\\n",
|
350 |
+
"0 NaN NaN \n",
|
351 |
+
"1 NaN NaN \n",
|
352 |
+
"2 NaN NaN \n",
|
353 |
+
"3 NaN NaN \n",
|
354 |
+
"4 NaN NaN \n",
|
355 |
+
"... ... ... \n",
|
356 |
+
"255019 0.982460 0.080000 \n",
|
357 |
+
"255020 0.980362 0.142857 \n",
|
358 |
+
"255021 0.979179 0.088235 \n",
|
359 |
+
"255022 0.978899 0.126761 \n",
|
360 |
+
"255023 0.977990 0.100000 \n",
|
361 |
"\n",
|
362 |
+
" Mean Sale to List Ratio (Smoothed) Mean Sale to List Ratio \\\n",
|
363 |
+
"0 NaN NaN \n",
|
364 |
+
"1 NaN NaN \n",
|
365 |
+
"2 NaN NaN \n",
|
366 |
+
"3 NaN NaN \n",
|
367 |
+
"4 NaN NaN \n",
|
368 |
+
"... ... ... \n",
|
369 |
+
"255019 0.978546 0.983288 \n",
|
370 |
+
"255020 0.972912 0.958341 \n",
|
371 |
+
"255021 0.971177 0.973797 \n",
|
372 |
+
"255022 0.970576 0.966876 \n",
|
373 |
+
"255023 0.970073 0.981278 \n",
|
374 |
"\n",
|
375 |
+
" % Sold Below List % Sold Above List (Smoothed) \n",
|
376 |
+
"0 NaN NaN \n",
|
377 |
+
"1 NaN NaN \n",
|
378 |
+
"2 NaN NaN \n",
|
379 |
+
"3 NaN NaN \n",
|
380 |
+
"4 NaN NaN \n",
|
381 |
+
"... ... ... \n",
|
382 |
+
"255019 0.680000 0.119711 \n",
|
383 |
+
"255020 0.625000 0.120214 \n",
|
384 |
+
"255021 0.705882 0.107185 \n",
|
385 |
+
"255022 0.704225 0.109463 \n",
|
386 |
+
"255023 0.600000 0.114463 \n",
|
387 |
"\n",
|
388 |
+
"[255024 rows x 18 columns]"
|
389 |
]
|
390 |
},
|
391 |
+
"execution_count": 30,
|
392 |
"metadata": {},
|
393 |
"output_type": "execute_result"
|
394 |
}
|
395 |
],
|
396 |
"source": [
|
397 |
"# read the data\n",
|
398 |
+
"x = pd.read_json(\"processed/sales/final5.jsonl\", lines=True)\n",
|
399 |
"x"
|
400 |
]
|
401 |
},
|
402 |
{
|
403 |
"cell_type": "code",
|
404 |
+
"execution_count": 33,
|
405 |
"metadata": {},
|
406 |
"outputs": [
|
407 |
{
|
408 |
"data": {
|
409 |
"text/plain": [
|
410 |
+
"array(['country', 'msa'], dtype=object)"
|
411 |
]
|
412 |
},
|
413 |
+
"execution_count": 33,
|
414 |
"metadata": {},
|
415 |
"output_type": "execute_result"
|
416 |
}
|
|
|
422 |
},
|
423 |
{
|
424 |
"cell_type": "code",
|
425 |
+
"execution_count": 32,
|
426 |
"metadata": {},
|
427 |
"outputs": [
|
428 |
{
|
429 |
"data": {
|
430 |
"text/plain": [
|
431 |
+
"array(['SFR', 'all homes'], dtype=object)"
|
432 |
]
|
433 |
},
|
434 |
+
"execution_count": 32,
|
435 |
"metadata": {},
|
436 |
"output_type": "execute_result"
|
437 |
}
|
|
|
460 |
"source": [
|
461 |
"x[\"Bedroom Count\"].unique()"
|
462 |
]
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "code",
|
466 |
+
"execution_count": 34,
|
467 |
+
"metadata": {},
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"name": "stderr",
|
471 |
+
"output_type": "stream",
|
472 |
+
"text": [
|
473 |
+
"/Users/misikoff/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
474 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
475 |
+
]
|
476 |
+
}
|
477 |
+
],
|
478 |
+
"source": [
|
479 |
+
"from datasets import load_dataset"
|
480 |
+
]
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"cell_type": "code",
|
484 |
+
"execution_count": 35,
|
485 |
+
"metadata": {},
|
486 |
+
"outputs": [
|
487 |
+
{
|
488 |
+
"name": "stdout",
|
489 |
+
"output_type": "stream",
|
490 |
+
"text": [
|
491 |
+
"home_values_forecasts\n"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"name": "stderr",
|
496 |
+
"output_type": "stream",
|
497 |
+
"text": [
|
498 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 15.9MB/s]\n",
|
499 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 19.4MB/s]\n",
|
500 |
+
"Downloading data: 100%|ββββββββββ| 14.1M/14.1M [00:01<00:00, 11.0MB/s]\n",
|
501 |
+
"Generating train split: 31854 examples [00:01, 27592.53 examples/s]\n"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"name": "stdout",
|
506 |
+
"output_type": "stream",
|
507 |
+
"text": [
|
508 |
+
"new_construction\n"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"name": "stderr",
|
513 |
+
"output_type": "stream",
|
514 |
+
"text": [
|
515 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 7.13MB/s]\n",
|
516 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 10.4MB/s]\n",
|
517 |
+
"Downloading data: 100%|ββββββββββ| 10.9M/10.9M [00:01<00:00, 5.63MB/s]\n",
|
518 |
+
"Generating train split: 49487 examples [00:01, 42744.19 examples/s]\n"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"name": "stdout",
|
523 |
+
"output_type": "stream",
|
524 |
+
"text": [
|
525 |
+
"for_sale_listings\n"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"name": "stderr",
|
530 |
+
"output_type": "stream",
|
531 |
+
"text": [
|
532 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 5.22MB/s]\n",
|
533 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 4.72MB/s]\n",
|
534 |
+
"Downloading data: 100%|ββββββββββ| 180M/180M [00:06<00:00, 28.9MB/s] \n",
|
535 |
+
"Generating train split: 578653 examples [00:16, 34651.20 examples/s]\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"rentals\n"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"name": "stderr",
|
547 |
+
"output_type": "stream",
|
548 |
+
"text": [
|
549 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 6.18MB/s]\n",
|
550 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 13.3MB/s]\n",
|
551 |
+
"Downloading data: 100%|ββββββββββ| 446M/446M [00:11<00:00, 38.2MB/s] \n",
|
552 |
+
"Generating train split: 1258740 examples [00:28, 44189.96 examples/s]\n"
|
553 |
+
]
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"name": "stdout",
|
557 |
+
"output_type": "stream",
|
558 |
+
"text": [
|
559 |
+
"sales\n"
|
560 |
+
]
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"name": "stderr",
|
564 |
+
"output_type": "stream",
|
565 |
+
"text": [
|
566 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 12.7MB/s]\n",
|
567 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 13.5MB/s]\n",
|
568 |
+
"Downloading data: 100%|ββββββββββ| 139M/139M [00:04<00:00, 34.2MB/s] \n",
|
569 |
+
"Generating train split: 255024 examples [00:09, 26686.54 examples/s]\n"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"name": "stdout",
|
574 |
+
"output_type": "stream",
|
575 |
+
"text": [
|
576 |
+
"home_values\n"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"name": "stderr",
|
581 |
+
"output_type": "stream",
|
582 |
+
"text": [
|
583 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 2.18MB/s]\n",
|
584 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 8.86MB/s]\n",
|
585 |
+
"Downloading data: 100%|ββββββββββ| 42.1M/42.1M [00:01<00:00, 32.4MB/s]\n",
|
586 |
+
"Generating train split: 117912 examples [00:03, 37382.19 examples/s]\n"
|
587 |
+
]
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"name": "stdout",
|
591 |
+
"output_type": "stream",
|
592 |
+
"text": [
|
593 |
+
"days_on_market\n"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"name": "stderr",
|
598 |
+
"output_type": "stream",
|
599 |
+
"text": [
|
600 |
+
"Downloading builder script: 100%|ββββββββββ| 26.8k/26.8k [00:00<00:00, 12.7MB/s]\n",
|
601 |
+
"Downloading readme: 100%|ββββββββββ| 13.2k/13.2k [00:00<00:00, 8.86MB/s]\n",
|
602 |
+
"Downloading data: 100%|ββββββββββ| 233M/233M [00:06<00:00, 34.9MB/s] \n",
|
603 |
+
"Generating train split: 586714 examples [00:17, 34104.98 examples/s]\n"
|
604 |
+
]
|
605 |
+
}
|
606 |
+
],
|
607 |
+
"source": [
|
608 |
+
"dataset_dict = {}\n",
|
609 |
+
"\n",
|
610 |
+
"configs = [\n",
|
611 |
+
" \"home_values_forecasts\",\n",
|
612 |
+
" \"new_construction\",\n",
|
613 |
+
" \"for_sale_listings\",\n",
|
614 |
+
" \"rentals\",\n",
|
615 |
+
" \"sales\",\n",
|
616 |
+
" \"home_values\",\n",
|
617 |
+
" \"days_on_market\",\n",
|
618 |
+
"]\n",
|
619 |
+
"for config in configs:\n",
|
620 |
+
" print(config)\n",
|
621 |
+
" dataset_dict[config] = load_dataset(\n",
|
622 |
+
" \"misikoff/zillow\",\n",
|
623 |
+
" config,\n",
|
624 |
+
" trust_remote_code=True,\n",
|
625 |
+
" download_mode=\"force_redownload\",\n",
|
626 |
+
" cache_dir=\"~/desktop/cache\",\n",
|
627 |
+
" )"
|
628 |
+
]
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"cell_type": "code",
|
632 |
+
"execution_count": null,
|
633 |
+
"metadata": {},
|
634 |
+
"outputs": [],
|
635 |
+
"source": [
|
636 |
+
"df = pd.read_feather(\n",
|
637 |
+
" \"~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\"\n",
|
638 |
+
")"
|
639 |
+
]
|
640 |
}
|
641 |
],
|
642 |
"metadata": {
|
dataset_infos.json β test-stuff/dataset_infos.json
RENAMED
File without changes
|
test.json β test-stuff/test.json
RENAMED
File without changes
|