fix: simplify structure of processors through shared functions
Browse files- .gitignore +3 -1
- README.md +1 -1
- processed/days_on_market/final.jsonl +3 -0
- processed/for_sale_listings/final.jsonl +3 -0
- processed/home_values/final.jsonl +3 -0
- processed/new_construction/final.jsonl +3 -0
- processed/rentals/final.jsonl +3 -0
- processed/sales/final.jsonl +3 -0
- processors/days_on_market.ipynb +27 -76
- processors/for_sale_listings.ipynb +199 -253
- processors/helpers.py +69 -0
- processors/home_value_forecasts.ipynb +11 -12
- processors/home_values.ipynb +382 -166
- processors/new_construction.ipynb +24 -50
- processors/rentals.ipynb +33 -95
- processors/sales.ipynb +47 -144
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
*.DS_STORE
|
|
|
|
|
|
1 |
+
*.DS_STORE
|
2 |
+
|
3 |
+
*__pycache__*
|
README.md
CHANGED
@@ -15,7 +15,7 @@ Updated 2023-02-01
|
|
15 |
|
16 |
This dataset contains several configs produced based on files available at https://www.zillow.com/research/data/.
|
17 |
|
18 |
-
|
19 |
<!-- list each with a short description (1 sentence) -->
|
20 |
- [`home_values`](#home-values): Zillow Home Value Index (ZHVI) for all homes, mid-tier, bottom-tier, and top-tier homes.
|
21 |
- [`home_values_forecasts`](#home-values-forecasts): Zillow Home Value Forecast (ZHVF) for all homes, mid-tier, bottom-tier, and top-tier homes.
|
|
|
15 |
|
16 |
This dataset contains several configs produced based on files available at https://www.zillow.com/research/data/.
|
17 |
|
18 |
+
Supported configs:
|
19 |
<!-- list each with a short description (1 sentence) -->
|
20 |
- [`home_values`](#home-values): Zillow Home Value Index (ZHVI) for all homes, mid-tier, bottom-tier, and top-tier homes.
|
21 |
- [`home_values_forecasts`](#home-values-forecasts): Zillow Home Value Forecast (ZHVF) for all homes, mid-tier, bottom-tier, and top-tier homes.
|
processed/days_on_market/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cf82e9ce68b4ebf991214a7de3fbc8f25de319da470741761d44d11d5cc89f3
|
3 |
+
size 230154547
|
processed/for_sale_listings/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38e3f7794b23cfdb27f446d888b6c930078e5fb511311c7d216a248f27c74757
|
3 |
+
size 179627939
|
processed/home_values/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e50e8888742d20a9cf36f4dc41aeabaf37933a8c90de9825f160d2e5e37a011
|
3 |
+
size 88318760
|
processed/new_construction/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:276b20bd2011faa1fb59f58892ef16b8bbfbb8111a10c7e8d4f433a9226bf3c5
|
3 |
+
size 10903095
|
processed/rentals/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8881aca35bd30388f8ce14417b5f6edc4db01dca1be18e8a7e467fcb4258dac
|
3 |
+
size 413052557
|
processed/sales/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99077b13eeb65343b0676dcbc58b673265ab88468abc1fc4a7fc161c40f490d7
|
3 |
+
size 279576767
|
processors/days_on_market.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -322,7 +324,7 @@
|
|
322 |
"[586714 rows x 13 columns]"
|
323 |
]
|
324 |
},
|
325 |
-
"execution_count":
|
326 |
"metadata": {},
|
327 |
"output_type": "execute_result"
|
328 |
}
|
@@ -347,52 +349,6 @@
|
|
347 |
"}\n",
|
348 |
"\n",
|
349 |
"\n",
|
350 |
-
"def get_df(\n",
|
351 |
-
" df, exclude_columns, columns_to_pivot, col_name, smoothed, seasonally_adjusted\n",
|
352 |
-
"):\n",
|
353 |
-
" if smoothed:\n",
|
354 |
-
" col_name += \" (Smoothed)\"\n",
|
355 |
-
" if seasonally_adjusted:\n",
|
356 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
357 |
-
"\n",
|
358 |
-
" df = pd.melt(\n",
|
359 |
-
" df,\n",
|
360 |
-
" id_vars=exclude_columns,\n",
|
361 |
-
" value_vars=columns_to_pivot,\n",
|
362 |
-
" var_name=\"Date\",\n",
|
363 |
-
" value_name=col_name,\n",
|
364 |
-
" )\n",
|
365 |
-
" return df\n",
|
366 |
-
"\n",
|
367 |
-
"\n",
|
368 |
-
"def get_combined_df(data_frames):\n",
|
369 |
-
" combined_df = None\n",
|
370 |
-
" if len(data_frames) > 1:\n",
|
371 |
-
" # iterate over dataframes and merge or concat\n",
|
372 |
-
" combined_df = data_frames[0]\n",
|
373 |
-
" for i in range(1, len(data_frames)):\n",
|
374 |
-
" cur_df = data_frames[i]\n",
|
375 |
-
" combined_df = pd.merge(\n",
|
376 |
-
" combined_df,\n",
|
377 |
-
" cur_df,\n",
|
378 |
-
" on=[\n",
|
379 |
-
" \"RegionID\",\n",
|
380 |
-
" \"SizeRank\",\n",
|
381 |
-
" \"RegionName\",\n",
|
382 |
-
" \"RegionType\",\n",
|
383 |
-
" \"StateName\",\n",
|
384 |
-
" \"Home Type\",\n",
|
385 |
-
" \"Date\",\n",
|
386 |
-
" ],\n",
|
387 |
-
" how=\"outer\",\n",
|
388 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
389 |
-
" )\n",
|
390 |
-
" elif len(data_frames) == 1:\n",
|
391 |
-
" combined_df = data_frames[0]\n",
|
392 |
-
"\n",
|
393 |
-
" return combined_df\n",
|
394 |
-
"\n",
|
395 |
-
"\n",
|
396 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
397 |
" if filename.endswith(\".csv\"):\n",
|
398 |
" # print(\"processing \" + filename)\n",
|
@@ -412,9 +368,6 @@
|
|
412 |
" # Identify columns to pivot\n",
|
413 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
414 |
"\n",
|
415 |
-
" smoothed = \"_sm_\" in filename\n",
|
416 |
-
" seasonally_adjusted = \"_sa_\" in filename\n",
|
417 |
-
"\n",
|
418 |
" # iterate over slug column mappings and get df\n",
|
419 |
" for slug, col_name in slug_column_mappings.items():\n",
|
420 |
" if slug in filename:\n",
|
@@ -423,35 +376,36 @@
|
|
423 |
" exclude_columns,\n",
|
424 |
" columns_to_pivot,\n",
|
425 |
" col_name,\n",
|
426 |
-
"
|
427 |
-
" seasonally_adjusted,\n",
|
428 |
" )\n",
|
429 |
"\n",
|
430 |
" data_frames.append(cur_df)\n",
|
431 |
" break\n",
|
432 |
"\n",
|
433 |
"\n",
|
434 |
-
"combined_df = get_combined_df(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
"\n",
|
436 |
"columns_to_coalesce = slug_column_mappings.values()\n",
|
437 |
-
"print(columns_to_coalesce)\n",
|
438 |
-
"\n",
|
439 |
-
"for index, row in combined_df.iterrows():\n",
|
440 |
-
" for col in combined_df.columns:\n",
|
441 |
-
" for column_to_coalesce in columns_to_coalesce:\n",
|
442 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
443 |
-
" if not pd.isna(row[col]):\n",
|
444 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
445 |
"\n",
|
446 |
-
"
|
447 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
448 |
"\n",
|
449 |
"combined_df"
|
450 |
]
|
451 |
},
|
452 |
{
|
453 |
"cell_type": "code",
|
454 |
-
"execution_count":
|
455 |
"metadata": {},
|
456 |
"outputs": [
|
457 |
{
|
@@ -741,14 +695,14 @@
|
|
741 |
"[586714 rows x 13 columns]"
|
742 |
]
|
743 |
},
|
744 |
-
"execution_count":
|
745 |
"metadata": {},
|
746 |
"output_type": "execute_result"
|
747 |
}
|
748 |
],
|
749 |
"source": [
|
750 |
-
"
|
751 |
-
"final_df =
|
752 |
" columns={\n",
|
753 |
" \"RegionID\": \"Region ID\",\n",
|
754 |
" \"SizeRank\": \"Size Rank\",\n",
|
@@ -763,14 +717,11 @@
|
|
763 |
},
|
764 |
{
|
765 |
"cell_type": "code",
|
766 |
-
"execution_count":
|
767 |
"metadata": {},
|
768 |
"outputs": [],
|
769 |
"source": [
|
770 |
-
"
|
771 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
772 |
-
"\n",
|
773 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
774 |
]
|
775 |
}
|
776 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 6,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 7,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
324 |
"[586714 rows x 13 columns]"
|
325 |
]
|
326 |
},
|
327 |
+
"execution_count": 7,
|
328 |
"metadata": {},
|
329 |
"output_type": "execute_result"
|
330 |
}
|
|
|
349 |
"}\n",
|
350 |
"\n",
|
351 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
353 |
" if filename.endswith(\".csv\"):\n",
|
354 |
" # print(\"processing \" + filename)\n",
|
|
|
368 |
" # Identify columns to pivot\n",
|
369 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
370 |
"\n",
|
|
|
|
|
|
|
371 |
" # iterate over slug column mappings and get df\n",
|
372 |
" for slug, col_name in slug_column_mappings.items():\n",
|
373 |
" if slug in filename:\n",
|
|
|
376 |
" exclude_columns,\n",
|
377 |
" columns_to_pivot,\n",
|
378 |
" col_name,\n",
|
379 |
+
" filename,\n",
|
|
|
380 |
" )\n",
|
381 |
"\n",
|
382 |
" data_frames.append(cur_df)\n",
|
383 |
" break\n",
|
384 |
"\n",
|
385 |
"\n",
|
386 |
+
"combined_df = get_combined_df(\n",
|
387 |
+
" data_frames,\n",
|
388 |
+
" [\n",
|
389 |
+
" \"RegionID\",\n",
|
390 |
+
" \"SizeRank\",\n",
|
391 |
+
" \"RegionName\",\n",
|
392 |
+
" \"RegionType\",\n",
|
393 |
+
" \"StateName\",\n",
|
394 |
+
" \"Home Type\",\n",
|
395 |
+
" \"Date\",\n",
|
396 |
+
" ],\n",
|
397 |
+
")\n",
|
398 |
"\n",
|
399 |
"columns_to_coalesce = slug_column_mappings.values()\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
"\n",
|
401 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
402 |
"\n",
|
403 |
"combined_df"
|
404 |
]
|
405 |
},
|
406 |
{
|
407 |
"cell_type": "code",
|
408 |
+
"execution_count": 8,
|
409 |
"metadata": {},
|
410 |
"outputs": [
|
411 |
{
|
|
|
695 |
"[586714 rows x 13 columns]"
|
696 |
]
|
697 |
},
|
698 |
+
"execution_count": 8,
|
699 |
"metadata": {},
|
700 |
"output_type": "execute_result"
|
701 |
}
|
702 |
],
|
703 |
"source": [
|
704 |
+
"# Adjust column names\n",
|
705 |
+
"final_df = combined_df.rename(\n",
|
706 |
" columns={\n",
|
707 |
" \"RegionID\": \"Region ID\",\n",
|
708 |
" \"SizeRank\": \"Size Rank\",\n",
|
|
|
717 |
},
|
718 |
{
|
719 |
"cell_type": "code",
|
720 |
+
"execution_count": 9,
|
721 |
"metadata": {},
|
722 |
"outputs": [],
|
723 |
"source": [
|
724 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
725 |
]
|
726 |
}
|
727 |
],
|
processors/for_sale_listings.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -86,12 +88,12 @@
|
|
86 |
" <th>StateName</th>\n",
|
87 |
" <th>Home Type</th>\n",
|
88 |
" <th>Date</th>\n",
|
89 |
-
" <th>New Pending (Smoothed)</th>\n",
|
90 |
" <th>Median Listing Price</th>\n",
|
91 |
" <th>Median Listing Price (Smoothed)</th>\n",
|
92 |
-
" <th>New Pending</th>\n",
|
93 |
" <th>New Listings</th>\n",
|
94 |
" <th>New Listings (Smoothed)</th>\n",
|
|
|
95 |
" </tr>\n",
|
96 |
" </thead>\n",
|
97 |
" <tbody>\n",
|
@@ -104,12 +106,12 @@
|
|
104 |
" <td>NaN</td>\n",
|
105 |
" <td>SFR</td>\n",
|
106 |
" <td>2018-01-13</td>\n",
|
107 |
-
" <td>NaN</td>\n",
|
108 |
" <td>259000.0</td>\n",
|
109 |
" <td>NaN</td>\n",
|
110 |
" <td>NaN</td>\n",
|
111 |
" <td>NaN</td>\n",
|
112 |
" <td>NaN</td>\n",
|
|
|
113 |
" </tr>\n",
|
114 |
" <tr>\n",
|
115 |
" <th>1</th>\n",
|
@@ -120,12 +122,12 @@
|
|
120 |
" <td>NaN</td>\n",
|
121 |
" <td>SFR</td>\n",
|
122 |
" <td>2018-01-20</td>\n",
|
123 |
-
" <td>NaN</td>\n",
|
124 |
" <td>259900.0</td>\n",
|
125 |
" <td>NaN</td>\n",
|
126 |
" <td>NaN</td>\n",
|
127 |
" <td>NaN</td>\n",
|
128 |
" <td>NaN</td>\n",
|
|
|
129 |
" </tr>\n",
|
130 |
" <tr>\n",
|
131 |
" <th>2</th>\n",
|
@@ -136,12 +138,12 @@
|
|
136 |
" <td>NaN</td>\n",
|
137 |
" <td>SFR</td>\n",
|
138 |
" <td>2018-01-27</td>\n",
|
139 |
-
" <td>NaN</td>\n",
|
140 |
" <td>259900.0</td>\n",
|
141 |
" <td>NaN</td>\n",
|
142 |
" <td>NaN</td>\n",
|
143 |
" <td>NaN</td>\n",
|
144 |
" <td>NaN</td>\n",
|
|
|
145 |
" </tr>\n",
|
146 |
" <tr>\n",
|
147 |
" <th>3</th>\n",
|
@@ -151,9 +153,9 @@
|
|
151 |
" <td>country</td>\n",
|
152 |
" <td>NaN</td>\n",
|
153 |
" <td>SFR</td>\n",
|
154 |
-
" <td>2018-
|
155 |
-
" <td>
|
156 |
-
" <td>
|
157 |
" <td>NaN</td>\n",
|
158 |
" <td>NaN</td>\n",
|
159 |
" <td>NaN</td>\n",
|
@@ -167,10 +169,10 @@
|
|
167 |
" <td>country</td>\n",
|
168 |
" <td>NaN</td>\n",
|
169 |
" <td>SFR</td>\n",
|
170 |
-
" <td>2018-02-
|
|
|
|
|
171 |
" <td>NaN</td>\n",
|
172 |
-
" <td>260000.0</td>\n",
|
173 |
-
" <td>259700.0</td>\n",
|
174 |
" <td>NaN</td>\n",
|
175 |
" <td>NaN</td>\n",
|
176 |
" <td>NaN</td>\n",
|
@@ -192,71 +194,71 @@
|
|
192 |
" <td>...</td>\n",
|
193 |
" </tr>\n",
|
194 |
" <tr>\n",
|
195 |
-
" <th>
|
196 |
" <td>845172</td>\n",
|
197 |
" <td>769</td>\n",
|
198 |
" <td>Winfield, KS</td>\n",
|
199 |
" <td>msa</td>\n",
|
200 |
" <td>KS</td>\n",
|
201 |
" <td>all homes</td>\n",
|
202 |
-
" <td>2023-12-
|
|
|
|
|
203 |
" <td>NaN</td>\n",
|
204 |
-
" <td>133938.0</td>\n",
|
205 |
-
" <td>133938.0</td>\n",
|
206 |
" <td>NaN</td>\n",
|
207 |
" <td>NaN</td>\n",
|
208 |
" <td>NaN</td>\n",
|
209 |
" </tr>\n",
|
210 |
" <tr>\n",
|
211 |
-
" <th>
|
212 |
" <td>845172</td>\n",
|
213 |
" <td>769</td>\n",
|
214 |
" <td>Winfield, KS</td>\n",
|
215 |
" <td>msa</td>\n",
|
216 |
" <td>KS</td>\n",
|
217 |
" <td>all homes</td>\n",
|
218 |
-
" <td>2023-12-
|
|
|
|
|
219 |
" <td>NaN</td>\n",
|
220 |
-
" <td>126463.0</td>\n",
|
221 |
-
" <td>126463.0</td>\n",
|
222 |
" <td>NaN</td>\n",
|
223 |
" <td>NaN</td>\n",
|
224 |
" <td>NaN</td>\n",
|
225 |
" </tr>\n",
|
226 |
" <tr>\n",
|
227 |
-
" <th>
|
228 |
" <td>845172</td>\n",
|
229 |
" <td>769</td>\n",
|
230 |
" <td>Winfield, KS</td>\n",
|
231 |
" <td>msa</td>\n",
|
232 |
" <td>KS</td>\n",
|
233 |
" <td>all homes</td>\n",
|
234 |
-
" <td>2023-12-
|
|
|
|
|
235 |
" <td>NaN</td>\n",
|
236 |
-
" <td>123225.0</td>\n",
|
237 |
-
" <td>123225.0</td>\n",
|
238 |
" <td>NaN</td>\n",
|
239 |
" <td>NaN</td>\n",
|
240 |
" <td>NaN</td>\n",
|
241 |
" </tr>\n",
|
242 |
" <tr>\n",
|
243 |
-
" <th>
|
244 |
" <td>845172</td>\n",
|
245 |
" <td>769</td>\n",
|
246 |
" <td>Winfield, KS</td>\n",
|
247 |
" <td>msa</td>\n",
|
248 |
" <td>KS</td>\n",
|
249 |
" <td>all homes</td>\n",
|
250 |
-
" <td>2023-12-
|
251 |
-
" <td>
|
252 |
-
" <td>
|
253 |
-
" <td>
|
254 |
-
" <td>
|
255 |
-
" <td>
|
256 |
-
" <td>
|
257 |
" </tr>\n",
|
258 |
" <tr>\n",
|
259 |
-
" <th>
|
260 |
" <td>845172</td>\n",
|
261 |
" <td>769</td>\n",
|
262 |
" <td>Winfield, KS</td>\n",
|
@@ -264,16 +266,16 @@
|
|
264 |
" <td>KS</td>\n",
|
265 |
" <td>all homes</td>\n",
|
266 |
" <td>2024-01-06</td>\n",
|
267 |
-
" <td>
|
268 |
-
" <td>121488.0</td>\n",
|
269 |
" <td>121488.0</td>\n",
|
270 |
" <td>NaN</td>\n",
|
271 |
" <td>NaN</td>\n",
|
272 |
" <td>NaN</td>\n",
|
|
|
273 |
" </tr>\n",
|
274 |
" </tbody>\n",
|
275 |
"</table>\n",
|
276 |
-
"<p>
|
277 |
"</div>"
|
278 |
],
|
279 |
"text/plain": [
|
@@ -284,55 +286,55 @@
|
|
284 |
"3 102001 0 United States country NaN SFR \n",
|
285 |
"4 102001 0 United States country NaN SFR \n",
|
286 |
"... ... ... ... ... ... ... \n",
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"
|
291 |
-
"
|
292 |
"\n",
|
293 |
-
" Date
|
294 |
-
"0 2018-01-13
|
295 |
-
"1 2018-01-20
|
296 |
-
"2 2018-01-27
|
297 |
-
"3 2018-
|
298 |
-
"4 2018-02-
|
299 |
-
"... ...
|
300 |
-
"
|
301 |
-
"
|
302 |
-
"
|
303 |
-
"
|
304 |
-
"
|
305 |
"\n",
|
306 |
-
"
|
307 |
-
"0
|
308 |
-
"1
|
309 |
-
"2
|
310 |
-
"3
|
311 |
-
"4
|
312 |
-
"...
|
313 |
-
"
|
314 |
-
"
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
"\n",
|
319 |
-
" New
|
320 |
-
"0
|
321 |
-
"1
|
322 |
-
"2
|
323 |
-
"3
|
324 |
-
"4
|
325 |
-
"...
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
"\n",
|
332 |
-
"[
|
333 |
]
|
334 |
},
|
335 |
-
"execution_count":
|
336 |
"metadata": {},
|
337 |
"output_type": "execute_result"
|
338 |
}
|
@@ -349,6 +351,13 @@
|
|
349 |
" \"Home Type\",\n",
|
350 |
"]\n",
|
351 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
"data_frames = []\n",
|
353 |
"\n",
|
354 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
@@ -357,7 +366,7 @@
|
|
357 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
358 |
"\n",
|
359 |
" # ignore monthly data for now since it is redundant\n",
|
360 |
-
" if \"
|
361 |
" continue\n",
|
362 |
"\n",
|
363 |
" if \"sfrcondo\" in filename:\n",
|
@@ -370,84 +379,32 @@
|
|
370 |
" # Identify columns to pivot\n",
|
371 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
372 |
"\n",
|
373 |
-
"
|
374 |
-
"
|
375 |
-
"
|
376 |
-
"
|
377 |
-
"
|
378 |
-
"
|
379 |
-
"
|
380 |
-
"
|
381 |
-
"
|
382 |
-
" \"Median Listing Price\"\n",
|
383 |
-
" if not smoothed\n",
|
384 |
-
" else \"Median Listing Price (Smoothed)\"\n",
|
385 |
-
" ),\n",
|
386 |
-
" )\n",
|
387 |
-
" data_frames.append(cur_df)\n",
|
388 |
"\n",
|
389 |
-
"
|
390 |
-
"
|
391 |
-
" cur_df,\n",
|
392 |
-
" id_vars=exclude_columns,\n",
|
393 |
-
" value_vars=columns_to_pivot,\n",
|
394 |
-
" var_name=\"Date\",\n",
|
395 |
-
" value_name=(\n",
|
396 |
-
" \"New Listings\" if not smoothed else \"New Listings (Smoothed)\"\n",
|
397 |
-
" ),\n",
|
398 |
-
" )\n",
|
399 |
-
" data_frames.append(cur_df)\n",
|
400 |
"\n",
|
401 |
-
" elif \"new_pending\" in filename:\n",
|
402 |
-
" cur_df = pd.melt(\n",
|
403 |
-
" cur_df,\n",
|
404 |
-
" id_vars=exclude_columns,\n",
|
405 |
-
" value_vars=columns_to_pivot,\n",
|
406 |
-
" var_name=\"Date\",\n",
|
407 |
-
" value_name=\"New Pending\" if not smoothed else \"New Pending (Smoothed)\",\n",
|
408 |
-
" )\n",
|
409 |
-
" data_frames.append(cur_df)\n",
|
410 |
"\n",
|
411 |
-
"
|
412 |
-
"
|
413 |
-
" \
|
414 |
-
"
|
415 |
-
"
|
416 |
-
"
|
417 |
-
"
|
418 |
-
"
|
419 |
-
"
|
420 |
-
"\n",
|
421 |
-
"
|
422 |
-
"
|
423 |
-
" combined_df = None\n",
|
424 |
-
" if len(data_frames) > 1:\n",
|
425 |
-
" # iterate over dataframes and merge or concat\n",
|
426 |
-
" combined_df = data_frames[0]\n",
|
427 |
-
" for i in range(1, len(data_frames)):\n",
|
428 |
-
" cur_df = data_frames[i]\n",
|
429 |
-
" combined_df = pd.merge(\n",
|
430 |
-
" combined_df,\n",
|
431 |
-
" cur_df,\n",
|
432 |
-
" on=[\n",
|
433 |
-
" \"RegionID\",\n",
|
434 |
-
" \"SizeRank\",\n",
|
435 |
-
" \"RegionName\",\n",
|
436 |
-
" \"RegionType\",\n",
|
437 |
-
" \"StateName\",\n",
|
438 |
-
" \"Home Type\",\n",
|
439 |
-
" \"Date\",\n",
|
440 |
-
" ],\n",
|
441 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
442 |
-
" how=\"outer\",\n",
|
443 |
-
" )\n",
|
444 |
-
" elif len(data_frames) == 1:\n",
|
445 |
-
" combined_df = data_frames[0]\n",
|
446 |
-
"\n",
|
447 |
-
" return combined_df\n",
|
448 |
-
"\n",
|
449 |
-
"\n",
|
450 |
-
"combined_df = get_combined_df(data_frames)\n",
|
451 |
"\n",
|
452 |
"\n",
|
453 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
@@ -460,22 +417,14 @@
|
|
460 |
" \"New Pending\",\n",
|
461 |
"]\n",
|
462 |
"\n",
|
463 |
-
"
|
464 |
-
" for col in combined_df.columns:\n",
|
465 |
-
" for column_to_coalesce in columns_to_coalesce:\n",
|
466 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
467 |
-
" if not pd.isna(row[col]):\n",
|
468 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
469 |
-
"\n",
|
470 |
-
"# remove columns with underscores\n",
|
471 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
472 |
"\n",
|
473 |
"combined_df"
|
474 |
]
|
475 |
},
|
476 |
{
|
477 |
"cell_type": "code",
|
478 |
-
"execution_count":
|
479 |
"metadata": {},
|
480 |
"outputs": [
|
481 |
{
|
@@ -506,12 +455,12 @@
|
|
506 |
" <th>State</th>\n",
|
507 |
" <th>Home Type</th>\n",
|
508 |
" <th>Date</th>\n",
|
509 |
-
" <th>New Pending (Smoothed)</th>\n",
|
510 |
" <th>Median Listing Price</th>\n",
|
511 |
" <th>Median Listing Price (Smoothed)</th>\n",
|
512 |
-
" <th>New Pending</th>\n",
|
513 |
" <th>New Listings</th>\n",
|
514 |
" <th>New Listings (Smoothed)</th>\n",
|
|
|
515 |
" </tr>\n",
|
516 |
" </thead>\n",
|
517 |
" <tbody>\n",
|
@@ -524,12 +473,12 @@
|
|
524 |
" <td>NaN</td>\n",
|
525 |
" <td>SFR</td>\n",
|
526 |
" <td>2018-01-13</td>\n",
|
527 |
-
" <td>NaN</td>\n",
|
528 |
" <td>259000.0</td>\n",
|
529 |
" <td>NaN</td>\n",
|
530 |
" <td>NaN</td>\n",
|
531 |
" <td>NaN</td>\n",
|
532 |
" <td>NaN</td>\n",
|
|
|
533 |
" </tr>\n",
|
534 |
" <tr>\n",
|
535 |
" <th>1</th>\n",
|
@@ -540,12 +489,12 @@
|
|
540 |
" <td>NaN</td>\n",
|
541 |
" <td>SFR</td>\n",
|
542 |
" <td>2018-01-20</td>\n",
|
543 |
-
" <td>NaN</td>\n",
|
544 |
" <td>259900.0</td>\n",
|
545 |
" <td>NaN</td>\n",
|
546 |
" <td>NaN</td>\n",
|
547 |
" <td>NaN</td>\n",
|
548 |
" <td>NaN</td>\n",
|
|
|
549 |
" </tr>\n",
|
550 |
" <tr>\n",
|
551 |
" <th>2</th>\n",
|
@@ -556,12 +505,12 @@
|
|
556 |
" <td>NaN</td>\n",
|
557 |
" <td>SFR</td>\n",
|
558 |
" <td>2018-01-27</td>\n",
|
559 |
-
" <td>NaN</td>\n",
|
560 |
" <td>259900.0</td>\n",
|
561 |
" <td>NaN</td>\n",
|
562 |
" <td>NaN</td>\n",
|
563 |
" <td>NaN</td>\n",
|
564 |
" <td>NaN</td>\n",
|
|
|
565 |
" </tr>\n",
|
566 |
" <tr>\n",
|
567 |
" <th>3</th>\n",
|
@@ -571,9 +520,9 @@
|
|
571 |
" <td>country</td>\n",
|
572 |
" <td>NaN</td>\n",
|
573 |
" <td>SFR</td>\n",
|
574 |
-
" <td>2018-
|
575 |
-
" <td>
|
576 |
-
" <td>
|
577 |
" <td>NaN</td>\n",
|
578 |
" <td>NaN</td>\n",
|
579 |
" <td>NaN</td>\n",
|
@@ -587,10 +536,10 @@
|
|
587 |
" <td>country</td>\n",
|
588 |
" <td>NaN</td>\n",
|
589 |
" <td>SFR</td>\n",
|
590 |
-
" <td>2018-02-
|
|
|
|
|
591 |
" <td>NaN</td>\n",
|
592 |
-
" <td>260000.0</td>\n",
|
593 |
-
" <td>259700.0</td>\n",
|
594 |
" <td>NaN</td>\n",
|
595 |
" <td>NaN</td>\n",
|
596 |
" <td>NaN</td>\n",
|
@@ -612,71 +561,71 @@
|
|
612 |
" <td>...</td>\n",
|
613 |
" </tr>\n",
|
614 |
" <tr>\n",
|
615 |
-
" <th>
|
616 |
" <td>845172</td>\n",
|
617 |
" <td>769</td>\n",
|
618 |
" <td>Winfield, KS</td>\n",
|
619 |
" <td>msa</td>\n",
|
620 |
" <td>KS</td>\n",
|
621 |
" <td>all homes</td>\n",
|
622 |
-
" <td>2023-12-
|
|
|
|
|
623 |
" <td>NaN</td>\n",
|
624 |
-
" <td>133938.0</td>\n",
|
625 |
-
" <td>133938.0</td>\n",
|
626 |
" <td>NaN</td>\n",
|
627 |
" <td>NaN</td>\n",
|
628 |
" <td>NaN</td>\n",
|
629 |
" </tr>\n",
|
630 |
" <tr>\n",
|
631 |
-
" <th>
|
632 |
" <td>845172</td>\n",
|
633 |
" <td>769</td>\n",
|
634 |
" <td>Winfield, KS</td>\n",
|
635 |
" <td>msa</td>\n",
|
636 |
" <td>KS</td>\n",
|
637 |
" <td>all homes</td>\n",
|
638 |
-
" <td>2023-12-
|
|
|
|
|
639 |
" <td>NaN</td>\n",
|
640 |
-
" <td>126463.0</td>\n",
|
641 |
-
" <td>126463.0</td>\n",
|
642 |
" <td>NaN</td>\n",
|
643 |
" <td>NaN</td>\n",
|
644 |
" <td>NaN</td>\n",
|
645 |
" </tr>\n",
|
646 |
" <tr>\n",
|
647 |
-
" <th>
|
648 |
" <td>845172</td>\n",
|
649 |
" <td>769</td>\n",
|
650 |
" <td>Winfield, KS</td>\n",
|
651 |
" <td>msa</td>\n",
|
652 |
" <td>KS</td>\n",
|
653 |
" <td>all homes</td>\n",
|
654 |
-
" <td>2023-12-
|
|
|
|
|
655 |
" <td>NaN</td>\n",
|
656 |
-
" <td>123225.0</td>\n",
|
657 |
-
" <td>123225.0</td>\n",
|
658 |
" <td>NaN</td>\n",
|
659 |
" <td>NaN</td>\n",
|
660 |
" <td>NaN</td>\n",
|
661 |
" </tr>\n",
|
662 |
" <tr>\n",
|
663 |
-
" <th>
|
664 |
" <td>845172</td>\n",
|
665 |
" <td>769</td>\n",
|
666 |
" <td>Winfield, KS</td>\n",
|
667 |
" <td>msa</td>\n",
|
668 |
" <td>KS</td>\n",
|
669 |
" <td>all homes</td>\n",
|
670 |
-
" <td>2023-12-
|
671 |
-
" <td>
|
672 |
-
" <td>
|
673 |
-
" <td>
|
674 |
-
" <td>
|
675 |
-
" <td>
|
676 |
-
" <td>
|
677 |
" </tr>\n",
|
678 |
" <tr>\n",
|
679 |
-
" <th>
|
680 |
" <td>845172</td>\n",
|
681 |
" <td>769</td>\n",
|
682 |
" <td>Winfield, KS</td>\n",
|
@@ -684,16 +633,16 @@
|
|
684 |
" <td>KS</td>\n",
|
685 |
" <td>all homes</td>\n",
|
686 |
" <td>2024-01-06</td>\n",
|
687 |
-
" <td>
|
688 |
-
" <td>121488.0</td>\n",
|
689 |
" <td>121488.0</td>\n",
|
690 |
" <td>NaN</td>\n",
|
691 |
" <td>NaN</td>\n",
|
692 |
" <td>NaN</td>\n",
|
|
|
693 |
" </tr>\n",
|
694 |
" </tbody>\n",
|
695 |
"</table>\n",
|
696 |
-
"<p>
|
697 |
"</div>"
|
698 |
],
|
699 |
"text/plain": [
|
@@ -704,62 +653,62 @@
|
|
704 |
"3 102001 0 United States country NaN SFR \n",
|
705 |
"4 102001 0 United States country NaN SFR \n",
|
706 |
"... ... ... ... ... ... ... \n",
|
707 |
-
"
|
708 |
-
"
|
709 |
-
"
|
710 |
-
"
|
711 |
-
"
|
712 |
"\n",
|
713 |
-
" Date
|
714 |
-
"0 2018-01-13
|
715 |
-
"1 2018-01-20
|
716 |
-
"2 2018-01-27
|
717 |
-
"3 2018-
|
718 |
-
"4 2018-02-
|
719 |
-
"... ...
|
720 |
-
"
|
721 |
-
"
|
722 |
-
"
|
723 |
-
"
|
724 |
-
"
|
725 |
"\n",
|
726 |
-
"
|
727 |
-
"0
|
728 |
-
"1
|
729 |
-
"2
|
730 |
-
"3
|
731 |
-
"4
|
732 |
-
"...
|
733 |
-
"
|
734 |
-
"
|
735 |
-
"
|
736 |
-
"
|
737 |
-
"
|
738 |
"\n",
|
739 |
-
" New
|
740 |
-
"0
|
741 |
-
"1
|
742 |
-
"2
|
743 |
-
"3
|
744 |
-
"4
|
745 |
-
"...
|
746 |
-
"
|
747 |
-
"
|
748 |
-
"
|
749 |
-
"
|
750 |
-
"
|
751 |
"\n",
|
752 |
-
"[
|
753 |
]
|
754 |
},
|
755 |
-
"execution_count":
|
756 |
"metadata": {},
|
757 |
"output_type": "execute_result"
|
758 |
}
|
759 |
],
|
760 |
"source": [
|
761 |
-
"
|
762 |
-
"final_df =
|
763 |
" columns={\n",
|
764 |
" \"RegionID\": \"Region ID\",\n",
|
765 |
" \"SizeRank\": \"Size Rank\",\n",
|
@@ -774,14 +723,11 @@
|
|
774 |
},
|
775 |
{
|
776 |
"cell_type": "code",
|
777 |
-
"execution_count":
|
778 |
"metadata": {},
|
779 |
"outputs": [],
|
780 |
"source": [
|
781 |
-
"
|
782 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
783 |
-
"\n",
|
784 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
785 |
]
|
786 |
}
|
787 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
88 |
" <th>StateName</th>\n",
|
89 |
" <th>Home Type</th>\n",
|
90 |
" <th>Date</th>\n",
|
|
|
91 |
" <th>Median Listing Price</th>\n",
|
92 |
" <th>Median Listing Price (Smoothed)</th>\n",
|
93 |
+
" <th>New Pending (Smoothed)</th>\n",
|
94 |
" <th>New Listings</th>\n",
|
95 |
" <th>New Listings (Smoothed)</th>\n",
|
96 |
+
" <th>New Pending</th>\n",
|
97 |
" </tr>\n",
|
98 |
" </thead>\n",
|
99 |
" <tbody>\n",
|
|
|
106 |
" <td>NaN</td>\n",
|
107 |
" <td>SFR</td>\n",
|
108 |
" <td>2018-01-13</td>\n",
|
|
|
109 |
" <td>259000.0</td>\n",
|
110 |
" <td>NaN</td>\n",
|
111 |
" <td>NaN</td>\n",
|
112 |
" <td>NaN</td>\n",
|
113 |
" <td>NaN</td>\n",
|
114 |
+
" <td>NaN</td>\n",
|
115 |
" </tr>\n",
|
116 |
" <tr>\n",
|
117 |
" <th>1</th>\n",
|
|
|
122 |
" <td>NaN</td>\n",
|
123 |
" <td>SFR</td>\n",
|
124 |
" <td>2018-01-20</td>\n",
|
|
|
125 |
" <td>259900.0</td>\n",
|
126 |
" <td>NaN</td>\n",
|
127 |
" <td>NaN</td>\n",
|
128 |
" <td>NaN</td>\n",
|
129 |
" <td>NaN</td>\n",
|
130 |
+
" <td>NaN</td>\n",
|
131 |
" </tr>\n",
|
132 |
" <tr>\n",
|
133 |
" <th>2</th>\n",
|
|
|
138 |
" <td>NaN</td>\n",
|
139 |
" <td>SFR</td>\n",
|
140 |
" <td>2018-01-27</td>\n",
|
|
|
141 |
" <td>259900.0</td>\n",
|
142 |
" <td>NaN</td>\n",
|
143 |
" <td>NaN</td>\n",
|
144 |
" <td>NaN</td>\n",
|
145 |
" <td>NaN</td>\n",
|
146 |
+
" <td>NaN</td>\n",
|
147 |
" </tr>\n",
|
148 |
" <tr>\n",
|
149 |
" <th>3</th>\n",
|
|
|
153 |
" <td>country</td>\n",
|
154 |
" <td>NaN</td>\n",
|
155 |
" <td>SFR</td>\n",
|
156 |
+
" <td>2018-02-03</td>\n",
|
157 |
+
" <td>260000.0</td>\n",
|
158 |
+
" <td>259700.0</td>\n",
|
159 |
" <td>NaN</td>\n",
|
160 |
" <td>NaN</td>\n",
|
161 |
" <td>NaN</td>\n",
|
|
|
169 |
" <td>country</td>\n",
|
170 |
" <td>NaN</td>\n",
|
171 |
" <td>SFR</td>\n",
|
172 |
+
" <td>2018-02-10</td>\n",
|
173 |
+
" <td>264900.0</td>\n",
|
174 |
+
" <td>261175.0</td>\n",
|
175 |
" <td>NaN</td>\n",
|
|
|
|
|
176 |
" <td>NaN</td>\n",
|
177 |
" <td>NaN</td>\n",
|
178 |
" <td>NaN</td>\n",
|
|
|
194 |
" <td>...</td>\n",
|
195 |
" </tr>\n",
|
196 |
" <tr>\n",
|
197 |
+
" <th>578648</th>\n",
|
198 |
" <td>845172</td>\n",
|
199 |
" <td>769</td>\n",
|
200 |
" <td>Winfield, KS</td>\n",
|
201 |
" <td>msa</td>\n",
|
202 |
" <td>KS</td>\n",
|
203 |
" <td>all homes</td>\n",
|
204 |
+
" <td>2023-12-09</td>\n",
|
205 |
+
" <td>134950.0</td>\n",
|
206 |
+
" <td>138913.0</td>\n",
|
207 |
" <td>NaN</td>\n",
|
|
|
|
|
208 |
" <td>NaN</td>\n",
|
209 |
" <td>NaN</td>\n",
|
210 |
" <td>NaN</td>\n",
|
211 |
" </tr>\n",
|
212 |
" <tr>\n",
|
213 |
+
" <th>578649</th>\n",
|
214 |
" <td>845172</td>\n",
|
215 |
" <td>769</td>\n",
|
216 |
" <td>Winfield, KS</td>\n",
|
217 |
" <td>msa</td>\n",
|
218 |
" <td>KS</td>\n",
|
219 |
" <td>all homes</td>\n",
|
220 |
+
" <td>2023-12-16</td>\n",
|
221 |
+
" <td>120000.0</td>\n",
|
222 |
+
" <td>133938.0</td>\n",
|
223 |
" <td>NaN</td>\n",
|
|
|
|
|
224 |
" <td>NaN</td>\n",
|
225 |
" <td>NaN</td>\n",
|
226 |
" <td>NaN</td>\n",
|
227 |
" </tr>\n",
|
228 |
" <tr>\n",
|
229 |
+
" <th>578650</th>\n",
|
230 |
" <td>845172</td>\n",
|
231 |
" <td>769</td>\n",
|
232 |
" <td>Winfield, KS</td>\n",
|
233 |
" <td>msa</td>\n",
|
234 |
" <td>KS</td>\n",
|
235 |
" <td>all homes</td>\n",
|
236 |
+
" <td>2023-12-23</td>\n",
|
237 |
+
" <td>111000.0</td>\n",
|
238 |
+
" <td>126463.0</td>\n",
|
239 |
" <td>NaN</td>\n",
|
|
|
|
|
240 |
" <td>NaN</td>\n",
|
241 |
" <td>NaN</td>\n",
|
242 |
" <td>NaN</td>\n",
|
243 |
" </tr>\n",
|
244 |
" <tr>\n",
|
245 |
+
" <th>578651</th>\n",
|
246 |
" <td>845172</td>\n",
|
247 |
" <td>769</td>\n",
|
248 |
" <td>Winfield, KS</td>\n",
|
249 |
" <td>msa</td>\n",
|
250 |
" <td>KS</td>\n",
|
251 |
" <td>all homes</td>\n",
|
252 |
+
" <td>2023-12-30</td>\n",
|
253 |
+
" <td>126950.0</td>\n",
|
254 |
+
" <td>123225.0</td>\n",
|
255 |
+
" <td>NaN</td>\n",
|
256 |
+
" <td>NaN</td>\n",
|
257 |
+
" <td>NaN</td>\n",
|
258 |
+
" <td>NaN</td>\n",
|
259 |
" </tr>\n",
|
260 |
" <tr>\n",
|
261 |
+
" <th>578652</th>\n",
|
262 |
" <td>845172</td>\n",
|
263 |
" <td>769</td>\n",
|
264 |
" <td>Winfield, KS</td>\n",
|
|
|
266 |
" <td>KS</td>\n",
|
267 |
" <td>all homes</td>\n",
|
268 |
" <td>2024-01-06</td>\n",
|
269 |
+
" <td>128000.0</td>\n",
|
|
|
270 |
" <td>121488.0</td>\n",
|
271 |
" <td>NaN</td>\n",
|
272 |
" <td>NaN</td>\n",
|
273 |
" <td>NaN</td>\n",
|
274 |
+
" <td>NaN</td>\n",
|
275 |
" </tr>\n",
|
276 |
" </tbody>\n",
|
277 |
"</table>\n",
|
278 |
+
"<p>578653 rows × 13 columns</p>\n",
|
279 |
"</div>"
|
280 |
],
|
281 |
"text/plain": [
|
|
|
286 |
"3 102001 0 United States country NaN SFR \n",
|
287 |
"4 102001 0 United States country NaN SFR \n",
|
288 |
"... ... ... ... ... ... ... \n",
|
289 |
+
"578648 845172 769 Winfield, KS msa KS all homes \n",
|
290 |
+
"578649 845172 769 Winfield, KS msa KS all homes \n",
|
291 |
+
"578650 845172 769 Winfield, KS msa KS all homes \n",
|
292 |
+
"578651 845172 769 Winfield, KS msa KS all homes \n",
|
293 |
+
"578652 845172 769 Winfield, KS msa KS all homes \n",
|
294 |
"\n",
|
295 |
+
" Date Median Listing Price Median Listing Price (Smoothed) \\\n",
|
296 |
+
"0 2018-01-13 259000.0 NaN \n",
|
297 |
+
"1 2018-01-20 259900.0 NaN \n",
|
298 |
+
"2 2018-01-27 259900.0 NaN \n",
|
299 |
+
"3 2018-02-03 260000.0 259700.0 \n",
|
300 |
+
"4 2018-02-10 264900.0 261175.0 \n",
|
301 |
+
"... ... ... ... \n",
|
302 |
+
"578648 2023-12-09 134950.0 138913.0 \n",
|
303 |
+
"578649 2023-12-16 120000.0 133938.0 \n",
|
304 |
+
"578650 2023-12-23 111000.0 126463.0 \n",
|
305 |
+
"578651 2023-12-30 126950.0 123225.0 \n",
|
306 |
+
"578652 2024-01-06 128000.0 121488.0 \n",
|
307 |
"\n",
|
308 |
+
" New Pending (Smoothed) New Listings New Listings (Smoothed) \\\n",
|
309 |
+
"0 NaN NaN NaN \n",
|
310 |
+
"1 NaN NaN NaN \n",
|
311 |
+
"2 NaN NaN NaN \n",
|
312 |
+
"3 NaN NaN NaN \n",
|
313 |
+
"4 NaN NaN NaN \n",
|
314 |
+
"... ... ... ... \n",
|
315 |
+
"578648 NaN NaN NaN \n",
|
316 |
+
"578649 NaN NaN NaN \n",
|
317 |
+
"578650 NaN NaN NaN \n",
|
318 |
+
"578651 NaN NaN NaN \n",
|
319 |
+
"578652 NaN NaN NaN \n",
|
320 |
"\n",
|
321 |
+
" New Pending \n",
|
322 |
+
"0 NaN \n",
|
323 |
+
"1 NaN \n",
|
324 |
+
"2 NaN \n",
|
325 |
+
"3 NaN \n",
|
326 |
+
"4 NaN \n",
|
327 |
+
"... ... \n",
|
328 |
+
"578648 NaN \n",
|
329 |
+
"578649 NaN \n",
|
330 |
+
"578650 NaN \n",
|
331 |
+
"578651 NaN \n",
|
332 |
+
"578652 NaN \n",
|
333 |
"\n",
|
334 |
+
"[578653 rows x 13 columns]"
|
335 |
]
|
336 |
},
|
337 |
+
"execution_count": 3,
|
338 |
"metadata": {},
|
339 |
"output_type": "execute_result"
|
340 |
}
|
|
|
351 |
" \"Home Type\",\n",
|
352 |
"]\n",
|
353 |
"\n",
|
354 |
+
"slug_column_mappings = {\n",
|
355 |
+
" \"_mlp_\": \"Median Listing Price\",\n",
|
356 |
+
" \"_new_listings_\": \"New Listings\",\n",
|
357 |
+
" \"new_pending\": \"New Pending\",\n",
|
358 |
+
"}\n",
|
359 |
+
"\n",
|
360 |
+
"\n",
|
361 |
"data_frames = []\n",
|
362 |
"\n",
|
363 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
|
|
366 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
367 |
"\n",
|
368 |
" # ignore monthly data for now since it is redundant\n",
|
369 |
+
" if \"month\" in filename:\n",
|
370 |
" continue\n",
|
371 |
"\n",
|
372 |
" if \"sfrcondo\" in filename:\n",
|
|
|
379 |
" # Identify columns to pivot\n",
|
380 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
381 |
"\n",
|
382 |
+
" for slug, col_name in slug_column_mappings.items():\n",
|
383 |
+
" if slug in filename:\n",
|
384 |
+
" cur_df = get_df(\n",
|
385 |
+
" cur_df,\n",
|
386 |
+
" exclude_columns,\n",
|
387 |
+
" columns_to_pivot,\n",
|
388 |
+
" col_name,\n",
|
389 |
+
" filename,\n",
|
390 |
+
" )\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
"\n",
|
392 |
+
" data_frames.append(cur_df)\n",
|
393 |
+
" break\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
"\n",
|
396 |
+
"combined_df = get_combined_df(\n",
|
397 |
+
" data_frames,\n",
|
398 |
+
" [\n",
|
399 |
+
" \"RegionID\",\n",
|
400 |
+
" \"SizeRank\",\n",
|
401 |
+
" \"RegionName\",\n",
|
402 |
+
" \"RegionType\",\n",
|
403 |
+
" \"StateName\",\n",
|
404 |
+
" \"Home Type\",\n",
|
405 |
+
" \"Date\",\n",
|
406 |
+
" ],\n",
|
407 |
+
")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
"\n",
|
409 |
"\n",
|
410 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
|
|
417 |
" \"New Pending\",\n",
|
418 |
"]\n",
|
419 |
"\n",
|
420 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
"\n",
|
422 |
"combined_df"
|
423 |
]
|
424 |
},
|
425 |
{
|
426 |
"cell_type": "code",
|
427 |
+
"execution_count": 4,
|
428 |
"metadata": {},
|
429 |
"outputs": [
|
430 |
{
|
|
|
455 |
" <th>State</th>\n",
|
456 |
" <th>Home Type</th>\n",
|
457 |
" <th>Date</th>\n",
|
|
|
458 |
" <th>Median Listing Price</th>\n",
|
459 |
" <th>Median Listing Price (Smoothed)</th>\n",
|
460 |
+
" <th>New Pending (Smoothed)</th>\n",
|
461 |
" <th>New Listings</th>\n",
|
462 |
" <th>New Listings (Smoothed)</th>\n",
|
463 |
+
" <th>New Pending</th>\n",
|
464 |
" </tr>\n",
|
465 |
" </thead>\n",
|
466 |
" <tbody>\n",
|
|
|
473 |
" <td>NaN</td>\n",
|
474 |
" <td>SFR</td>\n",
|
475 |
" <td>2018-01-13</td>\n",
|
|
|
476 |
" <td>259000.0</td>\n",
|
477 |
" <td>NaN</td>\n",
|
478 |
" <td>NaN</td>\n",
|
479 |
" <td>NaN</td>\n",
|
480 |
" <td>NaN</td>\n",
|
481 |
+
" <td>NaN</td>\n",
|
482 |
" </tr>\n",
|
483 |
" <tr>\n",
|
484 |
" <th>1</th>\n",
|
|
|
489 |
" <td>NaN</td>\n",
|
490 |
" <td>SFR</td>\n",
|
491 |
" <td>2018-01-20</td>\n",
|
|
|
492 |
" <td>259900.0</td>\n",
|
493 |
" <td>NaN</td>\n",
|
494 |
" <td>NaN</td>\n",
|
495 |
" <td>NaN</td>\n",
|
496 |
" <td>NaN</td>\n",
|
497 |
+
" <td>NaN</td>\n",
|
498 |
" </tr>\n",
|
499 |
" <tr>\n",
|
500 |
" <th>2</th>\n",
|
|
|
505 |
" <td>NaN</td>\n",
|
506 |
" <td>SFR</td>\n",
|
507 |
" <td>2018-01-27</td>\n",
|
|
|
508 |
" <td>259900.0</td>\n",
|
509 |
" <td>NaN</td>\n",
|
510 |
" <td>NaN</td>\n",
|
511 |
" <td>NaN</td>\n",
|
512 |
" <td>NaN</td>\n",
|
513 |
+
" <td>NaN</td>\n",
|
514 |
" </tr>\n",
|
515 |
" <tr>\n",
|
516 |
" <th>3</th>\n",
|
|
|
520 |
" <td>country</td>\n",
|
521 |
" <td>NaN</td>\n",
|
522 |
" <td>SFR</td>\n",
|
523 |
+
" <td>2018-02-03</td>\n",
|
524 |
+
" <td>260000.0</td>\n",
|
525 |
+
" <td>259700.0</td>\n",
|
526 |
" <td>NaN</td>\n",
|
527 |
" <td>NaN</td>\n",
|
528 |
" <td>NaN</td>\n",
|
|
|
536 |
" <td>country</td>\n",
|
537 |
" <td>NaN</td>\n",
|
538 |
" <td>SFR</td>\n",
|
539 |
+
" <td>2018-02-10</td>\n",
|
540 |
+
" <td>264900.0</td>\n",
|
541 |
+
" <td>261175.0</td>\n",
|
542 |
" <td>NaN</td>\n",
|
|
|
|
|
543 |
" <td>NaN</td>\n",
|
544 |
" <td>NaN</td>\n",
|
545 |
" <td>NaN</td>\n",
|
|
|
561 |
" <td>...</td>\n",
|
562 |
" </tr>\n",
|
563 |
" <tr>\n",
|
564 |
+
" <th>578648</th>\n",
|
565 |
" <td>845172</td>\n",
|
566 |
" <td>769</td>\n",
|
567 |
" <td>Winfield, KS</td>\n",
|
568 |
" <td>msa</td>\n",
|
569 |
" <td>KS</td>\n",
|
570 |
" <td>all homes</td>\n",
|
571 |
+
" <td>2023-12-09</td>\n",
|
572 |
+
" <td>134950.0</td>\n",
|
573 |
+
" <td>138913.0</td>\n",
|
574 |
" <td>NaN</td>\n",
|
|
|
|
|
575 |
" <td>NaN</td>\n",
|
576 |
" <td>NaN</td>\n",
|
577 |
" <td>NaN</td>\n",
|
578 |
" </tr>\n",
|
579 |
" <tr>\n",
|
580 |
+
" <th>578649</th>\n",
|
581 |
" <td>845172</td>\n",
|
582 |
" <td>769</td>\n",
|
583 |
" <td>Winfield, KS</td>\n",
|
584 |
" <td>msa</td>\n",
|
585 |
" <td>KS</td>\n",
|
586 |
" <td>all homes</td>\n",
|
587 |
+
" <td>2023-12-16</td>\n",
|
588 |
+
" <td>120000.0</td>\n",
|
589 |
+
" <td>133938.0</td>\n",
|
590 |
" <td>NaN</td>\n",
|
|
|
|
|
591 |
" <td>NaN</td>\n",
|
592 |
" <td>NaN</td>\n",
|
593 |
" <td>NaN</td>\n",
|
594 |
" </tr>\n",
|
595 |
" <tr>\n",
|
596 |
+
" <th>578650</th>\n",
|
597 |
" <td>845172</td>\n",
|
598 |
" <td>769</td>\n",
|
599 |
" <td>Winfield, KS</td>\n",
|
600 |
" <td>msa</td>\n",
|
601 |
" <td>KS</td>\n",
|
602 |
" <td>all homes</td>\n",
|
603 |
+
" <td>2023-12-23</td>\n",
|
604 |
+
" <td>111000.0</td>\n",
|
605 |
+
" <td>126463.0</td>\n",
|
606 |
" <td>NaN</td>\n",
|
|
|
|
|
607 |
" <td>NaN</td>\n",
|
608 |
" <td>NaN</td>\n",
|
609 |
" <td>NaN</td>\n",
|
610 |
" </tr>\n",
|
611 |
" <tr>\n",
|
612 |
+
" <th>578651</th>\n",
|
613 |
" <td>845172</td>\n",
|
614 |
" <td>769</td>\n",
|
615 |
" <td>Winfield, KS</td>\n",
|
616 |
" <td>msa</td>\n",
|
617 |
" <td>KS</td>\n",
|
618 |
" <td>all homes</td>\n",
|
619 |
+
" <td>2023-12-30</td>\n",
|
620 |
+
" <td>126950.0</td>\n",
|
621 |
+
" <td>123225.0</td>\n",
|
622 |
+
" <td>NaN</td>\n",
|
623 |
+
" <td>NaN</td>\n",
|
624 |
+
" <td>NaN</td>\n",
|
625 |
+
" <td>NaN</td>\n",
|
626 |
" </tr>\n",
|
627 |
" <tr>\n",
|
628 |
+
" <th>578652</th>\n",
|
629 |
" <td>845172</td>\n",
|
630 |
" <td>769</td>\n",
|
631 |
" <td>Winfield, KS</td>\n",
|
|
|
633 |
" <td>KS</td>\n",
|
634 |
" <td>all homes</td>\n",
|
635 |
" <td>2024-01-06</td>\n",
|
636 |
+
" <td>128000.0</td>\n",
|
|
|
637 |
" <td>121488.0</td>\n",
|
638 |
" <td>NaN</td>\n",
|
639 |
" <td>NaN</td>\n",
|
640 |
" <td>NaN</td>\n",
|
641 |
+
" <td>NaN</td>\n",
|
642 |
" </tr>\n",
|
643 |
" </tbody>\n",
|
644 |
"</table>\n",
|
645 |
+
"<p>578653 rows × 13 columns</p>\n",
|
646 |
"</div>"
|
647 |
],
|
648 |
"text/plain": [
|
|
|
653 |
"3 102001 0 United States country NaN SFR \n",
|
654 |
"4 102001 0 United States country NaN SFR \n",
|
655 |
"... ... ... ... ... ... ... \n",
|
656 |
+
"578648 845172 769 Winfield, KS msa KS all homes \n",
|
657 |
+
"578649 845172 769 Winfield, KS msa KS all homes \n",
|
658 |
+
"578650 845172 769 Winfield, KS msa KS all homes \n",
|
659 |
+
"578651 845172 769 Winfield, KS msa KS all homes \n",
|
660 |
+
"578652 845172 769 Winfield, KS msa KS all homes \n",
|
661 |
"\n",
|
662 |
+
" Date Median Listing Price Median Listing Price (Smoothed) \\\n",
|
663 |
+
"0 2018-01-13 259000.0 NaN \n",
|
664 |
+
"1 2018-01-20 259900.0 NaN \n",
|
665 |
+
"2 2018-01-27 259900.0 NaN \n",
|
666 |
+
"3 2018-02-03 260000.0 259700.0 \n",
|
667 |
+
"4 2018-02-10 264900.0 261175.0 \n",
|
668 |
+
"... ... ... ... \n",
|
669 |
+
"578648 2023-12-09 134950.0 138913.0 \n",
|
670 |
+
"578649 2023-12-16 120000.0 133938.0 \n",
|
671 |
+
"578650 2023-12-23 111000.0 126463.0 \n",
|
672 |
+
"578651 2023-12-30 126950.0 123225.0 \n",
|
673 |
+
"578652 2024-01-06 128000.0 121488.0 \n",
|
674 |
"\n",
|
675 |
+
" New Pending (Smoothed) New Listings New Listings (Smoothed) \\\n",
|
676 |
+
"0 NaN NaN NaN \n",
|
677 |
+
"1 NaN NaN NaN \n",
|
678 |
+
"2 NaN NaN NaN \n",
|
679 |
+
"3 NaN NaN NaN \n",
|
680 |
+
"4 NaN NaN NaN \n",
|
681 |
+
"... ... ... ... \n",
|
682 |
+
"578648 NaN NaN NaN \n",
|
683 |
+
"578649 NaN NaN NaN \n",
|
684 |
+
"578650 NaN NaN NaN \n",
|
685 |
+
"578651 NaN NaN NaN \n",
|
686 |
+
"578652 NaN NaN NaN \n",
|
687 |
"\n",
|
688 |
+
" New Pending \n",
|
689 |
+
"0 NaN \n",
|
690 |
+
"1 NaN \n",
|
691 |
+
"2 NaN \n",
|
692 |
+
"3 NaN \n",
|
693 |
+
"4 NaN \n",
|
694 |
+
"... ... \n",
|
695 |
+
"578648 NaN \n",
|
696 |
+
"578649 NaN \n",
|
697 |
+
"578650 NaN \n",
|
698 |
+
"578651 NaN \n",
|
699 |
+
"578652 NaN \n",
|
700 |
"\n",
|
701 |
+
"[578653 rows x 13 columns]"
|
702 |
]
|
703 |
},
|
704 |
+
"execution_count": 4,
|
705 |
"metadata": {},
|
706 |
"output_type": "execute_result"
|
707 |
}
|
708 |
],
|
709 |
"source": [
|
710 |
+
"# Adjust column names\n",
|
711 |
+
"final_df = combined_df.rename(\n",
|
712 |
" columns={\n",
|
713 |
" \"RegionID\": \"Region ID\",\n",
|
714 |
" \"SizeRank\": \"Size Rank\",\n",
|
|
|
723 |
},
|
724 |
{
|
725 |
"cell_type": "code",
|
726 |
+
"execution_count": 5,
|
727 |
"metadata": {},
|
728 |
"outputs": [],
|
729 |
"source": [
|
730 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
731 |
]
|
732 |
}
|
733 |
],
|
processors/helpers.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
def get_combined_df(data_frames, on):
|
6 |
+
combined_df = None
|
7 |
+
if len(data_frames) > 1:
|
8 |
+
# iterate over dataframes and merge or concat
|
9 |
+
combined_df = data_frames[0]
|
10 |
+
for i in range(1, len(data_frames)):
|
11 |
+
cur_df = data_frames[i]
|
12 |
+
combined_df = pd.merge(
|
13 |
+
combined_df,
|
14 |
+
cur_df,
|
15 |
+
on=on,
|
16 |
+
how="outer",
|
17 |
+
suffixes=("", "_" + str(i)),
|
18 |
+
)
|
19 |
+
elif len(data_frames) == 1:
|
20 |
+
combined_df = data_frames[0]
|
21 |
+
|
22 |
+
return combined_df
|
23 |
+
|
24 |
+
|
25 |
+
def coalesce_columns(df, columns_to_coalesce):
|
26 |
+
for index, row in df.iterrows():
|
27 |
+
for col in df.columns:
|
28 |
+
for column_to_coalesce in columns_to_coalesce:
|
29 |
+
if column_to_coalesce in col and "_" in col:
|
30 |
+
if not pd.isna(row[col]):
|
31 |
+
df.at[index, column_to_coalesce] = row[col]
|
32 |
+
|
33 |
+
# remove columns with underscores
|
34 |
+
combined_df = df[[col for col in df.columns if "_" not in col]]
|
35 |
+
return combined_df
|
36 |
+
|
37 |
+
|
38 |
+
def get_df(
|
39 |
+
df,
|
40 |
+
exclude_columns,
|
41 |
+
columns_to_pivot,
|
42 |
+
col_name,
|
43 |
+
filename,
|
44 |
+
):
|
45 |
+
smoothed = "_sm_" in filename
|
46 |
+
seasonally_adjusted = "_sa_" in filename
|
47 |
+
|
48 |
+
if smoothed:
|
49 |
+
col_name += " (Smoothed)"
|
50 |
+
if seasonally_adjusted:
|
51 |
+
col_name += " (Seasonally Adjusted)"
|
52 |
+
|
53 |
+
df = pd.melt(
|
54 |
+
df,
|
55 |
+
id_vars=exclude_columns,
|
56 |
+
value_vars=columns_to_pivot,
|
57 |
+
var_name="Date",
|
58 |
+
value_name=col_name,
|
59 |
+
)
|
60 |
+
return df
|
61 |
+
|
62 |
+
|
63 |
+
def save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df):
|
64 |
+
if not os.path.exists(FULL_PROCESSED_DIR_PATH):
|
65 |
+
os.makedirs(FULL_PROCESSED_DIR_PATH)
|
66 |
+
|
67 |
+
final_df.to_json(
|
68 |
+
FULL_PROCESSED_DIR_PATH + "final.jsonl", orient="records", lines=True
|
69 |
+
)
|
processors/home_value_forecasts.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -361,7 +363,7 @@
|
|
361 |
"[21062 rows x 16 columns]"
|
362 |
]
|
363 |
},
|
364 |
-
"execution_count":
|
365 |
"metadata": {},
|
366 |
"output_type": "execute_result"
|
367 |
}
|
@@ -418,7 +420,7 @@
|
|
418 |
},
|
419 |
{
|
420 |
"cell_type": "code",
|
421 |
-
"execution_count":
|
422 |
"metadata": {},
|
423 |
"outputs": [
|
424 |
{
|
@@ -732,7 +734,7 @@
|
|
732 |
"[21062 rows x 15 columns]"
|
733 |
]
|
734 |
},
|
735 |
-
"execution_count":
|
736 |
"metadata": {},
|
737 |
"output_type": "execute_result"
|
738 |
}
|
@@ -783,14 +785,11 @@
|
|
783 |
},
|
784 |
{
|
785 |
"cell_type": "code",
|
786 |
-
"execution_count":
|
787 |
"metadata": {},
|
788 |
"outputs": [],
|
789 |
"source": [
|
790 |
-
"
|
791 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
792 |
-
"\n",
|
793 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
794 |
]
|
795 |
}
|
796 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 5,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 6,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
363 |
"[21062 rows x 16 columns]"
|
364 |
]
|
365 |
},
|
366 |
+
"execution_count": 6,
|
367 |
"metadata": {},
|
368 |
"output_type": "execute_result"
|
369 |
}
|
|
|
420 |
},
|
421 |
{
|
422 |
"cell_type": "code",
|
423 |
+
"execution_count": 8,
|
424 |
"metadata": {},
|
425 |
"outputs": [
|
426 |
{
|
|
|
734 |
"[21062 rows x 15 columns]"
|
735 |
]
|
736 |
},
|
737 |
+
"execution_count": 8,
|
738 |
"metadata": {},
|
739 |
"output_type": "execute_result"
|
740 |
}
|
|
|
785 |
},
|
786 |
{
|
787 |
"cell_type": "code",
|
788 |
+
"execution_count": 9,
|
789 |
"metadata": {},
|
790 |
"outputs": [],
|
791 |
"source": [
|
792 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
793 |
]
|
794 |
}
|
795 |
],
|
processors/home_values.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -65,7 +67,6 @@
|
|
65 |
"processing Zip_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
66 |
"processing Neighborhood_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
67 |
"processing City_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
68 |
-
"processing County_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month (1).csv\n",
|
69 |
"processing County_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
70 |
"processing Neighborhood_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
71 |
"processing Metro_zhvi_uc_sfrcondo_tier_0.33_0.67_month.csv\n",
|
@@ -88,25 +89,7 @@
|
|
88 |
"processing Neighborhood_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
89 |
"processing County_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
90 |
"processing County_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
91 |
-
"processing Metro_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n"
|
92 |
-
"1\n",
|
93 |
-
"10\n",
|
94 |
-
"2\n",
|
95 |
-
"10\n",
|
96 |
-
"3\n",
|
97 |
-
"10\n",
|
98 |
-
"4\n",
|
99 |
-
"10\n",
|
100 |
-
"5\n",
|
101 |
-
"10\n",
|
102 |
-
"6\n",
|
103 |
-
"10\n",
|
104 |
-
"7\n",
|
105 |
-
"10\n",
|
106 |
-
"8\n",
|
107 |
-
"10\n",
|
108 |
-
"9\n",
|
109 |
-
"10\n"
|
110 |
]
|
111 |
},
|
112 |
{
|
@@ -547,7 +530,7 @@
|
|
547 |
"[117912 rows x 18 columns]"
|
548 |
]
|
549 |
},
|
550 |
-
"execution_count":
|
551 |
"metadata": {},
|
552 |
"output_type": "execute_result"
|
553 |
}
|
@@ -731,56 +714,27 @@
|
|
731 |
" data_frames.append(cur_df)\n",
|
732 |
"\n",
|
733 |
"\n",
|
734 |
-
"
|
735 |
-
"
|
736 |
-
"
|
737 |
-
"
|
738 |
-
"
|
739 |
-
"
|
740 |
-
"
|
741 |
-
"
|
742 |
-
"
|
743 |
-
"
|
744 |
-
"
|
745 |
-
"
|
746 |
-
"
|
747 |
-
" \"RegionID\",\n",
|
748 |
-
" \"SizeRank\",\n",
|
749 |
-
" \"RegionName\",\n",
|
750 |
-
" \"RegionType\",\n",
|
751 |
-
" \"StateName\",\n",
|
752 |
-
" \"Bedroom Count\",\n",
|
753 |
-
" \"Home Type\",\n",
|
754 |
-
" \"Date\",\n",
|
755 |
-
" ],\n",
|
756 |
-
" how=\"outer\",\n",
|
757 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
758 |
-
" )\n",
|
759 |
-
" elif len(data_frames) == 1:\n",
|
760 |
-
" combined_df = data_frames[0]\n",
|
761 |
-
"\n",
|
762 |
-
" return combined_df\n",
|
763 |
-
"\n",
|
764 |
-
"\n",
|
765 |
-
"combined_df = get_combined_df(data_frames)\n",
|
766 |
"combined_df"
|
767 |
]
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
-
"execution_count":
|
772 |
"metadata": {},
|
773 |
"outputs": [
|
774 |
-
{
|
775 |
-
"name": "stdout",
|
776 |
-
"output_type": "stream",
|
777 |
-
"text": [
|
778 |
-
"ZHVI\n",
|
779 |
-
"Mid Tier ZHVI\n",
|
780 |
-
"Bottom Tier ZHVI\n",
|
781 |
-
"Top Tier ZHVI\n"
|
782 |
-
]
|
783 |
-
},
|
784 |
{
|
785 |
"data": {
|
786 |
"text/html": [
|
@@ -1081,33 +1035,22 @@
|
|
1081 |
"[117912 rows x 13 columns]"
|
1082 |
]
|
1083 |
},
|
1084 |
-
"execution_count":
|
1085 |
"metadata": {},
|
1086 |
"output_type": "execute_result"
|
1087 |
}
|
1088 |
],
|
1089 |
"source": [
|
1090 |
-
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
1091 |
"columns_to_coalesce = [\"ZHVI\", \"Mid Tier ZHVI\", \"Bottom Tier ZHVI\", \"Top Tier ZHVI\"]\n",
|
1092 |
"\n",
|
1093 |
-
"
|
1094 |
-
" print(column_to_coalesce)\n",
|
1095 |
-
" for index, row in combined_df.iterrows():\n",
|
1096 |
-
" for col in combined_df.columns:\n",
|
1097 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
1098 |
-
" if not pd.isna(row[col]):\n",
|
1099 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
1100 |
-
"\n",
|
1101 |
-
"# remove columns with underscores\n",
|
1102 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
1103 |
-
"\n",
|
1104 |
"\n",
|
1105 |
"combined_df"
|
1106 |
]
|
1107 |
},
|
1108 |
{
|
1109 |
"cell_type": "code",
|
1110 |
-
"execution_count":
|
1111 |
"metadata": {},
|
1112 |
"outputs": [
|
1113 |
{
|
@@ -1140,10 +1083,15 @@
|
|
1140 |
" <th>Home Type</th>\n",
|
1141 |
" <th>Date</th>\n",
|
1142 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
1143 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
|
|
1144 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1145 |
-
" <th>ZHVI</th>\n",
|
1146 |
-
" <th>Mid Tier ZHVI</th>\n",
|
1147 |
" </tr>\n",
|
1148 |
" </thead>\n",
|
1149 |
" <tbody>\n",
|
@@ -1160,7 +1108,12 @@
|
|
1160 |
" <td>NaN</td>\n",
|
1161 |
" <td>NaN</td>\n",
|
1162 |
" <td>NaN</td>\n",
|
1163 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1164 |
" <td>81310.639504</td>\n",
|
1165 |
" </tr>\n",
|
1166 |
" <tr>\n",
|
@@ -1176,7 +1129,12 @@
|
|
1176 |
" <td>NaN</td>\n",
|
1177 |
" <td>NaN</td>\n",
|
1178 |
" <td>NaN</td>\n",
|
1179 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1180 |
" <td>80419.761984</td>\n",
|
1181 |
" </tr>\n",
|
1182 |
" <tr>\n",
|
@@ -1192,7 +1150,12 @@
|
|
1192 |
" <td>NaN</td>\n",
|
1193 |
" <td>NaN</td>\n",
|
1194 |
" <td>NaN</td>\n",
|
1195 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1196 |
" <td>80480.449461</td>\n",
|
1197 |
" </tr>\n",
|
1198 |
" <tr>\n",
|
@@ -1208,7 +1171,12 @@
|
|
1208 |
" <td>NaN</td>\n",
|
1209 |
" <td>NaN</td>\n",
|
1210 |
" <td>NaN</td>\n",
|
1211 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1212 |
" <td>79799.206525</td>\n",
|
1213 |
" </tr>\n",
|
1214 |
" <tr>\n",
|
@@ -1224,7 +1192,12 @@
|
|
1224 |
" <td>NaN</td>\n",
|
1225 |
" <td>NaN</td>\n",
|
1226 |
" <td>NaN</td>\n",
|
1227 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1228 |
" <td>79666.469861</td>\n",
|
1229 |
" </tr>\n",
|
1230 |
" <tr>\n",
|
@@ -1242,6 +1215,11 @@
|
|
1242 |
" <td>...</td>\n",
|
1243 |
" <td>...</td>\n",
|
1244 |
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
|
|
1245 |
" </tr>\n",
|
1246 |
" <tr>\n",
|
1247 |
" <th>117907</th>\n",
|
@@ -1256,8 +1234,13 @@
|
|
1256 |
" <td>NaN</td>\n",
|
1257 |
" <td>NaN</td>\n",
|
1258 |
" <td>NaN</td>\n",
|
|
|
|
|
1259 |
" <td>486974.735908</td>\n",
|
1260 |
-
" <td>
|
|
|
|
|
|
|
1261 |
" </tr>\n",
|
1262 |
" <tr>\n",
|
1263 |
" <th>117908</th>\n",
|
@@ -1272,8 +1255,13 @@
|
|
1272 |
" <td>NaN</td>\n",
|
1273 |
" <td>NaN</td>\n",
|
1274 |
" <td>NaN</td>\n",
|
|
|
|
|
1275 |
" <td>485847.539614</td>\n",
|
1276 |
-
" <td>
|
|
|
|
|
|
|
1277 |
" </tr>\n",
|
1278 |
" <tr>\n",
|
1279 |
" <th>117909</th>\n",
|
@@ -1288,8 +1276,13 @@
|
|
1288 |
" <td>NaN</td>\n",
|
1289 |
" <td>NaN</td>\n",
|
1290 |
" <td>NaN</td>\n",
|
|
|
|
|
1291 |
" <td>484223.885775</td>\n",
|
1292 |
-
" <td>
|
|
|
|
|
|
|
1293 |
" </tr>\n",
|
1294 |
" <tr>\n",
|
1295 |
" <th>117910</th>\n",
|
@@ -1304,8 +1297,13 @@
|
|
1304 |
" <td>NaN</td>\n",
|
1305 |
" <td>NaN</td>\n",
|
1306 |
" <td>NaN</td>\n",
|
|
|
|
|
1307 |
" <td>481522.403338</td>\n",
|
1308 |
-
" <td>
|
|
|
|
|
|
|
1309 |
" </tr>\n",
|
1310 |
" <tr>\n",
|
1311 |
" <th>117911</th>\n",
|
@@ -1320,12 +1318,17 @@
|
|
1320 |
" <td>NaN</td>\n",
|
1321 |
" <td>NaN</td>\n",
|
1322 |
" <td>NaN</td>\n",
|
|
|
|
|
1323 |
" <td>481181.718200</td>\n",
|
1324 |
-
" <td>
|
|
|
|
|
|
|
1325 |
" </tr>\n",
|
1326 |
" </tbody>\n",
|
1327 |
"</table>\n",
|
1328 |
-
"<p>117912 rows ×
|
1329 |
"</div>"
|
1330 |
],
|
1331 |
"text/plain": [
|
@@ -1368,6 +1371,32 @@
|
|
1368 |
"117910 NaN \n",
|
1369 |
"117911 NaN \n",
|
1370 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1371 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1372 |
"0 NaN \n",
|
1373 |
"1 NaN \n",
|
@@ -1381,36 +1410,88 @@
|
|
1381 |
"117910 NaN \n",
|
1382 |
"117911 NaN \n",
|
1383 |
"\n",
|
1384 |
-
"
|
1385 |
-
"0
|
1386 |
-
"1
|
1387 |
-
"2
|
1388 |
-
"3
|
1389 |
-
"4
|
1390 |
-
"...
|
1391 |
-
"117907
|
1392 |
-
"117908
|
1393 |
-
"117909
|
1394 |
-
"117910
|
1395 |
-
"117911
|
1396 |
"\n",
|
1397 |
-
" Mid Tier ZHVI
|
1398 |
-
"0
|
1399 |
-
"1
|
1400 |
-
"2
|
1401 |
-
"3
|
1402 |
-
"4
|
1403 |
-
"...
|
1404 |
-
"117907
|
1405 |
-
"117908
|
1406 |
-
"117909
|
1407 |
-
"117910
|
1408 |
-
"117911
|
1409 |
"\n",
|
1410 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1411 |
]
|
1412 |
},
|
1413 |
-
"execution_count":
|
1414 |
"metadata": {},
|
1415 |
"output_type": "execute_result"
|
1416 |
}
|
@@ -1441,7 +1522,7 @@
|
|
1441 |
},
|
1442 |
{
|
1443 |
"cell_type": "code",
|
1444 |
-
"execution_count":
|
1445 |
"metadata": {},
|
1446 |
"outputs": [
|
1447 |
{
|
@@ -1474,10 +1555,15 @@
|
|
1474 |
" <th>Home Type</th>\n",
|
1475 |
" <th>Date</th>\n",
|
1476 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
1477 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
|
|
1478 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1479 |
-
" <th>ZHVI</th>\n",
|
1480 |
-
" <th>Mid Tier ZHVI</th>\n",
|
1481 |
" </tr>\n",
|
1482 |
" </thead>\n",
|
1483 |
" <tbody>\n",
|
@@ -1494,7 +1580,12 @@
|
|
1494 |
" <td>NaN</td>\n",
|
1495 |
" <td>NaN</td>\n",
|
1496 |
" <td>NaN</td>\n",
|
1497 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1498 |
" <td>81310.639504</td>\n",
|
1499 |
" </tr>\n",
|
1500 |
" <tr>\n",
|
@@ -1510,7 +1601,12 @@
|
|
1510 |
" <td>NaN</td>\n",
|
1511 |
" <td>NaN</td>\n",
|
1512 |
" <td>NaN</td>\n",
|
1513 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1514 |
" <td>80419.761984</td>\n",
|
1515 |
" </tr>\n",
|
1516 |
" <tr>\n",
|
@@ -1526,7 +1622,12 @@
|
|
1526 |
" <td>NaN</td>\n",
|
1527 |
" <td>NaN</td>\n",
|
1528 |
" <td>NaN</td>\n",
|
1529 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1530 |
" <td>80480.449461</td>\n",
|
1531 |
" </tr>\n",
|
1532 |
" <tr>\n",
|
@@ -1542,7 +1643,12 @@
|
|
1542 |
" <td>NaN</td>\n",
|
1543 |
" <td>NaN</td>\n",
|
1544 |
" <td>NaN</td>\n",
|
1545 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1546 |
" <td>79799.206525</td>\n",
|
1547 |
" </tr>\n",
|
1548 |
" <tr>\n",
|
@@ -1558,7 +1664,12 @@
|
|
1558 |
" <td>NaN</td>\n",
|
1559 |
" <td>NaN</td>\n",
|
1560 |
" <td>NaN</td>\n",
|
1561 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
1562 |
" <td>79666.469861</td>\n",
|
1563 |
" </tr>\n",
|
1564 |
" <tr>\n",
|
@@ -1576,6 +1687,11 @@
|
|
1576 |
" <td>...</td>\n",
|
1577 |
" <td>...</td>\n",
|
1578 |
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
|
|
1579 |
" </tr>\n",
|
1580 |
" <tr>\n",
|
1581 |
" <th>117907</th>\n",
|
@@ -1590,8 +1706,13 @@
|
|
1590 |
" <td>NaN</td>\n",
|
1591 |
" <td>NaN</td>\n",
|
1592 |
" <td>NaN</td>\n",
|
|
|
|
|
1593 |
" <td>486974.735908</td>\n",
|
1594 |
-
" <td>
|
|
|
|
|
|
|
1595 |
" </tr>\n",
|
1596 |
" <tr>\n",
|
1597 |
" <th>117908</th>\n",
|
@@ -1606,8 +1727,13 @@
|
|
1606 |
" <td>NaN</td>\n",
|
1607 |
" <td>NaN</td>\n",
|
1608 |
" <td>NaN</td>\n",
|
|
|
|
|
1609 |
" <td>485847.539614</td>\n",
|
1610 |
-
" <td>
|
|
|
|
|
|
|
1611 |
" </tr>\n",
|
1612 |
" <tr>\n",
|
1613 |
" <th>117909</th>\n",
|
@@ -1622,8 +1748,13 @@
|
|
1622 |
" <td>NaN</td>\n",
|
1623 |
" <td>NaN</td>\n",
|
1624 |
" <td>NaN</td>\n",
|
|
|
|
|
1625 |
" <td>484223.885775</td>\n",
|
1626 |
-
" <td>
|
|
|
|
|
|
|
1627 |
" </tr>\n",
|
1628 |
" <tr>\n",
|
1629 |
" <th>117910</th>\n",
|
@@ -1638,8 +1769,13 @@
|
|
1638 |
" <td>NaN</td>\n",
|
1639 |
" <td>NaN</td>\n",
|
1640 |
" <td>NaN</td>\n",
|
|
|
|
|
1641 |
" <td>481522.403338</td>\n",
|
1642 |
-
" <td>
|
|
|
|
|
|
|
1643 |
" </tr>\n",
|
1644 |
" <tr>\n",
|
1645 |
" <th>117911</th>\n",
|
@@ -1654,12 +1790,17 @@
|
|
1654 |
" <td>NaN</td>\n",
|
1655 |
" <td>NaN</td>\n",
|
1656 |
" <td>NaN</td>\n",
|
|
|
|
|
1657 |
" <td>481181.718200</td>\n",
|
1658 |
-
" <td>
|
|
|
|
|
|
|
1659 |
" </tr>\n",
|
1660 |
" </tbody>\n",
|
1661 |
"</table>\n",
|
1662 |
-
"<p>117912 rows ×
|
1663 |
"</div>"
|
1664 |
],
|
1665 |
"text/plain": [
|
@@ -1702,6 +1843,32 @@
|
|
1702 |
"117910 NaN \n",
|
1703 |
"117911 NaN \n",
|
1704 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1705 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1706 |
"0 NaN \n",
|
1707 |
"1 NaN \n",
|
@@ -1715,36 +1882,88 @@
|
|
1715 |
"117910 NaN \n",
|
1716 |
"117911 NaN \n",
|
1717 |
"\n",
|
1718 |
-
"
|
1719 |
-
"0
|
1720 |
-
"1
|
1721 |
-
"2
|
1722 |
-
"3
|
1723 |
-
"4
|
1724 |
-
"...
|
1725 |
-
"117907
|
1726 |
-
"117908
|
1727 |
-
"117909
|
1728 |
-
"117910
|
1729 |
-
"117911
|
1730 |
"\n",
|
1731 |
-
" Mid Tier ZHVI
|
1732 |
-
"0
|
1733 |
-
"1
|
1734 |
-
"2
|
1735 |
-
"3
|
1736 |
-
"4
|
1737 |
-
"...
|
1738 |
-
"117907
|
1739 |
-
"117908
|
1740 |
-
"117909
|
1741 |
-
"117910
|
1742 |
-
"117911
|
1743 |
"\n",
|
1744 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1745 |
]
|
1746 |
},
|
1747 |
-
"execution_count":
|
1748 |
"metadata": {},
|
1749 |
"output_type": "execute_result"
|
1750 |
}
|
@@ -1767,14 +1986,11 @@
|
|
1767 |
},
|
1768 |
{
|
1769 |
"cell_type": "code",
|
1770 |
-
"execution_count":
|
1771 |
"metadata": {},
|
1772 |
"outputs": [],
|
1773 |
"source": [
|
1774 |
-
"
|
1775 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
1776 |
-
"\n",
|
1777 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
1778 |
]
|
1779 |
}
|
1780 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 9,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 10,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
67 |
"processing Zip_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
68 |
"processing Neighborhood_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
69 |
"processing City_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
|
|
70 |
"processing County_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
71 |
"processing Neighborhood_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
72 |
"processing Metro_zhvi_uc_sfrcondo_tier_0.33_0.67_month.csv\n",
|
|
|
89 |
"processing Neighborhood_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
90 |
"processing County_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
91 |
"processing County_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
92 |
+
"processing Metro_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
]
|
94 |
},
|
95 |
{
|
|
|
530 |
"[117912 rows x 18 columns]"
|
531 |
]
|
532 |
},
|
533 |
+
"execution_count": 10,
|
534 |
"metadata": {},
|
535 |
"output_type": "execute_result"
|
536 |
}
|
|
|
714 |
" data_frames.append(cur_df)\n",
|
715 |
"\n",
|
716 |
"\n",
|
717 |
+
"combined_df = get_combined_df(\n",
|
718 |
+
" data_frames,\n",
|
719 |
+
" [\n",
|
720 |
+
" \"RegionID\",\n",
|
721 |
+
" \"SizeRank\",\n",
|
722 |
+
" \"RegionName\",\n",
|
723 |
+
" \"RegionType\",\n",
|
724 |
+
" \"StateName\",\n",
|
725 |
+
" \"Bedroom Count\",\n",
|
726 |
+
" \"Home Type\",\n",
|
727 |
+
" \"Date\",\n",
|
728 |
+
" ],\n",
|
729 |
+
")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
730 |
"combined_df"
|
731 |
]
|
732 |
},
|
733 |
{
|
734 |
"cell_type": "code",
|
735 |
+
"execution_count": 4,
|
736 |
"metadata": {},
|
737 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
{
|
739 |
"data": {
|
740 |
"text/html": [
|
|
|
1035 |
"[117912 rows x 13 columns]"
|
1036 |
]
|
1037 |
},
|
1038 |
+
"execution_count": 4,
|
1039 |
"metadata": {},
|
1040 |
"output_type": "execute_result"
|
1041 |
}
|
1042 |
],
|
1043 |
"source": [
|
|
|
1044 |
"columns_to_coalesce = [\"ZHVI\", \"Mid Tier ZHVI\", \"Bottom Tier ZHVI\", \"Top Tier ZHVI\"]\n",
|
1045 |
"\n",
|
1046 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1047 |
"\n",
|
1048 |
"combined_df"
|
1049 |
]
|
1050 |
},
|
1051 |
{
|
1052 |
"cell_type": "code",
|
1053 |
+
"execution_count": 11,
|
1054 |
"metadata": {},
|
1055 |
"outputs": [
|
1056 |
{
|
|
|
1083 |
" <th>Home Type</th>\n",
|
1084 |
" <th>Date</th>\n",
|
1085 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1086 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
|
1087 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
|
1088 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1089 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
|
1090 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
|
1091 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
|
1092 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1093 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
|
1094 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
|
1095 |
" </tr>\n",
|
1096 |
" </thead>\n",
|
1097 |
" <tbody>\n",
|
|
|
1108 |
" <td>NaN</td>\n",
|
1109 |
" <td>NaN</td>\n",
|
1110 |
" <td>NaN</td>\n",
|
1111 |
+
" <td>NaN</td>\n",
|
1112 |
+
" <td>NaN</td>\n",
|
1113 |
+
" <td>NaN</td>\n",
|
1114 |
+
" <td>NaN</td>\n",
|
1115 |
+
" <td>NaN</td>\n",
|
1116 |
+
" <td>NaN</td>\n",
|
1117 |
" <td>81310.639504</td>\n",
|
1118 |
" </tr>\n",
|
1119 |
" <tr>\n",
|
|
|
1129 |
" <td>NaN</td>\n",
|
1130 |
" <td>NaN</td>\n",
|
1131 |
" <td>NaN</td>\n",
|
1132 |
+
" <td>NaN</td>\n",
|
1133 |
+
" <td>NaN</td>\n",
|
1134 |
+
" <td>NaN</td>\n",
|
1135 |
+
" <td>NaN</td>\n",
|
1136 |
+
" <td>NaN</td>\n",
|
1137 |
+
" <td>NaN</td>\n",
|
1138 |
" <td>80419.761984</td>\n",
|
1139 |
" </tr>\n",
|
1140 |
" <tr>\n",
|
|
|
1150 |
" <td>NaN</td>\n",
|
1151 |
" <td>NaN</td>\n",
|
1152 |
" <td>NaN</td>\n",
|
1153 |
+
" <td>NaN</td>\n",
|
1154 |
+
" <td>NaN</td>\n",
|
1155 |
+
" <td>NaN</td>\n",
|
1156 |
+
" <td>NaN</td>\n",
|
1157 |
+
" <td>NaN</td>\n",
|
1158 |
+
" <td>NaN</td>\n",
|
1159 |
" <td>80480.449461</td>\n",
|
1160 |
" </tr>\n",
|
1161 |
" <tr>\n",
|
|
|
1171 |
" <td>NaN</td>\n",
|
1172 |
" <td>NaN</td>\n",
|
1173 |
" <td>NaN</td>\n",
|
1174 |
+
" <td>NaN</td>\n",
|
1175 |
+
" <td>NaN</td>\n",
|
1176 |
+
" <td>NaN</td>\n",
|
1177 |
+
" <td>NaN</td>\n",
|
1178 |
+
" <td>NaN</td>\n",
|
1179 |
+
" <td>NaN</td>\n",
|
1180 |
" <td>79799.206525</td>\n",
|
1181 |
" </tr>\n",
|
1182 |
" <tr>\n",
|
|
|
1192 |
" <td>NaN</td>\n",
|
1193 |
" <td>NaN</td>\n",
|
1194 |
" <td>NaN</td>\n",
|
1195 |
+
" <td>NaN</td>\n",
|
1196 |
+
" <td>NaN</td>\n",
|
1197 |
+
" <td>NaN</td>\n",
|
1198 |
+
" <td>NaN</td>\n",
|
1199 |
+
" <td>NaN</td>\n",
|
1200 |
+
" <td>NaN</td>\n",
|
1201 |
" <td>79666.469861</td>\n",
|
1202 |
" </tr>\n",
|
1203 |
" <tr>\n",
|
|
|
1215 |
" <td>...</td>\n",
|
1216 |
" <td>...</td>\n",
|
1217 |
" <td>...</td>\n",
|
1218 |
+
" <td>...</td>\n",
|
1219 |
+
" <td>...</td>\n",
|
1220 |
+
" <td>...</td>\n",
|
1221 |
+
" <td>...</td>\n",
|
1222 |
+
" <td>...</td>\n",
|
1223 |
" </tr>\n",
|
1224 |
" <tr>\n",
|
1225 |
" <th>117907</th>\n",
|
|
|
1234 |
" <td>NaN</td>\n",
|
1235 |
" <td>NaN</td>\n",
|
1236 |
" <td>NaN</td>\n",
|
1237 |
+
" <td>NaN</td>\n",
|
1238 |
+
" <td>NaN</td>\n",
|
1239 |
" <td>486974.735908</td>\n",
|
1240 |
+
" <td>NaN</td>\n",
|
1241 |
+
" <td>NaN</td>\n",
|
1242 |
+
" <td>NaN</td>\n",
|
1243 |
+
" <td>NaN</td>\n",
|
1244 |
" </tr>\n",
|
1245 |
" <tr>\n",
|
1246 |
" <th>117908</th>\n",
|
|
|
1255 |
" <td>NaN</td>\n",
|
1256 |
" <td>NaN</td>\n",
|
1257 |
" <td>NaN</td>\n",
|
1258 |
+
" <td>NaN</td>\n",
|
1259 |
+
" <td>NaN</td>\n",
|
1260 |
" <td>485847.539614</td>\n",
|
1261 |
+
" <td>NaN</td>\n",
|
1262 |
+
" <td>NaN</td>\n",
|
1263 |
+
" <td>NaN</td>\n",
|
1264 |
+
" <td>NaN</td>\n",
|
1265 |
" </tr>\n",
|
1266 |
" <tr>\n",
|
1267 |
" <th>117909</th>\n",
|
|
|
1276 |
" <td>NaN</td>\n",
|
1277 |
" <td>NaN</td>\n",
|
1278 |
" <td>NaN</td>\n",
|
1279 |
+
" <td>NaN</td>\n",
|
1280 |
+
" <td>NaN</td>\n",
|
1281 |
" <td>484223.885775</td>\n",
|
1282 |
+
" <td>NaN</td>\n",
|
1283 |
+
" <td>NaN</td>\n",
|
1284 |
+
" <td>NaN</td>\n",
|
1285 |
+
" <td>NaN</td>\n",
|
1286 |
" </tr>\n",
|
1287 |
" <tr>\n",
|
1288 |
" <th>117910</th>\n",
|
|
|
1297 |
" <td>NaN</td>\n",
|
1298 |
" <td>NaN</td>\n",
|
1299 |
" <td>NaN</td>\n",
|
1300 |
+
" <td>NaN</td>\n",
|
1301 |
+
" <td>NaN</td>\n",
|
1302 |
" <td>481522.403338</td>\n",
|
1303 |
+
" <td>NaN</td>\n",
|
1304 |
+
" <td>NaN</td>\n",
|
1305 |
+
" <td>NaN</td>\n",
|
1306 |
+
" <td>NaN</td>\n",
|
1307 |
" </tr>\n",
|
1308 |
" <tr>\n",
|
1309 |
" <th>117911</th>\n",
|
|
|
1318 |
" <td>NaN</td>\n",
|
1319 |
" <td>NaN</td>\n",
|
1320 |
" <td>NaN</td>\n",
|
1321 |
+
" <td>NaN</td>\n",
|
1322 |
+
" <td>NaN</td>\n",
|
1323 |
" <td>481181.718200</td>\n",
|
1324 |
+
" <td>NaN</td>\n",
|
1325 |
+
" <td>NaN</td>\n",
|
1326 |
+
" <td>NaN</td>\n",
|
1327 |
+
" <td>NaN</td>\n",
|
1328 |
" </tr>\n",
|
1329 |
" </tbody>\n",
|
1330 |
"</table>\n",
|
1331 |
+
"<p>117912 rows × 18 columns</p>\n",
|
1332 |
"</div>"
|
1333 |
],
|
1334 |
"text/plain": [
|
|
|
1371 |
"117910 NaN \n",
|
1372 |
"117911 NaN \n",
|
1373 |
"\n",
|
1374 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
|
1375 |
+
"0 NaN \n",
|
1376 |
+
"1 NaN \n",
|
1377 |
+
"2 NaN \n",
|
1378 |
+
"3 NaN \n",
|
1379 |
+
"4 NaN \n",
|
1380 |
+
"... ... \n",
|
1381 |
+
"117907 NaN \n",
|
1382 |
+
"117908 NaN \n",
|
1383 |
+
"117909 NaN \n",
|
1384 |
+
"117910 NaN \n",
|
1385 |
+
"117911 NaN \n",
|
1386 |
+
"\n",
|
1387 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
|
1388 |
+
"0 NaN \n",
|
1389 |
+
"1 NaN \n",
|
1390 |
+
"2 NaN \n",
|
1391 |
+
"3 NaN \n",
|
1392 |
+
"4 NaN \n",
|
1393 |
+
"... ... \n",
|
1394 |
+
"117907 NaN \n",
|
1395 |
+
"117908 NaN \n",
|
1396 |
+
"117909 NaN \n",
|
1397 |
+
"117910 NaN \n",
|
1398 |
+
"117911 NaN \n",
|
1399 |
+
"\n",
|
1400 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1401 |
"0 NaN \n",
|
1402 |
"1 NaN \n",
|
|
|
1410 |
"117910 NaN \n",
|
1411 |
"117911 NaN \n",
|
1412 |
"\n",
|
1413 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4 \\\n",
|
1414 |
+
"0 NaN \n",
|
1415 |
+
"1 NaN \n",
|
1416 |
+
"2 NaN \n",
|
1417 |
+
"3 NaN \n",
|
1418 |
+
"4 NaN \n",
|
1419 |
+
"... ... \n",
|
1420 |
+
"117907 NaN \n",
|
1421 |
+
"117908 NaN \n",
|
1422 |
+
"117909 NaN \n",
|
1423 |
+
"117910 NaN \n",
|
1424 |
+
"117911 NaN \n",
|
1425 |
"\n",
|
1426 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
|
1427 |
+
"0 NaN \n",
|
1428 |
+
"1 NaN \n",
|
1429 |
+
"2 NaN \n",
|
1430 |
+
"3 NaN \n",
|
1431 |
+
"4 NaN \n",
|
1432 |
+
"... ... \n",
|
1433 |
+
"117907 486974.735908 \n",
|
1434 |
+
"117908 485847.539614 \n",
|
1435 |
+
"117909 484223.885775 \n",
|
1436 |
+
"117910 481522.403338 \n",
|
1437 |
+
"117911 481181.718200 \n",
|
1438 |
"\n",
|
1439 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
|
1440 |
+
"0 NaN \n",
|
1441 |
+
"1 NaN \n",
|
1442 |
+
"2 NaN \n",
|
1443 |
+
"3 NaN \n",
|
1444 |
+
"4 NaN \n",
|
1445 |
+
"... ... \n",
|
1446 |
+
"117907 NaN \n",
|
1447 |
+
"117908 NaN \n",
|
1448 |
+
"117909 NaN \n",
|
1449 |
+
"117910 NaN \n",
|
1450 |
+
"117911 NaN \n",
|
1451 |
+
"\n",
|
1452 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1453 |
+
"0 NaN \n",
|
1454 |
+
"1 NaN \n",
|
1455 |
+
"2 NaN \n",
|
1456 |
+
"3 NaN \n",
|
1457 |
+
"4 NaN \n",
|
1458 |
+
"... ... \n",
|
1459 |
+
"117907 NaN \n",
|
1460 |
+
"117908 NaN \n",
|
1461 |
+
"117909 NaN \n",
|
1462 |
+
"117910 NaN \n",
|
1463 |
+
"117911 NaN \n",
|
1464 |
+
"\n",
|
1465 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
|
1466 |
+
"0 NaN \n",
|
1467 |
+
"1 NaN \n",
|
1468 |
+
"2 NaN \n",
|
1469 |
+
"3 NaN \n",
|
1470 |
+
"4 NaN \n",
|
1471 |
+
"... ... \n",
|
1472 |
+
"117907 NaN \n",
|
1473 |
+
"117908 NaN \n",
|
1474 |
+
"117909 NaN \n",
|
1475 |
+
"117910 NaN \n",
|
1476 |
+
"117911 NaN \n",
|
1477 |
+
"\n",
|
1478 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
|
1479 |
+
"0 81310.639504 \n",
|
1480 |
+
"1 80419.761984 \n",
|
1481 |
+
"2 80480.449461 \n",
|
1482 |
+
"3 79799.206525 \n",
|
1483 |
+
"4 79666.469861 \n",
|
1484 |
+
"... ... \n",
|
1485 |
+
"117907 NaN \n",
|
1486 |
+
"117908 NaN \n",
|
1487 |
+
"117909 NaN \n",
|
1488 |
+
"117910 NaN \n",
|
1489 |
+
"117911 NaN \n",
|
1490 |
+
"\n",
|
1491 |
+
"[117912 rows x 18 columns]"
|
1492 |
]
|
1493 |
},
|
1494 |
+
"execution_count": 11,
|
1495 |
"metadata": {},
|
1496 |
"output_type": "execute_result"
|
1497 |
}
|
|
|
1522 |
},
|
1523 |
{
|
1524 |
"cell_type": "code",
|
1525 |
+
"execution_count": 12,
|
1526 |
"metadata": {},
|
1527 |
"outputs": [
|
1528 |
{
|
|
|
1555 |
" <th>Home Type</th>\n",
|
1556 |
" <th>Date</th>\n",
|
1557 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1558 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
|
1559 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
|
1560 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1561 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
|
1562 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
|
1563 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
|
1564 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1565 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
|
1566 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
|
1567 |
" </tr>\n",
|
1568 |
" </thead>\n",
|
1569 |
" <tbody>\n",
|
|
|
1580 |
" <td>NaN</td>\n",
|
1581 |
" <td>NaN</td>\n",
|
1582 |
" <td>NaN</td>\n",
|
1583 |
+
" <td>NaN</td>\n",
|
1584 |
+
" <td>NaN</td>\n",
|
1585 |
+
" <td>NaN</td>\n",
|
1586 |
+
" <td>NaN</td>\n",
|
1587 |
+
" <td>NaN</td>\n",
|
1588 |
+
" <td>NaN</td>\n",
|
1589 |
" <td>81310.639504</td>\n",
|
1590 |
" </tr>\n",
|
1591 |
" <tr>\n",
|
|
|
1601 |
" <td>NaN</td>\n",
|
1602 |
" <td>NaN</td>\n",
|
1603 |
" <td>NaN</td>\n",
|
1604 |
+
" <td>NaN</td>\n",
|
1605 |
+
" <td>NaN</td>\n",
|
1606 |
+
" <td>NaN</td>\n",
|
1607 |
+
" <td>NaN</td>\n",
|
1608 |
+
" <td>NaN</td>\n",
|
1609 |
+
" <td>NaN</td>\n",
|
1610 |
" <td>80419.761984</td>\n",
|
1611 |
" </tr>\n",
|
1612 |
" <tr>\n",
|
|
|
1622 |
" <td>NaN</td>\n",
|
1623 |
" <td>NaN</td>\n",
|
1624 |
" <td>NaN</td>\n",
|
1625 |
+
" <td>NaN</td>\n",
|
1626 |
+
" <td>NaN</td>\n",
|
1627 |
+
" <td>NaN</td>\n",
|
1628 |
+
" <td>NaN</td>\n",
|
1629 |
+
" <td>NaN</td>\n",
|
1630 |
+
" <td>NaN</td>\n",
|
1631 |
" <td>80480.449461</td>\n",
|
1632 |
" </tr>\n",
|
1633 |
" <tr>\n",
|
|
|
1643 |
" <td>NaN</td>\n",
|
1644 |
" <td>NaN</td>\n",
|
1645 |
" <td>NaN</td>\n",
|
1646 |
+
" <td>NaN</td>\n",
|
1647 |
+
" <td>NaN</td>\n",
|
1648 |
+
" <td>NaN</td>\n",
|
1649 |
+
" <td>NaN</td>\n",
|
1650 |
+
" <td>NaN</td>\n",
|
1651 |
+
" <td>NaN</td>\n",
|
1652 |
" <td>79799.206525</td>\n",
|
1653 |
" </tr>\n",
|
1654 |
" <tr>\n",
|
|
|
1664 |
" <td>NaN</td>\n",
|
1665 |
" <td>NaN</td>\n",
|
1666 |
" <td>NaN</td>\n",
|
1667 |
+
" <td>NaN</td>\n",
|
1668 |
+
" <td>NaN</td>\n",
|
1669 |
+
" <td>NaN</td>\n",
|
1670 |
+
" <td>NaN</td>\n",
|
1671 |
+
" <td>NaN</td>\n",
|
1672 |
+
" <td>NaN</td>\n",
|
1673 |
" <td>79666.469861</td>\n",
|
1674 |
" </tr>\n",
|
1675 |
" <tr>\n",
|
|
|
1687 |
" <td>...</td>\n",
|
1688 |
" <td>...</td>\n",
|
1689 |
" <td>...</td>\n",
|
1690 |
+
" <td>...</td>\n",
|
1691 |
+
" <td>...</td>\n",
|
1692 |
+
" <td>...</td>\n",
|
1693 |
+
" <td>...</td>\n",
|
1694 |
+
" <td>...</td>\n",
|
1695 |
" </tr>\n",
|
1696 |
" <tr>\n",
|
1697 |
" <th>117907</th>\n",
|
|
|
1706 |
" <td>NaN</td>\n",
|
1707 |
" <td>NaN</td>\n",
|
1708 |
" <td>NaN</td>\n",
|
1709 |
+
" <td>NaN</td>\n",
|
1710 |
+
" <td>NaN</td>\n",
|
1711 |
" <td>486974.735908</td>\n",
|
1712 |
+
" <td>NaN</td>\n",
|
1713 |
+
" <td>NaN</td>\n",
|
1714 |
+
" <td>NaN</td>\n",
|
1715 |
+
" <td>NaN</td>\n",
|
1716 |
" </tr>\n",
|
1717 |
" <tr>\n",
|
1718 |
" <th>117908</th>\n",
|
|
|
1727 |
" <td>NaN</td>\n",
|
1728 |
" <td>NaN</td>\n",
|
1729 |
" <td>NaN</td>\n",
|
1730 |
+
" <td>NaN</td>\n",
|
1731 |
+
" <td>NaN</td>\n",
|
1732 |
" <td>485847.539614</td>\n",
|
1733 |
+
" <td>NaN</td>\n",
|
1734 |
+
" <td>NaN</td>\n",
|
1735 |
+
" <td>NaN</td>\n",
|
1736 |
+
" <td>NaN</td>\n",
|
1737 |
" </tr>\n",
|
1738 |
" <tr>\n",
|
1739 |
" <th>117909</th>\n",
|
|
|
1748 |
" <td>NaN</td>\n",
|
1749 |
" <td>NaN</td>\n",
|
1750 |
" <td>NaN</td>\n",
|
1751 |
+
" <td>NaN</td>\n",
|
1752 |
+
" <td>NaN</td>\n",
|
1753 |
" <td>484223.885775</td>\n",
|
1754 |
+
" <td>NaN</td>\n",
|
1755 |
+
" <td>NaN</td>\n",
|
1756 |
+
" <td>NaN</td>\n",
|
1757 |
+
" <td>NaN</td>\n",
|
1758 |
" </tr>\n",
|
1759 |
" <tr>\n",
|
1760 |
" <th>117910</th>\n",
|
|
|
1769 |
" <td>NaN</td>\n",
|
1770 |
" <td>NaN</td>\n",
|
1771 |
" <td>NaN</td>\n",
|
1772 |
+
" <td>NaN</td>\n",
|
1773 |
+
" <td>NaN</td>\n",
|
1774 |
" <td>481522.403338</td>\n",
|
1775 |
+
" <td>NaN</td>\n",
|
1776 |
+
" <td>NaN</td>\n",
|
1777 |
+
" <td>NaN</td>\n",
|
1778 |
+
" <td>NaN</td>\n",
|
1779 |
" </tr>\n",
|
1780 |
" <tr>\n",
|
1781 |
" <th>117911</th>\n",
|
|
|
1790 |
" <td>NaN</td>\n",
|
1791 |
" <td>NaN</td>\n",
|
1792 |
" <td>NaN</td>\n",
|
1793 |
+
" <td>NaN</td>\n",
|
1794 |
+
" <td>NaN</td>\n",
|
1795 |
" <td>481181.718200</td>\n",
|
1796 |
+
" <td>NaN</td>\n",
|
1797 |
+
" <td>NaN</td>\n",
|
1798 |
+
" <td>NaN</td>\n",
|
1799 |
+
" <td>NaN</td>\n",
|
1800 |
" </tr>\n",
|
1801 |
" </tbody>\n",
|
1802 |
"</table>\n",
|
1803 |
+
"<p>117912 rows × 18 columns</p>\n",
|
1804 |
"</div>"
|
1805 |
],
|
1806 |
"text/plain": [
|
|
|
1843 |
"117910 NaN \n",
|
1844 |
"117911 NaN \n",
|
1845 |
"\n",
|
1846 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
|
1847 |
+
"0 NaN \n",
|
1848 |
+
"1 NaN \n",
|
1849 |
+
"2 NaN \n",
|
1850 |
+
"3 NaN \n",
|
1851 |
+
"4 NaN \n",
|
1852 |
+
"... ... \n",
|
1853 |
+
"117907 NaN \n",
|
1854 |
+
"117908 NaN \n",
|
1855 |
+
"117909 NaN \n",
|
1856 |
+
"117910 NaN \n",
|
1857 |
+
"117911 NaN \n",
|
1858 |
+
"\n",
|
1859 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
|
1860 |
+
"0 NaN \n",
|
1861 |
+
"1 NaN \n",
|
1862 |
+
"2 NaN \n",
|
1863 |
+
"3 NaN \n",
|
1864 |
+
"4 NaN \n",
|
1865 |
+
"... ... \n",
|
1866 |
+
"117907 NaN \n",
|
1867 |
+
"117908 NaN \n",
|
1868 |
+
"117909 NaN \n",
|
1869 |
+
"117910 NaN \n",
|
1870 |
+
"117911 NaN \n",
|
1871 |
+
"\n",
|
1872 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1873 |
"0 NaN \n",
|
1874 |
"1 NaN \n",
|
|
|
1882 |
"117910 NaN \n",
|
1883 |
"117911 NaN \n",
|
1884 |
"\n",
|
1885 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4 \\\n",
|
1886 |
+
"0 NaN \n",
|
1887 |
+
"1 NaN \n",
|
1888 |
+
"2 NaN \n",
|
1889 |
+
"3 NaN \n",
|
1890 |
+
"4 NaN \n",
|
1891 |
+
"... ... \n",
|
1892 |
+
"117907 NaN \n",
|
1893 |
+
"117908 NaN \n",
|
1894 |
+
"117909 NaN \n",
|
1895 |
+
"117910 NaN \n",
|
1896 |
+
"117911 NaN \n",
|
1897 |
"\n",
|
1898 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
|
1899 |
+
"0 NaN \n",
|
1900 |
+
"1 NaN \n",
|
1901 |
+
"2 NaN \n",
|
1902 |
+
"3 NaN \n",
|
1903 |
+
"4 NaN \n",
|
1904 |
+
"... ... \n",
|
1905 |
+
"117907 486974.735908 \n",
|
1906 |
+
"117908 485847.539614 \n",
|
1907 |
+
"117909 484223.885775 \n",
|
1908 |
+
"117910 481522.403338 \n",
|
1909 |
+
"117911 481181.718200 \n",
|
1910 |
"\n",
|
1911 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
|
1912 |
+
"0 NaN \n",
|
1913 |
+
"1 NaN \n",
|
1914 |
+
"2 NaN \n",
|
1915 |
+
"3 NaN \n",
|
1916 |
+
"4 NaN \n",
|
1917 |
+
"... ... \n",
|
1918 |
+
"117907 NaN \n",
|
1919 |
+
"117908 NaN \n",
|
1920 |
+
"117909 NaN \n",
|
1921 |
+
"117910 NaN \n",
|
1922 |
+
"117911 NaN \n",
|
1923 |
+
"\n",
|
1924 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1925 |
+
"0 NaN \n",
|
1926 |
+
"1 NaN \n",
|
1927 |
+
"2 NaN \n",
|
1928 |
+
"3 NaN \n",
|
1929 |
+
"4 NaN \n",
|
1930 |
+
"... ... \n",
|
1931 |
+
"117907 NaN \n",
|
1932 |
+
"117908 NaN \n",
|
1933 |
+
"117909 NaN \n",
|
1934 |
+
"117910 NaN \n",
|
1935 |
+
"117911 NaN \n",
|
1936 |
+
"\n",
|
1937 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
|
1938 |
+
"0 NaN \n",
|
1939 |
+
"1 NaN \n",
|
1940 |
+
"2 NaN \n",
|
1941 |
+
"3 NaN \n",
|
1942 |
+
"4 NaN \n",
|
1943 |
+
"... ... \n",
|
1944 |
+
"117907 NaN \n",
|
1945 |
+
"117908 NaN \n",
|
1946 |
+
"117909 NaN \n",
|
1947 |
+
"117910 NaN \n",
|
1948 |
+
"117911 NaN \n",
|
1949 |
+
"\n",
|
1950 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
|
1951 |
+
"0 81310.639504 \n",
|
1952 |
+
"1 80419.761984 \n",
|
1953 |
+
"2 80480.449461 \n",
|
1954 |
+
"3 79799.206525 \n",
|
1955 |
+
"4 79666.469861 \n",
|
1956 |
+
"... ... \n",
|
1957 |
+
"117907 NaN \n",
|
1958 |
+
"117908 NaN \n",
|
1959 |
+
"117909 NaN \n",
|
1960 |
+
"117910 NaN \n",
|
1961 |
+
"117911 NaN \n",
|
1962 |
+
"\n",
|
1963 |
+
"[117912 rows x 18 columns]"
|
1964 |
]
|
1965 |
},
|
1966 |
+
"execution_count": 12,
|
1967 |
"metadata": {},
|
1968 |
"output_type": "execute_result"
|
1969 |
}
|
|
|
1986 |
},
|
1987 |
{
|
1988 |
"cell_type": "code",
|
1989 |
+
"execution_count": 13,
|
1990 |
"metadata": {},
|
1991 |
"outputs": [],
|
1992 |
"source": [
|
1993 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
1994 |
]
|
1995 |
}
|
1996 |
],
|
processors/new_construction.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -255,7 +257,7 @@
|
|
255 |
"[49487 rows x 10 columns]"
|
256 |
]
|
257 |
},
|
258 |
-
"execution_count":
|
259 |
"metadata": {},
|
260 |
"output_type": "execute_result"
|
261 |
}
|
@@ -320,54 +322,29 @@
|
|
320 |
" data_frames.append(cur_df)\n",
|
321 |
"\n",
|
322 |
"\n",
|
323 |
-
"
|
324 |
-
"
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"
|
332 |
-
"
|
333 |
-
"
|
334 |
-
"
|
335 |
-
" \"SizeRank\",\n",
|
336 |
-
" \"RegionName\",\n",
|
337 |
-
" \"RegionType\",\n",
|
338 |
-
" \"StateName\",\n",
|
339 |
-
" \"Home Type\",\n",
|
340 |
-
" \"Date\",\n",
|
341 |
-
" ],\n",
|
342 |
-
" how=\"outer\",\n",
|
343 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
344 |
-
" )\n",
|
345 |
-
" elif len(data_frames) == 1:\n",
|
346 |
-
" combined_df = data_frames[0]\n",
|
347 |
-
"\n",
|
348 |
-
" return combined_df\n",
|
349 |
-
"\n",
|
350 |
-
"\n",
|
351 |
-
"combined_df = get_combined_df(data_frames)\n",
|
352 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
353 |
"columns_to_coalesce = [\"Sales Count\", \"Median Sale Price\", \"Median Sale Price per Sqft\"]\n",
|
354 |
"\n",
|
355 |
-
"
|
356 |
-
" for col in combined_df.columns:\n",
|
357 |
-
" for column_to_coalesce in columns_to_coalesce:\n",
|
358 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
359 |
-
" if not pd.isna(row[col]):\n",
|
360 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
361 |
-
"\n",
|
362 |
-
"# remove columns with underscores\n",
|
363 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
364 |
"\n",
|
365 |
"combined_df"
|
366 |
]
|
367 |
},
|
368 |
{
|
369 |
"cell_type": "code",
|
370 |
-
"execution_count":
|
371 |
"metadata": {},
|
372 |
"outputs": [
|
373 |
{
|
@@ -582,7 +559,7 @@
|
|
582 |
"[49487 rows x 10 columns]"
|
583 |
]
|
584 |
},
|
585 |
-
"execution_count":
|
586 |
"metadata": {},
|
587 |
"output_type": "execute_result"
|
588 |
}
|
@@ -604,14 +581,11 @@
|
|
604 |
},
|
605 |
{
|
606 |
"cell_type": "code",
|
607 |
-
"execution_count":
|
608 |
"metadata": {},
|
609 |
"outputs": [],
|
610 |
"source": [
|
611 |
-
"
|
612 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
613 |
-
"\n",
|
614 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
615 |
]
|
616 |
}
|
617 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
257 |
"[49487 rows x 10 columns]"
|
258 |
]
|
259 |
},
|
260 |
+
"execution_count": 3,
|
261 |
"metadata": {},
|
262 |
"output_type": "execute_result"
|
263 |
}
|
|
|
322 |
" data_frames.append(cur_df)\n",
|
323 |
"\n",
|
324 |
"\n",
|
325 |
+
"combined_df = get_combined_df(\n",
|
326 |
+
" data_frames,\n",
|
327 |
+
" [\n",
|
328 |
+
" \"RegionID\",\n",
|
329 |
+
" \"SizeRank\",\n",
|
330 |
+
" \"RegionName\",\n",
|
331 |
+
" \"RegionType\",\n",
|
332 |
+
" \"StateName\",\n",
|
333 |
+
" \"Home Type\",\n",
|
334 |
+
" \"Date\",\n",
|
335 |
+
" ],\n",
|
336 |
+
")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
338 |
"columns_to_coalesce = [\"Sales Count\", \"Median Sale Price\", \"Median Sale Price per Sqft\"]\n",
|
339 |
"\n",
|
340 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
"\n",
|
342 |
"combined_df"
|
343 |
]
|
344 |
},
|
345 |
{
|
346 |
"cell_type": "code",
|
347 |
+
"execution_count": 4,
|
348 |
"metadata": {},
|
349 |
"outputs": [
|
350 |
{
|
|
|
559 |
"[49487 rows x 10 columns]"
|
560 |
]
|
561 |
},
|
562 |
+
"execution_count": 4,
|
563 |
"metadata": {},
|
564 |
"output_type": "execute_result"
|
565 |
}
|
|
|
581 |
},
|
582 |
{
|
583 |
"cell_type": "code",
|
584 |
+
"execution_count": 5,
|
585 |
"metadata": {},
|
586 |
"outputs": [],
|
587 |
"source": [
|
588 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
589 |
]
|
590 |
}
|
591 |
],
|
processors/rentals.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -326,7 +328,7 @@
|
|
326 |
"[1258740 rows x 15 columns]"
|
327 |
]
|
328 |
},
|
329 |
-
"execution_count":
|
330 |
"metadata": {},
|
331 |
"output_type": "execute_result"
|
332 |
}
|
@@ -334,7 +336,6 @@
|
|
334 |
"source": [
|
335 |
"# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
|
336 |
"\n",
|
337 |
-
"\n",
|
338 |
"data_frames = []\n",
|
339 |
"\n",
|
340 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
@@ -404,103 +405,42 @@
|
|
404 |
" # Identify columns to pivot\n",
|
405 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
406 |
"\n",
|
407 |
-
"
|
408 |
-
" seasonally_adjusted = \"_sa_\" in filename\n",
|
409 |
-
"\n",
|
410 |
-
" col_name = \"Rent\"\n",
|
411 |
-
" if smoothed:\n",
|
412 |
-
" col_name += \" (Smoothed)\"\n",
|
413 |
-
" if seasonally_adjusted:\n",
|
414 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
415 |
-
" cur_df = pd.melt(\n",
|
416 |
" cur_df,\n",
|
417 |
-
"
|
418 |
-
"
|
419 |
-
"
|
420 |
-
"
|
421 |
" )\n",
|
422 |
-
" data_frames.append(cur_df)\n",
|
423 |
-
" # print(filename)\n",
|
424 |
-
"\n",
|
425 |
-
"\n",
|
426 |
-
"def get_combined_df(data_frames):\n",
|
427 |
-
" combined_df = None\n",
|
428 |
-
" if len(data_frames) > 1:\n",
|
429 |
-
" # iterate over dataframes and merge or concat\n",
|
430 |
-
" combined_df = data_frames[0]\n",
|
431 |
-
" for i in range(1, len(data_frames)):\n",
|
432 |
-
" cur_df = data_frames[i]\n",
|
433 |
-
" combined_df = pd.merge(\n",
|
434 |
-
" combined_df,\n",
|
435 |
-
" cur_df,\n",
|
436 |
-
" on=[\n",
|
437 |
-
" \"RegionID\",\n",
|
438 |
-
" \"SizeRank\",\n",
|
439 |
-
" \"RegionName\",\n",
|
440 |
-
" \"RegionType\",\n",
|
441 |
-
" \"StateName\",\n",
|
442 |
-
" \"Home Type\",\n",
|
443 |
-
" \"Date\",\n",
|
444 |
-
" ],\n",
|
445 |
-
" how=\"outer\",\n",
|
446 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
447 |
-
" )\n",
|
448 |
-
" elif len(data_frames) == 1:\n",
|
449 |
-
" combined_df = data_frames[0]\n",
|
450 |
"\n",
|
451 |
-
"
|
452 |
"\n",
|
453 |
"\n",
|
454 |
-
"combined_df = get_combined_df(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
"\n",
|
456 |
"\n",
|
457 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
458 |
"columns_to_coalesce = [\"Rent (Smoothed)\", \"Rent (Smoothed) (Seasonally Adjusted)\"]\n",
|
459 |
"\n",
|
460 |
-
"
|
461 |
-
" for col in combined_df.columns:\n",
|
462 |
-
" for column_to_coalesce in columns_to_coalesce:\n",
|
463 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
464 |
-
" if not pd.isna(row[col]):\n",
|
465 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
466 |
-
"\n",
|
467 |
-
"# remove columns with underscores\n",
|
468 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
469 |
-
"\n",
|
470 |
"\n",
|
471 |
"combined_df"
|
472 |
]
|
473 |
},
|
474 |
{
|
475 |
"cell_type": "code",
|
476 |
-
"execution_count":
|
477 |
-
"metadata": {},
|
478 |
-
"outputs": [
|
479 |
-
{
|
480 |
-
"data": {
|
481 |
-
"text/plain": [
|
482 |
-
"Index(['RegionID', 'SizeRank', 'RegionName', 'RegionType', 'StateName',\n",
|
483 |
-
" 'Home Type', 'State', 'Metro', 'StateCodeFIPS', 'MunicipalCodeFIPS',\n",
|
484 |
-
" 'Date', 'Rent (Smoothed)', 'CountyName',\n",
|
485 |
-
" 'Rent (Smoothed) (Seasonally Adjusted)', 'City'],\n",
|
486 |
-
" dtype='object')"
|
487 |
-
]
|
488 |
-
},
|
489 |
-
"execution_count": 27,
|
490 |
-
"metadata": {},
|
491 |
-
"output_type": "execute_result"
|
492 |
-
}
|
493 |
-
],
|
494 |
-
"source": [
|
495 |
-
"combined_df.columns\n",
|
496 |
-
"# combined_df[\"RegionType\"].unique()\n",
|
497 |
-
"\n",
|
498 |
-
"# combined_df"
|
499 |
-
]
|
500 |
-
},
|
501 |
-
{
|
502 |
-
"cell_type": "code",
|
503 |
-
"execution_count": 32,
|
504 |
"metadata": {},
|
505 |
"outputs": [
|
506 |
{
|
@@ -789,7 +729,7 @@
|
|
789 |
"[1258740 rows x 14 columns]"
|
790 |
]
|
791 |
},
|
792 |
-
"execution_count":
|
793 |
"metadata": {},
|
794 |
"output_type": "execute_result"
|
795 |
}
|
@@ -813,7 +753,7 @@
|
|
813 |
},
|
814 |
{
|
815 |
"cell_type": "code",
|
816 |
-
"execution_count":
|
817 |
"metadata": {},
|
818 |
"outputs": [
|
819 |
{
|
@@ -1102,12 +1042,13 @@
|
|
1102 |
"[1258740 rows x 14 columns]"
|
1103 |
]
|
1104 |
},
|
1105 |
-
"execution_count":
|
1106 |
"metadata": {},
|
1107 |
"output_type": "execute_result"
|
1108 |
}
|
1109 |
],
|
1110 |
"source": [
|
|
|
1111 |
"final_df = final_df.rename(\n",
|
1112 |
" columns={\n",
|
1113 |
" \"RegionID\": \"Region ID\",\n",
|
@@ -1124,14 +1065,11 @@
|
|
1124 |
},
|
1125 |
{
|
1126 |
"cell_type": "code",
|
1127 |
-
"execution_count":
|
1128 |
"metadata": {},
|
1129 |
"outputs": [],
|
1130 |
"source": [
|
1131 |
-
"
|
1132 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
1133 |
-
"\n",
|
1134 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
1135 |
]
|
1136 |
}
|
1137 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 4,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
328 |
"[1258740 rows x 15 columns]"
|
329 |
]
|
330 |
},
|
331 |
+
"execution_count": 4,
|
332 |
"metadata": {},
|
333 |
"output_type": "execute_result"
|
334 |
}
|
|
|
336 |
"source": [
|
337 |
"# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
|
338 |
"\n",
|
|
|
339 |
"data_frames = []\n",
|
340 |
"\n",
|
341 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
|
|
405 |
" # Identify columns to pivot\n",
|
406 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
407 |
"\n",
|
408 |
+
" cur_df = get_df(\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
" cur_df,\n",
|
410 |
+
" exclude_columns,\n",
|
411 |
+
" columns_to_pivot,\n",
|
412 |
+
" \"Rent\",\n",
|
413 |
+
" filename,\n",
|
414 |
" )\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
"\n",
|
416 |
+
" data_frames.append(cur_df)\n",
|
417 |
"\n",
|
418 |
"\n",
|
419 |
+
"combined_df = get_combined_df(\n",
|
420 |
+
" data_frames,\n",
|
421 |
+
" [\n",
|
422 |
+
" \"RegionID\",\n",
|
423 |
+
" \"SizeRank\",\n",
|
424 |
+
" \"RegionName\",\n",
|
425 |
+
" \"RegionType\",\n",
|
426 |
+
" \"StateName\",\n",
|
427 |
+
" \"Home Type\",\n",
|
428 |
+
" \"Date\",\n",
|
429 |
+
" ],\n",
|
430 |
+
")\n",
|
431 |
"\n",
|
432 |
"\n",
|
433 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
434 |
"columns_to_coalesce = [\"Rent (Smoothed)\", \"Rent (Smoothed) (Seasonally Adjusted)\"]\n",
|
435 |
"\n",
|
436 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
"\n",
|
438 |
"combined_df"
|
439 |
]
|
440 |
},
|
441 |
{
|
442 |
"cell_type": "code",
|
443 |
+
"execution_count": 5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
"metadata": {},
|
445 |
"outputs": [
|
446 |
{
|
|
|
729 |
"[1258740 rows x 14 columns]"
|
730 |
]
|
731 |
},
|
732 |
+
"execution_count": 5,
|
733 |
"metadata": {},
|
734 |
"output_type": "execute_result"
|
735 |
}
|
|
|
753 |
},
|
754 |
{
|
755 |
"cell_type": "code",
|
756 |
+
"execution_count": 6,
|
757 |
"metadata": {},
|
758 |
"outputs": [
|
759 |
{
|
|
|
1042 |
"[1258740 rows x 14 columns]"
|
1043 |
]
|
1044 |
},
|
1045 |
+
"execution_count": 6,
|
1046 |
"metadata": {},
|
1047 |
"output_type": "execute_result"
|
1048 |
}
|
1049 |
],
|
1050 |
"source": [
|
1051 |
+
"# Adjust column names\n",
|
1052 |
"final_df = final_df.rename(\n",
|
1053 |
" columns={\n",
|
1054 |
" \"RegionID\": \"Region ID\",\n",
|
|
|
1065 |
},
|
1066 |
{
|
1067 |
"cell_type": "code",
|
1068 |
+
"execution_count": 7,
|
1069 |
"metadata": {},
|
1070 |
"outputs": [],
|
1071 |
"source": [
|
1072 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
1073 |
]
|
1074 |
}
|
1075 |
],
|
processors/sales.ipynb
CHANGED
@@ -2,17 +2,19 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"import os"
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -25,7 +27,7 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
@@ -460,7 +462,7 @@
|
|
460 |
"[504608 rows x 19 columns]"
|
461 |
]
|
462 |
},
|
463 |
-
"execution_count":
|
464 |
"metadata": {},
|
465 |
"output_type": "execute_result"
|
466 |
}
|
@@ -477,6 +479,15 @@
|
|
477 |
" \"Home Type\",\n",
|
478 |
"]\n",
|
479 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
"data_frames = []\n",
|
481 |
"\n",
|
482 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
@@ -496,131 +507,34 @@
|
|
496 |
" # Identify columns to pivot\n",
|
497 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
498 |
"\n",
|
499 |
-
"
|
500 |
-
"
|
501 |
-
"
|
502 |
-
"
|
503 |
-
"
|
504 |
-
"
|
505 |
-
"
|
506 |
-
"
|
507 |
-
"
|
508 |
-
"\n",
|
509 |
-
" cur_df = pd.melt(\n",
|
510 |
-
" cur_df,\n",
|
511 |
-
" id_vars=exclude_columns,\n",
|
512 |
-
" value_vars=columns_to_pivot,\n",
|
513 |
-
" var_name=\"Date\",\n",
|
514 |
-
" value_name=col_name,\n",
|
515 |
-
" )\n",
|
516 |
-
"\n",
|
517 |
-
" elif \"_mean_sale_to_list_\" in filename:\n",
|
518 |
-
" col_name = \"Mean Sale to List Ratio\"\n",
|
519 |
-
" if smoothed:\n",
|
520 |
-
" col_name += \" (Smoothed)\"\n",
|
521 |
-
" if seasonally_adjusted:\n",
|
522 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
523 |
-
"\n",
|
524 |
-
" cur_df = pd.melt(\n",
|
525 |
-
" cur_df,\n",
|
526 |
-
" id_vars=exclude_columns,\n",
|
527 |
-
" value_vars=columns_to_pivot,\n",
|
528 |
-
" var_name=\"Date\",\n",
|
529 |
-
" value_name=col_name,\n",
|
530 |
-
" )\n",
|
531 |
-
"\n",
|
532 |
-
" elif \"_median_sale_price_\" in filename:\n",
|
533 |
-
" col_name = \"Median Sale Price\"\n",
|
534 |
-
" if smoothed:\n",
|
535 |
-
" col_name += \" (Smoothed)\"\n",
|
536 |
-
" if seasonally_adjusted:\n",
|
537 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
538 |
-
"\n",
|
539 |
-
" cur_df = pd.melt(\n",
|
540 |
-
" cur_df,\n",
|
541 |
-
" id_vars=exclude_columns,\n",
|
542 |
-
" value_vars=columns_to_pivot,\n",
|
543 |
-
" var_name=\"Date\",\n",
|
544 |
-
" value_name=col_name,\n",
|
545 |
-
" )\n",
|
546 |
"\n",
|
547 |
-
"
|
548 |
-
"
|
549 |
-
" if smoothed:\n",
|
550 |
-
" col_name += \" (Smoothed)\"\n",
|
551 |
-
" if seasonally_adjusted:\n",
|
552 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
553 |
"\n",
|
554 |
-
" cur_df = pd.melt(\n",
|
555 |
-
" cur_df,\n",
|
556 |
-
" id_vars=exclude_columns,\n",
|
557 |
-
" value_vars=columns_to_pivot,\n",
|
558 |
-
" var_name=\"Date\",\n",
|
559 |
-
" value_name=col_name,\n",
|
560 |
-
" )\n",
|
561 |
-
"\n",
|
562 |
-
" elif \"_pct_sold_below_list_\" in filename:\n",
|
563 |
-
" col_name = \"% Sold Below List\"\n",
|
564 |
-
" if smoothed:\n",
|
565 |
-
" col_name += \" (Smoothed)\"\n",
|
566 |
-
" if seasonally_adjusted:\n",
|
567 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
568 |
-
"\n",
|
569 |
-
" cur_df = pd.melt(\n",
|
570 |
-
" cur_df,\n",
|
571 |
-
" id_vars=exclude_columns,\n",
|
572 |
-
" value_vars=columns_to_pivot,\n",
|
573 |
-
" var_name=\"Date\",\n",
|
574 |
-
" value_name=col_name,\n",
|
575 |
-
" )\n",
|
576 |
-
"\n",
|
577 |
-
" elif \"_sales_count_now_\" in filename:\n",
|
578 |
-
" col_name = \"Nowcast\"\n",
|
579 |
-
" if smoothed:\n",
|
580 |
-
" col_name += \" (Smoothed)\"\n",
|
581 |
-
" if seasonally_adjusted:\n",
|
582 |
-
" col_name += \" (Seasonally Adjusted)\"\n",
|
583 |
-
"\n",
|
584 |
-
" cur_df = pd.melt(\n",
|
585 |
-
" cur_df,\n",
|
586 |
-
" id_vars=exclude_columns,\n",
|
587 |
-
" value_vars=columns_to_pivot,\n",
|
588 |
-
" var_name=\"Date\",\n",
|
589 |
-
" value_name=col_name,\n",
|
590 |
-
" )\n",
|
591 |
-
"\n",
|
592 |
-
" data_frames.append(cur_df)\n",
|
593 |
-
"\n",
|
594 |
-
"\n",
|
595 |
-
"def get_combined_df(data_frames):\n",
|
596 |
-
" combined_df = None\n",
|
597 |
-
" if len(data_frames) > 1:\n",
|
598 |
-
" # iterate over dataframes and merge or concat\n",
|
599 |
-
" combined_df = data_frames[0]\n",
|
600 |
-
" for i in range(1, len(data_frames)):\n",
|
601 |
-
" cur_df = data_frames[i]\n",
|
602 |
-
" combined_df = pd.merge(\n",
|
603 |
-
" combined_df,\n",
|
604 |
-
" cur_df,\n",
|
605 |
-
" on=[\n",
|
606 |
-
" \"RegionID\",\n",
|
607 |
-
" \"SizeRank\",\n",
|
608 |
-
" \"RegionName\",\n",
|
609 |
-
" \"RegionType\",\n",
|
610 |
-
" \"StateName\",\n",
|
611 |
-
" \"Home Type\",\n",
|
612 |
-
" \"Date\",\n",
|
613 |
-
" ],\n",
|
614 |
-
" how=\"outer\",\n",
|
615 |
-
" suffixes=(\"\", \"_\" + str(i)),\n",
|
616 |
-
" )\n",
|
617 |
-
" elif len(data_frames) == 1:\n",
|
618 |
-
" combined_df = data_frames[0]\n",
|
619 |
-
"\n",
|
620 |
-
" return combined_df\n",
|
621 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
"\n",
|
623 |
-
"combined_df = get_combined_df(data_frames)\n",
|
624 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
625 |
"columns_to_coalesce = [\n",
|
626 |
" \"Mean Sale to List Ratio (Smoothed)\"\n",
|
@@ -637,22 +551,14 @@
|
|
637 |
" \"% Sold Above List (Smoothed)\",\n",
|
638 |
"]\n",
|
639 |
"\n",
|
640 |
-
"
|
641 |
-
" for col in combined_df.columns:\n",
|
642 |
-
" for column_to_coalesce in columns_to_coalesce:\n",
|
643 |
-
" if column_to_coalesce in col and \"_\" in col:\n",
|
644 |
-
" if not pd.isna(row[col]):\n",
|
645 |
-
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
646 |
-
"\n",
|
647 |
-
"# remove columns with underscores\n",
|
648 |
-
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
649 |
"\n",
|
650 |
"combined_df"
|
651 |
]
|
652 |
},
|
653 |
{
|
654 |
"cell_type": "code",
|
655 |
-
"execution_count":
|
656 |
"metadata": {},
|
657 |
"outputs": [
|
658 |
{
|
@@ -1053,14 +959,14 @@
|
|
1053 |
"[504608 rows x 19 columns]"
|
1054 |
]
|
1055 |
},
|
1056 |
-
"execution_count":
|
1057 |
"metadata": {},
|
1058 |
"output_type": "execute_result"
|
1059 |
}
|
1060 |
],
|
1061 |
"source": [
|
1062 |
-
"
|
1063 |
-
"final_df =
|
1064 |
" columns={\n",
|
1065 |
" \"RegionID\": \"Region ID\",\n",
|
1066 |
" \"SizeRank\": \"Size Rank\",\n",
|
@@ -1075,14 +981,11 @@
|
|
1075 |
},
|
1076 |
{
|
1077 |
"cell_type": "code",
|
1078 |
-
"execution_count":
|
1079 |
"metadata": {},
|
1080 |
"outputs": [],
|
1081 |
"source": [
|
1082 |
-
"
|
1083 |
-
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
1084 |
-
"\n",
|
1085 |
-
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
1086 |
]
|
1087 |
}
|
1088 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
"metadata": {},
|
32 |
"outputs": [
|
33 |
{
|
|
|
462 |
"[504608 rows x 19 columns]"
|
463 |
]
|
464 |
},
|
465 |
+
"execution_count": 3,
|
466 |
"metadata": {},
|
467 |
"output_type": "execute_result"
|
468 |
}
|
|
|
479 |
" \"Home Type\",\n",
|
480 |
"]\n",
|
481 |
"\n",
|
482 |
+
"slug_column_mappings = {\n",
|
483 |
+
" \"_median_sale_to_list_\": \"Median Sale to List Ratio\",\n",
|
484 |
+
" \"_mean_sale_to_list_\": \"Mean Sale to List Ratio\",\n",
|
485 |
+
" \"_median_sale_price_\": \"Median Sale Price\",\n",
|
486 |
+
" \"_pct_sold_above_list_\": \"% Sold Above List\",\n",
|
487 |
+
" \"_pct_sold_below_list_\": \"% Sold Below List\",\n",
|
488 |
+
" \"_sales_count_now_\": \"Nowcast\",\n",
|
489 |
+
"}\n",
|
490 |
+
"\n",
|
491 |
"data_frames = []\n",
|
492 |
"\n",
|
493 |
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
|
|
507 |
" # Identify columns to pivot\n",
|
508 |
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
509 |
"\n",
|
510 |
+
" # iterate over slug column mappings and get df\n",
|
511 |
+
" for slug, col_name in slug_column_mappings.items():\n",
|
512 |
+
" if slug in filename:\n",
|
513 |
+
" cur_df = get_df(\n",
|
514 |
+
" cur_df,\n",
|
515 |
+
" exclude_columns,\n",
|
516 |
+
" columns_to_pivot,\n",
|
517 |
+
" col_name,\n",
|
518 |
+
" filename,\n",
|
519 |
+
" )\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
"\n",
|
521 |
+
" data_frames.append(cur_df)\n",
|
522 |
+
" break\n",
|
|
|
|
|
|
|
|
|
523 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
"\n",
|
525 |
+
"combined_df = get_combined_df(\n",
|
526 |
+
" data_frames,\n",
|
527 |
+
" [\n",
|
528 |
+
" \"RegionID\",\n",
|
529 |
+
" \"SizeRank\",\n",
|
530 |
+
" \"RegionName\",\n",
|
531 |
+
" \"RegionType\",\n",
|
532 |
+
" \"StateName\",\n",
|
533 |
+
" \"Home Type\",\n",
|
534 |
+
" \"Date\",\n",
|
535 |
+
" ],\n",
|
536 |
+
")\n",
|
537 |
"\n",
|
|
|
538 |
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
539 |
"columns_to_coalesce = [\n",
|
540 |
" \"Mean Sale to List Ratio (Smoothed)\"\n",
|
|
|
551 |
" \"% Sold Above List (Smoothed)\",\n",
|
552 |
"]\n",
|
553 |
"\n",
|
554 |
+
"combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
"\n",
|
556 |
"combined_df"
|
557 |
]
|
558 |
},
|
559 |
{
|
560 |
"cell_type": "code",
|
561 |
+
"execution_count": 4,
|
562 |
"metadata": {},
|
563 |
"outputs": [
|
564 |
{
|
|
|
959 |
"[504608 rows x 19 columns]"
|
960 |
]
|
961 |
},
|
962 |
+
"execution_count": 4,
|
963 |
"metadata": {},
|
964 |
"output_type": "execute_result"
|
965 |
}
|
966 |
],
|
967 |
"source": [
|
968 |
+
"# Adjust column names\n",
|
969 |
+
"final_df = combined_df.rename(\n",
|
970 |
" columns={\n",
|
971 |
" \"RegionID\": \"Region ID\",\n",
|
972 |
" \"SizeRank\": \"Size Rank\",\n",
|
|
|
981 |
},
|
982 |
{
|
983 |
"cell_type": "code",
|
984 |
+
"execution_count": 5,
|
985 |
"metadata": {},
|
986 |
"outputs": [],
|
987 |
"source": [
|
988 |
+
"save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)"
|
|
|
|
|
|
|
989 |
]
|
990 |
}
|
991 |
],
|