small upload
Browse files- .gitattributes +2 -0
- processors/days_on_market.ipynb +798 -0
- processors/home_values.ipynb +1802 -0
- processors/rentals.ipynb +0 -2
- processors/sales.ipynb +1110 -0
- tester.ipynb +43 -28
- zillow.py +164 -85
.gitattributes
CHANGED
@@ -53,4 +53,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
56 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
# Project file formats
|
57 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
58 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
processors/days_on_market.ipynb
ADDED
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import os"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 4,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"DATA_DIR = \"../data\"\n",
|
20 |
+
"PROCESSED_DIR = \"../processed/\"\n",
|
21 |
+
"FACET_DIR = \"days_on_market/\"\n",
|
22 |
+
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
23 |
+
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 7,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"dict_values(['Mean Listings Price Cut Amount', 'Median Days on Pending', 'Median Days to Close', 'Percent Listings Price Cut'])\n"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"data": {
|
40 |
+
"text/html": [
|
41 |
+
"<div>\n",
|
42 |
+
"<style scoped>\n",
|
43 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
44 |
+
" vertical-align: middle;\n",
|
45 |
+
" }\n",
|
46 |
+
"\n",
|
47 |
+
" .dataframe tbody tr th {\n",
|
48 |
+
" vertical-align: top;\n",
|
49 |
+
" }\n",
|
50 |
+
"\n",
|
51 |
+
" .dataframe thead th {\n",
|
52 |
+
" text-align: right;\n",
|
53 |
+
" }\n",
|
54 |
+
"</style>\n",
|
55 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
56 |
+
" <thead>\n",
|
57 |
+
" <tr style=\"text-align: right;\">\n",
|
58 |
+
" <th></th>\n",
|
59 |
+
" <th>RegionID</th>\n",
|
60 |
+
" <th>SizeRank</th>\n",
|
61 |
+
" <th>RegionName</th>\n",
|
62 |
+
" <th>RegionType</th>\n",
|
63 |
+
" <th>StateName</th>\n",
|
64 |
+
" <th>Home Type</th>\n",
|
65 |
+
" <th>Date</th>\n",
|
66 |
+
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
|
67 |
+
" <th>Percent Listings Price Cut</th>\n",
|
68 |
+
" <th>Mean Listings Price Cut Amount</th>\n",
|
69 |
+
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
|
70 |
+
" <th>Median Days on Pending (Smoothed)</th>\n",
|
71 |
+
" <th>Median Days on Pending</th>\n",
|
72 |
+
" </tr>\n",
|
73 |
+
" </thead>\n",
|
74 |
+
" <tbody>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>0</th>\n",
|
77 |
+
" <td>102001</td>\n",
|
78 |
+
" <td>0</td>\n",
|
79 |
+
" <td>United States</td>\n",
|
80 |
+
" <td>country</td>\n",
|
81 |
+
" <td>NaN</td>\n",
|
82 |
+
" <td>SFR</td>\n",
|
83 |
+
" <td>2018-01-06</td>\n",
|
84 |
+
" <td>NaN</td>\n",
|
85 |
+
" <td>NaN</td>\n",
|
86 |
+
" <td>13508.368375</td>\n",
|
87 |
+
" <td>NaN</td>\n",
|
88 |
+
" <td>NaN</td>\n",
|
89 |
+
" <td>NaN</td>\n",
|
90 |
+
" </tr>\n",
|
91 |
+
" <tr>\n",
|
92 |
+
" <th>1</th>\n",
|
93 |
+
" <td>102001</td>\n",
|
94 |
+
" <td>0</td>\n",
|
95 |
+
" <td>United States</td>\n",
|
96 |
+
" <td>country</td>\n",
|
97 |
+
" <td>NaN</td>\n",
|
98 |
+
" <td>SFR</td>\n",
|
99 |
+
" <td>2018-01-13</td>\n",
|
100 |
+
" <td>NaN</td>\n",
|
101 |
+
" <td>0.049042</td>\n",
|
102 |
+
" <td>14114.788383</td>\n",
|
103 |
+
" <td>NaN</td>\n",
|
104 |
+
" <td>NaN</td>\n",
|
105 |
+
" <td>NaN</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>2</th>\n",
|
109 |
+
" <td>102001</td>\n",
|
110 |
+
" <td>0</td>\n",
|
111 |
+
" <td>United States</td>\n",
|
112 |
+
" <td>country</td>\n",
|
113 |
+
" <td>NaN</td>\n",
|
114 |
+
" <td>SFR</td>\n",
|
115 |
+
" <td>2018-01-20</td>\n",
|
116 |
+
" <td>NaN</td>\n",
|
117 |
+
" <td>0.044740</td>\n",
|
118 |
+
" <td>14326.128956</td>\n",
|
119 |
+
" <td>NaN</td>\n",
|
120 |
+
" <td>NaN</td>\n",
|
121 |
+
" <td>NaN</td>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" <tr>\n",
|
124 |
+
" <th>3</th>\n",
|
125 |
+
" <td>102001</td>\n",
|
126 |
+
" <td>0</td>\n",
|
127 |
+
" <td>United States</td>\n",
|
128 |
+
" <td>country</td>\n",
|
129 |
+
" <td>NaN</td>\n",
|
130 |
+
" <td>SFR</td>\n",
|
131 |
+
" <td>2018-01-27</td>\n",
|
132 |
+
" <td>NaN</td>\n",
|
133 |
+
" <td>0.047930</td>\n",
|
134 |
+
" <td>13998.585612</td>\n",
|
135 |
+
" <td>NaN</td>\n",
|
136 |
+
" <td>NaN</td>\n",
|
137 |
+
" <td>NaN</td>\n",
|
138 |
+
" </tr>\n",
|
139 |
+
" <tr>\n",
|
140 |
+
" <th>4</th>\n",
|
141 |
+
" <td>102001</td>\n",
|
142 |
+
" <td>0</td>\n",
|
143 |
+
" <td>United States</td>\n",
|
144 |
+
" <td>country</td>\n",
|
145 |
+
" <td>NaN</td>\n",
|
146 |
+
" <td>SFR</td>\n",
|
147 |
+
" <td>2018-02-03</td>\n",
|
148 |
+
" <td>NaN</td>\n",
|
149 |
+
" <td>0.047622</td>\n",
|
150 |
+
" <td>14120.035549</td>\n",
|
151 |
+
" <td>NaN</td>\n",
|
152 |
+
" <td>NaN</td>\n",
|
153 |
+
" <td>NaN</td>\n",
|
154 |
+
" </tr>\n",
|
155 |
+
" <tr>\n",
|
156 |
+
" <th>...</th>\n",
|
157 |
+
" <td>...</td>\n",
|
158 |
+
" <td>...</td>\n",
|
159 |
+
" <td>...</td>\n",
|
160 |
+
" <td>...</td>\n",
|
161 |
+
" <td>...</td>\n",
|
162 |
+
" <td>...</td>\n",
|
163 |
+
" <td>...</td>\n",
|
164 |
+
" <td>...</td>\n",
|
165 |
+
" <td>...</td>\n",
|
166 |
+
" <td>...</td>\n",
|
167 |
+
" <td>...</td>\n",
|
168 |
+
" <td>...</td>\n",
|
169 |
+
" <td>...</td>\n",
|
170 |
+
" </tr>\n",
|
171 |
+
" <tr>\n",
|
172 |
+
" <th>586709</th>\n",
|
173 |
+
" <td>845172</td>\n",
|
174 |
+
" <td>769</td>\n",
|
175 |
+
" <td>Winfield, KS</td>\n",
|
176 |
+
" <td>msa</td>\n",
|
177 |
+
" <td>KS</td>\n",
|
178 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
179 |
+
" <td>2024-01-06</td>\n",
|
180 |
+
" <td>NaN</td>\n",
|
181 |
+
" <td>0.094017</td>\n",
|
182 |
+
" <td>NaN</td>\n",
|
183 |
+
" <td>0.037378</td>\n",
|
184 |
+
" <td>NaN</td>\n",
|
185 |
+
" <td>NaN</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>586710</th>\n",
|
189 |
+
" <td>845172</td>\n",
|
190 |
+
" <td>769</td>\n",
|
191 |
+
" <td>Winfield, KS</td>\n",
|
192 |
+
" <td>msa</td>\n",
|
193 |
+
" <td>KS</td>\n",
|
194 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
195 |
+
" <td>2024-01-13</td>\n",
|
196 |
+
" <td>NaN</td>\n",
|
197 |
+
" <td>0.070175</td>\n",
|
198 |
+
" <td>NaN</td>\n",
|
199 |
+
" <td>0.043203</td>\n",
|
200 |
+
" <td>NaN</td>\n",
|
201 |
+
" <td>NaN</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <th>586711</th>\n",
|
205 |
+
" <td>845172</td>\n",
|
206 |
+
" <td>769</td>\n",
|
207 |
+
" <td>Winfield, KS</td>\n",
|
208 |
+
" <td>msa</td>\n",
|
209 |
+
" <td>KS</td>\n",
|
210 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
211 |
+
" <td>2024-01-20</td>\n",
|
212 |
+
" <td>NaN</td>\n",
|
213 |
+
" <td>0.043478</td>\n",
|
214 |
+
" <td>NaN</td>\n",
|
215 |
+
" <td>0.054073</td>\n",
|
216 |
+
" <td>NaN</td>\n",
|
217 |
+
" <td>NaN</td>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" <tr>\n",
|
220 |
+
" <th>586712</th>\n",
|
221 |
+
" <td>845172</td>\n",
|
222 |
+
" <td>769</td>\n",
|
223 |
+
" <td>Winfield, KS</td>\n",
|
224 |
+
" <td>msa</td>\n",
|
225 |
+
" <td>KS</td>\n",
|
226 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
227 |
+
" <td>2024-01-27</td>\n",
|
228 |
+
" <td>NaN</td>\n",
|
229 |
+
" <td>0.036697</td>\n",
|
230 |
+
" <td>NaN</td>\n",
|
231 |
+
" <td>0.061092</td>\n",
|
232 |
+
" <td>NaN</td>\n",
|
233 |
+
" <td>NaN</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>586713</th>\n",
|
237 |
+
" <td>845172</td>\n",
|
238 |
+
" <td>769</td>\n",
|
239 |
+
" <td>Winfield, KS</td>\n",
|
240 |
+
" <td>msa</td>\n",
|
241 |
+
" <td>KS</td>\n",
|
242 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
243 |
+
" <td>2024-02-03</td>\n",
|
244 |
+
" <td>NaN</td>\n",
|
245 |
+
" <td>0.077670</td>\n",
|
246 |
+
" <td>NaN</td>\n",
|
247 |
+
" <td>0.057005</td>\n",
|
248 |
+
" <td>NaN</td>\n",
|
249 |
+
" <td>NaN</td>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" </tbody>\n",
|
252 |
+
"</table>\n",
|
253 |
+
"<p>586714 rows × 13 columns</p>\n",
|
254 |
+
"</div>"
|
255 |
+
],
|
256 |
+
"text/plain": [
|
257 |
+
" RegionID SizeRank RegionName RegionType StateName \\\n",
|
258 |
+
"0 102001 0 United States country NaN \n",
|
259 |
+
"1 102001 0 United States country NaN \n",
|
260 |
+
"2 102001 0 United States country NaN \n",
|
261 |
+
"3 102001 0 United States country NaN \n",
|
262 |
+
"4 102001 0 United States country NaN \n",
|
263 |
+
"... ... ... ... ... ... \n",
|
264 |
+
"586709 845172 769 Winfield, KS msa KS \n",
|
265 |
+
"586710 845172 769 Winfield, KS msa KS \n",
|
266 |
+
"586711 845172 769 Winfield, KS msa KS \n",
|
267 |
+
"586712 845172 769 Winfield, KS msa KS \n",
|
268 |
+
"586713 845172 769 Winfield, KS msa KS \n",
|
269 |
+
"\n",
|
270 |
+
" Home Type Date \\\n",
|
271 |
+
"0 SFR 2018-01-06 \n",
|
272 |
+
"1 SFR 2018-01-13 \n",
|
273 |
+
"2 SFR 2018-01-20 \n",
|
274 |
+
"3 SFR 2018-01-27 \n",
|
275 |
+
"4 SFR 2018-02-03 \n",
|
276 |
+
"... ... ... \n",
|
277 |
+
"586709 all homes (SFR + Condo) 2024-01-06 \n",
|
278 |
+
"586710 all homes (SFR + Condo) 2024-01-13 \n",
|
279 |
+
"586711 all homes (SFR + Condo) 2024-01-20 \n",
|
280 |
+
"586712 all homes (SFR + Condo) 2024-01-27 \n",
|
281 |
+
"586713 all homes (SFR + Condo) 2024-02-03 \n",
|
282 |
+
"\n",
|
283 |
+
" Mean Listings Price Cut Amount (Smoothed) Percent Listings Price Cut \\\n",
|
284 |
+
"0 NaN NaN \n",
|
285 |
+
"1 NaN 0.049042 \n",
|
286 |
+
"2 NaN 0.044740 \n",
|
287 |
+
"3 NaN 0.047930 \n",
|
288 |
+
"4 NaN 0.047622 \n",
|
289 |
+
"... ... ... \n",
|
290 |
+
"586709 NaN 0.094017 \n",
|
291 |
+
"586710 NaN 0.070175 \n",
|
292 |
+
"586711 NaN 0.043478 \n",
|
293 |
+
"586712 NaN 0.036697 \n",
|
294 |
+
"586713 NaN 0.077670 \n",
|
295 |
+
"\n",
|
296 |
+
" Mean Listings Price Cut Amount Percent Listings Price Cut (Smoothed) \\\n",
|
297 |
+
"0 13508.368375 NaN \n",
|
298 |
+
"1 14114.788383 NaN \n",
|
299 |
+
"2 14326.128956 NaN \n",
|
300 |
+
"3 13998.585612 NaN \n",
|
301 |
+
"4 14120.035549 NaN \n",
|
302 |
+
"... ... ... \n",
|
303 |
+
"586709 NaN 0.037378 \n",
|
304 |
+
"586710 NaN 0.043203 \n",
|
305 |
+
"586711 NaN 0.054073 \n",
|
306 |
+
"586712 NaN 0.061092 \n",
|
307 |
+
"586713 NaN 0.057005 \n",
|
308 |
+
"\n",
|
309 |
+
" Median Days on Pending (Smoothed) Median Days on Pending \n",
|
310 |
+
"0 NaN NaN \n",
|
311 |
+
"1 NaN NaN \n",
|
312 |
+
"2 NaN NaN \n",
|
313 |
+
"3 NaN NaN \n",
|
314 |
+
"4 NaN NaN \n",
|
315 |
+
"... ... ... \n",
|
316 |
+
"586709 NaN NaN \n",
|
317 |
+
"586710 NaN NaN \n",
|
318 |
+
"586711 NaN NaN \n",
|
319 |
+
"586712 NaN NaN \n",
|
320 |
+
"586713 NaN NaN \n",
|
321 |
+
"\n",
|
322 |
+
"[586714 rows x 13 columns]"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"execution_count": 7,
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "execute_result"
|
328 |
+
}
|
329 |
+
],
|
330 |
+
"source": [
|
331 |
+
"data_frames = []\n",
|
332 |
+
"\n",
|
333 |
+
"exclude_columns = [\n",
|
334 |
+
" \"RegionID\",\n",
|
335 |
+
" \"SizeRank\",\n",
|
336 |
+
" \"RegionName\",\n",
|
337 |
+
" \"RegionType\",\n",
|
338 |
+
" \"StateName\",\n",
|
339 |
+
" \"Home Type\",\n",
|
340 |
+
"]\n",
|
341 |
+
"\n",
|
342 |
+
"slug_column_mappings = {\n",
|
343 |
+
" \"_mean_listings_price_cut_amt_\": \"Mean Listings Price Cut Amount\",\n",
|
344 |
+
" \"_med_doz_pending_\": \"Median Days on Pending\",\n",
|
345 |
+
" \"_median_days_to_pending_\": \"Median Days to Close\",\n",
|
346 |
+
" \"_perc_listings_price_cut_\": \"Percent Listings Price Cut\",\n",
|
347 |
+
"}\n",
|
348 |
+
"\n",
|
349 |
+
"\n",
|
350 |
+
"def get_df(\n",
|
351 |
+
" df, exclude_columns, columns_to_pivot, col_name, smoothed, seasonally_adjusted\n",
|
352 |
+
"):\n",
|
353 |
+
" if smoothed:\n",
|
354 |
+
" col_name += \" (Smoothed)\"\n",
|
355 |
+
" if seasonally_adjusted:\n",
|
356 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
357 |
+
"\n",
|
358 |
+
" df = pd.melt(\n",
|
359 |
+
" df,\n",
|
360 |
+
" id_vars=exclude_columns,\n",
|
361 |
+
" value_vars=columns_to_pivot,\n",
|
362 |
+
" var_name=\"Date\",\n",
|
363 |
+
" value_name=col_name,\n",
|
364 |
+
" )\n",
|
365 |
+
" return df\n",
|
366 |
+
"\n",
|
367 |
+
"\n",
|
368 |
+
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
369 |
+
" if filename.endswith(\".csv\"):\n",
|
370 |
+
" # print(\"processing \" + filename)\n",
|
371 |
+
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
372 |
+
"\n",
|
373 |
+
" # skip month files for now since they are redundant\n",
|
374 |
+
" if \"month\" in filename:\n",
|
375 |
+
" continue\n",
|
376 |
+
"\n",
|
377 |
+
" if \"_uc_sfrcondo_\" in filename:\n",
|
378 |
+
" cur_df[\"Home Type\"] = \"all homes (SFR + Condo)\"\n",
|
379 |
+
" # change column type to string\n",
|
380 |
+
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
381 |
+
" elif \"_uc_sfr_\" in filename:\n",
|
382 |
+
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
383 |
+
"\n",
|
384 |
+
" # Identify columns to pivot\n",
|
385 |
+
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
386 |
+
"\n",
|
387 |
+
" smoothed = \"_sm_\" in filename\n",
|
388 |
+
" seasonally_adjusted = \"_sa_\" in filename\n",
|
389 |
+
"\n",
|
390 |
+
" # iterate over slug column mappings and get df\n",
|
391 |
+
" for slug, col_name in slug_column_mappings.items():\n",
|
392 |
+
" if slug in filename:\n",
|
393 |
+
" cur_df = get_df(\n",
|
394 |
+
" cur_df,\n",
|
395 |
+
" exclude_columns,\n",
|
396 |
+
" columns_to_pivot,\n",
|
397 |
+
" col_name,\n",
|
398 |
+
" smoothed,\n",
|
399 |
+
" seasonally_adjusted,\n",
|
400 |
+
" )\n",
|
401 |
+
"\n",
|
402 |
+
" data_frames.append(cur_df)\n",
|
403 |
+
" break\n",
|
404 |
+
"\n",
|
405 |
+
"\n",
|
406 |
+
"def get_combined_df(data_frames):\n",
|
407 |
+
" combined_df = None\n",
|
408 |
+
" if len(data_frames) > 1:\n",
|
409 |
+
" # iterate over dataframes and merge or concat\n",
|
410 |
+
" combined_df = data_frames[0]\n",
|
411 |
+
" for i in range(1, len(data_frames)):\n",
|
412 |
+
" cur_df = data_frames[i]\n",
|
413 |
+
" combined_df = pd.merge(\n",
|
414 |
+
" combined_df,\n",
|
415 |
+
" cur_df,\n",
|
416 |
+
" on=[\n",
|
417 |
+
" \"RegionID\",\n",
|
418 |
+
" \"SizeRank\",\n",
|
419 |
+
" \"RegionName\",\n",
|
420 |
+
" \"RegionType\",\n",
|
421 |
+
" \"StateName\",\n",
|
422 |
+
" \"Home Type\",\n",
|
423 |
+
" \"Date\",\n",
|
424 |
+
" ],\n",
|
425 |
+
" how=\"outer\",\n",
|
426 |
+
" suffixes=(\"\", \"_\" + str(i)),\n",
|
427 |
+
" )\n",
|
428 |
+
" elif len(data_frames) == 1:\n",
|
429 |
+
" combined_df = data_frames[0]\n",
|
430 |
+
"\n",
|
431 |
+
" return combined_df\n",
|
432 |
+
"\n",
|
433 |
+
"\n",
|
434 |
+
"combined_df = get_combined_df(data_frames)\n",
|
435 |
+
"\n",
|
436 |
+
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
437 |
+
"columns_to_coalesce = slug_column_mappings.values()\n",
|
438 |
+
"print(columns_to_coalesce)\n",
|
439 |
+
"\n",
|
440 |
+
"for index, row in combined_df.iterrows():\n",
|
441 |
+
" for col in combined_df.columns:\n",
|
442 |
+
" for column_to_coalesce in columns_to_coalesce:\n",
|
443 |
+
" if column_to_coalesce in col and \"_\" in col:\n",
|
444 |
+
" if not pd.isna(row[col]):\n",
|
445 |
+
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
446 |
+
"\n",
|
447 |
+
"# remove columns with underscores\n",
|
448 |
+
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
449 |
+
"\n",
|
450 |
+
"combined_df"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": 16,
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [
|
458 |
+
{
|
459 |
+
"data": {
|
460 |
+
"text/html": [
|
461 |
+
"<div>\n",
|
462 |
+
"<style scoped>\n",
|
463 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
464 |
+
" vertical-align: middle;\n",
|
465 |
+
" }\n",
|
466 |
+
"\n",
|
467 |
+
" .dataframe tbody tr th {\n",
|
468 |
+
" vertical-align: top;\n",
|
469 |
+
" }\n",
|
470 |
+
"\n",
|
471 |
+
" .dataframe thead th {\n",
|
472 |
+
" text-align: right;\n",
|
473 |
+
" }\n",
|
474 |
+
"</style>\n",
|
475 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
476 |
+
" <thead>\n",
|
477 |
+
" <tr style=\"text-align: right;\">\n",
|
478 |
+
" <th></th>\n",
|
479 |
+
" <th>Region ID</th>\n",
|
480 |
+
" <th>Size Rank</th>\n",
|
481 |
+
" <th>Region</th>\n",
|
482 |
+
" <th>Region Type</th>\n",
|
483 |
+
" <th>StateName</th>\n",
|
484 |
+
" <th>Home Type</th>\n",
|
485 |
+
" <th>Date</th>\n",
|
486 |
+
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
|
487 |
+
" <th>Percent Listings Price Cut</th>\n",
|
488 |
+
" <th>Mean Listings Price Cut Amount</th>\n",
|
489 |
+
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
|
490 |
+
" <th>Median Days on Pending (Smoothed)</th>\n",
|
491 |
+
" <th>Median Days on Pending</th>\n",
|
492 |
+
" </tr>\n",
|
493 |
+
" </thead>\n",
|
494 |
+
" <tbody>\n",
|
495 |
+
" <tr>\n",
|
496 |
+
" <th>0</th>\n",
|
497 |
+
" <td>102001</td>\n",
|
498 |
+
" <td>0</td>\n",
|
499 |
+
" <td>United States</td>\n",
|
500 |
+
" <td>country</td>\n",
|
501 |
+
" <td>NaN</td>\n",
|
502 |
+
" <td>SFR</td>\n",
|
503 |
+
" <td>2018-01-06</td>\n",
|
504 |
+
" <td>NaN</td>\n",
|
505 |
+
" <td>NaN</td>\n",
|
506 |
+
" <td>13508.368375</td>\n",
|
507 |
+
" <td>NaN</td>\n",
|
508 |
+
" <td>NaN</td>\n",
|
509 |
+
" <td>NaN</td>\n",
|
510 |
+
" </tr>\n",
|
511 |
+
" <tr>\n",
|
512 |
+
" <th>1</th>\n",
|
513 |
+
" <td>102001</td>\n",
|
514 |
+
" <td>0</td>\n",
|
515 |
+
" <td>United States</td>\n",
|
516 |
+
" <td>country</td>\n",
|
517 |
+
" <td>NaN</td>\n",
|
518 |
+
" <td>SFR</td>\n",
|
519 |
+
" <td>2018-01-13</td>\n",
|
520 |
+
" <td>NaN</td>\n",
|
521 |
+
" <td>0.049042</td>\n",
|
522 |
+
" <td>14114.788383</td>\n",
|
523 |
+
" <td>NaN</td>\n",
|
524 |
+
" <td>NaN</td>\n",
|
525 |
+
" <td>NaN</td>\n",
|
526 |
+
" </tr>\n",
|
527 |
+
" <tr>\n",
|
528 |
+
" <th>2</th>\n",
|
529 |
+
" <td>102001</td>\n",
|
530 |
+
" <td>0</td>\n",
|
531 |
+
" <td>United States</td>\n",
|
532 |
+
" <td>country</td>\n",
|
533 |
+
" <td>NaN</td>\n",
|
534 |
+
" <td>SFR</td>\n",
|
535 |
+
" <td>2018-01-20</td>\n",
|
536 |
+
" <td>NaN</td>\n",
|
537 |
+
" <td>0.044740</td>\n",
|
538 |
+
" <td>14326.128956</td>\n",
|
539 |
+
" <td>NaN</td>\n",
|
540 |
+
" <td>NaN</td>\n",
|
541 |
+
" <td>NaN</td>\n",
|
542 |
+
" </tr>\n",
|
543 |
+
" <tr>\n",
|
544 |
+
" <th>3</th>\n",
|
545 |
+
" <td>102001</td>\n",
|
546 |
+
" <td>0</td>\n",
|
547 |
+
" <td>United States</td>\n",
|
548 |
+
" <td>country</td>\n",
|
549 |
+
" <td>NaN</td>\n",
|
550 |
+
" <td>SFR</td>\n",
|
551 |
+
" <td>2018-01-27</td>\n",
|
552 |
+
" <td>NaN</td>\n",
|
553 |
+
" <td>0.047930</td>\n",
|
554 |
+
" <td>13998.585612</td>\n",
|
555 |
+
" <td>NaN</td>\n",
|
556 |
+
" <td>NaN</td>\n",
|
557 |
+
" <td>NaN</td>\n",
|
558 |
+
" </tr>\n",
|
559 |
+
" <tr>\n",
|
560 |
+
" <th>4</th>\n",
|
561 |
+
" <td>102001</td>\n",
|
562 |
+
" <td>0</td>\n",
|
563 |
+
" <td>United States</td>\n",
|
564 |
+
" <td>country</td>\n",
|
565 |
+
" <td>NaN</td>\n",
|
566 |
+
" <td>SFR</td>\n",
|
567 |
+
" <td>2018-02-03</td>\n",
|
568 |
+
" <td>NaN</td>\n",
|
569 |
+
" <td>0.047622</td>\n",
|
570 |
+
" <td>14120.035549</td>\n",
|
571 |
+
" <td>NaN</td>\n",
|
572 |
+
" <td>NaN</td>\n",
|
573 |
+
" <td>NaN</td>\n",
|
574 |
+
" </tr>\n",
|
575 |
+
" <tr>\n",
|
576 |
+
" <th>...</th>\n",
|
577 |
+
" <td>...</td>\n",
|
578 |
+
" <td>...</td>\n",
|
579 |
+
" <td>...</td>\n",
|
580 |
+
" <td>...</td>\n",
|
581 |
+
" <td>...</td>\n",
|
582 |
+
" <td>...</td>\n",
|
583 |
+
" <td>...</td>\n",
|
584 |
+
" <td>...</td>\n",
|
585 |
+
" <td>...</td>\n",
|
586 |
+
" <td>...</td>\n",
|
587 |
+
" <td>...</td>\n",
|
588 |
+
" <td>...</td>\n",
|
589 |
+
" <td>...</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <th>586709</th>\n",
|
593 |
+
" <td>845172</td>\n",
|
594 |
+
" <td>769</td>\n",
|
595 |
+
" <td>Winfield, KS</td>\n",
|
596 |
+
" <td>msa</td>\n",
|
597 |
+
" <td>KS</td>\n",
|
598 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
599 |
+
" <td>2024-01-06</td>\n",
|
600 |
+
" <td>NaN</td>\n",
|
601 |
+
" <td>0.094017</td>\n",
|
602 |
+
" <td>NaN</td>\n",
|
603 |
+
" <td>0.037378</td>\n",
|
604 |
+
" <td>NaN</td>\n",
|
605 |
+
" <td>NaN</td>\n",
|
606 |
+
" </tr>\n",
|
607 |
+
" <tr>\n",
|
608 |
+
" <th>586710</th>\n",
|
609 |
+
" <td>845172</td>\n",
|
610 |
+
" <td>769</td>\n",
|
611 |
+
" <td>Winfield, KS</td>\n",
|
612 |
+
" <td>msa</td>\n",
|
613 |
+
" <td>KS</td>\n",
|
614 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
615 |
+
" <td>2024-01-13</td>\n",
|
616 |
+
" <td>NaN</td>\n",
|
617 |
+
" <td>0.070175</td>\n",
|
618 |
+
" <td>NaN</td>\n",
|
619 |
+
" <td>0.043203</td>\n",
|
620 |
+
" <td>NaN</td>\n",
|
621 |
+
" <td>NaN</td>\n",
|
622 |
+
" </tr>\n",
|
623 |
+
" <tr>\n",
|
624 |
+
" <th>586711</th>\n",
|
625 |
+
" <td>845172</td>\n",
|
626 |
+
" <td>769</td>\n",
|
627 |
+
" <td>Winfield, KS</td>\n",
|
628 |
+
" <td>msa</td>\n",
|
629 |
+
" <td>KS</td>\n",
|
630 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
631 |
+
" <td>2024-01-20</td>\n",
|
632 |
+
" <td>NaN</td>\n",
|
633 |
+
" <td>0.043478</td>\n",
|
634 |
+
" <td>NaN</td>\n",
|
635 |
+
" <td>0.054073</td>\n",
|
636 |
+
" <td>NaN</td>\n",
|
637 |
+
" <td>NaN</td>\n",
|
638 |
+
" </tr>\n",
|
639 |
+
" <tr>\n",
|
640 |
+
" <th>586712</th>\n",
|
641 |
+
" <td>845172</td>\n",
|
642 |
+
" <td>769</td>\n",
|
643 |
+
" <td>Winfield, KS</td>\n",
|
644 |
+
" <td>msa</td>\n",
|
645 |
+
" <td>KS</td>\n",
|
646 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
647 |
+
" <td>2024-01-27</td>\n",
|
648 |
+
" <td>NaN</td>\n",
|
649 |
+
" <td>0.036697</td>\n",
|
650 |
+
" <td>NaN</td>\n",
|
651 |
+
" <td>0.061092</td>\n",
|
652 |
+
" <td>NaN</td>\n",
|
653 |
+
" <td>NaN</td>\n",
|
654 |
+
" </tr>\n",
|
655 |
+
" <tr>\n",
|
656 |
+
" <th>586713</th>\n",
|
657 |
+
" <td>845172</td>\n",
|
658 |
+
" <td>769</td>\n",
|
659 |
+
" <td>Winfield, KS</td>\n",
|
660 |
+
" <td>msa</td>\n",
|
661 |
+
" <td>KS</td>\n",
|
662 |
+
" <td>all homes (SFR + Condo)</td>\n",
|
663 |
+
" <td>2024-02-03</td>\n",
|
664 |
+
" <td>NaN</td>\n",
|
665 |
+
" <td>0.077670</td>\n",
|
666 |
+
" <td>NaN</td>\n",
|
667 |
+
" <td>0.057005</td>\n",
|
668 |
+
" <td>NaN</td>\n",
|
669 |
+
" <td>NaN</td>\n",
|
670 |
+
" </tr>\n",
|
671 |
+
" </tbody>\n",
|
672 |
+
"</table>\n",
|
673 |
+
"<p>586714 rows × 13 columns</p>\n",
|
674 |
+
"</div>"
|
675 |
+
],
|
676 |
+
"text/plain": [
|
677 |
+
" Region ID Size Rank Region Region Type StateName \\\n",
|
678 |
+
"0 102001 0 United States country NaN \n",
|
679 |
+
"1 102001 0 United States country NaN \n",
|
680 |
+
"2 102001 0 United States country NaN \n",
|
681 |
+
"3 102001 0 United States country NaN \n",
|
682 |
+
"4 102001 0 United States country NaN \n",
|
683 |
+
"... ... ... ... ... ... \n",
|
684 |
+
"586709 845172 769 Winfield, KS msa KS \n",
|
685 |
+
"586710 845172 769 Winfield, KS msa KS \n",
|
686 |
+
"586711 845172 769 Winfield, KS msa KS \n",
|
687 |
+
"586712 845172 769 Winfield, KS msa KS \n",
|
688 |
+
"586713 845172 769 Winfield, KS msa KS \n",
|
689 |
+
"\n",
|
690 |
+
" Home Type Date \\\n",
|
691 |
+
"0 SFR 2018-01-06 \n",
|
692 |
+
"1 SFR 2018-01-13 \n",
|
693 |
+
"2 SFR 2018-01-20 \n",
|
694 |
+
"3 SFR 2018-01-27 \n",
|
695 |
+
"4 SFR 2018-02-03 \n",
|
696 |
+
"... ... ... \n",
|
697 |
+
"586709 all homes (SFR + Condo) 2024-01-06 \n",
|
698 |
+
"586710 all homes (SFR + Condo) 2024-01-13 \n",
|
699 |
+
"586711 all homes (SFR + Condo) 2024-01-20 \n",
|
700 |
+
"586712 all homes (SFR + Condo) 2024-01-27 \n",
|
701 |
+
"586713 all homes (SFR + Condo) 2024-02-03 \n",
|
702 |
+
"\n",
|
703 |
+
" Mean Listings Price Cut Amount (Smoothed) Percent Listings Price Cut \\\n",
|
704 |
+
"0 NaN NaN \n",
|
705 |
+
"1 NaN 0.049042 \n",
|
706 |
+
"2 NaN 0.044740 \n",
|
707 |
+
"3 NaN 0.047930 \n",
|
708 |
+
"4 NaN 0.047622 \n",
|
709 |
+
"... ... ... \n",
|
710 |
+
"586709 NaN 0.094017 \n",
|
711 |
+
"586710 NaN 0.070175 \n",
|
712 |
+
"586711 NaN 0.043478 \n",
|
713 |
+
"586712 NaN 0.036697 \n",
|
714 |
+
"586713 NaN 0.077670 \n",
|
715 |
+
"\n",
|
716 |
+
" Mean Listings Price Cut Amount Percent Listings Price Cut (Smoothed) \\\n",
|
717 |
+
"0 13508.368375 NaN \n",
|
718 |
+
"1 14114.788383 NaN \n",
|
719 |
+
"2 14326.128956 NaN \n",
|
720 |
+
"3 13998.585612 NaN \n",
|
721 |
+
"4 14120.035549 NaN \n",
|
722 |
+
"... ... ... \n",
|
723 |
+
"586709 NaN 0.037378 \n",
|
724 |
+
"586710 NaN 0.043203 \n",
|
725 |
+
"586711 NaN 0.054073 \n",
|
726 |
+
"586712 NaN 0.061092 \n",
|
727 |
+
"586713 NaN 0.057005 \n",
|
728 |
+
"\n",
|
729 |
+
" Median Days on Pending (Smoothed) Median Days on Pending \n",
|
730 |
+
"0 NaN NaN \n",
|
731 |
+
"1 NaN NaN \n",
|
732 |
+
"2 NaN NaN \n",
|
733 |
+
"3 NaN NaN \n",
|
734 |
+
"4 NaN NaN \n",
|
735 |
+
"... ... ... \n",
|
736 |
+
"586709 NaN NaN \n",
|
737 |
+
"586710 NaN NaN \n",
|
738 |
+
"586711 NaN NaN \n",
|
739 |
+
"586712 NaN NaN \n",
|
740 |
+
"586713 NaN NaN \n",
|
741 |
+
"\n",
|
742 |
+
"[586714 rows x 13 columns]"
|
743 |
+
]
|
744 |
+
},
|
745 |
+
"execution_count": 16,
|
746 |
+
"metadata": {},
|
747 |
+
"output_type": "execute_result"
|
748 |
+
}
|
749 |
+
],
|
750 |
+
"source": [
|
751 |
+
"final_df = combined_df\n",
|
752 |
+
"final_df = final_df.rename(\n",
|
753 |
+
" columns={\n",
|
754 |
+
" \"RegionID\": \"Region ID\",\n",
|
755 |
+
" \"SizeRank\": \"Size Rank\",\n",
|
756 |
+
" \"RegionName\": \"Region\",\n",
|
757 |
+
" \"RegionType\": \"Region Type\",\n",
|
758 |
+
" }\n",
|
759 |
+
")\n",
|
760 |
+
"\n",
|
761 |
+
"final_df"
|
762 |
+
]
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"cell_type": "code",
|
766 |
+
"execution_count": 15,
|
767 |
+
"metadata": {},
|
768 |
+
"outputs": [],
|
769 |
+
"source": [
|
770 |
+
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
771 |
+
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
772 |
+
"\n",
|
773 |
+
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
774 |
+
]
|
775 |
+
}
|
776 |
+
],
|
777 |
+
"metadata": {
|
778 |
+
"kernelspec": {
|
779 |
+
"display_name": "Python 3",
|
780 |
+
"language": "python",
|
781 |
+
"name": "python3"
|
782 |
+
},
|
783 |
+
"language_info": {
|
784 |
+
"codemirror_mode": {
|
785 |
+
"name": "ipython",
|
786 |
+
"version": 3
|
787 |
+
},
|
788 |
+
"file_extension": ".py",
|
789 |
+
"mimetype": "text/x-python",
|
790 |
+
"name": "python",
|
791 |
+
"nbconvert_exporter": "python",
|
792 |
+
"pygments_lexer": "ipython3",
|
793 |
+
"version": "3.12.2"
|
794 |
+
}
|
795 |
+
},
|
796 |
+
"nbformat": 4,
|
797 |
+
"nbformat_minor": 2
|
798 |
+
}
|
processors/home_values.ipynb
ADDED
@@ -0,0 +1,1802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 17,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import os"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 18,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"DATA_DIR = \"../data\"\n",
|
20 |
+
"PROCESSED_DIR = \"../processed/\"\n",
|
21 |
+
"FACET_DIR = \"home_values/\"\n",
|
22 |
+
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
23 |
+
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 19,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"processing City_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
36 |
+
"processing City_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
37 |
+
"processing Metro_zhvi_uc_sfrcondo_tier_0.67_1.0_sm_sa_month.csv\n",
|
38 |
+
"processing County_zhvi_uc_sfrcondo_tier_0.67_1.0_sm_sa_month.csv\n",
|
39 |
+
"processing Metro_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
40 |
+
"processing County_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
41 |
+
"processing County_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv\n",
|
42 |
+
"processing Neighborhood_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
43 |
+
"processing State_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv\n",
|
44 |
+
"processing County_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
45 |
+
"processing City_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
46 |
+
"processing State_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
47 |
+
"processing Zip_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
48 |
+
"processing City_zhvi_uc_sfrcondo_tier_0.67_1.0_sm_sa_month.csv\n",
|
49 |
+
"processing Zip_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
50 |
+
"processing Neighborhood_zhvi_uc_sfr_sm_sa_month.csv\n",
|
51 |
+
"processing Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv\n",
|
52 |
+
"processing State_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
53 |
+
"processing Zip_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
54 |
+
"processing County_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
55 |
+
"processing Metro_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
56 |
+
"processing Metro_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
57 |
+
"processing Neighborhood_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
58 |
+
"processing Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
59 |
+
"processing State_zhvi_uc_sfrcondo_tier_0.0_0.33_sm_sa_month.csv\n",
|
60 |
+
"processing Metro_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
61 |
+
"processing Zip_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv\n",
|
62 |
+
"processing City_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
63 |
+
"processing State_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
64 |
+
"processing State_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
65 |
+
"processing Zip_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
66 |
+
"processing Neighborhood_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
67 |
+
"processing City_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
68 |
+
"processing County_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month (1).csv\n",
|
69 |
+
"processing County_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
70 |
+
"processing Neighborhood_zhvi_uc_condo_tier_0.33_0.67_sm_sa_month.csv\n",
|
71 |
+
"processing Metro_zhvi_uc_sfrcondo_tier_0.33_0.67_month.csv\n",
|
72 |
+
"processing Zip_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
73 |
+
"processing County_zhvi_uc_sfrcondo_tier_0.0_0.33_sm_sa_month.csv\n",
|
74 |
+
"processing State_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
75 |
+
"processing Metro_zhvi_uc_sfrcondo_tier_0.0_0.33_sm_sa_month.csv\n",
|
76 |
+
"processing City_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv\n",
|
77 |
+
"processing City_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
78 |
+
"processing Neighborhood_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
79 |
+
"processing Metro_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
80 |
+
"processing Metro_zhvi_bdrmcnt_5_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
81 |
+
"processing County_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
82 |
+
"processing City_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
83 |
+
"processing Neighborhood_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
84 |
+
"processing State_zhvi_uc_sfrcondo_tier_0.67_1.0_sm_sa_month.csv\n",
|
85 |
+
"processing Zip_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
86 |
+
"processing State_zhvi_bdrmcnt_3_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
87 |
+
"processing State_zhvi_bdrmcnt_1_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
88 |
+
"processing Neighborhood_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
89 |
+
"processing County_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
90 |
+
"processing County_zhvi_bdrmcnt_2_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
91 |
+
"processing Metro_zhvi_bdrmcnt_4_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv\n",
|
92 |
+
"1\n",
|
93 |
+
"10\n",
|
94 |
+
"2\n",
|
95 |
+
"10\n",
|
96 |
+
"3\n",
|
97 |
+
"10\n",
|
98 |
+
"4\n",
|
99 |
+
"10\n",
|
100 |
+
"5\n",
|
101 |
+
"10\n",
|
102 |
+
"6\n",
|
103 |
+
"10\n",
|
104 |
+
"7\n",
|
105 |
+
"10\n",
|
106 |
+
"8\n",
|
107 |
+
"10\n",
|
108 |
+
"9\n",
|
109 |
+
"10\n"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/html": [
|
115 |
+
"<div>\n",
|
116 |
+
"<style scoped>\n",
|
117 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
118 |
+
" vertical-align: middle;\n",
|
119 |
+
" }\n",
|
120 |
+
"\n",
|
121 |
+
" .dataframe tbody tr th {\n",
|
122 |
+
" vertical-align: top;\n",
|
123 |
+
" }\n",
|
124 |
+
"\n",
|
125 |
+
" .dataframe thead th {\n",
|
126 |
+
" text-align: right;\n",
|
127 |
+
" }\n",
|
128 |
+
"</style>\n",
|
129 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
130 |
+
" <thead>\n",
|
131 |
+
" <tr style=\"text-align: right;\">\n",
|
132 |
+
" <th></th>\n",
|
133 |
+
" <th>RegionID</th>\n",
|
134 |
+
" <th>SizeRank</th>\n",
|
135 |
+
" <th>RegionName</th>\n",
|
136 |
+
" <th>RegionType</th>\n",
|
137 |
+
" <th>StateName</th>\n",
|
138 |
+
" <th>Bedroom Count</th>\n",
|
139 |
+
" <th>Home Type</th>\n",
|
140 |
+
" <th>Date</th>\n",
|
141 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
142 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
|
143 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
|
144 |
+
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
145 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
|
146 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
|
147 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
|
148 |
+
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
149 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
|
150 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
|
151 |
+
" </tr>\n",
|
152 |
+
" </thead>\n",
|
153 |
+
" <tbody>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>0</th>\n",
|
156 |
+
" <td>3</td>\n",
|
157 |
+
" <td>48</td>\n",
|
158 |
+
" <td>Alaska</td>\n",
|
159 |
+
" <td>state</td>\n",
|
160 |
+
" <td>nan</td>\n",
|
161 |
+
" <td>1-Bedrooms</td>\n",
|
162 |
+
" <td>all homes (SFR/condo)</td>\n",
|
163 |
+
" <td>2000-01-31</td>\n",
|
164 |
+
" <td>NaN</td>\n",
|
165 |
+
" <td>NaN</td>\n",
|
166 |
+
" <td>NaN</td>\n",
|
167 |
+
" <td>NaN</td>\n",
|
168 |
+
" <td>NaN</td>\n",
|
169 |
+
" <td>NaN</td>\n",
|
170 |
+
" <td>NaN</td>\n",
|
171 |
+
" <td>NaN</td>\n",
|
172 |
+
" <td>NaN</td>\n",
|
173 |
+
" <td>81310.639504</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>1</th>\n",
|
177 |
+
" <td>3</td>\n",
|
178 |
+
" <td>48</td>\n",
|
179 |
+
" <td>Alaska</td>\n",
|
180 |
+
" <td>state</td>\n",
|
181 |
+
" <td>nan</td>\n",
|
182 |
+
" <td>1-Bedrooms</td>\n",
|
183 |
+
" <td>all homes (SFR/condo)</td>\n",
|
184 |
+
" <td>2000-02-29</td>\n",
|
185 |
+
" <td>NaN</td>\n",
|
186 |
+
" <td>NaN</td>\n",
|
187 |
+
" <td>NaN</td>\n",
|
188 |
+
" <td>NaN</td>\n",
|
189 |
+
" <td>NaN</td>\n",
|
190 |
+
" <td>NaN</td>\n",
|
191 |
+
" <td>NaN</td>\n",
|
192 |
+
" <td>NaN</td>\n",
|
193 |
+
" <td>NaN</td>\n",
|
194 |
+
" <td>80419.761984</td>\n",
|
195 |
+
" </tr>\n",
|
196 |
+
" <tr>\n",
|
197 |
+
" <th>2</th>\n",
|
198 |
+
" <td>3</td>\n",
|
199 |
+
" <td>48</td>\n",
|
200 |
+
" <td>Alaska</td>\n",
|
201 |
+
" <td>state</td>\n",
|
202 |
+
" <td>nan</td>\n",
|
203 |
+
" <td>1-Bedrooms</td>\n",
|
204 |
+
" <td>all homes (SFR/condo)</td>\n",
|
205 |
+
" <td>2000-03-31</td>\n",
|
206 |
+
" <td>NaN</td>\n",
|
207 |
+
" <td>NaN</td>\n",
|
208 |
+
" <td>NaN</td>\n",
|
209 |
+
" <td>NaN</td>\n",
|
210 |
+
" <td>NaN</td>\n",
|
211 |
+
" <td>NaN</td>\n",
|
212 |
+
" <td>NaN</td>\n",
|
213 |
+
" <td>NaN</td>\n",
|
214 |
+
" <td>NaN</td>\n",
|
215 |
+
" <td>80480.449461</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>3</th>\n",
|
219 |
+
" <td>3</td>\n",
|
220 |
+
" <td>48</td>\n",
|
221 |
+
" <td>Alaska</td>\n",
|
222 |
+
" <td>state</td>\n",
|
223 |
+
" <td>nan</td>\n",
|
224 |
+
" <td>1-Bedrooms</td>\n",
|
225 |
+
" <td>all homes (SFR/condo)</td>\n",
|
226 |
+
" <td>2000-04-30</td>\n",
|
227 |
+
" <td>NaN</td>\n",
|
228 |
+
" <td>NaN</td>\n",
|
229 |
+
" <td>NaN</td>\n",
|
230 |
+
" <td>NaN</td>\n",
|
231 |
+
" <td>NaN</td>\n",
|
232 |
+
" <td>NaN</td>\n",
|
233 |
+
" <td>NaN</td>\n",
|
234 |
+
" <td>NaN</td>\n",
|
235 |
+
" <td>NaN</td>\n",
|
236 |
+
" <td>79799.206525</td>\n",
|
237 |
+
" </tr>\n",
|
238 |
+
" <tr>\n",
|
239 |
+
" <th>4</th>\n",
|
240 |
+
" <td>3</td>\n",
|
241 |
+
" <td>48</td>\n",
|
242 |
+
" <td>Alaska</td>\n",
|
243 |
+
" <td>state</td>\n",
|
244 |
+
" <td>nan</td>\n",
|
245 |
+
" <td>1-Bedrooms</td>\n",
|
246 |
+
" <td>all homes (SFR/condo)</td>\n",
|
247 |
+
" <td>2000-05-31</td>\n",
|
248 |
+
" <td>NaN</td>\n",
|
249 |
+
" <td>NaN</td>\n",
|
250 |
+
" <td>NaN</td>\n",
|
251 |
+
" <td>NaN</td>\n",
|
252 |
+
" <td>NaN</td>\n",
|
253 |
+
" <td>NaN</td>\n",
|
254 |
+
" <td>NaN</td>\n",
|
255 |
+
" <td>NaN</td>\n",
|
256 |
+
" <td>NaN</td>\n",
|
257 |
+
" <td>79666.469861</td>\n",
|
258 |
+
" </tr>\n",
|
259 |
+
" <tr>\n",
|
260 |
+
" <th>...</th>\n",
|
261 |
+
" <td>...</td>\n",
|
262 |
+
" <td>...</td>\n",
|
263 |
+
" <td>...</td>\n",
|
264 |
+
" <td>...</td>\n",
|
265 |
+
" <td>...</td>\n",
|
266 |
+
" <td>...</td>\n",
|
267 |
+
" <td>...</td>\n",
|
268 |
+
" <td>...</td>\n",
|
269 |
+
" <td>...</td>\n",
|
270 |
+
" <td>...</td>\n",
|
271 |
+
" <td>...</td>\n",
|
272 |
+
" <td>...</td>\n",
|
273 |
+
" <td>...</td>\n",
|
274 |
+
" <td>...</td>\n",
|
275 |
+
" <td>...</td>\n",
|
276 |
+
" <td>...</td>\n",
|
277 |
+
" <td>...</td>\n",
|
278 |
+
" <td>...</td>\n",
|
279 |
+
" </tr>\n",
|
280 |
+
" <tr>\n",
|
281 |
+
" <th>117907</th>\n",
|
282 |
+
" <td>62</td>\n",
|
283 |
+
" <td>51</td>\n",
|
284 |
+
" <td>Wyoming</td>\n",
|
285 |
+
" <td>state</td>\n",
|
286 |
+
" <td>nan</td>\n",
|
287 |
+
" <td>All Bedrooms</td>\n",
|
288 |
+
" <td>condo</td>\n",
|
289 |
+
" <td>2023-09-30</td>\n",
|
290 |
+
" <td>NaN</td>\n",
|
291 |
+
" <td>NaN</td>\n",
|
292 |
+
" <td>NaN</td>\n",
|
293 |
+
" <td>NaN</td>\n",
|
294 |
+
" <td>NaN</td>\n",
|
295 |
+
" <td>486974.735908</td>\n",
|
296 |
+
" <td>NaN</td>\n",
|
297 |
+
" <td>NaN</td>\n",
|
298 |
+
" <td>NaN</td>\n",
|
299 |
+
" <td>NaN</td>\n",
|
300 |
+
" </tr>\n",
|
301 |
+
" <tr>\n",
|
302 |
+
" <th>117908</th>\n",
|
303 |
+
" <td>62</td>\n",
|
304 |
+
" <td>51</td>\n",
|
305 |
+
" <td>Wyoming</td>\n",
|
306 |
+
" <td>state</td>\n",
|
307 |
+
" <td>nan</td>\n",
|
308 |
+
" <td>All Bedrooms</td>\n",
|
309 |
+
" <td>condo</td>\n",
|
310 |
+
" <td>2023-10-31</td>\n",
|
311 |
+
" <td>NaN</td>\n",
|
312 |
+
" <td>NaN</td>\n",
|
313 |
+
" <td>NaN</td>\n",
|
314 |
+
" <td>NaN</td>\n",
|
315 |
+
" <td>NaN</td>\n",
|
316 |
+
" <td>485847.539614</td>\n",
|
317 |
+
" <td>NaN</td>\n",
|
318 |
+
" <td>NaN</td>\n",
|
319 |
+
" <td>NaN</td>\n",
|
320 |
+
" <td>NaN</td>\n",
|
321 |
+
" </tr>\n",
|
322 |
+
" <tr>\n",
|
323 |
+
" <th>117909</th>\n",
|
324 |
+
" <td>62</td>\n",
|
325 |
+
" <td>51</td>\n",
|
326 |
+
" <td>Wyoming</td>\n",
|
327 |
+
" <td>state</td>\n",
|
328 |
+
" <td>nan</td>\n",
|
329 |
+
" <td>All Bedrooms</td>\n",
|
330 |
+
" <td>condo</td>\n",
|
331 |
+
" <td>2023-11-30</td>\n",
|
332 |
+
" <td>NaN</td>\n",
|
333 |
+
" <td>NaN</td>\n",
|
334 |
+
" <td>NaN</td>\n",
|
335 |
+
" <td>NaN</td>\n",
|
336 |
+
" <td>NaN</td>\n",
|
337 |
+
" <td>484223.885775</td>\n",
|
338 |
+
" <td>NaN</td>\n",
|
339 |
+
" <td>NaN</td>\n",
|
340 |
+
" <td>NaN</td>\n",
|
341 |
+
" <td>NaN</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <th>117910</th>\n",
|
345 |
+
" <td>62</td>\n",
|
346 |
+
" <td>51</td>\n",
|
347 |
+
" <td>Wyoming</td>\n",
|
348 |
+
" <td>state</td>\n",
|
349 |
+
" <td>nan</td>\n",
|
350 |
+
" <td>All Bedrooms</td>\n",
|
351 |
+
" <td>condo</td>\n",
|
352 |
+
" <td>2023-12-31</td>\n",
|
353 |
+
" <td>NaN</td>\n",
|
354 |
+
" <td>NaN</td>\n",
|
355 |
+
" <td>NaN</td>\n",
|
356 |
+
" <td>NaN</td>\n",
|
357 |
+
" <td>NaN</td>\n",
|
358 |
+
" <td>481522.403338</td>\n",
|
359 |
+
" <td>NaN</td>\n",
|
360 |
+
" <td>NaN</td>\n",
|
361 |
+
" <td>NaN</td>\n",
|
362 |
+
" <td>NaN</td>\n",
|
363 |
+
" </tr>\n",
|
364 |
+
" <tr>\n",
|
365 |
+
" <th>117911</th>\n",
|
366 |
+
" <td>62</td>\n",
|
367 |
+
" <td>51</td>\n",
|
368 |
+
" <td>Wyoming</td>\n",
|
369 |
+
" <td>state</td>\n",
|
370 |
+
" <td>nan</td>\n",
|
371 |
+
" <td>All Bedrooms</td>\n",
|
372 |
+
" <td>condo</td>\n",
|
373 |
+
" <td>2024-01-31</td>\n",
|
374 |
+
" <td>NaN</td>\n",
|
375 |
+
" <td>NaN</td>\n",
|
376 |
+
" <td>NaN</td>\n",
|
377 |
+
" <td>NaN</td>\n",
|
378 |
+
" <td>NaN</td>\n",
|
379 |
+
" <td>481181.718200</td>\n",
|
380 |
+
" <td>NaN</td>\n",
|
381 |
+
" <td>NaN</td>\n",
|
382 |
+
" <td>NaN</td>\n",
|
383 |
+
" <td>NaN</td>\n",
|
384 |
+
" </tr>\n",
|
385 |
+
" </tbody>\n",
|
386 |
+
"</table>\n",
|
387 |
+
"<p>117912 rows × 18 columns</p>\n",
|
388 |
+
"</div>"
|
389 |
+
],
|
390 |
+
"text/plain": [
|
391 |
+
" RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
|
392 |
+
"0 3 48 Alaska state nan 1-Bedrooms \n",
|
393 |
+
"1 3 48 Alaska state nan 1-Bedrooms \n",
|
394 |
+
"2 3 48 Alaska state nan 1-Bedrooms \n",
|
395 |
+
"3 3 48 Alaska state nan 1-Bedrooms \n",
|
396 |
+
"4 3 48 Alaska state nan 1-Bedrooms \n",
|
397 |
+
"... ... ... ... ... ... ... \n",
|
398 |
+
"117907 62 51 Wyoming state nan All Bedrooms \n",
|
399 |
+
"117908 62 51 Wyoming state nan All Bedrooms \n",
|
400 |
+
"117909 62 51 Wyoming state nan All Bedrooms \n",
|
401 |
+
"117910 62 51 Wyoming state nan All Bedrooms \n",
|
402 |
+
"117911 62 51 Wyoming state nan All Bedrooms \n",
|
403 |
+
"\n",
|
404 |
+
" Home Type Date \\\n",
|
405 |
+
"0 all homes (SFR/condo) 2000-01-31 \n",
|
406 |
+
"1 all homes (SFR/condo) 2000-02-29 \n",
|
407 |
+
"2 all homes (SFR/condo) 2000-03-31 \n",
|
408 |
+
"3 all homes (SFR/condo) 2000-04-30 \n",
|
409 |
+
"4 all homes (SFR/condo) 2000-05-31 \n",
|
410 |
+
"... ... ... \n",
|
411 |
+
"117907 condo 2023-09-30 \n",
|
412 |
+
"117908 condo 2023-10-31 \n",
|
413 |
+
"117909 condo 2023-11-30 \n",
|
414 |
+
"117910 condo 2023-12-31 \n",
|
415 |
+
"117911 condo 2024-01-31 \n",
|
416 |
+
"\n",
|
417 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
418 |
+
"0 NaN \n",
|
419 |
+
"1 NaN \n",
|
420 |
+
"2 NaN \n",
|
421 |
+
"3 NaN \n",
|
422 |
+
"4 NaN \n",
|
423 |
+
"... ... \n",
|
424 |
+
"117907 NaN \n",
|
425 |
+
"117908 NaN \n",
|
426 |
+
"117909 NaN \n",
|
427 |
+
"117910 NaN \n",
|
428 |
+
"117911 NaN \n",
|
429 |
+
"\n",
|
430 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
|
431 |
+
"0 NaN \n",
|
432 |
+
"1 NaN \n",
|
433 |
+
"2 NaN \n",
|
434 |
+
"3 NaN \n",
|
435 |
+
"4 NaN \n",
|
436 |
+
"... ... \n",
|
437 |
+
"117907 NaN \n",
|
438 |
+
"117908 NaN \n",
|
439 |
+
"117909 NaN \n",
|
440 |
+
"117910 NaN \n",
|
441 |
+
"117911 NaN \n",
|
442 |
+
"\n",
|
443 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
|
444 |
+
"0 NaN \n",
|
445 |
+
"1 NaN \n",
|
446 |
+
"2 NaN \n",
|
447 |
+
"3 NaN \n",
|
448 |
+
"4 NaN \n",
|
449 |
+
"... ... \n",
|
450 |
+
"117907 NaN \n",
|
451 |
+
"117908 NaN \n",
|
452 |
+
"117909 NaN \n",
|
453 |
+
"117910 NaN \n",
|
454 |
+
"117911 NaN \n",
|
455 |
+
"\n",
|
456 |
+
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
457 |
+
"0 NaN \n",
|
458 |
+
"1 NaN \n",
|
459 |
+
"2 NaN \n",
|
460 |
+
"3 NaN \n",
|
461 |
+
"4 NaN \n",
|
462 |
+
"... ... \n",
|
463 |
+
"117907 NaN \n",
|
464 |
+
"117908 NaN \n",
|
465 |
+
"117909 NaN \n",
|
466 |
+
"117910 NaN \n",
|
467 |
+
"117911 NaN \n",
|
468 |
+
"\n",
|
469 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4 \\\n",
|
470 |
+
"0 NaN \n",
|
471 |
+
"1 NaN \n",
|
472 |
+
"2 NaN \n",
|
473 |
+
"3 NaN \n",
|
474 |
+
"4 NaN \n",
|
475 |
+
"... ... \n",
|
476 |
+
"117907 NaN \n",
|
477 |
+
"117908 NaN \n",
|
478 |
+
"117909 NaN \n",
|
479 |
+
"117910 NaN \n",
|
480 |
+
"117911 NaN \n",
|
481 |
+
"\n",
|
482 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
|
483 |
+
"0 NaN \n",
|
484 |
+
"1 NaN \n",
|
485 |
+
"2 NaN \n",
|
486 |
+
"3 NaN \n",
|
487 |
+
"4 NaN \n",
|
488 |
+
"... ... \n",
|
489 |
+
"117907 486974.735908 \n",
|
490 |
+
"117908 485847.539614 \n",
|
491 |
+
"117909 484223.885775 \n",
|
492 |
+
"117910 481522.403338 \n",
|
493 |
+
"117911 481181.718200 \n",
|
494 |
+
"\n",
|
495 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
|
496 |
+
"0 NaN \n",
|
497 |
+
"1 NaN \n",
|
498 |
+
"2 NaN \n",
|
499 |
+
"3 NaN \n",
|
500 |
+
"4 NaN \n",
|
501 |
+
"... ... \n",
|
502 |
+
"117907 NaN \n",
|
503 |
+
"117908 NaN \n",
|
504 |
+
"117909 NaN \n",
|
505 |
+
"117910 NaN \n",
|
506 |
+
"117911 NaN \n",
|
507 |
+
"\n",
|
508 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
509 |
+
"0 NaN \n",
|
510 |
+
"1 NaN \n",
|
511 |
+
"2 NaN \n",
|
512 |
+
"3 NaN \n",
|
513 |
+
"4 NaN \n",
|
514 |
+
"... ... \n",
|
515 |
+
"117907 NaN \n",
|
516 |
+
"117908 NaN \n",
|
517 |
+
"117909 NaN \n",
|
518 |
+
"117910 NaN \n",
|
519 |
+
"117911 NaN \n",
|
520 |
+
"\n",
|
521 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
|
522 |
+
"0 NaN \n",
|
523 |
+
"1 NaN \n",
|
524 |
+
"2 NaN \n",
|
525 |
+
"3 NaN \n",
|
526 |
+
"4 NaN \n",
|
527 |
+
"... ... \n",
|
528 |
+
"117907 NaN \n",
|
529 |
+
"117908 NaN \n",
|
530 |
+
"117909 NaN \n",
|
531 |
+
"117910 NaN \n",
|
532 |
+
"117911 NaN \n",
|
533 |
+
"\n",
|
534 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
|
535 |
+
"0 81310.639504 \n",
|
536 |
+
"1 80419.761984 \n",
|
537 |
+
"2 80480.449461 \n",
|
538 |
+
"3 79799.206525 \n",
|
539 |
+
"4 79666.469861 \n",
|
540 |
+
"... ... \n",
|
541 |
+
"117907 NaN \n",
|
542 |
+
"117908 NaN \n",
|
543 |
+
"117909 NaN \n",
|
544 |
+
"117910 NaN \n",
|
545 |
+
"117911 NaN \n",
|
546 |
+
"\n",
|
547 |
+
"[117912 rows x 18 columns]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
"execution_count": 19,
|
551 |
+
"metadata": {},
|
552 |
+
"output_type": "execute_result"
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"source": [
|
556 |
+
"# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
|
557 |
+
"\n",
|
558 |
+
"data_frames = []\n",
|
559 |
+
"\n",
|
560 |
+
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
561 |
+
" if filename.endswith(\".csv\"):\n",
|
562 |
+
" print(\"processing \" + filename)\n",
|
563 |
+
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
564 |
+
" exclude_columns = [\n",
|
565 |
+
" \"RegionID\",\n",
|
566 |
+
" \"SizeRank\",\n",
|
567 |
+
" \"RegionName\",\n",
|
568 |
+
" \"RegionType\",\n",
|
569 |
+
" \"StateName\",\n",
|
570 |
+
" \"Bedroom Count\",\n",
|
571 |
+
" \"Home Type\",\n",
|
572 |
+
" ]\n",
|
573 |
+
"\n",
|
574 |
+
" if \"Zip\" in filename:\n",
|
575 |
+
" continue\n",
|
576 |
+
" if \"Neighborhood\" in filename:\n",
|
577 |
+
" continue\n",
|
578 |
+
" if \"City\" in filename:\n",
|
579 |
+
" continue\n",
|
580 |
+
" if \"Metro\" in filename:\n",
|
581 |
+
" continue\n",
|
582 |
+
" if \"County\" in filename:\n",
|
583 |
+
" continue\n",
|
584 |
+
"\n",
|
585 |
+
" if \"City\" in filename:\n",
|
586 |
+
" exclude_columns = [\n",
|
587 |
+
" \"RegionID\",\n",
|
588 |
+
" \"SizeRank\",\n",
|
589 |
+
" \"RegionName\",\n",
|
590 |
+
" \"RegionType\",\n",
|
591 |
+
" \"StateName\",\n",
|
592 |
+
" \"Bedroom Count\",\n",
|
593 |
+
" \"Home Type\",\n",
|
594 |
+
" # City Specific\n",
|
595 |
+
" \"State\",\n",
|
596 |
+
" \"Metro\",\n",
|
597 |
+
" \"CountyName\",\n",
|
598 |
+
" ]\n",
|
599 |
+
" elif \"Zip\" in filename:\n",
|
600 |
+
" exclude_columns = [\n",
|
601 |
+
" \"RegionID\",\n",
|
602 |
+
" \"SizeRank\",\n",
|
603 |
+
" \"RegionName\",\n",
|
604 |
+
" \"RegionType\",\n",
|
605 |
+
" \"StateName\",\n",
|
606 |
+
" \"Bedroom Count\",\n",
|
607 |
+
" \"Home Type\",\n",
|
608 |
+
" # Zip Specific\n",
|
609 |
+
" \"State\",\n",
|
610 |
+
" \"City\",\n",
|
611 |
+
" \"Metro\",\n",
|
612 |
+
" \"CountyName\",\n",
|
613 |
+
" ]\n",
|
614 |
+
" elif \"County\" in filename:\n",
|
615 |
+
" exclude_columns = [\n",
|
616 |
+
" \"RegionID\",\n",
|
617 |
+
" \"SizeRank\",\n",
|
618 |
+
" \"RegionName\",\n",
|
619 |
+
" \"RegionType\",\n",
|
620 |
+
" \"StateName\",\n",
|
621 |
+
" \"Bedroom Count\",\n",
|
622 |
+
" \"Home Type\",\n",
|
623 |
+
" # County Specific\n",
|
624 |
+
" \"State\",\n",
|
625 |
+
" \"Metro\",\n",
|
626 |
+
" \"StateCodeFIPS\",\n",
|
627 |
+
" \"MunicipalCodeFIPS\",\n",
|
628 |
+
" ]\n",
|
629 |
+
" elif \"Neighborhood\" in filename:\n",
|
630 |
+
" exclude_columns = [\n",
|
631 |
+
" \"RegionID\",\n",
|
632 |
+
" \"SizeRank\",\n",
|
633 |
+
" \"RegionName\",\n",
|
634 |
+
" \"RegionType\",\n",
|
635 |
+
" \"StateName\",\n",
|
636 |
+
" \"Bedroom Count\",\n",
|
637 |
+
" \"Home Type\",\n",
|
638 |
+
" # Neighborhood Specific\n",
|
639 |
+
" \"State\",\n",
|
640 |
+
" \"City\",\n",
|
641 |
+
" \"Metro\",\n",
|
642 |
+
" \"CountyName\",\n",
|
643 |
+
" ]\n",
|
644 |
+
"\n",
|
645 |
+
" if \"_bdrmcnt_1_\" in filename:\n",
|
646 |
+
" cur_df[\"Bedroom Count\"] = \"1-Bedrooms\"\n",
|
647 |
+
" elif \"_bdrmcnt_2_\" in filename:\n",
|
648 |
+
" cur_df[\"Bedroom Count\"] = \"2-Bedrooms\"\n",
|
649 |
+
" elif \"_bdrmcnt_3_\" in filename:\n",
|
650 |
+
" cur_df[\"Bedroom Count\"] = \"3-Bedrooms\"\n",
|
651 |
+
" elif \"_bdrmcnt_4_\" in filename:\n",
|
652 |
+
" cur_df[\"Bedroom Count\"] = \"4 Bedrooms\"\n",
|
653 |
+
" elif \"_bdrmcnt_5_\" in filename:\n",
|
654 |
+
" cur_df[\"Bedroom Count\"] = \"5+ Bedrooms\"\n",
|
655 |
+
" else:\n",
|
656 |
+
" cur_df[\"Bedroom Count\"] = \"All Bedrooms\"\n",
|
657 |
+
"\n",
|
658 |
+
" if \"_uc_sfr_\" in filename:\n",
|
659 |
+
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
660 |
+
" elif \"_uc_sfrcondo_\" in filename:\n",
|
661 |
+
" cur_df[\"Home Type\"] = \"all homes (SFR/condo)\"\n",
|
662 |
+
" elif \"_uc_condo_\" in filename:\n",
|
663 |
+
" cur_df[\"Home Type\"] = \"condo\"\n",
|
664 |
+
"\n",
|
665 |
+
" # Identify columns to pivot\n",
|
666 |
+
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
667 |
+
"\n",
|
668 |
+
" smoothed = \"_sm_\" in filename\n",
|
669 |
+
" seasonally_adjusted = \"_sa_\" in filename\n",
|
670 |
+
"\n",
|
671 |
+
" if \"_tier_0.33_0.67_\" in filename:\n",
|
672 |
+
" col_name = \"Mid Tier ZHVI\"\n",
|
673 |
+
" if smoothed:\n",
|
674 |
+
" col_name += \" (Smoothed)\"\n",
|
675 |
+
" if seasonally_adjusted:\n",
|
676 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
677 |
+
"\n",
|
678 |
+
" cur_df = pd.melt(\n",
|
679 |
+
" cur_df,\n",
|
680 |
+
" id_vars=exclude_columns,\n",
|
681 |
+
" value_vars=columns_to_pivot,\n",
|
682 |
+
" var_name=\"Date\",\n",
|
683 |
+
" value_name=col_name,\n",
|
684 |
+
" )\n",
|
685 |
+
" elif \"_tier_0.0_0.33_\" in filename:\n",
|
686 |
+
" col_name = \"Bottom Tier ZHVI\"\n",
|
687 |
+
" if smoothed:\n",
|
688 |
+
" col_name += \" (Smoothed)\"\n",
|
689 |
+
" if seasonally_adjusted:\n",
|
690 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
691 |
+
"\n",
|
692 |
+
" cur_df = pd.melt(\n",
|
693 |
+
" cur_df,\n",
|
694 |
+
" id_vars=exclude_columns,\n",
|
695 |
+
" value_vars=columns_to_pivot,\n",
|
696 |
+
" var_name=\"Date\",\n",
|
697 |
+
" value_name=col_name,\n",
|
698 |
+
" )\n",
|
699 |
+
" elif \"_tier_0.67_1.0_\" in filename:\n",
|
700 |
+
" col_name = \"Top Tier ZHVI\"\n",
|
701 |
+
" if smoothed:\n",
|
702 |
+
" col_name += \" (Smoothed)\"\n",
|
703 |
+
" if seasonally_adjusted:\n",
|
704 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
705 |
+
"\n",
|
706 |
+
" cur_df = pd.melt(\n",
|
707 |
+
" cur_df,\n",
|
708 |
+
" id_vars=exclude_columns,\n",
|
709 |
+
" value_vars=columns_to_pivot,\n",
|
710 |
+
" var_name=\"Date\",\n",
|
711 |
+
" value_name=col_name,\n",
|
712 |
+
" )\n",
|
713 |
+
" else:\n",
|
714 |
+
" col_name = \"ZHVI\"\n",
|
715 |
+
" if smoothed:\n",
|
716 |
+
" col_name += \" (Smoothed)\"\n",
|
717 |
+
" if seasonally_adjusted:\n",
|
718 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
719 |
+
"\n",
|
720 |
+
" cur_df = pd.melt(\n",
|
721 |
+
" cur_df,\n",
|
722 |
+
" id_vars=exclude_columns,\n",
|
723 |
+
" value_vars=columns_to_pivot,\n",
|
724 |
+
" var_name=\"Date\",\n",
|
725 |
+
" value_name=col_name,\n",
|
726 |
+
" )\n",
|
727 |
+
"\n",
|
728 |
+
" cur_df[\"StateName\"] = cur_df[\"StateName\"].astype(str)\n",
|
729 |
+
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
730 |
+
"\n",
|
731 |
+
" data_frames.append(cur_df)\n",
|
732 |
+
"\n",
|
733 |
+
"\n",
|
734 |
+
"def get_combined_df(data_frames):\n",
|
735 |
+
" combined_df = None\n",
|
736 |
+
" if len(data_frames) > 1:\n",
|
737 |
+
" # iterate over dataframes and merge or concat\n",
|
738 |
+
" combined_df = data_frames[0]\n",
|
739 |
+
" for i in range(1, len(data_frames)):\n",
|
740 |
+
" print(i)\n",
|
741 |
+
" print(len(data_frames))\n",
|
742 |
+
" cur_df = data_frames[i]\n",
|
743 |
+
" combined_df = pd.merge(\n",
|
744 |
+
" combined_df,\n",
|
745 |
+
" cur_df,\n",
|
746 |
+
" on=[\n",
|
747 |
+
" \"RegionID\",\n",
|
748 |
+
" \"SizeRank\",\n",
|
749 |
+
" \"RegionName\",\n",
|
750 |
+
" \"RegionType\",\n",
|
751 |
+
" \"StateName\",\n",
|
752 |
+
" \"Bedroom Count\",\n",
|
753 |
+
" \"Home Type\",\n",
|
754 |
+
" \"Date\",\n",
|
755 |
+
" ],\n",
|
756 |
+
" how=\"outer\",\n",
|
757 |
+
" suffixes=(\"\", \"_\" + str(i)),\n",
|
758 |
+
" )\n",
|
759 |
+
" elif len(data_frames) == 1:\n",
|
760 |
+
" combined_df = data_frames[0]\n",
|
761 |
+
"\n",
|
762 |
+
" return combined_df\n",
|
763 |
+
"\n",
|
764 |
+
"\n",
|
765 |
+
"combined_df = get_combined_df(data_frames)\n",
|
766 |
+
"combined_df"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"cell_type": "code",
|
771 |
+
"execution_count": 20,
|
772 |
+
"metadata": {},
|
773 |
+
"outputs": [
|
774 |
+
{
|
775 |
+
"name": "stdout",
|
776 |
+
"output_type": "stream",
|
777 |
+
"text": [
|
778 |
+
"ZHVI\n",
|
779 |
+
"Mid Tier ZHVI\n",
|
780 |
+
"Bottom Tier ZHVI\n",
|
781 |
+
"Top Tier ZHVI\n"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"data": {
|
786 |
+
"text/html": [
|
787 |
+
"<div>\n",
|
788 |
+
"<style scoped>\n",
|
789 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
790 |
+
" vertical-align: middle;\n",
|
791 |
+
" }\n",
|
792 |
+
"\n",
|
793 |
+
" .dataframe tbody tr th {\n",
|
794 |
+
" vertical-align: top;\n",
|
795 |
+
" }\n",
|
796 |
+
"\n",
|
797 |
+
" .dataframe thead th {\n",
|
798 |
+
" text-align: right;\n",
|
799 |
+
" }\n",
|
800 |
+
"</style>\n",
|
801 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
802 |
+
" <thead>\n",
|
803 |
+
" <tr style=\"text-align: right;\">\n",
|
804 |
+
" <th></th>\n",
|
805 |
+
" <th>RegionID</th>\n",
|
806 |
+
" <th>SizeRank</th>\n",
|
807 |
+
" <th>RegionName</th>\n",
|
808 |
+
" <th>RegionType</th>\n",
|
809 |
+
" <th>StateName</th>\n",
|
810 |
+
" <th>Bedroom Count</th>\n",
|
811 |
+
" <th>Home Type</th>\n",
|
812 |
+
" <th>Date</th>\n",
|
813 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
814 |
+
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
815 |
+
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
816 |
+
" <th>ZHVI</th>\n",
|
817 |
+
" <th>Mid Tier ZHVI</th>\n",
|
818 |
+
" </tr>\n",
|
819 |
+
" </thead>\n",
|
820 |
+
" <tbody>\n",
|
821 |
+
" <tr>\n",
|
822 |
+
" <th>0</th>\n",
|
823 |
+
" <td>3</td>\n",
|
824 |
+
" <td>48</td>\n",
|
825 |
+
" <td>Alaska</td>\n",
|
826 |
+
" <td>state</td>\n",
|
827 |
+
" <td>nan</td>\n",
|
828 |
+
" <td>1-Bedrooms</td>\n",
|
829 |
+
" <td>all homes (SFR/condo)</td>\n",
|
830 |
+
" <td>2000-01-31</td>\n",
|
831 |
+
" <td>NaN</td>\n",
|
832 |
+
" <td>NaN</td>\n",
|
833 |
+
" <td>NaN</td>\n",
|
834 |
+
" <td>81310.639504</td>\n",
|
835 |
+
" <td>81310.639504</td>\n",
|
836 |
+
" </tr>\n",
|
837 |
+
" <tr>\n",
|
838 |
+
" <th>1</th>\n",
|
839 |
+
" <td>3</td>\n",
|
840 |
+
" <td>48</td>\n",
|
841 |
+
" <td>Alaska</td>\n",
|
842 |
+
" <td>state</td>\n",
|
843 |
+
" <td>nan</td>\n",
|
844 |
+
" <td>1-Bedrooms</td>\n",
|
845 |
+
" <td>all homes (SFR/condo)</td>\n",
|
846 |
+
" <td>2000-02-29</td>\n",
|
847 |
+
" <td>NaN</td>\n",
|
848 |
+
" <td>NaN</td>\n",
|
849 |
+
" <td>NaN</td>\n",
|
850 |
+
" <td>80419.761984</td>\n",
|
851 |
+
" <td>80419.761984</td>\n",
|
852 |
+
" </tr>\n",
|
853 |
+
" <tr>\n",
|
854 |
+
" <th>2</th>\n",
|
855 |
+
" <td>3</td>\n",
|
856 |
+
" <td>48</td>\n",
|
857 |
+
" <td>Alaska</td>\n",
|
858 |
+
" <td>state</td>\n",
|
859 |
+
" <td>nan</td>\n",
|
860 |
+
" <td>1-Bedrooms</td>\n",
|
861 |
+
" <td>all homes (SFR/condo)</td>\n",
|
862 |
+
" <td>2000-03-31</td>\n",
|
863 |
+
" <td>NaN</td>\n",
|
864 |
+
" <td>NaN</td>\n",
|
865 |
+
" <td>NaN</td>\n",
|
866 |
+
" <td>80480.449461</td>\n",
|
867 |
+
" <td>80480.449461</td>\n",
|
868 |
+
" </tr>\n",
|
869 |
+
" <tr>\n",
|
870 |
+
" <th>3</th>\n",
|
871 |
+
" <td>3</td>\n",
|
872 |
+
" <td>48</td>\n",
|
873 |
+
" <td>Alaska</td>\n",
|
874 |
+
" <td>state</td>\n",
|
875 |
+
" <td>nan</td>\n",
|
876 |
+
" <td>1-Bedrooms</td>\n",
|
877 |
+
" <td>all homes (SFR/condo)</td>\n",
|
878 |
+
" <td>2000-04-30</td>\n",
|
879 |
+
" <td>NaN</td>\n",
|
880 |
+
" <td>NaN</td>\n",
|
881 |
+
" <td>NaN</td>\n",
|
882 |
+
" <td>79799.206525</td>\n",
|
883 |
+
" <td>79799.206525</td>\n",
|
884 |
+
" </tr>\n",
|
885 |
+
" <tr>\n",
|
886 |
+
" <th>4</th>\n",
|
887 |
+
" <td>3</td>\n",
|
888 |
+
" <td>48</td>\n",
|
889 |
+
" <td>Alaska</td>\n",
|
890 |
+
" <td>state</td>\n",
|
891 |
+
" <td>nan</td>\n",
|
892 |
+
" <td>1-Bedrooms</td>\n",
|
893 |
+
" <td>all homes (SFR/condo)</td>\n",
|
894 |
+
" <td>2000-05-31</td>\n",
|
895 |
+
" <td>NaN</td>\n",
|
896 |
+
" <td>NaN</td>\n",
|
897 |
+
" <td>NaN</td>\n",
|
898 |
+
" <td>79666.469861</td>\n",
|
899 |
+
" <td>79666.469861</td>\n",
|
900 |
+
" </tr>\n",
|
901 |
+
" <tr>\n",
|
902 |
+
" <th>...</th>\n",
|
903 |
+
" <td>...</td>\n",
|
904 |
+
" <td>...</td>\n",
|
905 |
+
" <td>...</td>\n",
|
906 |
+
" <td>...</td>\n",
|
907 |
+
" <td>...</td>\n",
|
908 |
+
" <td>...</td>\n",
|
909 |
+
" <td>...</td>\n",
|
910 |
+
" <td>...</td>\n",
|
911 |
+
" <td>...</td>\n",
|
912 |
+
" <td>...</td>\n",
|
913 |
+
" <td>...</td>\n",
|
914 |
+
" <td>...</td>\n",
|
915 |
+
" <td>...</td>\n",
|
916 |
+
" </tr>\n",
|
917 |
+
" <tr>\n",
|
918 |
+
" <th>117907</th>\n",
|
919 |
+
" <td>62</td>\n",
|
920 |
+
" <td>51</td>\n",
|
921 |
+
" <td>Wyoming</td>\n",
|
922 |
+
" <td>state</td>\n",
|
923 |
+
" <td>nan</td>\n",
|
924 |
+
" <td>All Bedrooms</td>\n",
|
925 |
+
" <td>condo</td>\n",
|
926 |
+
" <td>2023-09-30</td>\n",
|
927 |
+
" <td>NaN</td>\n",
|
928 |
+
" <td>NaN</td>\n",
|
929 |
+
" <td>NaN</td>\n",
|
930 |
+
" <td>486974.735908</td>\n",
|
931 |
+
" <td>486974.735908</td>\n",
|
932 |
+
" </tr>\n",
|
933 |
+
" <tr>\n",
|
934 |
+
" <th>117908</th>\n",
|
935 |
+
" <td>62</td>\n",
|
936 |
+
" <td>51</td>\n",
|
937 |
+
" <td>Wyoming</td>\n",
|
938 |
+
" <td>state</td>\n",
|
939 |
+
" <td>nan</td>\n",
|
940 |
+
" <td>All Bedrooms</td>\n",
|
941 |
+
" <td>condo</td>\n",
|
942 |
+
" <td>2023-10-31</td>\n",
|
943 |
+
" <td>NaN</td>\n",
|
944 |
+
" <td>NaN</td>\n",
|
945 |
+
" <td>NaN</td>\n",
|
946 |
+
" <td>485847.539614</td>\n",
|
947 |
+
" <td>485847.539614</td>\n",
|
948 |
+
" </tr>\n",
|
949 |
+
" <tr>\n",
|
950 |
+
" <th>117909</th>\n",
|
951 |
+
" <td>62</td>\n",
|
952 |
+
" <td>51</td>\n",
|
953 |
+
" <td>Wyoming</td>\n",
|
954 |
+
" <td>state</td>\n",
|
955 |
+
" <td>nan</td>\n",
|
956 |
+
" <td>All Bedrooms</td>\n",
|
957 |
+
" <td>condo</td>\n",
|
958 |
+
" <td>2023-11-30</td>\n",
|
959 |
+
" <td>NaN</td>\n",
|
960 |
+
" <td>NaN</td>\n",
|
961 |
+
" <td>NaN</td>\n",
|
962 |
+
" <td>484223.885775</td>\n",
|
963 |
+
" <td>484223.885775</td>\n",
|
964 |
+
" </tr>\n",
|
965 |
+
" <tr>\n",
|
966 |
+
" <th>117910</th>\n",
|
967 |
+
" <td>62</td>\n",
|
968 |
+
" <td>51</td>\n",
|
969 |
+
" <td>Wyoming</td>\n",
|
970 |
+
" <td>state</td>\n",
|
971 |
+
" <td>nan</td>\n",
|
972 |
+
" <td>All Bedrooms</td>\n",
|
973 |
+
" <td>condo</td>\n",
|
974 |
+
" <td>2023-12-31</td>\n",
|
975 |
+
" <td>NaN</td>\n",
|
976 |
+
" <td>NaN</td>\n",
|
977 |
+
" <td>NaN</td>\n",
|
978 |
+
" <td>481522.403338</td>\n",
|
979 |
+
" <td>481522.403338</td>\n",
|
980 |
+
" </tr>\n",
|
981 |
+
" <tr>\n",
|
982 |
+
" <th>117911</th>\n",
|
983 |
+
" <td>62</td>\n",
|
984 |
+
" <td>51</td>\n",
|
985 |
+
" <td>Wyoming</td>\n",
|
986 |
+
" <td>state</td>\n",
|
987 |
+
" <td>nan</td>\n",
|
988 |
+
" <td>All Bedrooms</td>\n",
|
989 |
+
" <td>condo</td>\n",
|
990 |
+
" <td>2024-01-31</td>\n",
|
991 |
+
" <td>NaN</td>\n",
|
992 |
+
" <td>NaN</td>\n",
|
993 |
+
" <td>NaN</td>\n",
|
994 |
+
" <td>481181.718200</td>\n",
|
995 |
+
" <td>481181.718200</td>\n",
|
996 |
+
" </tr>\n",
|
997 |
+
" </tbody>\n",
|
998 |
+
"</table>\n",
|
999 |
+
"<p>117912 rows × 13 columns</p>\n",
|
1000 |
+
"</div>"
|
1001 |
+
],
|
1002 |
+
"text/plain": [
|
1003 |
+
" RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
|
1004 |
+
"0 3 48 Alaska state nan 1-Bedrooms \n",
|
1005 |
+
"1 3 48 Alaska state nan 1-Bedrooms \n",
|
1006 |
+
"2 3 48 Alaska state nan 1-Bedrooms \n",
|
1007 |
+
"3 3 48 Alaska state nan 1-Bedrooms \n",
|
1008 |
+
"4 3 48 Alaska state nan 1-Bedrooms \n",
|
1009 |
+
"... ... ... ... ... ... ... \n",
|
1010 |
+
"117907 62 51 Wyoming state nan All Bedrooms \n",
|
1011 |
+
"117908 62 51 Wyoming state nan All Bedrooms \n",
|
1012 |
+
"117909 62 51 Wyoming state nan All Bedrooms \n",
|
1013 |
+
"117910 62 51 Wyoming state nan All Bedrooms \n",
|
1014 |
+
"117911 62 51 Wyoming state nan All Bedrooms \n",
|
1015 |
+
"\n",
|
1016 |
+
" Home Type Date \\\n",
|
1017 |
+
"0 all homes (SFR/condo) 2000-01-31 \n",
|
1018 |
+
"1 all homes (SFR/condo) 2000-02-29 \n",
|
1019 |
+
"2 all homes (SFR/condo) 2000-03-31 \n",
|
1020 |
+
"3 all homes (SFR/condo) 2000-04-30 \n",
|
1021 |
+
"4 all homes (SFR/condo) 2000-05-31 \n",
|
1022 |
+
"... ... ... \n",
|
1023 |
+
"117907 condo 2023-09-30 \n",
|
1024 |
+
"117908 condo 2023-10-31 \n",
|
1025 |
+
"117909 condo 2023-11-30 \n",
|
1026 |
+
"117910 condo 2023-12-31 \n",
|
1027 |
+
"117911 condo 2024-01-31 \n",
|
1028 |
+
"\n",
|
1029 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1030 |
+
"0 NaN \n",
|
1031 |
+
"1 NaN \n",
|
1032 |
+
"2 NaN \n",
|
1033 |
+
"3 NaN \n",
|
1034 |
+
"4 NaN \n",
|
1035 |
+
"... ... \n",
|
1036 |
+
"117907 NaN \n",
|
1037 |
+
"117908 NaN \n",
|
1038 |
+
"117909 NaN \n",
|
1039 |
+
"117910 NaN \n",
|
1040 |
+
"117911 NaN \n",
|
1041 |
+
"\n",
|
1042 |
+
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1043 |
+
"0 NaN \n",
|
1044 |
+
"1 NaN \n",
|
1045 |
+
"2 NaN \n",
|
1046 |
+
"3 NaN \n",
|
1047 |
+
"4 NaN \n",
|
1048 |
+
"... ... \n",
|
1049 |
+
"117907 NaN \n",
|
1050 |
+
"117908 NaN \n",
|
1051 |
+
"117909 NaN \n",
|
1052 |
+
"117910 NaN \n",
|
1053 |
+
"117911 NaN \n",
|
1054 |
+
"\n",
|
1055 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) ZHVI \\\n",
|
1056 |
+
"0 NaN 81310.639504 \n",
|
1057 |
+
"1 NaN 80419.761984 \n",
|
1058 |
+
"2 NaN 80480.449461 \n",
|
1059 |
+
"3 NaN 79799.206525 \n",
|
1060 |
+
"4 NaN 79666.469861 \n",
|
1061 |
+
"... ... ... \n",
|
1062 |
+
"117907 NaN 486974.735908 \n",
|
1063 |
+
"117908 NaN 485847.539614 \n",
|
1064 |
+
"117909 NaN 484223.885775 \n",
|
1065 |
+
"117910 NaN 481522.403338 \n",
|
1066 |
+
"117911 NaN 481181.718200 \n",
|
1067 |
+
"\n",
|
1068 |
+
" Mid Tier ZHVI \n",
|
1069 |
+
"0 81310.639504 \n",
|
1070 |
+
"1 80419.761984 \n",
|
1071 |
+
"2 80480.449461 \n",
|
1072 |
+
"3 79799.206525 \n",
|
1073 |
+
"4 79666.469861 \n",
|
1074 |
+
"... ... \n",
|
1075 |
+
"117907 486974.735908 \n",
|
1076 |
+
"117908 485847.539614 \n",
|
1077 |
+
"117909 484223.885775 \n",
|
1078 |
+
"117910 481522.403338 \n",
|
1079 |
+
"117911 481181.718200 \n",
|
1080 |
+
"\n",
|
1081 |
+
"[117912 rows x 13 columns]"
|
1082 |
+
]
|
1083 |
+
},
|
1084 |
+
"execution_count": 20,
|
1085 |
+
"metadata": {},
|
1086 |
+
"output_type": "execute_result"
|
1087 |
+
}
|
1088 |
+
],
|
1089 |
+
"source": [
|
1090 |
+
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
1091 |
+
"columns_to_coalesce = [\"ZHVI\", \"Mid Tier ZHVI\", \"Bottom Tier ZHVI\", \"Top Tier ZHVI\"]\n",
|
1092 |
+
"\n",
|
1093 |
+
"for column_to_coalesce in columns_to_coalesce:\n",
|
1094 |
+
" print(column_to_coalesce)\n",
|
1095 |
+
" for index, row in combined_df.iterrows():\n",
|
1096 |
+
" for col in combined_df.columns:\n",
|
1097 |
+
" if column_to_coalesce in col and \"_\" in col:\n",
|
1098 |
+
" if not pd.isna(row[col]):\n",
|
1099 |
+
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
1100 |
+
"\n",
|
1101 |
+
"# remove columns with underscores\n",
|
1102 |
+
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
1103 |
+
"\n",
|
1104 |
+
"\n",
|
1105 |
+
"combined_df"
|
1106 |
+
]
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"cell_type": "code",
|
1110 |
+
"execution_count": 21,
|
1111 |
+
"metadata": {},
|
1112 |
+
"outputs": [
|
1113 |
+
{
|
1114 |
+
"data": {
|
1115 |
+
"text/html": [
|
1116 |
+
"<div>\n",
|
1117 |
+
"<style scoped>\n",
|
1118 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1119 |
+
" vertical-align: middle;\n",
|
1120 |
+
" }\n",
|
1121 |
+
"\n",
|
1122 |
+
" .dataframe tbody tr th {\n",
|
1123 |
+
" vertical-align: top;\n",
|
1124 |
+
" }\n",
|
1125 |
+
"\n",
|
1126 |
+
" .dataframe thead th {\n",
|
1127 |
+
" text-align: right;\n",
|
1128 |
+
" }\n",
|
1129 |
+
"</style>\n",
|
1130 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1131 |
+
" <thead>\n",
|
1132 |
+
" <tr style=\"text-align: right;\">\n",
|
1133 |
+
" <th></th>\n",
|
1134 |
+
" <th>RegionID</th>\n",
|
1135 |
+
" <th>SizeRank</th>\n",
|
1136 |
+
" <th>RegionName</th>\n",
|
1137 |
+
" <th>RegionType</th>\n",
|
1138 |
+
" <th>StateName</th>\n",
|
1139 |
+
" <th>Bedroom Count</th>\n",
|
1140 |
+
" <th>Home Type</th>\n",
|
1141 |
+
" <th>Date</th>\n",
|
1142 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1143 |
+
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1144 |
+
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1145 |
+
" <th>ZHVI</th>\n",
|
1146 |
+
" <th>Mid Tier ZHVI</th>\n",
|
1147 |
+
" </tr>\n",
|
1148 |
+
" </thead>\n",
|
1149 |
+
" <tbody>\n",
|
1150 |
+
" <tr>\n",
|
1151 |
+
" <th>0</th>\n",
|
1152 |
+
" <td>3</td>\n",
|
1153 |
+
" <td>48</td>\n",
|
1154 |
+
" <td>Alaska</td>\n",
|
1155 |
+
" <td>state</td>\n",
|
1156 |
+
" <td>Alaska</td>\n",
|
1157 |
+
" <td>1-Bedrooms</td>\n",
|
1158 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1159 |
+
" <td>2000-01-31</td>\n",
|
1160 |
+
" <td>NaN</td>\n",
|
1161 |
+
" <td>NaN</td>\n",
|
1162 |
+
" <td>NaN</td>\n",
|
1163 |
+
" <td>81310.639504</td>\n",
|
1164 |
+
" <td>81310.639504</td>\n",
|
1165 |
+
" </tr>\n",
|
1166 |
+
" <tr>\n",
|
1167 |
+
" <th>1</th>\n",
|
1168 |
+
" <td>3</td>\n",
|
1169 |
+
" <td>48</td>\n",
|
1170 |
+
" <td>Alaska</td>\n",
|
1171 |
+
" <td>state</td>\n",
|
1172 |
+
" <td>Alaska</td>\n",
|
1173 |
+
" <td>1-Bedrooms</td>\n",
|
1174 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1175 |
+
" <td>2000-02-29</td>\n",
|
1176 |
+
" <td>NaN</td>\n",
|
1177 |
+
" <td>NaN</td>\n",
|
1178 |
+
" <td>NaN</td>\n",
|
1179 |
+
" <td>80419.761984</td>\n",
|
1180 |
+
" <td>80419.761984</td>\n",
|
1181 |
+
" </tr>\n",
|
1182 |
+
" <tr>\n",
|
1183 |
+
" <th>2</th>\n",
|
1184 |
+
" <td>3</td>\n",
|
1185 |
+
" <td>48</td>\n",
|
1186 |
+
" <td>Alaska</td>\n",
|
1187 |
+
" <td>state</td>\n",
|
1188 |
+
" <td>Alaska</td>\n",
|
1189 |
+
" <td>1-Bedrooms</td>\n",
|
1190 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1191 |
+
" <td>2000-03-31</td>\n",
|
1192 |
+
" <td>NaN</td>\n",
|
1193 |
+
" <td>NaN</td>\n",
|
1194 |
+
" <td>NaN</td>\n",
|
1195 |
+
" <td>80480.449461</td>\n",
|
1196 |
+
" <td>80480.449461</td>\n",
|
1197 |
+
" </tr>\n",
|
1198 |
+
" <tr>\n",
|
1199 |
+
" <th>3</th>\n",
|
1200 |
+
" <td>3</td>\n",
|
1201 |
+
" <td>48</td>\n",
|
1202 |
+
" <td>Alaska</td>\n",
|
1203 |
+
" <td>state</td>\n",
|
1204 |
+
" <td>Alaska</td>\n",
|
1205 |
+
" <td>1-Bedrooms</td>\n",
|
1206 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1207 |
+
" <td>2000-04-30</td>\n",
|
1208 |
+
" <td>NaN</td>\n",
|
1209 |
+
" <td>NaN</td>\n",
|
1210 |
+
" <td>NaN</td>\n",
|
1211 |
+
" <td>79799.206525</td>\n",
|
1212 |
+
" <td>79799.206525</td>\n",
|
1213 |
+
" </tr>\n",
|
1214 |
+
" <tr>\n",
|
1215 |
+
" <th>4</th>\n",
|
1216 |
+
" <td>3</td>\n",
|
1217 |
+
" <td>48</td>\n",
|
1218 |
+
" <td>Alaska</td>\n",
|
1219 |
+
" <td>state</td>\n",
|
1220 |
+
" <td>Alaska</td>\n",
|
1221 |
+
" <td>1-Bedrooms</td>\n",
|
1222 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1223 |
+
" <td>2000-05-31</td>\n",
|
1224 |
+
" <td>NaN</td>\n",
|
1225 |
+
" <td>NaN</td>\n",
|
1226 |
+
" <td>NaN</td>\n",
|
1227 |
+
" <td>79666.469861</td>\n",
|
1228 |
+
" <td>79666.469861</td>\n",
|
1229 |
+
" </tr>\n",
|
1230 |
+
" <tr>\n",
|
1231 |
+
" <th>...</th>\n",
|
1232 |
+
" <td>...</td>\n",
|
1233 |
+
" <td>...</td>\n",
|
1234 |
+
" <td>...</td>\n",
|
1235 |
+
" <td>...</td>\n",
|
1236 |
+
" <td>...</td>\n",
|
1237 |
+
" <td>...</td>\n",
|
1238 |
+
" <td>...</td>\n",
|
1239 |
+
" <td>...</td>\n",
|
1240 |
+
" <td>...</td>\n",
|
1241 |
+
" <td>...</td>\n",
|
1242 |
+
" <td>...</td>\n",
|
1243 |
+
" <td>...</td>\n",
|
1244 |
+
" <td>...</td>\n",
|
1245 |
+
" </tr>\n",
|
1246 |
+
" <tr>\n",
|
1247 |
+
" <th>117907</th>\n",
|
1248 |
+
" <td>62</td>\n",
|
1249 |
+
" <td>51</td>\n",
|
1250 |
+
" <td>Wyoming</td>\n",
|
1251 |
+
" <td>state</td>\n",
|
1252 |
+
" <td>Wyoming</td>\n",
|
1253 |
+
" <td>All Bedrooms</td>\n",
|
1254 |
+
" <td>condo</td>\n",
|
1255 |
+
" <td>2023-09-30</td>\n",
|
1256 |
+
" <td>NaN</td>\n",
|
1257 |
+
" <td>NaN</td>\n",
|
1258 |
+
" <td>NaN</td>\n",
|
1259 |
+
" <td>486974.735908</td>\n",
|
1260 |
+
" <td>486974.735908</td>\n",
|
1261 |
+
" </tr>\n",
|
1262 |
+
" <tr>\n",
|
1263 |
+
" <th>117908</th>\n",
|
1264 |
+
" <td>62</td>\n",
|
1265 |
+
" <td>51</td>\n",
|
1266 |
+
" <td>Wyoming</td>\n",
|
1267 |
+
" <td>state</td>\n",
|
1268 |
+
" <td>Wyoming</td>\n",
|
1269 |
+
" <td>All Bedrooms</td>\n",
|
1270 |
+
" <td>condo</td>\n",
|
1271 |
+
" <td>2023-10-31</td>\n",
|
1272 |
+
" <td>NaN</td>\n",
|
1273 |
+
" <td>NaN</td>\n",
|
1274 |
+
" <td>NaN</td>\n",
|
1275 |
+
" <td>485847.539614</td>\n",
|
1276 |
+
" <td>485847.539614</td>\n",
|
1277 |
+
" </tr>\n",
|
1278 |
+
" <tr>\n",
|
1279 |
+
" <th>117909</th>\n",
|
1280 |
+
" <td>62</td>\n",
|
1281 |
+
" <td>51</td>\n",
|
1282 |
+
" <td>Wyoming</td>\n",
|
1283 |
+
" <td>state</td>\n",
|
1284 |
+
" <td>Wyoming</td>\n",
|
1285 |
+
" <td>All Bedrooms</td>\n",
|
1286 |
+
" <td>condo</td>\n",
|
1287 |
+
" <td>2023-11-30</td>\n",
|
1288 |
+
" <td>NaN</td>\n",
|
1289 |
+
" <td>NaN</td>\n",
|
1290 |
+
" <td>NaN</td>\n",
|
1291 |
+
" <td>484223.885775</td>\n",
|
1292 |
+
" <td>484223.885775</td>\n",
|
1293 |
+
" </tr>\n",
|
1294 |
+
" <tr>\n",
|
1295 |
+
" <th>117910</th>\n",
|
1296 |
+
" <td>62</td>\n",
|
1297 |
+
" <td>51</td>\n",
|
1298 |
+
" <td>Wyoming</td>\n",
|
1299 |
+
" <td>state</td>\n",
|
1300 |
+
" <td>Wyoming</td>\n",
|
1301 |
+
" <td>All Bedrooms</td>\n",
|
1302 |
+
" <td>condo</td>\n",
|
1303 |
+
" <td>2023-12-31</td>\n",
|
1304 |
+
" <td>NaN</td>\n",
|
1305 |
+
" <td>NaN</td>\n",
|
1306 |
+
" <td>NaN</td>\n",
|
1307 |
+
" <td>481522.403338</td>\n",
|
1308 |
+
" <td>481522.403338</td>\n",
|
1309 |
+
" </tr>\n",
|
1310 |
+
" <tr>\n",
|
1311 |
+
" <th>117911</th>\n",
|
1312 |
+
" <td>62</td>\n",
|
1313 |
+
" <td>51</td>\n",
|
1314 |
+
" <td>Wyoming</td>\n",
|
1315 |
+
" <td>state</td>\n",
|
1316 |
+
" <td>Wyoming</td>\n",
|
1317 |
+
" <td>All Bedrooms</td>\n",
|
1318 |
+
" <td>condo</td>\n",
|
1319 |
+
" <td>2024-01-31</td>\n",
|
1320 |
+
" <td>NaN</td>\n",
|
1321 |
+
" <td>NaN</td>\n",
|
1322 |
+
" <td>NaN</td>\n",
|
1323 |
+
" <td>481181.718200</td>\n",
|
1324 |
+
" <td>481181.718200</td>\n",
|
1325 |
+
" </tr>\n",
|
1326 |
+
" </tbody>\n",
|
1327 |
+
"</table>\n",
|
1328 |
+
"<p>117912 rows × 13 columns</p>\n",
|
1329 |
+
"</div>"
|
1330 |
+
],
|
1331 |
+
"text/plain": [
|
1332 |
+
" RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
|
1333 |
+
"0 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1334 |
+
"1 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1335 |
+
"2 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1336 |
+
"3 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1337 |
+
"4 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1338 |
+
"... ... ... ... ... ... ... \n",
|
1339 |
+
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1340 |
+
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1341 |
+
"117909 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1342 |
+
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1343 |
+
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1344 |
+
"\n",
|
1345 |
+
" Home Type Date \\\n",
|
1346 |
+
"0 all homes (SFR/condo) 2000-01-31 \n",
|
1347 |
+
"1 all homes (SFR/condo) 2000-02-29 \n",
|
1348 |
+
"2 all homes (SFR/condo) 2000-03-31 \n",
|
1349 |
+
"3 all homes (SFR/condo) 2000-04-30 \n",
|
1350 |
+
"4 all homes (SFR/condo) 2000-05-31 \n",
|
1351 |
+
"... ... ... \n",
|
1352 |
+
"117907 condo 2023-09-30 \n",
|
1353 |
+
"117908 condo 2023-10-31 \n",
|
1354 |
+
"117909 condo 2023-11-30 \n",
|
1355 |
+
"117910 condo 2023-12-31 \n",
|
1356 |
+
"117911 condo 2024-01-31 \n",
|
1357 |
+
"\n",
|
1358 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1359 |
+
"0 NaN \n",
|
1360 |
+
"1 NaN \n",
|
1361 |
+
"2 NaN \n",
|
1362 |
+
"3 NaN \n",
|
1363 |
+
"4 NaN \n",
|
1364 |
+
"... ... \n",
|
1365 |
+
"117907 NaN \n",
|
1366 |
+
"117908 NaN \n",
|
1367 |
+
"117909 NaN \n",
|
1368 |
+
"117910 NaN \n",
|
1369 |
+
"117911 NaN \n",
|
1370 |
+
"\n",
|
1371 |
+
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1372 |
+
"0 NaN \n",
|
1373 |
+
"1 NaN \n",
|
1374 |
+
"2 NaN \n",
|
1375 |
+
"3 NaN \n",
|
1376 |
+
"4 NaN \n",
|
1377 |
+
"... ... \n",
|
1378 |
+
"117907 NaN \n",
|
1379 |
+
"117908 NaN \n",
|
1380 |
+
"117909 NaN \n",
|
1381 |
+
"117910 NaN \n",
|
1382 |
+
"117911 NaN \n",
|
1383 |
+
"\n",
|
1384 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) ZHVI \\\n",
|
1385 |
+
"0 NaN 81310.639504 \n",
|
1386 |
+
"1 NaN 80419.761984 \n",
|
1387 |
+
"2 NaN 80480.449461 \n",
|
1388 |
+
"3 NaN 79799.206525 \n",
|
1389 |
+
"4 NaN 79666.469861 \n",
|
1390 |
+
"... ... ... \n",
|
1391 |
+
"117907 NaN 486974.735908 \n",
|
1392 |
+
"117908 NaN 485847.539614 \n",
|
1393 |
+
"117909 NaN 484223.885775 \n",
|
1394 |
+
"117910 NaN 481522.403338 \n",
|
1395 |
+
"117911 NaN 481181.718200 \n",
|
1396 |
+
"\n",
|
1397 |
+
" Mid Tier ZHVI \n",
|
1398 |
+
"0 81310.639504 \n",
|
1399 |
+
"1 80419.761984 \n",
|
1400 |
+
"2 80480.449461 \n",
|
1401 |
+
"3 79799.206525 \n",
|
1402 |
+
"4 79666.469861 \n",
|
1403 |
+
"... ... \n",
|
1404 |
+
"117907 486974.735908 \n",
|
1405 |
+
"117908 485847.539614 \n",
|
1406 |
+
"117909 484223.885775 \n",
|
1407 |
+
"117910 481522.403338 \n",
|
1408 |
+
"117911 481181.718200 \n",
|
1409 |
+
"\n",
|
1410 |
+
"[117912 rows x 13 columns]"
|
1411 |
+
]
|
1412 |
+
},
|
1413 |
+
"execution_count": 21,
|
1414 |
+
"metadata": {},
|
1415 |
+
"output_type": "execute_result"
|
1416 |
+
}
|
1417 |
+
],
|
1418 |
+
"source": [
|
1419 |
+
"final_df = combined_df\n",
|
1420 |
+
"\n",
|
1421 |
+
"for index, row in final_df.iterrows():\n",
|
1422 |
+
" if row[\"RegionType\"] == \"city\":\n",
|
1423 |
+
" final_df.at[index, \"City\"] = row[\"RegionName\"]\n",
|
1424 |
+
" elif row[\"RegionType\"] == \"county\":\n",
|
1425 |
+
" final_df.at[index, \"County\"] = row[\"RegionName\"]\n",
|
1426 |
+
" if row[\"RegionType\"] == \"state\":\n",
|
1427 |
+
" final_df.at[index, \"StateName\"] = row[\"RegionName\"]\n",
|
1428 |
+
"\n",
|
1429 |
+
"# coalesce State and StateName columns\n",
|
1430 |
+
"# final_df[\"State\"] = final_df[\"State\"].combine_first(final_df[\"StateName\"])\n",
|
1431 |
+
"# final_df[\"County\"] = final_df[\"County\"].combine_first(final_df[\"CountyName\"])\n",
|
1432 |
+
"\n",
|
1433 |
+
"# final_df = final_df.drop(\n",
|
1434 |
+
"# columns=[\n",
|
1435 |
+
"# \"StateName\",\n",
|
1436 |
+
"# # \"CountyName\"\n",
|
1437 |
+
"# ]\n",
|
1438 |
+
"# )\n",
|
1439 |
+
"final_df"
|
1440 |
+
]
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"cell_type": "code",
|
1444 |
+
"execution_count": 22,
|
1445 |
+
"metadata": {},
|
1446 |
+
"outputs": [
|
1447 |
+
{
|
1448 |
+
"data": {
|
1449 |
+
"text/html": [
|
1450 |
+
"<div>\n",
|
1451 |
+
"<style scoped>\n",
|
1452 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1453 |
+
" vertical-align: middle;\n",
|
1454 |
+
" }\n",
|
1455 |
+
"\n",
|
1456 |
+
" .dataframe tbody tr th {\n",
|
1457 |
+
" vertical-align: top;\n",
|
1458 |
+
" }\n",
|
1459 |
+
"\n",
|
1460 |
+
" .dataframe thead th {\n",
|
1461 |
+
" text-align: right;\n",
|
1462 |
+
" }\n",
|
1463 |
+
"</style>\n",
|
1464 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1465 |
+
" <thead>\n",
|
1466 |
+
" <tr style=\"text-align: right;\">\n",
|
1467 |
+
" <th></th>\n",
|
1468 |
+
" <th>Region ID</th>\n",
|
1469 |
+
" <th>Size Rank</th>\n",
|
1470 |
+
" <th>Region</th>\n",
|
1471 |
+
" <th>Region Type</th>\n",
|
1472 |
+
" <th>State</th>\n",
|
1473 |
+
" <th>Bedroom Count</th>\n",
|
1474 |
+
" <th>Home Type</th>\n",
|
1475 |
+
" <th>Date</th>\n",
|
1476 |
+
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1477 |
+
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1478 |
+
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
1479 |
+
" <th>ZHVI</th>\n",
|
1480 |
+
" <th>Mid Tier ZHVI</th>\n",
|
1481 |
+
" </tr>\n",
|
1482 |
+
" </thead>\n",
|
1483 |
+
" <tbody>\n",
|
1484 |
+
" <tr>\n",
|
1485 |
+
" <th>0</th>\n",
|
1486 |
+
" <td>3</td>\n",
|
1487 |
+
" <td>48</td>\n",
|
1488 |
+
" <td>Alaska</td>\n",
|
1489 |
+
" <td>state</td>\n",
|
1490 |
+
" <td>Alaska</td>\n",
|
1491 |
+
" <td>1-Bedrooms</td>\n",
|
1492 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1493 |
+
" <td>2000-01-31</td>\n",
|
1494 |
+
" <td>NaN</td>\n",
|
1495 |
+
" <td>NaN</td>\n",
|
1496 |
+
" <td>NaN</td>\n",
|
1497 |
+
" <td>81310.639504</td>\n",
|
1498 |
+
" <td>81310.639504</td>\n",
|
1499 |
+
" </tr>\n",
|
1500 |
+
" <tr>\n",
|
1501 |
+
" <th>1</th>\n",
|
1502 |
+
" <td>3</td>\n",
|
1503 |
+
" <td>48</td>\n",
|
1504 |
+
" <td>Alaska</td>\n",
|
1505 |
+
" <td>state</td>\n",
|
1506 |
+
" <td>Alaska</td>\n",
|
1507 |
+
" <td>1-Bedrooms</td>\n",
|
1508 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1509 |
+
" <td>2000-02-29</td>\n",
|
1510 |
+
" <td>NaN</td>\n",
|
1511 |
+
" <td>NaN</td>\n",
|
1512 |
+
" <td>NaN</td>\n",
|
1513 |
+
" <td>80419.761984</td>\n",
|
1514 |
+
" <td>80419.761984</td>\n",
|
1515 |
+
" </tr>\n",
|
1516 |
+
" <tr>\n",
|
1517 |
+
" <th>2</th>\n",
|
1518 |
+
" <td>3</td>\n",
|
1519 |
+
" <td>48</td>\n",
|
1520 |
+
" <td>Alaska</td>\n",
|
1521 |
+
" <td>state</td>\n",
|
1522 |
+
" <td>Alaska</td>\n",
|
1523 |
+
" <td>1-Bedrooms</td>\n",
|
1524 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1525 |
+
" <td>2000-03-31</td>\n",
|
1526 |
+
" <td>NaN</td>\n",
|
1527 |
+
" <td>NaN</td>\n",
|
1528 |
+
" <td>NaN</td>\n",
|
1529 |
+
" <td>80480.449461</td>\n",
|
1530 |
+
" <td>80480.449461</td>\n",
|
1531 |
+
" </tr>\n",
|
1532 |
+
" <tr>\n",
|
1533 |
+
" <th>3</th>\n",
|
1534 |
+
" <td>3</td>\n",
|
1535 |
+
" <td>48</td>\n",
|
1536 |
+
" <td>Alaska</td>\n",
|
1537 |
+
" <td>state</td>\n",
|
1538 |
+
" <td>Alaska</td>\n",
|
1539 |
+
" <td>1-Bedrooms</td>\n",
|
1540 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1541 |
+
" <td>2000-04-30</td>\n",
|
1542 |
+
" <td>NaN</td>\n",
|
1543 |
+
" <td>NaN</td>\n",
|
1544 |
+
" <td>NaN</td>\n",
|
1545 |
+
" <td>79799.206525</td>\n",
|
1546 |
+
" <td>79799.206525</td>\n",
|
1547 |
+
" </tr>\n",
|
1548 |
+
" <tr>\n",
|
1549 |
+
" <th>4</th>\n",
|
1550 |
+
" <td>3</td>\n",
|
1551 |
+
" <td>48</td>\n",
|
1552 |
+
" <td>Alaska</td>\n",
|
1553 |
+
" <td>state</td>\n",
|
1554 |
+
" <td>Alaska</td>\n",
|
1555 |
+
" <td>1-Bedrooms</td>\n",
|
1556 |
+
" <td>all homes (SFR/condo)</td>\n",
|
1557 |
+
" <td>2000-05-31</td>\n",
|
1558 |
+
" <td>NaN</td>\n",
|
1559 |
+
" <td>NaN</td>\n",
|
1560 |
+
" <td>NaN</td>\n",
|
1561 |
+
" <td>79666.469861</td>\n",
|
1562 |
+
" <td>79666.469861</td>\n",
|
1563 |
+
" </tr>\n",
|
1564 |
+
" <tr>\n",
|
1565 |
+
" <th>...</th>\n",
|
1566 |
+
" <td>...</td>\n",
|
1567 |
+
" <td>...</td>\n",
|
1568 |
+
" <td>...</td>\n",
|
1569 |
+
" <td>...</td>\n",
|
1570 |
+
" <td>...</td>\n",
|
1571 |
+
" <td>...</td>\n",
|
1572 |
+
" <td>...</td>\n",
|
1573 |
+
" <td>...</td>\n",
|
1574 |
+
" <td>...</td>\n",
|
1575 |
+
" <td>...</td>\n",
|
1576 |
+
" <td>...</td>\n",
|
1577 |
+
" <td>...</td>\n",
|
1578 |
+
" <td>...</td>\n",
|
1579 |
+
" </tr>\n",
|
1580 |
+
" <tr>\n",
|
1581 |
+
" <th>117907</th>\n",
|
1582 |
+
" <td>62</td>\n",
|
1583 |
+
" <td>51</td>\n",
|
1584 |
+
" <td>Wyoming</td>\n",
|
1585 |
+
" <td>state</td>\n",
|
1586 |
+
" <td>Wyoming</td>\n",
|
1587 |
+
" <td>All Bedrooms</td>\n",
|
1588 |
+
" <td>condo</td>\n",
|
1589 |
+
" <td>2023-09-30</td>\n",
|
1590 |
+
" <td>NaN</td>\n",
|
1591 |
+
" <td>NaN</td>\n",
|
1592 |
+
" <td>NaN</td>\n",
|
1593 |
+
" <td>486974.735908</td>\n",
|
1594 |
+
" <td>486974.735908</td>\n",
|
1595 |
+
" </tr>\n",
|
1596 |
+
" <tr>\n",
|
1597 |
+
" <th>117908</th>\n",
|
1598 |
+
" <td>62</td>\n",
|
1599 |
+
" <td>51</td>\n",
|
1600 |
+
" <td>Wyoming</td>\n",
|
1601 |
+
" <td>state</td>\n",
|
1602 |
+
" <td>Wyoming</td>\n",
|
1603 |
+
" <td>All Bedrooms</td>\n",
|
1604 |
+
" <td>condo</td>\n",
|
1605 |
+
" <td>2023-10-31</td>\n",
|
1606 |
+
" <td>NaN</td>\n",
|
1607 |
+
" <td>NaN</td>\n",
|
1608 |
+
" <td>NaN</td>\n",
|
1609 |
+
" <td>485847.539614</td>\n",
|
1610 |
+
" <td>485847.539614</td>\n",
|
1611 |
+
" </tr>\n",
|
1612 |
+
" <tr>\n",
|
1613 |
+
" <th>117909</th>\n",
|
1614 |
+
" <td>62</td>\n",
|
1615 |
+
" <td>51</td>\n",
|
1616 |
+
" <td>Wyoming</td>\n",
|
1617 |
+
" <td>state</td>\n",
|
1618 |
+
" <td>Wyoming</td>\n",
|
1619 |
+
" <td>All Bedrooms</td>\n",
|
1620 |
+
" <td>condo</td>\n",
|
1621 |
+
" <td>2023-11-30</td>\n",
|
1622 |
+
" <td>NaN</td>\n",
|
1623 |
+
" <td>NaN</td>\n",
|
1624 |
+
" <td>NaN</td>\n",
|
1625 |
+
" <td>484223.885775</td>\n",
|
1626 |
+
" <td>484223.885775</td>\n",
|
1627 |
+
" </tr>\n",
|
1628 |
+
" <tr>\n",
|
1629 |
+
" <th>117910</th>\n",
|
1630 |
+
" <td>62</td>\n",
|
1631 |
+
" <td>51</td>\n",
|
1632 |
+
" <td>Wyoming</td>\n",
|
1633 |
+
" <td>state</td>\n",
|
1634 |
+
" <td>Wyoming</td>\n",
|
1635 |
+
" <td>All Bedrooms</td>\n",
|
1636 |
+
" <td>condo</td>\n",
|
1637 |
+
" <td>2023-12-31</td>\n",
|
1638 |
+
" <td>NaN</td>\n",
|
1639 |
+
" <td>NaN</td>\n",
|
1640 |
+
" <td>NaN</td>\n",
|
1641 |
+
" <td>481522.403338</td>\n",
|
1642 |
+
" <td>481522.403338</td>\n",
|
1643 |
+
" </tr>\n",
|
1644 |
+
" <tr>\n",
|
1645 |
+
" <th>117911</th>\n",
|
1646 |
+
" <td>62</td>\n",
|
1647 |
+
" <td>51</td>\n",
|
1648 |
+
" <td>Wyoming</td>\n",
|
1649 |
+
" <td>state</td>\n",
|
1650 |
+
" <td>Wyoming</td>\n",
|
1651 |
+
" <td>All Bedrooms</td>\n",
|
1652 |
+
" <td>condo</td>\n",
|
1653 |
+
" <td>2024-01-31</td>\n",
|
1654 |
+
" <td>NaN</td>\n",
|
1655 |
+
" <td>NaN</td>\n",
|
1656 |
+
" <td>NaN</td>\n",
|
1657 |
+
" <td>481181.718200</td>\n",
|
1658 |
+
" <td>481181.718200</td>\n",
|
1659 |
+
" </tr>\n",
|
1660 |
+
" </tbody>\n",
|
1661 |
+
"</table>\n",
|
1662 |
+
"<p>117912 rows × 13 columns</p>\n",
|
1663 |
+
"</div>"
|
1664 |
+
],
|
1665 |
+
"text/plain": [
|
1666 |
+
" Region ID Size Rank Region Region Type State Bedroom Count \\\n",
|
1667 |
+
"0 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1668 |
+
"1 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1669 |
+
"2 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1670 |
+
"3 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1671 |
+
"4 3 48 Alaska state Alaska 1-Bedrooms \n",
|
1672 |
+
"... ... ... ... ... ... ... \n",
|
1673 |
+
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1674 |
+
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1675 |
+
"117909 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1676 |
+
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1677 |
+
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1678 |
+
"\n",
|
1679 |
+
" Home Type Date \\\n",
|
1680 |
+
"0 all homes (SFR/condo) 2000-01-31 \n",
|
1681 |
+
"1 all homes (SFR/condo) 2000-02-29 \n",
|
1682 |
+
"2 all homes (SFR/condo) 2000-03-31 \n",
|
1683 |
+
"3 all homes (SFR/condo) 2000-04-30 \n",
|
1684 |
+
"4 all homes (SFR/condo) 2000-05-31 \n",
|
1685 |
+
"... ... ... \n",
|
1686 |
+
"117907 condo 2023-09-30 \n",
|
1687 |
+
"117908 condo 2023-10-31 \n",
|
1688 |
+
"117909 condo 2023-11-30 \n",
|
1689 |
+
"117910 condo 2023-12-31 \n",
|
1690 |
+
"117911 condo 2024-01-31 \n",
|
1691 |
+
"\n",
|
1692 |
+
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1693 |
+
"0 NaN \n",
|
1694 |
+
"1 NaN \n",
|
1695 |
+
"2 NaN \n",
|
1696 |
+
"3 NaN \n",
|
1697 |
+
"4 NaN \n",
|
1698 |
+
"... ... \n",
|
1699 |
+
"117907 NaN \n",
|
1700 |
+
"117908 NaN \n",
|
1701 |
+
"117909 NaN \n",
|
1702 |
+
"117910 NaN \n",
|
1703 |
+
"117911 NaN \n",
|
1704 |
+
"\n",
|
1705 |
+
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1706 |
+
"0 NaN \n",
|
1707 |
+
"1 NaN \n",
|
1708 |
+
"2 NaN \n",
|
1709 |
+
"3 NaN \n",
|
1710 |
+
"4 NaN \n",
|
1711 |
+
"... ... \n",
|
1712 |
+
"117907 NaN \n",
|
1713 |
+
"117908 NaN \n",
|
1714 |
+
"117909 NaN \n",
|
1715 |
+
"117910 NaN \n",
|
1716 |
+
"117911 NaN \n",
|
1717 |
+
"\n",
|
1718 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) ZHVI \\\n",
|
1719 |
+
"0 NaN 81310.639504 \n",
|
1720 |
+
"1 NaN 80419.761984 \n",
|
1721 |
+
"2 NaN 80480.449461 \n",
|
1722 |
+
"3 NaN 79799.206525 \n",
|
1723 |
+
"4 NaN 79666.469861 \n",
|
1724 |
+
"... ... ... \n",
|
1725 |
+
"117907 NaN 486974.735908 \n",
|
1726 |
+
"117908 NaN 485847.539614 \n",
|
1727 |
+
"117909 NaN 484223.885775 \n",
|
1728 |
+
"117910 NaN 481522.403338 \n",
|
1729 |
+
"117911 NaN 481181.718200 \n",
|
1730 |
+
"\n",
|
1731 |
+
" Mid Tier ZHVI \n",
|
1732 |
+
"0 81310.639504 \n",
|
1733 |
+
"1 80419.761984 \n",
|
1734 |
+
"2 80480.449461 \n",
|
1735 |
+
"3 79799.206525 \n",
|
1736 |
+
"4 79666.469861 \n",
|
1737 |
+
"... ... \n",
|
1738 |
+
"117907 486974.735908 \n",
|
1739 |
+
"117908 485847.539614 \n",
|
1740 |
+
"117909 484223.885775 \n",
|
1741 |
+
"117910 481522.403338 \n",
|
1742 |
+
"117911 481181.718200 \n",
|
1743 |
+
"\n",
|
1744 |
+
"[117912 rows x 13 columns]"
|
1745 |
+
]
|
1746 |
+
},
|
1747 |
+
"execution_count": 22,
|
1748 |
+
"metadata": {},
|
1749 |
+
"output_type": "execute_result"
|
1750 |
+
}
|
1751 |
+
],
|
1752 |
+
"source": [
|
1753 |
+
"final_df = final_df.rename(\n",
|
1754 |
+
" columns={\n",
|
1755 |
+
" \"RegionID\": \"Region ID\",\n",
|
1756 |
+
" \"SizeRank\": \"Size Rank\",\n",
|
1757 |
+
" \"RegionName\": \"Region\",\n",
|
1758 |
+
" \"RegionType\": \"Region Type\",\n",
|
1759 |
+
" \"StateCodeFIPS\": \"State Code FIPS\",\n",
|
1760 |
+
" \"StateName\": \"State\",\n",
|
1761 |
+
" \"MunicipalCodeFIPS\": \"Municipal Code FIPS\",\n",
|
1762 |
+
" }\n",
|
1763 |
+
")\n",
|
1764 |
+
"\n",
|
1765 |
+
"final_df"
|
1766 |
+
]
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"cell_type": "code",
|
1770 |
+
"execution_count": 23,
|
1771 |
+
"metadata": {},
|
1772 |
+
"outputs": [],
|
1773 |
+
"source": [
|
1774 |
+
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
1775 |
+
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
1776 |
+
"\n",
|
1777 |
+
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
1778 |
+
]
|
1779 |
+
}
|
1780 |
+
],
|
1781 |
+
"metadata": {
|
1782 |
+
"kernelspec": {
|
1783 |
+
"display_name": "Python 3",
|
1784 |
+
"language": "python",
|
1785 |
+
"name": "python3"
|
1786 |
+
},
|
1787 |
+
"language_info": {
|
1788 |
+
"codemirror_mode": {
|
1789 |
+
"name": "ipython",
|
1790 |
+
"version": 3
|
1791 |
+
},
|
1792 |
+
"file_extension": ".py",
|
1793 |
+
"mimetype": "text/x-python",
|
1794 |
+
"name": "python",
|
1795 |
+
"nbconvert_exporter": "python",
|
1796 |
+
"pygments_lexer": "ipython3",
|
1797 |
+
"version": "3.12.2"
|
1798 |
+
}
|
1799 |
+
},
|
1800 |
+
"nbformat": 4,
|
1801 |
+
"nbformat_minor": 2
|
1802 |
+
}
|
processors/rentals.ipynb
CHANGED
@@ -352,8 +352,6 @@
|
|
352 |
"\n",
|
353 |
" if \"_sfrcondomfr_\" in filename:\n",
|
354 |
" cur_df[\"Home Type\"] = \"all homes plus multifamily\"\n",
|
355 |
-
" # skip for now\n",
|
356 |
-
" # continue\n",
|
357 |
" # change column type to string\n",
|
358 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
359 |
" if \"City\" in filename:\n",
|
|
|
352 |
"\n",
|
353 |
" if \"_sfrcondomfr_\" in filename:\n",
|
354 |
" cur_df[\"Home Type\"] = \"all homes plus multifamily\"\n",
|
|
|
|
|
355 |
" # change column type to string\n",
|
356 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
357 |
" if \"City\" in filename:\n",
|
processors/sales.ipynb
ADDED
@@ -0,0 +1,1110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import os"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 3,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"DATA_DIR = \"../data\"\n",
|
20 |
+
"PROCESSED_DIR = \"../processed/\"\n",
|
21 |
+
"FACET_DIR = \"sales/\"\n",
|
22 |
+
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
23 |
+
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 5,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"processing Metro_mean_sale_to_list_uc_sfrcondo_sm_month.csv\n",
|
36 |
+
"processing Metro_median_sale_to_list_uc_sfrcondo_week.csv\n",
|
37 |
+
"processing Metro_median_sale_price_uc_sfr_week.csv\n",
|
38 |
+
"processing Metro_pct_sold_below_list_uc_sfrcondo_sm_month.csv\n",
|
39 |
+
"processing Metro_median_sale_price_uc_sfr_sm_sa_week.csv\n",
|
40 |
+
"processing Metro_pct_sold_below_list_uc_sfrcondo_month.csv\n",
|
41 |
+
"processing Metro_median_sale_price_uc_sfrcondo_sm_week.csv\n",
|
42 |
+
"processing Metro_pct_sold_below_list_uc_sfrcondo_sm_week.csv\n",
|
43 |
+
"processing Metro_median_sale_price_uc_sfr_month.csv\n",
|
44 |
+
"processing Metro_median_sale_to_list_uc_sfrcondo_sm_month.csv\n",
|
45 |
+
"processing Metro_pct_sold_above_list_uc_sfrcondo_month.csv\n",
|
46 |
+
"processing Metro_median_sale_to_list_uc_sfrcondo_sm_week.csv\n",
|
47 |
+
"processing Metro_median_sale_price_uc_sfrcondo_sm_sa_month.csv\n",
|
48 |
+
"processing Metro_sales_count_now_uc_sfrcondo_month.csv\n",
|
49 |
+
"processing Metro_pct_sold_above_list_uc_sfrcondo_week.csv\n",
|
50 |
+
"processing Metro_mean_sale_to_list_uc_sfrcondo_sm_week.csv\n",
|
51 |
+
"processing Metro_median_sale_price_uc_sfrcondo_sm_month.csv\n",
|
52 |
+
"processing Metro_mean_sale_to_list_uc_sfrcondo_week.csv\n",
|
53 |
+
"processing Metro_median_sale_price_uc_sfr_sm_month.csv\n",
|
54 |
+
"processing Metro_median_sale_to_list_uc_sfrcondo_month.csv\n",
|
55 |
+
"processing Metro_median_sale_price_uc_sfrcondo_sm_sa_week.csv\n",
|
56 |
+
"processing Metro_pct_sold_below_list_uc_sfrcondo_week.csv\n",
|
57 |
+
"processing Metro_median_sale_price_uc_sfrcondo_week.csv\n",
|
58 |
+
"processing Metro_mean_sale_to_list_uc_sfrcondo_month.csv\n",
|
59 |
+
"processing Metro_pct_sold_above_list_uc_sfrcondo_sm_week.csv\n",
|
60 |
+
"processing Metro_median_sale_price_uc_sfr_sm_week.csv\n",
|
61 |
+
"processing Metro_median_sale_price_uc_sfrcondo_month.csv\n",
|
62 |
+
"processing Metro_pct_sold_above_list_uc_sfrcondo_sm_month.csv\n"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"data": {
|
67 |
+
"text/html": [
|
68 |
+
"<div>\n",
|
69 |
+
"<style scoped>\n",
|
70 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
71 |
+
" vertical-align: middle;\n",
|
72 |
+
" }\n",
|
73 |
+
"\n",
|
74 |
+
" .dataframe tbody tr th {\n",
|
75 |
+
" vertical-align: top;\n",
|
76 |
+
" }\n",
|
77 |
+
"\n",
|
78 |
+
" .dataframe thead th {\n",
|
79 |
+
" text-align: right;\n",
|
80 |
+
" }\n",
|
81 |
+
"</style>\n",
|
82 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
83 |
+
" <thead>\n",
|
84 |
+
" <tr style=\"text-align: right;\">\n",
|
85 |
+
" <th></th>\n",
|
86 |
+
" <th>RegionID</th>\n",
|
87 |
+
" <th>SizeRank</th>\n",
|
88 |
+
" <th>RegionName</th>\n",
|
89 |
+
" <th>RegionType</th>\n",
|
90 |
+
" <th>StateName</th>\n",
|
91 |
+
" <th>Home Type</th>\n",
|
92 |
+
" <th>Date</th>\n",
|
93 |
+
" <th>Mean Sale to List Ratio (Smoothed)</th>\n",
|
94 |
+
" <th>Median Sale to List Ratio</th>\n",
|
95 |
+
" <th>Median Sale Price</th>\n",
|
96 |
+
" <th>% Sold Below List (Smoothed)</th>\n",
|
97 |
+
" <th>Median Sale Price (Smoothed) (Seasonally Adjusted)</th>\n",
|
98 |
+
" <th>% Sold Below List</th>\n",
|
99 |
+
" <th>Median Sale Price (Smoothed)</th>\n",
|
100 |
+
" <th>Median Sale to List Ratio (Smoothed)</th>\n",
|
101 |
+
" <th>% Sold Above List</th>\n",
|
102 |
+
" <th>Nowcast</th>\n",
|
103 |
+
" <th>Mean Sale to List Ratio</th>\n",
|
104 |
+
" <th>% Sold Above List (Smoothed)</th>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" </thead>\n",
|
107 |
+
" <tbody>\n",
|
108 |
+
" <tr>\n",
|
109 |
+
" <th>0</th>\n",
|
110 |
+
" <td>102001</td>\n",
|
111 |
+
" <td>0</td>\n",
|
112 |
+
" <td>United States</td>\n",
|
113 |
+
" <td>country</td>\n",
|
114 |
+
" <td>NaN</td>\n",
|
115 |
+
" <td>SFR</td>\n",
|
116 |
+
" <td>2008-02-02</td>\n",
|
117 |
+
" <td>NaN</td>\n",
|
118 |
+
" <td>NaN</td>\n",
|
119 |
+
" <td>172000.0</td>\n",
|
120 |
+
" <td>NaN</td>\n",
|
121 |
+
" <td>NaN</td>\n",
|
122 |
+
" <td>NaN</td>\n",
|
123 |
+
" <td>NaN</td>\n",
|
124 |
+
" <td>NaN</td>\n",
|
125 |
+
" <td>NaN</td>\n",
|
126 |
+
" <td>NaN</td>\n",
|
127 |
+
" <td>NaN</td>\n",
|
128 |
+
" <td>NaN</td>\n",
|
129 |
+
" </tr>\n",
|
130 |
+
" <tr>\n",
|
131 |
+
" <th>1</th>\n",
|
132 |
+
" <td>102001</td>\n",
|
133 |
+
" <td>0</td>\n",
|
134 |
+
" <td>United States</td>\n",
|
135 |
+
" <td>country</td>\n",
|
136 |
+
" <td>NaN</td>\n",
|
137 |
+
" <td>SFR</td>\n",
|
138 |
+
" <td>2008-02-09</td>\n",
|
139 |
+
" <td>NaN</td>\n",
|
140 |
+
" <td>NaN</td>\n",
|
141 |
+
" <td>165400.0</td>\n",
|
142 |
+
" <td>NaN</td>\n",
|
143 |
+
" <td>NaN</td>\n",
|
144 |
+
" <td>NaN</td>\n",
|
145 |
+
" <td>NaN</td>\n",
|
146 |
+
" <td>NaN</td>\n",
|
147 |
+
" <td>NaN</td>\n",
|
148 |
+
" <td>NaN</td>\n",
|
149 |
+
" <td>NaN</td>\n",
|
150 |
+
" <td>NaN</td>\n",
|
151 |
+
" </tr>\n",
|
152 |
+
" <tr>\n",
|
153 |
+
" <th>2</th>\n",
|
154 |
+
" <td>102001</td>\n",
|
155 |
+
" <td>0</td>\n",
|
156 |
+
" <td>United States</td>\n",
|
157 |
+
" <td>country</td>\n",
|
158 |
+
" <td>NaN</td>\n",
|
159 |
+
" <td>SFR</td>\n",
|
160 |
+
" <td>2008-02-16</td>\n",
|
161 |
+
" <td>NaN</td>\n",
|
162 |
+
" <td>NaN</td>\n",
|
163 |
+
" <td>168000.0</td>\n",
|
164 |
+
" <td>NaN</td>\n",
|
165 |
+
" <td>NaN</td>\n",
|
166 |
+
" <td>NaN</td>\n",
|
167 |
+
" <td>NaN</td>\n",
|
168 |
+
" <td>NaN</td>\n",
|
169 |
+
" <td>NaN</td>\n",
|
170 |
+
" <td>NaN</td>\n",
|
171 |
+
" <td>NaN</td>\n",
|
172 |
+
" <td>NaN</td>\n",
|
173 |
+
" </tr>\n",
|
174 |
+
" <tr>\n",
|
175 |
+
" <th>3</th>\n",
|
176 |
+
" <td>102001</td>\n",
|
177 |
+
" <td>0</td>\n",
|
178 |
+
" <td>United States</td>\n",
|
179 |
+
" <td>country</td>\n",
|
180 |
+
" <td>NaN</td>\n",
|
181 |
+
" <td>SFR</td>\n",
|
182 |
+
" <td>2008-02-23</td>\n",
|
183 |
+
" <td>NaN</td>\n",
|
184 |
+
" <td>NaN</td>\n",
|
185 |
+
" <td>165000.0</td>\n",
|
186 |
+
" <td>NaN</td>\n",
|
187 |
+
" <td>NaN</td>\n",
|
188 |
+
" <td>NaN</td>\n",
|
189 |
+
" <td>167600.0</td>\n",
|
190 |
+
" <td>NaN</td>\n",
|
191 |
+
" <td>NaN</td>\n",
|
192 |
+
" <td>NaN</td>\n",
|
193 |
+
" <td>NaN</td>\n",
|
194 |
+
" <td>NaN</td>\n",
|
195 |
+
" </tr>\n",
|
196 |
+
" <tr>\n",
|
197 |
+
" <th>4</th>\n",
|
198 |
+
" <td>102001</td>\n",
|
199 |
+
" <td>0</td>\n",
|
200 |
+
" <td>United States</td>\n",
|
201 |
+
" <td>country</td>\n",
|
202 |
+
" <td>NaN</td>\n",
|
203 |
+
" <td>SFR</td>\n",
|
204 |
+
" <td>2008-02-29</td>\n",
|
205 |
+
" <td>NaN</td>\n",
|
206 |
+
" <td>NaN</td>\n",
|
207 |
+
" <td>NaN</td>\n",
|
208 |
+
" <td>NaN</td>\n",
|
209 |
+
" <td>NaN</td>\n",
|
210 |
+
" <td>NaN</td>\n",
|
211 |
+
" <td>NaN</td>\n",
|
212 |
+
" <td>NaN</td>\n",
|
213 |
+
" <td>NaN</td>\n",
|
214 |
+
" <td>NaN</td>\n",
|
215 |
+
" <td>NaN</td>\n",
|
216 |
+
" <td>NaN</td>\n",
|
217 |
+
" </tr>\n",
|
218 |
+
" <tr>\n",
|
219 |
+
" <th>...</th>\n",
|
220 |
+
" <td>...</td>\n",
|
221 |
+
" <td>...</td>\n",
|
222 |
+
" <td>...</td>\n",
|
223 |
+
" <td>...</td>\n",
|
224 |
+
" <td>...</td>\n",
|
225 |
+
" <td>...</td>\n",
|
226 |
+
" <td>...</td>\n",
|
227 |
+
" <td>...</td>\n",
|
228 |
+
" <td>...</td>\n",
|
229 |
+
" <td>...</td>\n",
|
230 |
+
" <td>...</td>\n",
|
231 |
+
" <td>...</td>\n",
|
232 |
+
" <td>...</td>\n",
|
233 |
+
" <td>...</td>\n",
|
234 |
+
" <td>...</td>\n",
|
235 |
+
" <td>...</td>\n",
|
236 |
+
" <td>...</td>\n",
|
237 |
+
" <td>...</td>\n",
|
238 |
+
" <td>...</td>\n",
|
239 |
+
" </tr>\n",
|
240 |
+
" <tr>\n",
|
241 |
+
" <th>504603</th>\n",
|
242 |
+
" <td>845167</td>\n",
|
243 |
+
" <td>296</td>\n",
|
244 |
+
" <td>Ottawa, IL</td>\n",
|
245 |
+
" <td>msa</td>\n",
|
246 |
+
" <td>IL</td>\n",
|
247 |
+
" <td>all homes</td>\n",
|
248 |
+
" <td>2023-07-31</td>\n",
|
249 |
+
" <td>0.976219</td>\n",
|
250 |
+
" <td>NaN</td>\n",
|
251 |
+
" <td>NaN</td>\n",
|
252 |
+
" <td>0.554969</td>\n",
|
253 |
+
" <td>127574.0</td>\n",
|
254 |
+
" <td>0.491379</td>\n",
|
255 |
+
" <td>133500.0</td>\n",
|
256 |
+
" <td>0.985172</td>\n",
|
257 |
+
" <td>0.312332</td>\n",
|
258 |
+
" <td>NaN</td>\n",
|
259 |
+
" <td>0.979227</td>\n",
|
260 |
+
" <td>0.312332</td>\n",
|
261 |
+
" </tr>\n",
|
262 |
+
" <tr>\n",
|
263 |
+
" <th>504604</th>\n",
|
264 |
+
" <td>845167</td>\n",
|
265 |
+
" <td>296</td>\n",
|
266 |
+
" <td>Ottawa, IL</td>\n",
|
267 |
+
" <td>msa</td>\n",
|
268 |
+
" <td>IL</td>\n",
|
269 |
+
" <td>all homes</td>\n",
|
270 |
+
" <td>2023-08-31</td>\n",
|
271 |
+
" <td>0.971893</td>\n",
|
272 |
+
" <td>NaN</td>\n",
|
273 |
+
" <td>NaN</td>\n",
|
274 |
+
" <td>0.541090</td>\n",
|
275 |
+
" <td>125089.0</td>\n",
|
276 |
+
" <td>0.602041</td>\n",
|
277 |
+
" <td>131833.0</td>\n",
|
278 |
+
" <td>0.987383</td>\n",
|
279 |
+
" <td>0.294778</td>\n",
|
280 |
+
" <td>NaN</td>\n",
|
281 |
+
" <td>0.959261</td>\n",
|
282 |
+
" <td>0.294778</td>\n",
|
283 |
+
" </tr>\n",
|
284 |
+
" <tr>\n",
|
285 |
+
" <th>504605</th>\n",
|
286 |
+
" <td>845167</td>\n",
|
287 |
+
" <td>296</td>\n",
|
288 |
+
" <td>Ottawa, IL</td>\n",
|
289 |
+
" <td>msa</td>\n",
|
290 |
+
" <td>IL</td>\n",
|
291 |
+
" <td>all homes</td>\n",
|
292 |
+
" <td>2023-09-30</td>\n",
|
293 |
+
" <td>0.968028</td>\n",
|
294 |
+
" <td>NaN</td>\n",
|
295 |
+
" <td>NaN</td>\n",
|
296 |
+
" <td>0.531140</td>\n",
|
297 |
+
" <td>127199.0</td>\n",
|
298 |
+
" <td>0.500000</td>\n",
|
299 |
+
" <td>132333.0</td>\n",
|
300 |
+
" <td>0.991072</td>\n",
|
301 |
+
" <td>0.285128</td>\n",
|
302 |
+
" <td>NaN</td>\n",
|
303 |
+
" <td>0.965595</td>\n",
|
304 |
+
" <td>0.285128</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <th>504606</th>\n",
|
308 |
+
" <td>845167</td>\n",
|
309 |
+
" <td>296</td>\n",
|
310 |
+
" <td>Ottawa, IL</td>\n",
|
311 |
+
" <td>msa</td>\n",
|
312 |
+
" <td>IL</td>\n",
|
313 |
+
" <td>all homes</td>\n",
|
314 |
+
" <td>2023-10-31</td>\n",
|
315 |
+
" <td>0.962485</td>\n",
|
316 |
+
" <td>NaN</td>\n",
|
317 |
+
" <td>NaN</td>\n",
|
318 |
+
" <td>0.558836</td>\n",
|
319 |
+
" <td>131159.0</td>\n",
|
320 |
+
" <td>0.574468</td>\n",
|
321 |
+
" <td>134667.0</td>\n",
|
322 |
+
" <td>0.985657</td>\n",
|
323 |
+
" <td>0.272350</td>\n",
|
324 |
+
" <td>NaN</td>\n",
|
325 |
+
" <td>0.962599</td>\n",
|
326 |
+
" <td>0.272350</td>\n",
|
327 |
+
" </tr>\n",
|
328 |
+
" <tr>\n",
|
329 |
+
" <th>504607</th>\n",
|
330 |
+
" <td>845167</td>\n",
|
331 |
+
" <td>296</td>\n",
|
332 |
+
" <td>Ottawa, IL</td>\n",
|
333 |
+
" <td>msa</td>\n",
|
334 |
+
" <td>IL</td>\n",
|
335 |
+
" <td>all homes</td>\n",
|
336 |
+
" <td>2023-11-30</td>\n",
|
337 |
+
" <td>0.967126</td>\n",
|
338 |
+
" <td>NaN</td>\n",
|
339 |
+
" <td>NaN</td>\n",
|
340 |
+
" <td>0.539226</td>\n",
|
341 |
+
" <td>129291.0</td>\n",
|
342 |
+
" <td>0.543210</td>\n",
|
343 |
+
" <td>131000.0</td>\n",
|
344 |
+
" <td>0.990886</td>\n",
|
345 |
+
" <td>0.280538</td>\n",
|
346 |
+
" <td>NaN</td>\n",
|
347 |
+
" <td>0.973184</td>\n",
|
348 |
+
" <td>0.280538</td>\n",
|
349 |
+
" </tr>\n",
|
350 |
+
" </tbody>\n",
|
351 |
+
"</table>\n",
|
352 |
+
"<p>504608 rows × 19 columns</p>\n",
|
353 |
+
"</div>"
|
354 |
+
],
|
355 |
+
"text/plain": [
|
356 |
+
" RegionID SizeRank RegionName RegionType StateName Home Type \\\n",
|
357 |
+
"0 102001 0 United States country NaN SFR \n",
|
358 |
+
"1 102001 0 United States country NaN SFR \n",
|
359 |
+
"2 102001 0 United States country NaN SFR \n",
|
360 |
+
"3 102001 0 United States country NaN SFR \n",
|
361 |
+
"4 102001 0 United States country NaN SFR \n",
|
362 |
+
"... ... ... ... ... ... ... \n",
|
363 |
+
"504603 845167 296 Ottawa, IL msa IL all homes \n",
|
364 |
+
"504604 845167 296 Ottawa, IL msa IL all homes \n",
|
365 |
+
"504605 845167 296 Ottawa, IL msa IL all homes \n",
|
366 |
+
"504606 845167 296 Ottawa, IL msa IL all homes \n",
|
367 |
+
"504607 845167 296 Ottawa, IL msa IL all homes \n",
|
368 |
+
"\n",
|
369 |
+
" Date Mean Sale to List Ratio (Smoothed) \\\n",
|
370 |
+
"0 2008-02-02 NaN \n",
|
371 |
+
"1 2008-02-09 NaN \n",
|
372 |
+
"2 2008-02-16 NaN \n",
|
373 |
+
"3 2008-02-23 NaN \n",
|
374 |
+
"4 2008-02-29 NaN \n",
|
375 |
+
"... ... ... \n",
|
376 |
+
"504603 2023-07-31 0.976219 \n",
|
377 |
+
"504604 2023-08-31 0.971893 \n",
|
378 |
+
"504605 2023-09-30 0.968028 \n",
|
379 |
+
"504606 2023-10-31 0.962485 \n",
|
380 |
+
"504607 2023-11-30 0.967126 \n",
|
381 |
+
"\n",
|
382 |
+
" Median Sale to List Ratio Median Sale Price \\\n",
|
383 |
+
"0 NaN 172000.0 \n",
|
384 |
+
"1 NaN 165400.0 \n",
|
385 |
+
"2 NaN 168000.0 \n",
|
386 |
+
"3 NaN 165000.0 \n",
|
387 |
+
"4 NaN NaN \n",
|
388 |
+
"... ... ... \n",
|
389 |
+
"504603 NaN NaN \n",
|
390 |
+
"504604 NaN NaN \n",
|
391 |
+
"504605 NaN NaN \n",
|
392 |
+
"504606 NaN NaN \n",
|
393 |
+
"504607 NaN NaN \n",
|
394 |
+
"\n",
|
395 |
+
" % Sold Below List (Smoothed) \\\n",
|
396 |
+
"0 NaN \n",
|
397 |
+
"1 NaN \n",
|
398 |
+
"2 NaN \n",
|
399 |
+
"3 NaN \n",
|
400 |
+
"4 NaN \n",
|
401 |
+
"... ... \n",
|
402 |
+
"504603 0.554969 \n",
|
403 |
+
"504604 0.541090 \n",
|
404 |
+
"504605 0.531140 \n",
|
405 |
+
"504606 0.558836 \n",
|
406 |
+
"504607 0.539226 \n",
|
407 |
+
"\n",
|
408 |
+
" Median Sale Price (Smoothed) (Seasonally Adjusted) % Sold Below List \\\n",
|
409 |
+
"0 NaN NaN \n",
|
410 |
+
"1 NaN NaN \n",
|
411 |
+
"2 NaN NaN \n",
|
412 |
+
"3 NaN NaN \n",
|
413 |
+
"4 NaN NaN \n",
|
414 |
+
"... ... ... \n",
|
415 |
+
"504603 127574.0 0.491379 \n",
|
416 |
+
"504604 125089.0 0.602041 \n",
|
417 |
+
"504605 127199.0 0.500000 \n",
|
418 |
+
"504606 131159.0 0.574468 \n",
|
419 |
+
"504607 129291.0 0.543210 \n",
|
420 |
+
"\n",
|
421 |
+
" Median Sale Price (Smoothed) Median Sale to List Ratio (Smoothed) \\\n",
|
422 |
+
"0 NaN NaN \n",
|
423 |
+
"1 NaN NaN \n",
|
424 |
+
"2 NaN NaN \n",
|
425 |
+
"3 167600.0 NaN \n",
|
426 |
+
"4 NaN NaN \n",
|
427 |
+
"... ... ... \n",
|
428 |
+
"504603 133500.0 0.985172 \n",
|
429 |
+
"504604 131833.0 0.987383 \n",
|
430 |
+
"504605 132333.0 0.991072 \n",
|
431 |
+
"504606 134667.0 0.985657 \n",
|
432 |
+
"504607 131000.0 0.990886 \n",
|
433 |
+
"\n",
|
434 |
+
" % Sold Above List Nowcast Mean Sale to List Ratio \\\n",
|
435 |
+
"0 NaN NaN NaN \n",
|
436 |
+
"1 NaN NaN NaN \n",
|
437 |
+
"2 NaN NaN NaN \n",
|
438 |
+
"3 NaN NaN NaN \n",
|
439 |
+
"4 NaN NaN NaN \n",
|
440 |
+
"... ... ... ... \n",
|
441 |
+
"504603 0.312332 NaN 0.979227 \n",
|
442 |
+
"504604 0.294778 NaN 0.959261 \n",
|
443 |
+
"504605 0.285128 NaN 0.965595 \n",
|
444 |
+
"504606 0.272350 NaN 0.962599 \n",
|
445 |
+
"504607 0.280538 NaN 0.973184 \n",
|
446 |
+
"\n",
|
447 |
+
" % Sold Above List (Smoothed) \n",
|
448 |
+
"0 NaN \n",
|
449 |
+
"1 NaN \n",
|
450 |
+
"2 NaN \n",
|
451 |
+
"3 NaN \n",
|
452 |
+
"4 NaN \n",
|
453 |
+
"... ... \n",
|
454 |
+
"504603 0.312332 \n",
|
455 |
+
"504604 0.294778 \n",
|
456 |
+
"504605 0.285128 \n",
|
457 |
+
"504606 0.272350 \n",
|
458 |
+
"504607 0.280538 \n",
|
459 |
+
"\n",
|
460 |
+
"[504608 rows x 19 columns]"
|
461 |
+
]
|
462 |
+
},
|
463 |
+
"execution_count": 5,
|
464 |
+
"metadata": {},
|
465 |
+
"output_type": "execute_result"
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"source": [
|
469 |
+
"# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
|
470 |
+
"\n",
|
471 |
+
"exclude_columns = [\n",
|
472 |
+
" \"RegionID\",\n",
|
473 |
+
" \"SizeRank\",\n",
|
474 |
+
" \"RegionName\",\n",
|
475 |
+
" \"RegionType\",\n",
|
476 |
+
" \"StateName\",\n",
|
477 |
+
" \"Home Type\",\n",
|
478 |
+
"]\n",
|
479 |
+
"\n",
|
480 |
+
"data_frames = []\n",
|
481 |
+
"\n",
|
482 |
+
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
483 |
+
" if filename.endswith(\".csv\"):\n",
|
484 |
+
" print(\"processing \" + filename)\n",
|
485 |
+
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
486 |
+
"\n",
|
487 |
+
" # ignore monthly data for now since it is redundant\n",
|
488 |
+
" if \"monthly\" in filename:\n",
|
489 |
+
" continue\n",
|
490 |
+
"\n",
|
491 |
+
" if \"_sfrcondo_\" in filename:\n",
|
492 |
+
" cur_df[\"Home Type\"] = \"all homes\"\n",
|
493 |
+
" elif \"_sfr_\" in filename:\n",
|
494 |
+
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
495 |
+
"\n",
|
496 |
+
" # Identify columns to pivot\n",
|
497 |
+
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
498 |
+
"\n",
|
499 |
+
" smoothed = \"_sm_\" in filename\n",
|
500 |
+
" seasonally_adjusted = \"_sa_\" in filename\n",
|
501 |
+
"\n",
|
502 |
+
" if \"_median_sale_to_list_\" in filename:\n",
|
503 |
+
" col_name = \"Median Sale to List Ratio\"\n",
|
504 |
+
" if smoothed:\n",
|
505 |
+
" col_name += \" (Smoothed)\"\n",
|
506 |
+
" if seasonally_adjusted:\n",
|
507 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
508 |
+
"\n",
|
509 |
+
" cur_df = pd.melt(\n",
|
510 |
+
" cur_df,\n",
|
511 |
+
" id_vars=exclude_columns,\n",
|
512 |
+
" value_vars=columns_to_pivot,\n",
|
513 |
+
" var_name=\"Date\",\n",
|
514 |
+
" value_name=col_name,\n",
|
515 |
+
" )\n",
|
516 |
+
"\n",
|
517 |
+
" elif \"_mean_sale_to_list_\" in filename:\n",
|
518 |
+
" col_name = \"Mean Sale to List Ratio\"\n",
|
519 |
+
" if smoothed:\n",
|
520 |
+
" col_name += \" (Smoothed)\"\n",
|
521 |
+
" if seasonally_adjusted:\n",
|
522 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
523 |
+
"\n",
|
524 |
+
" cur_df = pd.melt(\n",
|
525 |
+
" cur_df,\n",
|
526 |
+
" id_vars=exclude_columns,\n",
|
527 |
+
" value_vars=columns_to_pivot,\n",
|
528 |
+
" var_name=\"Date\",\n",
|
529 |
+
" value_name=col_name,\n",
|
530 |
+
" )\n",
|
531 |
+
"\n",
|
532 |
+
" elif \"_median_sale_price_\" in filename:\n",
|
533 |
+
" col_name = \"Median Sale Price\"\n",
|
534 |
+
" if smoothed:\n",
|
535 |
+
" col_name += \" (Smoothed)\"\n",
|
536 |
+
" if seasonally_adjusted:\n",
|
537 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
538 |
+
"\n",
|
539 |
+
" cur_df = pd.melt(\n",
|
540 |
+
" cur_df,\n",
|
541 |
+
" id_vars=exclude_columns,\n",
|
542 |
+
" value_vars=columns_to_pivot,\n",
|
543 |
+
" var_name=\"Date\",\n",
|
544 |
+
" value_name=col_name,\n",
|
545 |
+
" )\n",
|
546 |
+
"\n",
|
547 |
+
" elif \"_pct_sold_above_list_\" in filename:\n",
|
548 |
+
" col_name = \"% Sold Above List\"\n",
|
549 |
+
" if smoothed:\n",
|
550 |
+
" col_name += \" (Smoothed)\"\n",
|
551 |
+
" if seasonally_adjusted:\n",
|
552 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
553 |
+
"\n",
|
554 |
+
" cur_df = pd.melt(\n",
|
555 |
+
" cur_df,\n",
|
556 |
+
" id_vars=exclude_columns,\n",
|
557 |
+
" value_vars=columns_to_pivot,\n",
|
558 |
+
" var_name=\"Date\",\n",
|
559 |
+
" value_name=col_name,\n",
|
560 |
+
" )\n",
|
561 |
+
"\n",
|
562 |
+
" elif \"_pct_sold_below_list_\" in filename:\n",
|
563 |
+
" col_name = \"% Sold Below List\"\n",
|
564 |
+
" if smoothed:\n",
|
565 |
+
" col_name += \" (Smoothed)\"\n",
|
566 |
+
" if seasonally_adjusted:\n",
|
567 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
568 |
+
"\n",
|
569 |
+
" cur_df = pd.melt(\n",
|
570 |
+
" cur_df,\n",
|
571 |
+
" id_vars=exclude_columns,\n",
|
572 |
+
" value_vars=columns_to_pivot,\n",
|
573 |
+
" var_name=\"Date\",\n",
|
574 |
+
" value_name=col_name,\n",
|
575 |
+
" )\n",
|
576 |
+
"\n",
|
577 |
+
" elif \"_sales_count_now_\" in filename:\n",
|
578 |
+
" col_name = \"Nowcast\"\n",
|
579 |
+
" if smoothed:\n",
|
580 |
+
" col_name += \" (Smoothed)\"\n",
|
581 |
+
" if seasonally_adjusted:\n",
|
582 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
583 |
+
"\n",
|
584 |
+
" cur_df = pd.melt(\n",
|
585 |
+
" cur_df,\n",
|
586 |
+
" id_vars=exclude_columns,\n",
|
587 |
+
" value_vars=columns_to_pivot,\n",
|
588 |
+
" var_name=\"Date\",\n",
|
589 |
+
" value_name=col_name,\n",
|
590 |
+
" )\n",
|
591 |
+
"\n",
|
592 |
+
" data_frames.append(cur_df)\n",
|
593 |
+
"\n",
|
594 |
+
"\n",
|
595 |
+
"def get_combined_df(data_frames):\n",
|
596 |
+
" combined_df = None\n",
|
597 |
+
" if len(data_frames) > 1:\n",
|
598 |
+
" # iterate over dataframes and merge or concat\n",
|
599 |
+
" combined_df = data_frames[0]\n",
|
600 |
+
" for i in range(1, len(data_frames)):\n",
|
601 |
+
" cur_df = data_frames[i]\n",
|
602 |
+
" combined_df = pd.merge(\n",
|
603 |
+
" combined_df,\n",
|
604 |
+
" cur_df,\n",
|
605 |
+
" on=[\n",
|
606 |
+
" \"RegionID\",\n",
|
607 |
+
" \"SizeRank\",\n",
|
608 |
+
" \"RegionName\",\n",
|
609 |
+
" \"RegionType\",\n",
|
610 |
+
" \"StateName\",\n",
|
611 |
+
" \"Home Type\",\n",
|
612 |
+
" \"Date\",\n",
|
613 |
+
" ],\n",
|
614 |
+
" how=\"outer\",\n",
|
615 |
+
" suffixes=(\"\", \"_\" + str(i)),\n",
|
616 |
+
" )\n",
|
617 |
+
" elif len(data_frames) == 1:\n",
|
618 |
+
" combined_df = data_frames[0]\n",
|
619 |
+
"\n",
|
620 |
+
" return combined_df\n",
|
621 |
+
"\n",
|
622 |
+
"\n",
|
623 |
+
"combined_df = get_combined_df(data_frames)\n",
|
624 |
+
"# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
|
625 |
+
"columns_to_coalesce = [\n",
|
626 |
+
" \"Mean Sale to List Ratio (Smoothed)\"\n",
|
627 |
+
" \"Median Sale to List Ratio\"\n",
|
628 |
+
" \"Median Sale Price\"\n",
|
629 |
+
" \"% Sold Below List (Smoothed)\",\n",
|
630 |
+
" \"Median Sale Price (Smoothed) (Seasonally Adjusted)\",\n",
|
631 |
+
" \"% Sold Below List\",\n",
|
632 |
+
" \"Median Sale Price (Smoothed)\",\n",
|
633 |
+
" \"Median Sale to List Ratio (Smoothed)\",\n",
|
634 |
+
" \"% Sold Above List\",\n",
|
635 |
+
" \"Nowcast\",\n",
|
636 |
+
" \"Mean Sale to List Ratio\",\n",
|
637 |
+
" \"% Sold Above List (Smoothed)\",\n",
|
638 |
+
"]\n",
|
639 |
+
"\n",
|
640 |
+
"for index, row in combined_df.iterrows():\n",
|
641 |
+
" for col in combined_df.columns:\n",
|
642 |
+
" for column_to_coalesce in columns_to_coalesce:\n",
|
643 |
+
" if column_to_coalesce in col and \"_\" in col:\n",
|
644 |
+
" if not pd.isna(row[col]):\n",
|
645 |
+
" combined_df.at[index, column_to_coalesce] = row[col]\n",
|
646 |
+
"\n",
|
647 |
+
"# remove columns with underscores\n",
|
648 |
+
"combined_df = combined_df[[col for col in combined_df.columns if \"_\" not in col]]\n",
|
649 |
+
"\n",
|
650 |
+
"combined_df"
|
651 |
+
]
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"cell_type": "code",
|
655 |
+
"execution_count": 6,
|
656 |
+
"metadata": {},
|
657 |
+
"outputs": [
|
658 |
+
{
|
659 |
+
"data": {
|
660 |
+
"text/html": [
|
661 |
+
"<div>\n",
|
662 |
+
"<style scoped>\n",
|
663 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
664 |
+
" vertical-align: middle;\n",
|
665 |
+
" }\n",
|
666 |
+
"\n",
|
667 |
+
" .dataframe tbody tr th {\n",
|
668 |
+
" vertical-align: top;\n",
|
669 |
+
" }\n",
|
670 |
+
"\n",
|
671 |
+
" .dataframe thead th {\n",
|
672 |
+
" text-align: right;\n",
|
673 |
+
" }\n",
|
674 |
+
"</style>\n",
|
675 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
676 |
+
" <thead>\n",
|
677 |
+
" <tr style=\"text-align: right;\">\n",
|
678 |
+
" <th></th>\n",
|
679 |
+
" <th>Region ID</th>\n",
|
680 |
+
" <th>Size Rank</th>\n",
|
681 |
+
" <th>Region</th>\n",
|
682 |
+
" <th>Region Type</th>\n",
|
683 |
+
" <th>State</th>\n",
|
684 |
+
" <th>Home Type</th>\n",
|
685 |
+
" <th>Date</th>\n",
|
686 |
+
" <th>Mean Sale to List Ratio (Smoothed)</th>\n",
|
687 |
+
" <th>Median Sale to List Ratio</th>\n",
|
688 |
+
" <th>Median Sale Price</th>\n",
|
689 |
+
" <th>% Sold Below List (Smoothed)</th>\n",
|
690 |
+
" <th>Median Sale Price (Smoothed) (Seasonally Adjusted)</th>\n",
|
691 |
+
" <th>% Sold Below List</th>\n",
|
692 |
+
" <th>Median Sale Price (Smoothed)</th>\n",
|
693 |
+
" <th>Median Sale to List Ratio (Smoothed)</th>\n",
|
694 |
+
" <th>% Sold Above List</th>\n",
|
695 |
+
" <th>Nowcast</th>\n",
|
696 |
+
" <th>Mean Sale to List Ratio</th>\n",
|
697 |
+
" <th>% Sold Above List (Smoothed)</th>\n",
|
698 |
+
" </tr>\n",
|
699 |
+
" </thead>\n",
|
700 |
+
" <tbody>\n",
|
701 |
+
" <tr>\n",
|
702 |
+
" <th>0</th>\n",
|
703 |
+
" <td>102001</td>\n",
|
704 |
+
" <td>0</td>\n",
|
705 |
+
" <td>United States</td>\n",
|
706 |
+
" <td>country</td>\n",
|
707 |
+
" <td>NaN</td>\n",
|
708 |
+
" <td>SFR</td>\n",
|
709 |
+
" <td>2008-02-02</td>\n",
|
710 |
+
" <td>NaN</td>\n",
|
711 |
+
" <td>NaN</td>\n",
|
712 |
+
" <td>172000.0</td>\n",
|
713 |
+
" <td>NaN</td>\n",
|
714 |
+
" <td>NaN</td>\n",
|
715 |
+
" <td>NaN</td>\n",
|
716 |
+
" <td>NaN</td>\n",
|
717 |
+
" <td>NaN</td>\n",
|
718 |
+
" <td>NaN</td>\n",
|
719 |
+
" <td>NaN</td>\n",
|
720 |
+
" <td>NaN</td>\n",
|
721 |
+
" <td>NaN</td>\n",
|
722 |
+
" </tr>\n",
|
723 |
+
" <tr>\n",
|
724 |
+
" <th>1</th>\n",
|
725 |
+
" <td>102001</td>\n",
|
726 |
+
" <td>0</td>\n",
|
727 |
+
" <td>United States</td>\n",
|
728 |
+
" <td>country</td>\n",
|
729 |
+
" <td>NaN</td>\n",
|
730 |
+
" <td>SFR</td>\n",
|
731 |
+
" <td>2008-02-09</td>\n",
|
732 |
+
" <td>NaN</td>\n",
|
733 |
+
" <td>NaN</td>\n",
|
734 |
+
" <td>165400.0</td>\n",
|
735 |
+
" <td>NaN</td>\n",
|
736 |
+
" <td>NaN</td>\n",
|
737 |
+
" <td>NaN</td>\n",
|
738 |
+
" <td>NaN</td>\n",
|
739 |
+
" <td>NaN</td>\n",
|
740 |
+
" <td>NaN</td>\n",
|
741 |
+
" <td>NaN</td>\n",
|
742 |
+
" <td>NaN</td>\n",
|
743 |
+
" <td>NaN</td>\n",
|
744 |
+
" </tr>\n",
|
745 |
+
" <tr>\n",
|
746 |
+
" <th>2</th>\n",
|
747 |
+
" <td>102001</td>\n",
|
748 |
+
" <td>0</td>\n",
|
749 |
+
" <td>United States</td>\n",
|
750 |
+
" <td>country</td>\n",
|
751 |
+
" <td>NaN</td>\n",
|
752 |
+
" <td>SFR</td>\n",
|
753 |
+
" <td>2008-02-16</td>\n",
|
754 |
+
" <td>NaN</td>\n",
|
755 |
+
" <td>NaN</td>\n",
|
756 |
+
" <td>168000.0</td>\n",
|
757 |
+
" <td>NaN</td>\n",
|
758 |
+
" <td>NaN</td>\n",
|
759 |
+
" <td>NaN</td>\n",
|
760 |
+
" <td>NaN</td>\n",
|
761 |
+
" <td>NaN</td>\n",
|
762 |
+
" <td>NaN</td>\n",
|
763 |
+
" <td>NaN</td>\n",
|
764 |
+
" <td>NaN</td>\n",
|
765 |
+
" <td>NaN</td>\n",
|
766 |
+
" </tr>\n",
|
767 |
+
" <tr>\n",
|
768 |
+
" <th>3</th>\n",
|
769 |
+
" <td>102001</td>\n",
|
770 |
+
" <td>0</td>\n",
|
771 |
+
" <td>United States</td>\n",
|
772 |
+
" <td>country</td>\n",
|
773 |
+
" <td>NaN</td>\n",
|
774 |
+
" <td>SFR</td>\n",
|
775 |
+
" <td>2008-02-23</td>\n",
|
776 |
+
" <td>NaN</td>\n",
|
777 |
+
" <td>NaN</td>\n",
|
778 |
+
" <td>165000.0</td>\n",
|
779 |
+
" <td>NaN</td>\n",
|
780 |
+
" <td>NaN</td>\n",
|
781 |
+
" <td>NaN</td>\n",
|
782 |
+
" <td>167600.0</td>\n",
|
783 |
+
" <td>NaN</td>\n",
|
784 |
+
" <td>NaN</td>\n",
|
785 |
+
" <td>NaN</td>\n",
|
786 |
+
" <td>NaN</td>\n",
|
787 |
+
" <td>NaN</td>\n",
|
788 |
+
" </tr>\n",
|
789 |
+
" <tr>\n",
|
790 |
+
" <th>4</th>\n",
|
791 |
+
" <td>102001</td>\n",
|
792 |
+
" <td>0</td>\n",
|
793 |
+
" <td>United States</td>\n",
|
794 |
+
" <td>country</td>\n",
|
795 |
+
" <td>NaN</td>\n",
|
796 |
+
" <td>SFR</td>\n",
|
797 |
+
" <td>2008-02-29</td>\n",
|
798 |
+
" <td>NaN</td>\n",
|
799 |
+
" <td>NaN</td>\n",
|
800 |
+
" <td>NaN</td>\n",
|
801 |
+
" <td>NaN</td>\n",
|
802 |
+
" <td>NaN</td>\n",
|
803 |
+
" <td>NaN</td>\n",
|
804 |
+
" <td>NaN</td>\n",
|
805 |
+
" <td>NaN</td>\n",
|
806 |
+
" <td>NaN</td>\n",
|
807 |
+
" <td>NaN</td>\n",
|
808 |
+
" <td>NaN</td>\n",
|
809 |
+
" <td>NaN</td>\n",
|
810 |
+
" </tr>\n",
|
811 |
+
" <tr>\n",
|
812 |
+
" <th>...</th>\n",
|
813 |
+
" <td>...</td>\n",
|
814 |
+
" <td>...</td>\n",
|
815 |
+
" <td>...</td>\n",
|
816 |
+
" <td>...</td>\n",
|
817 |
+
" <td>...</td>\n",
|
818 |
+
" <td>...</td>\n",
|
819 |
+
" <td>...</td>\n",
|
820 |
+
" <td>...</td>\n",
|
821 |
+
" <td>...</td>\n",
|
822 |
+
" <td>...</td>\n",
|
823 |
+
" <td>...</td>\n",
|
824 |
+
" <td>...</td>\n",
|
825 |
+
" <td>...</td>\n",
|
826 |
+
" <td>...</td>\n",
|
827 |
+
" <td>...</td>\n",
|
828 |
+
" <td>...</td>\n",
|
829 |
+
" <td>...</td>\n",
|
830 |
+
" <td>...</td>\n",
|
831 |
+
" <td>...</td>\n",
|
832 |
+
" </tr>\n",
|
833 |
+
" <tr>\n",
|
834 |
+
" <th>504603</th>\n",
|
835 |
+
" <td>845167</td>\n",
|
836 |
+
" <td>296</td>\n",
|
837 |
+
" <td>Ottawa, IL</td>\n",
|
838 |
+
" <td>msa</td>\n",
|
839 |
+
" <td>IL</td>\n",
|
840 |
+
" <td>all homes</td>\n",
|
841 |
+
" <td>2023-07-31</td>\n",
|
842 |
+
" <td>0.976219</td>\n",
|
843 |
+
" <td>NaN</td>\n",
|
844 |
+
" <td>NaN</td>\n",
|
845 |
+
" <td>0.554969</td>\n",
|
846 |
+
" <td>127574.0</td>\n",
|
847 |
+
" <td>0.491379</td>\n",
|
848 |
+
" <td>133500.0</td>\n",
|
849 |
+
" <td>0.985172</td>\n",
|
850 |
+
" <td>0.312332</td>\n",
|
851 |
+
" <td>NaN</td>\n",
|
852 |
+
" <td>0.979227</td>\n",
|
853 |
+
" <td>0.312332</td>\n",
|
854 |
+
" </tr>\n",
|
855 |
+
" <tr>\n",
|
856 |
+
" <th>504604</th>\n",
|
857 |
+
" <td>845167</td>\n",
|
858 |
+
" <td>296</td>\n",
|
859 |
+
" <td>Ottawa, IL</td>\n",
|
860 |
+
" <td>msa</td>\n",
|
861 |
+
" <td>IL</td>\n",
|
862 |
+
" <td>all homes</td>\n",
|
863 |
+
" <td>2023-08-31</td>\n",
|
864 |
+
" <td>0.971893</td>\n",
|
865 |
+
" <td>NaN</td>\n",
|
866 |
+
" <td>NaN</td>\n",
|
867 |
+
" <td>0.541090</td>\n",
|
868 |
+
" <td>125089.0</td>\n",
|
869 |
+
" <td>0.602041</td>\n",
|
870 |
+
" <td>131833.0</td>\n",
|
871 |
+
" <td>0.987383</td>\n",
|
872 |
+
" <td>0.294778</td>\n",
|
873 |
+
" <td>NaN</td>\n",
|
874 |
+
" <td>0.959261</td>\n",
|
875 |
+
" <td>0.294778</td>\n",
|
876 |
+
" </tr>\n",
|
877 |
+
" <tr>\n",
|
878 |
+
" <th>504605</th>\n",
|
879 |
+
" <td>845167</td>\n",
|
880 |
+
" <td>296</td>\n",
|
881 |
+
" <td>Ottawa, IL</td>\n",
|
882 |
+
" <td>msa</td>\n",
|
883 |
+
" <td>IL</td>\n",
|
884 |
+
" <td>all homes</td>\n",
|
885 |
+
" <td>2023-09-30</td>\n",
|
886 |
+
" <td>0.968028</td>\n",
|
887 |
+
" <td>NaN</td>\n",
|
888 |
+
" <td>NaN</td>\n",
|
889 |
+
" <td>0.531140</td>\n",
|
890 |
+
" <td>127199.0</td>\n",
|
891 |
+
" <td>0.500000</td>\n",
|
892 |
+
" <td>132333.0</td>\n",
|
893 |
+
" <td>0.991072</td>\n",
|
894 |
+
" <td>0.285128</td>\n",
|
895 |
+
" <td>NaN</td>\n",
|
896 |
+
" <td>0.965595</td>\n",
|
897 |
+
" <td>0.285128</td>\n",
|
898 |
+
" </tr>\n",
|
899 |
+
" <tr>\n",
|
900 |
+
" <th>504606</th>\n",
|
901 |
+
" <td>845167</td>\n",
|
902 |
+
" <td>296</td>\n",
|
903 |
+
" <td>Ottawa, IL</td>\n",
|
904 |
+
" <td>msa</td>\n",
|
905 |
+
" <td>IL</td>\n",
|
906 |
+
" <td>all homes</td>\n",
|
907 |
+
" <td>2023-10-31</td>\n",
|
908 |
+
" <td>0.962485</td>\n",
|
909 |
+
" <td>NaN</td>\n",
|
910 |
+
" <td>NaN</td>\n",
|
911 |
+
" <td>0.558836</td>\n",
|
912 |
+
" <td>131159.0</td>\n",
|
913 |
+
" <td>0.574468</td>\n",
|
914 |
+
" <td>134667.0</td>\n",
|
915 |
+
" <td>0.985657</td>\n",
|
916 |
+
" <td>0.272350</td>\n",
|
917 |
+
" <td>NaN</td>\n",
|
918 |
+
" <td>0.962599</td>\n",
|
919 |
+
" <td>0.272350</td>\n",
|
920 |
+
" </tr>\n",
|
921 |
+
" <tr>\n",
|
922 |
+
" <th>504607</th>\n",
|
923 |
+
" <td>845167</td>\n",
|
924 |
+
" <td>296</td>\n",
|
925 |
+
" <td>Ottawa, IL</td>\n",
|
926 |
+
" <td>msa</td>\n",
|
927 |
+
" <td>IL</td>\n",
|
928 |
+
" <td>all homes</td>\n",
|
929 |
+
" <td>2023-11-30</td>\n",
|
930 |
+
" <td>0.967126</td>\n",
|
931 |
+
" <td>NaN</td>\n",
|
932 |
+
" <td>NaN</td>\n",
|
933 |
+
" <td>0.539226</td>\n",
|
934 |
+
" <td>129291.0</td>\n",
|
935 |
+
" <td>0.543210</td>\n",
|
936 |
+
" <td>131000.0</td>\n",
|
937 |
+
" <td>0.990886</td>\n",
|
938 |
+
" <td>0.280538</td>\n",
|
939 |
+
" <td>NaN</td>\n",
|
940 |
+
" <td>0.973184</td>\n",
|
941 |
+
" <td>0.280538</td>\n",
|
942 |
+
" </tr>\n",
|
943 |
+
" </tbody>\n",
|
944 |
+
"</table>\n",
|
945 |
+
"<p>504608 rows × 19 columns</p>\n",
|
946 |
+
"</div>"
|
947 |
+
],
|
948 |
+
"text/plain": [
|
949 |
+
" Region ID Size Rank Region Region Type State Home Type \\\n",
|
950 |
+
"0 102001 0 United States country NaN SFR \n",
|
951 |
+
"1 102001 0 United States country NaN SFR \n",
|
952 |
+
"2 102001 0 United States country NaN SFR \n",
|
953 |
+
"3 102001 0 United States country NaN SFR \n",
|
954 |
+
"4 102001 0 United States country NaN SFR \n",
|
955 |
+
"... ... ... ... ... ... ... \n",
|
956 |
+
"504603 845167 296 Ottawa, IL msa IL all homes \n",
|
957 |
+
"504604 845167 296 Ottawa, IL msa IL all homes \n",
|
958 |
+
"504605 845167 296 Ottawa, IL msa IL all homes \n",
|
959 |
+
"504606 845167 296 Ottawa, IL msa IL all homes \n",
|
960 |
+
"504607 845167 296 Ottawa, IL msa IL all homes \n",
|
961 |
+
"\n",
|
962 |
+
" Date Mean Sale to List Ratio (Smoothed) \\\n",
|
963 |
+
"0 2008-02-02 NaN \n",
|
964 |
+
"1 2008-02-09 NaN \n",
|
965 |
+
"2 2008-02-16 NaN \n",
|
966 |
+
"3 2008-02-23 NaN \n",
|
967 |
+
"4 2008-02-29 NaN \n",
|
968 |
+
"... ... ... \n",
|
969 |
+
"504603 2023-07-31 0.976219 \n",
|
970 |
+
"504604 2023-08-31 0.971893 \n",
|
971 |
+
"504605 2023-09-30 0.968028 \n",
|
972 |
+
"504606 2023-10-31 0.962485 \n",
|
973 |
+
"504607 2023-11-30 0.967126 \n",
|
974 |
+
"\n",
|
975 |
+
" Median Sale to List Ratio Median Sale Price \\\n",
|
976 |
+
"0 NaN 172000.0 \n",
|
977 |
+
"1 NaN 165400.0 \n",
|
978 |
+
"2 NaN 168000.0 \n",
|
979 |
+
"3 NaN 165000.0 \n",
|
980 |
+
"4 NaN NaN \n",
|
981 |
+
"... ... ... \n",
|
982 |
+
"504603 NaN NaN \n",
|
983 |
+
"504604 NaN NaN \n",
|
984 |
+
"504605 NaN NaN \n",
|
985 |
+
"504606 NaN NaN \n",
|
986 |
+
"504607 NaN NaN \n",
|
987 |
+
"\n",
|
988 |
+
" % Sold Below List (Smoothed) \\\n",
|
989 |
+
"0 NaN \n",
|
990 |
+
"1 NaN \n",
|
991 |
+
"2 NaN \n",
|
992 |
+
"3 NaN \n",
|
993 |
+
"4 NaN \n",
|
994 |
+
"... ... \n",
|
995 |
+
"504603 0.554969 \n",
|
996 |
+
"504604 0.541090 \n",
|
997 |
+
"504605 0.531140 \n",
|
998 |
+
"504606 0.558836 \n",
|
999 |
+
"504607 0.539226 \n",
|
1000 |
+
"\n",
|
1001 |
+
" Median Sale Price (Smoothed) (Seasonally Adjusted) % Sold Below List \\\n",
|
1002 |
+
"0 NaN NaN \n",
|
1003 |
+
"1 NaN NaN \n",
|
1004 |
+
"2 NaN NaN \n",
|
1005 |
+
"3 NaN NaN \n",
|
1006 |
+
"4 NaN NaN \n",
|
1007 |
+
"... ... ... \n",
|
1008 |
+
"504603 127574.0 0.491379 \n",
|
1009 |
+
"504604 125089.0 0.602041 \n",
|
1010 |
+
"504605 127199.0 0.500000 \n",
|
1011 |
+
"504606 131159.0 0.574468 \n",
|
1012 |
+
"504607 129291.0 0.543210 \n",
|
1013 |
+
"\n",
|
1014 |
+
" Median Sale Price (Smoothed) Median Sale to List Ratio (Smoothed) \\\n",
|
1015 |
+
"0 NaN NaN \n",
|
1016 |
+
"1 NaN NaN \n",
|
1017 |
+
"2 NaN NaN \n",
|
1018 |
+
"3 167600.0 NaN \n",
|
1019 |
+
"4 NaN NaN \n",
|
1020 |
+
"... ... ... \n",
|
1021 |
+
"504603 133500.0 0.985172 \n",
|
1022 |
+
"504604 131833.0 0.987383 \n",
|
1023 |
+
"504605 132333.0 0.991072 \n",
|
1024 |
+
"504606 134667.0 0.985657 \n",
|
1025 |
+
"504607 131000.0 0.990886 \n",
|
1026 |
+
"\n",
|
1027 |
+
" % Sold Above List Nowcast Mean Sale to List Ratio \\\n",
|
1028 |
+
"0 NaN NaN NaN \n",
|
1029 |
+
"1 NaN NaN NaN \n",
|
1030 |
+
"2 NaN NaN NaN \n",
|
1031 |
+
"3 NaN NaN NaN \n",
|
1032 |
+
"4 NaN NaN NaN \n",
|
1033 |
+
"... ... ... ... \n",
|
1034 |
+
"504603 0.312332 NaN 0.979227 \n",
|
1035 |
+
"504604 0.294778 NaN 0.959261 \n",
|
1036 |
+
"504605 0.285128 NaN 0.965595 \n",
|
1037 |
+
"504606 0.272350 NaN 0.962599 \n",
|
1038 |
+
"504607 0.280538 NaN 0.973184 \n",
|
1039 |
+
"\n",
|
1040 |
+
" % Sold Above List (Smoothed) \n",
|
1041 |
+
"0 NaN \n",
|
1042 |
+
"1 NaN \n",
|
1043 |
+
"2 NaN \n",
|
1044 |
+
"3 NaN \n",
|
1045 |
+
"4 NaN \n",
|
1046 |
+
"... ... \n",
|
1047 |
+
"504603 0.312332 \n",
|
1048 |
+
"504604 0.294778 \n",
|
1049 |
+
"504605 0.285128 \n",
|
1050 |
+
"504606 0.272350 \n",
|
1051 |
+
"504607 0.280538 \n",
|
1052 |
+
"\n",
|
1053 |
+
"[504608 rows x 19 columns]"
|
1054 |
+
]
|
1055 |
+
},
|
1056 |
+
"execution_count": 6,
|
1057 |
+
"metadata": {},
|
1058 |
+
"output_type": "execute_result"
|
1059 |
+
}
|
1060 |
+
],
|
1061 |
+
"source": [
|
1062 |
+
"final_df = combined_df\n",
|
1063 |
+
"final_df = final_df.rename(\n",
|
1064 |
+
" columns={\n",
|
1065 |
+
" \"RegionID\": \"Region ID\",\n",
|
1066 |
+
" \"SizeRank\": \"Size Rank\",\n",
|
1067 |
+
" \"RegionName\": \"Region\",\n",
|
1068 |
+
" \"RegionType\": \"Region Type\",\n",
|
1069 |
+
" \"StateName\": \"State\",\n",
|
1070 |
+
" }\n",
|
1071 |
+
")\n",
|
1072 |
+
"\n",
|
1073 |
+
"final_df.sort_values(by=[\"Region ID\", \"Home Type\", \"Date\"])"
|
1074 |
+
]
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"cell_type": "code",
|
1078 |
+
"execution_count": 7,
|
1079 |
+
"metadata": {},
|
1080 |
+
"outputs": [],
|
1081 |
+
"source": [
|
1082 |
+
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
1083 |
+
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
1084 |
+
"\n",
|
1085 |
+
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
1086 |
+
]
|
1087 |
+
}
|
1088 |
+
],
|
1089 |
+
"metadata": {
|
1090 |
+
"kernelspec": {
|
1091 |
+
"display_name": "Python 3",
|
1092 |
+
"language": "python",
|
1093 |
+
"name": "python3"
|
1094 |
+
},
|
1095 |
+
"language_info": {
|
1096 |
+
"codemirror_mode": {
|
1097 |
+
"name": "ipython",
|
1098 |
+
"version": 3
|
1099 |
+
},
|
1100 |
+
"file_extension": ".py",
|
1101 |
+
"mimetype": "text/x-python",
|
1102 |
+
"name": "python",
|
1103 |
+
"nbconvert_exporter": "python",
|
1104 |
+
"pygments_lexer": "ipython3",
|
1105 |
+
"version": "3.12.2"
|
1106 |
+
}
|
1107 |
+
},
|
1108 |
+
"nbformat": 4,
|
1109 |
+
"nbformat_minor": 2
|
1110 |
+
}
|
tester.ipynb
CHANGED
@@ -2,18 +2,9 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
-
"outputs": [
|
8 |
-
{
|
9 |
-
"name": "stderr",
|
10 |
-
"output_type": "stream",
|
11 |
-
"text": [
|
12 |
-
"/Users/misikoff/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
-
]
|
15 |
-
}
|
16 |
-
],
|
17 |
"source": [
|
18 |
"# !pip install datasets\n",
|
19 |
"\n",
|
@@ -22,30 +13,55 @@
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
-
"execution_count":
|
26 |
"metadata": {},
|
27 |
"outputs": [
|
28 |
{
|
29 |
-
"name": "
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
]
|
38 |
}
|
39 |
],
|
40 |
"source": [
|
41 |
-
"configs = [\
|
42 |
-
"\n",
|
43 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
]
|
45 |
},
|
46 |
{
|
47 |
"cell_type": "code",
|
48 |
-
"execution_count":
|
49 |
"metadata": {},
|
50 |
"outputs": [
|
51 |
{
|
@@ -57,13 +73,12 @@
|
|
57 |
" 'Region Type': 'country',\n",
|
58 |
" 'State': None,\n",
|
59 |
" 'Home Type': 'SFR',\n",
|
60 |
-
" 'Date': '
|
61 |
-
" '
|
62 |
-
" '
|
63 |
-
" 'Count': 33940}"
|
64 |
]
|
65 |
},
|
66 |
-
"execution_count":
|
67 |
"metadata": {},
|
68 |
"output_type": "execute_result"
|
69 |
}
|
@@ -74,7 +89,7 @@
|
|
74 |
},
|
75 |
{
|
76 |
"cell_type": "code",
|
77 |
-
"execution_count":
|
78 |
"metadata": {},
|
79 |
"outputs": [],
|
80 |
"source": [
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 10,
|
6 |
"metadata": {},
|
7 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"source": [
|
9 |
"# !pip install datasets\n",
|
10 |
"\n",
|
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
+
"execution_count": 11,
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
19 |
{
|
20 |
+
"name": "stdout",
|
21 |
"output_type": "stream",
|
22 |
"text": [
|
23 |
+
"home_value_forecasts\n",
|
24 |
+
"new_constructions\n",
|
25 |
+
"for_sale_listings\n",
|
26 |
+
"rentals\n",
|
27 |
+
"sales\n",
|
28 |
+
"home_values\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"ename": "ValueError",
|
33 |
+
"evalue": "BuilderConfig 'home_values' not found. Available: ['home_value_forecasts', 'new_constructions', 'for_sale_listings', 'rentals', 'sales']",
|
34 |
+
"output_type": "error",
|
35 |
+
"traceback": [
|
36 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
37 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
38 |
+
"Cell \u001b[0;32mIn[11], line 12\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m config \u001b[38;5;129;01min\u001b[39;00m configs:\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(config)\n\u001b[0;32m---> 12\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
39 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2548\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2543\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 2544\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 2545\u001b[0m )\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2548\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2549\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2550\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2551\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2552\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2553\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2554\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2555\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2556\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2557\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2558\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2559\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2560\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2561\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2562\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2563\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2565\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 2566\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
|
40 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2257\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2255\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m get_dataset_builder_class(dataset_module, dataset_name\u001b[38;5;241m=\u001b[39mdataset_name)\n\u001b[1;32m 2256\u001b[0m \u001b[38;5;66;03m# Instantiate the dataset builder\u001b[39;00m\n\u001b[0;32m-> 2257\u001b[0m builder_instance: DatasetBuilder \u001b[38;5;241m=\u001b[39m \u001b[43mbuilder_cls\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2260\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2261\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2262\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2263\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mhash\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2264\u001b[0m \u001b[43m \u001b[49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2265\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2266\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbuilder_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2271\u001b[0m builder_instance\u001b[38;5;241m.\u001b[39m_use_legacy_cache_dir_if_possible(dataset_module)\n\u001b[1;32m 2273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\n",
|
41 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:371\u001b[0m, in \u001b[0;36mDatasetBuilder.__init__\u001b[0;34m(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_dir \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 370\u001b[0m config_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata_dir\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m data_dir\n\u001b[0;32m--> 371\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_builder_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[38;5;66;03m# prepare info: DatasetInfo are a standardized dataclass across all datasets\u001b[39;00m\n\u001b[1;32m 378\u001b[0m \u001b[38;5;66;03m# Prefill datasetinfo\u001b[39;00m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m info \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;66;03m# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense\u001b[39;00m\n",
|
42 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:592\u001b[0m, in \u001b[0;36mDatasetBuilder._create_builder_config\u001b[0;34m(self, config_name, custom_features, **config_kwargs)\u001b[0m\n\u001b[1;32m 590\u001b[0m builder_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mget(config_name)\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m builder_config \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mBUILDER_CONFIGS:\n\u001b[0;32m--> 592\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 593\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBuilderConfig \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconfig_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not found. Available: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 594\u001b[0m )\n\u001b[1;32m 596\u001b[0m \u001b[38;5;66;03m# if not using an existing config, then create a new config on the fly\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m builder_config:\n",
|
43 |
+
"\u001b[0;31mValueError\u001b[0m: BuilderConfig 'home_values' not found. Available: ['home_value_forecasts', 'new_constructions', 'for_sale_listings', 'rentals', 'sales']"
|
44 |
]
|
45 |
}
|
46 |
],
|
47 |
"source": [
|
48 |
+
"configs = [\n",
|
49 |
+
" \"home_value_forecasts\",\n",
|
50 |
+
" \"new_constructions\",\n",
|
51 |
+
" \"for_sale_listings\",\n",
|
52 |
+
" \"rentals\",\n",
|
53 |
+
" \"sales\",\n",
|
54 |
+
" \"home_values\",\n",
|
55 |
+
" \"days_on_market\",\n",
|
56 |
+
"]\n",
|
57 |
+
"for config in configs:\n",
|
58 |
+
" print(config)\n",
|
59 |
+
" dataset = load_dataset(\"misikoff/zillow\", config, trust_remote_code=True)"
|
60 |
]
|
61 |
},
|
62 |
{
|
63 |
"cell_type": "code",
|
64 |
+
"execution_count": 7,
|
65 |
"metadata": {},
|
66 |
"outputs": [
|
67 |
{
|
|
|
73 |
" 'Region Type': 'country',\n",
|
74 |
" 'State': None,\n",
|
75 |
" 'Home Type': 'SFR',\n",
|
76 |
+
" 'Date': '2015-01-31',\n",
|
77 |
+
" 'Rent (Smoothed)': 1251.1195068359375,\n",
|
78 |
+
" 'Rent (Smoothed) (Seasonally Adjusted)': 1253.3807373046875}"
|
|
|
79 |
]
|
80 |
},
|
81 |
+
"execution_count": 7,
|
82 |
"metadata": {},
|
83 |
"output_type": "execute_result"
|
84 |
}
|
|
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
+
"execution_count": 8,
|
93 |
"metadata": {},
|
94 |
"outputs": [],
|
95 |
"source": [
|
zillow.py
CHANGED
@@ -15,7 +15,6 @@
|
|
15 |
"""TODO: Add a description here."""
|
16 |
|
17 |
|
18 |
-
# import csv
|
19 |
import json
|
20 |
import os
|
21 |
|
@@ -44,14 +43,6 @@ _HOMEPAGE = ""
|
|
44 |
# TODO: Add the licence for the dataset here if you can find it
|
45 |
_LICENSE = ""
|
46 |
|
47 |
-
# TODO: Add link to the official dataset URLs here
|
48 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
-
# _URLS = {
|
51 |
-
# "home_value_forecasts": "https://files.zillowstatic.com/research/public_csvs/zhvf_growth/Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv",
|
52 |
-
# # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
53 |
-
# }
|
54 |
-
|
55 |
|
56 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
57 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
@@ -59,17 +50,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
59 |
|
60 |
VERSION = datasets.Version("1.1.0")
|
61 |
|
62 |
-
# This is an example of a dataset with multiple configurations.
|
63 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
64 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
65 |
-
|
66 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
67 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
68 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
69 |
-
|
70 |
-
# You will be able to load one or the other configurations in the following list with
|
71 |
-
# data = datasets.load_dataset('my_dataset', 'home_value_forecasts')
|
72 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
73 |
BUILDER_CONFIGS = [
|
74 |
datasets.BuilderConfig(
|
75 |
name="home_value_forecasts",
|
@@ -91,15 +71,27 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
91 |
version=VERSION,
|
92 |
description="This part of my dataset covers a second domain",
|
93 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
]
|
95 |
|
96 |
-
DEFAULT_CONFIG_NAME = "home_value_forecasts"
|
97 |
|
98 |
def _info(self):
|
99 |
-
|
100 |
-
if (
|
101 |
-
self.config.name == "home_value_forecasts"
|
102 |
-
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
103 |
features = datasets.Features(
|
104 |
{
|
105 |
"RegionID": datasets.Value(dtype="string", id="RegionID"),
|
@@ -129,7 +121,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
129 |
"Year Over Year % (Raw)": datasets.Value(
|
130 |
dtype="float32", id="Month Over Month % (Smoothed)"
|
131 |
),
|
132 |
-
# These are the features of your dataset like images, labels ...
|
133 |
}
|
134 |
)
|
135 |
elif self.config.name == "new_constructions":
|
@@ -147,7 +138,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
147 |
dtype="float32", id="Sale Price per Sqft"
|
148 |
),
|
149 |
"Count": datasets.Value(dtype="int32", id="Count"),
|
150 |
-
# These are the features of your dataset like images, labels ...
|
151 |
}
|
152 |
)
|
153 |
elif self.config.name == "for_sale_listings":
|
@@ -174,7 +164,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
174 |
dtype="int32", id="New Pending (Smoothed)"
|
175 |
),
|
176 |
"New Pending": datasets.Value(dtype="int32", id="New Pending"),
|
177 |
-
# These are the features of your dataset like images, labels ...
|
178 |
}
|
179 |
)
|
180 |
elif self.config.name == "rentals":
|
@@ -193,18 +182,83 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
193 |
"Rent (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
194 |
dtype="float32", id="Rent (Smoothed) (Seasonally Adjusted)"
|
195 |
),
|
196 |
-
# These are the features of your dataset like images, labels ...
|
197 |
}
|
198 |
)
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
return datasets.DatasetInfo(
|
209 |
# This is the description that will appear on the datasets page.
|
210 |
description=_DESCRIPTION,
|
@@ -222,20 +276,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
222 |
)
|
223 |
|
224 |
def _split_generators(self, dl_manager):
|
225 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
226 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
227 |
-
|
228 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
229 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
230 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
231 |
-
|
232 |
-
# urls = _URLS[self.config.name]
|
233 |
-
# data_dir = dl_manager.download_and_extract(urls)
|
234 |
-
# file_train = dl_manager.download(os.path.join('./data/home_value_forecasts', "Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv"))
|
235 |
file_path = os.path.join("processed", self.config.name, "final.jsonl")
|
236 |
-
# print('*********************')
|
237 |
-
# print(file_path)
|
238 |
-
|
239 |
file_train = dl_manager.download(file_path)
|
240 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
241 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|
@@ -244,37 +285,35 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
244 |
name=datasets.Split.TRAIN,
|
245 |
# These kwargs will be passed to _generate_examples
|
246 |
gen_kwargs={
|
247 |
-
"filepath": file_train,
|
248 |
"split": "train",
|
249 |
},
|
250 |
),
|
251 |
-
datasets.SplitGenerator(
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
),
|
259 |
-
datasets.SplitGenerator(
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
),
|
267 |
]
|
268 |
|
269 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
270 |
def _generate_examples(self, filepath, split):
|
271 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
272 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
273 |
with open(filepath, encoding="utf-8") as f:
|
274 |
for key, row in enumerate(f):
|
275 |
data = json.loads(row)
|
276 |
if self.config.name == "home_value_forecasts":
|
277 |
-
# Yields examples as (key, example) tuples
|
278 |
yield key, {
|
279 |
"RegionID": data["RegionID"],
|
280 |
"SizeRank": data["SizeRank"],
|
@@ -299,10 +338,8 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
299 |
"Quarter Over Quarter % (Raw)"
|
300 |
],
|
301 |
"Year Over Year % (Raw)": data["Year Over Year % (Raw)"],
|
302 |
-
# "answer": "" if split == "test" else data["answer"],
|
303 |
}
|
304 |
elif self.config.name == "new_constructions":
|
305 |
-
# Yields examples as (key, example) tuples
|
306 |
yield key, {
|
307 |
"Region ID": data["Region ID"],
|
308 |
"Size Rank": data["Size Rank"],
|
@@ -314,10 +351,8 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
314 |
"Sale Price": data["Sale Price"],
|
315 |
"Sale Price per Sqft": data["Sale Price per Sqft"],
|
316 |
"Count": data["Count"],
|
317 |
-
# "answer": "" if split == "test" else data["answer"],
|
318 |
}
|
319 |
elif self.config.name == "for_sale_listings":
|
320 |
-
# Yields examples as (key, example) tuples
|
321 |
yield key, {
|
322 |
"Region ID": data["Region ID"],
|
323 |
"Size Rank": data["Size Rank"],
|
@@ -334,10 +369,8 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
334 |
"New Listings (Smoothed)": data["New Listings (Smoothed)"],
|
335 |
"New Pending (Smoothed)": data["New Pending (Smoothed)"],
|
336 |
"New Pending": data["New Pending"],
|
337 |
-
# "answer": "" if split == "test" else data["answer"],
|
338 |
}
|
339 |
elif self.config.name == "rentals":
|
340 |
-
# Yields examples as (key, example) tuples
|
341 |
yield key, {
|
342 |
"Region ID": data["Region ID"],
|
343 |
"Size Rank": data["Size Rank"],
|
@@ -350,13 +383,59 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
350 |
"Rent (Smoothed) (Seasonally Adjusted)": data[
|
351 |
"Rent (Smoothed) (Seasonally Adjusted)"
|
352 |
],
|
353 |
-
# "answer": "" if split == "test" else data["answer"],
|
354 |
}
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"""TODO: Add a description here."""
|
16 |
|
17 |
|
|
|
18 |
import json
|
19 |
import os
|
20 |
|
|
|
43 |
# TODO: Add the licence for the dataset here if you can find it
|
44 |
_LICENSE = ""
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
48 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
|
|
50 |
|
51 |
VERSION = datasets.Version("1.1.0")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
BUILDER_CONFIGS = [
|
54 |
datasets.BuilderConfig(
|
55 |
name="home_value_forecasts",
|
|
|
71 |
version=VERSION,
|
72 |
description="This part of my dataset covers a second domain",
|
73 |
),
|
74 |
+
datasets.BuilderConfig(
|
75 |
+
name="sales",
|
76 |
+
version=VERSION,
|
77 |
+
description="This part of my dataset covers a second domain",
|
78 |
+
),
|
79 |
+
datasets.BuilderConfig(
|
80 |
+
name="home_values",
|
81 |
+
version=VERSION,
|
82 |
+
description="This part of my dataset covers a second domain",
|
83 |
+
),
|
84 |
+
datasets.BuilderConfig(
|
85 |
+
name="days_on_market",
|
86 |
+
version=VERSION,
|
87 |
+
description="This part of my dataset covers a second domain",
|
88 |
+
),
|
89 |
]
|
90 |
|
91 |
+
DEFAULT_CONFIG_NAME = "home_value_forecasts"
|
92 |
|
93 |
def _info(self):
|
94 |
+
if self.config.name == "home_value_forecasts":
|
|
|
|
|
|
|
95 |
features = datasets.Features(
|
96 |
{
|
97 |
"RegionID": datasets.Value(dtype="string", id="RegionID"),
|
|
|
121 |
"Year Over Year % (Raw)": datasets.Value(
|
122 |
dtype="float32", id="Month Over Month % (Smoothed)"
|
123 |
),
|
|
|
124 |
}
|
125 |
)
|
126 |
elif self.config.name == "new_constructions":
|
|
|
138 |
dtype="float32", id="Sale Price per Sqft"
|
139 |
),
|
140 |
"Count": datasets.Value(dtype="int32", id="Count"),
|
|
|
141 |
}
|
142 |
)
|
143 |
elif self.config.name == "for_sale_listings":
|
|
|
164 |
dtype="int32", id="New Pending (Smoothed)"
|
165 |
),
|
166 |
"New Pending": datasets.Value(dtype="int32", id="New Pending"),
|
|
|
167 |
}
|
168 |
)
|
169 |
elif self.config.name == "rentals":
|
|
|
182 |
"Rent (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
183 |
dtype="float32", id="Rent (Smoothed) (Seasonally Adjusted)"
|
184 |
),
|
|
|
185 |
}
|
186 |
)
|
187 |
+
elif self.config.name == "sales":
|
188 |
+
features = datasets.Features(
|
189 |
+
{
|
190 |
+
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
191 |
+
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
192 |
+
"Region": datasets.Value(dtype="string", id="Region"),
|
193 |
+
"Region Type": datasets.Value(dtype="string", id="Region Type"),
|
194 |
+
"State": datasets.Value(dtype="string", id="State"),
|
195 |
+
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
196 |
+
"Date": datasets.Value(dtype="string", id="Date"),
|
197 |
+
"Mean Sale to List Ratio (Smoothed)": datasets.Value(
|
198 |
+
dtype="float32", id="Mean Sale to List Ratio (Smoothed)"
|
199 |
+
),
|
200 |
+
"Median Sale to List Ratio": datasets.Value(
|
201 |
+
dtype="float32", id="Median Sale to List Ratio"
|
202 |
+
),
|
203 |
+
"Median Sale Price": datasets.Value(
|
204 |
+
dtype="float32", id="Median Sale Price"
|
205 |
+
),
|
206 |
+
"% Sold Below List (Smoothed)": datasets.Value(
|
207 |
+
dtype="float32", id="% Sold Below List (Smoothed)"
|
208 |
+
),
|
209 |
+
"Median Sale Price (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
210 |
+
dtype="float32",
|
211 |
+
id="Median Sale Price (Smoothed) (Seasonally Adjusted)",
|
212 |
+
),
|
213 |
+
"% Sold Below List": datasets.Value(
|
214 |
+
dtype="float32", id="% Sold Below List"
|
215 |
+
),
|
216 |
+
"Median Sale Price (Smoothed)": datasets.Value(
|
217 |
+
dtype="float32", id="Median Sale Price (Smoothed)"
|
218 |
+
),
|
219 |
+
"Median Sale to List Ratio (Smoothed)": datasets.Value(
|
220 |
+
dtype="float32", id="Median Sale to List Ratio (Smoothed)"
|
221 |
+
),
|
222 |
+
"% Sold Above List": datasets.Value(
|
223 |
+
dtype="float32", id="% Sold Above List"
|
224 |
+
),
|
225 |
+
"Nowcast": datasets.Value(dtype="float32", id="Nowcast"),
|
226 |
+
"Mean Sale to List Ratio": datasets.Value(
|
227 |
+
dtype="float32", id="Mean Sale to List Ratio"
|
228 |
+
),
|
229 |
+
"% Sold Above List (Smoothed)": datasets.Value(
|
230 |
+
dtype="float32", id="% Sold Above List (Smoothed)"
|
231 |
+
),
|
232 |
+
}
|
233 |
+
)
|
234 |
+
elif self.config.name == "home_values":
|
235 |
+
features = datasets.Features(
|
236 |
+
{
|
237 |
+
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
238 |
+
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
239 |
+
"Region": datasets.Value(dtype="string", id="Region"),
|
240 |
+
"Region Type": datasets.Value(dtype="string", id="Region Type"),
|
241 |
+
"State": datasets.Value(dtype="string", id="State"),
|
242 |
+
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
243 |
+
"Date": datasets.Value(dtype="string", id="Date"),
|
244 |
+
"Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
245 |
+
dtype="float32",
|
246 |
+
id="Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)",
|
247 |
+
),
|
248 |
+
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
249 |
+
dtype="float32",
|
250 |
+
id="Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)",
|
251 |
+
),
|
252 |
+
"Top Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
253 |
+
dtype="float32",
|
254 |
+
id="Top Tier ZHVI (Smoothed) (Seasonally Adjusted)",
|
255 |
+
),
|
256 |
+
"ZHVI": datasets.Value(dtype="float32", id="ZHVI"),
|
257 |
+
"Mid Tier ZHVI": datasets.Value(
|
258 |
+
dtype="float32", id="Mid Tier ZHVI"
|
259 |
+
),
|
260 |
+
}
|
261 |
+
)
|
262 |
return datasets.DatasetInfo(
|
263 |
# This is the description that will appear on the datasets page.
|
264 |
description=_DESCRIPTION,
|
|
|
276 |
)
|
277 |
|
278 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
file_path = os.path.join("processed", self.config.name, "final.jsonl")
|
|
|
|
|
|
|
280 |
file_train = dl_manager.download(file_path)
|
281 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
282 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|
|
|
285 |
name=datasets.Split.TRAIN,
|
286 |
# These kwargs will be passed to _generate_examples
|
287 |
gen_kwargs={
|
288 |
+
"filepath": file_train,
|
289 |
"split": "train",
|
290 |
},
|
291 |
),
|
292 |
+
# datasets.SplitGenerator(
|
293 |
+
# name=datasets.Split.VALIDATION,
|
294 |
+
# # These kwargs will be passed to _generate_examples
|
295 |
+
# gen_kwargs={
|
296 |
+
# "filepath": file_train, # os.path.join(data_dir, "dev.jsonl"),
|
297 |
+
# "split": "dev",
|
298 |
+
# },
|
299 |
+
# ),
|
300 |
+
# datasets.SplitGenerator(
|
301 |
+
# name=datasets.Split.TEST,
|
302 |
+
# # These kwargs will be passed to _generate_examples
|
303 |
+
# gen_kwargs={
|
304 |
+
# "filepath": file_train, # os.path.join(data_dir, "test.jsonl"),
|
305 |
+
# "split": "test",
|
306 |
+
# },
|
307 |
+
# ),
|
308 |
]
|
309 |
|
310 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
311 |
def _generate_examples(self, filepath, split):
|
|
|
312 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
313 |
with open(filepath, encoding="utf-8") as f:
|
314 |
for key, row in enumerate(f):
|
315 |
data = json.loads(row)
|
316 |
if self.config.name == "home_value_forecasts":
|
|
|
317 |
yield key, {
|
318 |
"RegionID": data["RegionID"],
|
319 |
"SizeRank": data["SizeRank"],
|
|
|
338 |
"Quarter Over Quarter % (Raw)"
|
339 |
],
|
340 |
"Year Over Year % (Raw)": data["Year Over Year % (Raw)"],
|
|
|
341 |
}
|
342 |
elif self.config.name == "new_constructions":
|
|
|
343 |
yield key, {
|
344 |
"Region ID": data["Region ID"],
|
345 |
"Size Rank": data["Size Rank"],
|
|
|
351 |
"Sale Price": data["Sale Price"],
|
352 |
"Sale Price per Sqft": data["Sale Price per Sqft"],
|
353 |
"Count": data["Count"],
|
|
|
354 |
}
|
355 |
elif self.config.name == "for_sale_listings":
|
|
|
356 |
yield key, {
|
357 |
"Region ID": data["Region ID"],
|
358 |
"Size Rank": data["Size Rank"],
|
|
|
369 |
"New Listings (Smoothed)": data["New Listings (Smoothed)"],
|
370 |
"New Pending (Smoothed)": data["New Pending (Smoothed)"],
|
371 |
"New Pending": data["New Pending"],
|
|
|
372 |
}
|
373 |
elif self.config.name == "rentals":
|
|
|
374 |
yield key, {
|
375 |
"Region ID": data["Region ID"],
|
376 |
"Size Rank": data["Size Rank"],
|
|
|
383 |
"Rent (Smoothed) (Seasonally Adjusted)": data[
|
384 |
"Rent (Smoothed) (Seasonally Adjusted)"
|
385 |
],
|
|
|
386 |
}
|
387 |
+
elif self.config.name == "sales":
|
388 |
+
yield key, {
|
389 |
+
"Region ID": data["Region ID"],
|
390 |
+
"Size Rank": data["Size Rank"],
|
391 |
+
"Region": data["Region"],
|
392 |
+
"Region Type": data["Region Type"],
|
393 |
+
"State": data["State"],
|
394 |
+
"Home Type": data["Home Type"],
|
395 |
+
"Date": data["Date"],
|
396 |
+
"Mean Sale to List Ratio (Smoothed)": data[
|
397 |
+
"Mean Sale to List Ratio (Smoothed)"
|
398 |
+
],
|
399 |
+
"Median Sale to List Ratio": data["Median Sale to List Ratio"],
|
400 |
+
"Median Sale Price": data["Median Sale Price"],
|
401 |
+
"% Sold Below List (Smoothed)": data[
|
402 |
+
"% Sold Below List (Smoothed)"
|
403 |
+
],
|
404 |
+
"Median Sale Price (Smoothed) (Seasonally Adjusted)": data[
|
405 |
+
"Median Sale Price (Smoothed) (Seasonally Adjusted)"
|
406 |
+
],
|
407 |
+
"% Sold Below List": data["% Sold Below List"],
|
408 |
+
"Median Sale Price (Smoothed)": data[
|
409 |
+
"Median Sale Price (Smoothed)"
|
410 |
+
],
|
411 |
+
"Median Sale to List Ratio (Smoothed)": data[
|
412 |
+
"Median Sale to List Ratio (Smoothed)"
|
413 |
+
],
|
414 |
+
"% Sold Above List": data["% Sold Above List"],
|
415 |
+
"Nowcast": data["Nowcast"],
|
416 |
+
"Mean Sale to List Ratio": data["Mean Sale to List Ratio"],
|
417 |
+
"% Sold Above List (Smoothed)": data[
|
418 |
+
"% Sold Above List (Smoothed)"
|
419 |
+
],
|
420 |
+
}
|
421 |
+
elif self.config.name == "home_values":
|
422 |
+
yield key, {
|
423 |
+
"Region ID": data["Region ID"],
|
424 |
+
"Size Rank": data["Size Rank"],
|
425 |
+
"Region": data["Region"],
|
426 |
+
"Region Type": data["Region Type"],
|
427 |
+
"State": data["State"],
|
428 |
+
"Home Type": data["Home Type"],
|
429 |
+
"Date": data["Date"],
|
430 |
+
"Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)": data[
|
431 |
+
"Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)"
|
432 |
+
],
|
433 |
+
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": data[
|
434 |
+
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)"
|
435 |
+
],
|
436 |
+
"Top Tier ZHVI (Smoothed) (Seasonally Adjusted)": data[
|
437 |
+
"Top Tier ZHVI (Smoothed) (Seasonally Adjusted)"
|
438 |
+
],
|
439 |
+
"ZHVI": data["ZHVI"],
|
440 |
+
"Mid Tier ZHVI": data["Mid Tier ZHVI"],
|
441 |
+
}
|