fix: update python files to use set homes
Browse files- processors/days_on_market.ipynb +129 -312
- processors/days_on_market.py +106 -0
- processors/for_sale_listings.ipynb +4 -6
- processors/for_sale_listings.py +104 -0
- processors/helpers.py +16 -1
- processors/home_values.ipynb +4 -6
- processors/home_values.py +179 -0
- processors/home_values_forecasts.ipynb +3 -0
- processors/home_values_forecasts.py +100 -0
- processors/new_construction.ipynb +4 -6
- processors/new_construction.py +99 -0
- processors/rentals.ipynb +47 -49
- processors/rentals.py +158 -0
- processors/sales.ipynb +398 -11
- processors/sales.py +113 -0
processors/days_on_market.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -13,12 +13,13 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
@@ -31,247 +32,65 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"metadata": {},
|
36 |
"outputs": [
|
37 |
{
|
38 |
-
"
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
" <td>0</td>\n",
|
94 |
-
" <td>United States</td>\n",
|
95 |
-
" <td>country</td>\n",
|
96 |
-
" <td>NaN</td>\n",
|
97 |
-
" <td>SFR</td>\n",
|
98 |
-
" <td>2018-01-13</td>\n",
|
99 |
-
" <td>NaN</td>\n",
|
100 |
-
" <td>0.049042</td>\n",
|
101 |
-
" <td>14114.788383</td>\n",
|
102 |
-
" <td>NaN</td>\n",
|
103 |
-
" <td>NaN</td>\n",
|
104 |
-
" <td>NaN</td>\n",
|
105 |
-
" </tr>\n",
|
106 |
-
" <tr>\n",
|
107 |
-
" <th>2</th>\n",
|
108 |
-
" <td>102001</td>\n",
|
109 |
-
" <td>0</td>\n",
|
110 |
-
" <td>United States</td>\n",
|
111 |
-
" <td>country</td>\n",
|
112 |
-
" <td>NaN</td>\n",
|
113 |
-
" <td>SFR</td>\n",
|
114 |
-
" <td>2018-01-20</td>\n",
|
115 |
-
" <td>NaN</td>\n",
|
116 |
-
" <td>0.044740</td>\n",
|
117 |
-
" <td>14326.128956</td>\n",
|
118 |
-
" <td>NaN</td>\n",
|
119 |
-
" <td>NaN</td>\n",
|
120 |
-
" <td>NaN</td>\n",
|
121 |
-
" </tr>\n",
|
122 |
-
" <tr>\n",
|
123 |
-
" <th>3</th>\n",
|
124 |
-
" <td>102001</td>\n",
|
125 |
-
" <td>0</td>\n",
|
126 |
-
" <td>United States</td>\n",
|
127 |
-
" <td>country</td>\n",
|
128 |
-
" <td>NaN</td>\n",
|
129 |
-
" <td>SFR</td>\n",
|
130 |
-
" <td>2018-01-27</td>\n",
|
131 |
-
" <td>13998.585612</td>\n",
|
132 |
-
" <td>0.047930</td>\n",
|
133 |
-
" <td>13998.585612</td>\n",
|
134 |
-
" <td>NaN</td>\n",
|
135 |
-
" <td>NaN</td>\n",
|
136 |
-
" <td>NaN</td>\n",
|
137 |
-
" </tr>\n",
|
138 |
-
" <tr>\n",
|
139 |
-
" <th>4</th>\n",
|
140 |
-
" <td>102001</td>\n",
|
141 |
-
" <td>0</td>\n",
|
142 |
-
" <td>United States</td>\n",
|
143 |
-
" <td>country</td>\n",
|
144 |
-
" <td>NaN</td>\n",
|
145 |
-
" <td>SFR</td>\n",
|
146 |
-
" <td>2018-02-03</td>\n",
|
147 |
-
" <td>14120.035549</td>\n",
|
148 |
-
" <td>0.047622</td>\n",
|
149 |
-
" <td>14120.035549</td>\n",
|
150 |
-
" <td>0.047622</td>\n",
|
151 |
-
" <td>NaN</td>\n",
|
152 |
-
" <td>NaN</td>\n",
|
153 |
-
" </tr>\n",
|
154 |
-
" <tr>\n",
|
155 |
-
" <th>...</th>\n",
|
156 |
-
" <td>...</td>\n",
|
157 |
-
" <td>...</td>\n",
|
158 |
-
" <td>...</td>\n",
|
159 |
-
" <td>...</td>\n",
|
160 |
-
" <td>...</td>\n",
|
161 |
-
" <td>...</td>\n",
|
162 |
-
" <td>...</td>\n",
|
163 |
-
" <td>...</td>\n",
|
164 |
-
" <td>...</td>\n",
|
165 |
-
" <td>...</td>\n",
|
166 |
-
" <td>...</td>\n",
|
167 |
-
" <td>...</td>\n",
|
168 |
-
" <td>...</td>\n",
|
169 |
-
" </tr>\n",
|
170 |
-
" <tr>\n",
|
171 |
-
" <th>586709</th>\n",
|
172 |
-
" <td>845172</td>\n",
|
173 |
-
" <td>769</td>\n",
|
174 |
-
" <td>Winfield, KS</td>\n",
|
175 |
-
" <td>msa</td>\n",
|
176 |
-
" <td>KS</td>\n",
|
177 |
-
" <td>all homes (SFR + Condo)</td>\n",
|
178 |
-
" <td>2024-01-06</td>\n",
|
179 |
-
" <td>NaN</td>\n",
|
180 |
-
" <td>0.094017</td>\n",
|
181 |
-
" <td>NaN</td>\n",
|
182 |
-
" <td>0.037378</td>\n",
|
183 |
-
" <td>NaN</td>\n",
|
184 |
-
" <td>NaN</td>\n",
|
185 |
-
" </tr>\n",
|
186 |
-
" <tr>\n",
|
187 |
-
" <th>586710</th>\n",
|
188 |
-
" <td>845172</td>\n",
|
189 |
-
" <td>769</td>\n",
|
190 |
-
" <td>Winfield, KS</td>\n",
|
191 |
-
" <td>msa</td>\n",
|
192 |
-
" <td>KS</td>\n",
|
193 |
-
" <td>all homes (SFR + Condo)</td>\n",
|
194 |
-
" <td>2024-01-13</td>\n",
|
195 |
-
" <td>NaN</td>\n",
|
196 |
-
" <td>0.070175</td>\n",
|
197 |
-
" <td>NaN</td>\n",
|
198 |
-
" <td>0.043203</td>\n",
|
199 |
-
" <td>NaN</td>\n",
|
200 |
-
" <td>NaN</td>\n",
|
201 |
-
" </tr>\n",
|
202 |
-
" <tr>\n",
|
203 |
-
" <th>586711</th>\n",
|
204 |
-
" <td>845172</td>\n",
|
205 |
-
" <td>769</td>\n",
|
206 |
-
" <td>Winfield, KS</td>\n",
|
207 |
-
" <td>msa</td>\n",
|
208 |
-
" <td>KS</td>\n",
|
209 |
-
" <td>all homes (SFR + Condo)</td>\n",
|
210 |
-
" <td>2024-01-20</td>\n",
|
211 |
-
" <td>NaN</td>\n",
|
212 |
-
" <td>0.043478</td>\n",
|
213 |
-
" <td>NaN</td>\n",
|
214 |
-
" <td>0.054073</td>\n",
|
215 |
-
" <td>NaN</td>\n",
|
216 |
-
" <td>NaN</td>\n",
|
217 |
-
" </tr>\n",
|
218 |
-
" <tr>\n",
|
219 |
-
" <th>586712</th>\n",
|
220 |
-
" <td>845172</td>\n",
|
221 |
-
" <td>769</td>\n",
|
222 |
-
" <td>Winfield, KS</td>\n",
|
223 |
-
" <td>msa</td>\n",
|
224 |
-
" <td>KS</td>\n",
|
225 |
-
" <td>all homes (SFR + Condo)</td>\n",
|
226 |
-
" <td>2024-01-27</td>\n",
|
227 |
-
" <td>NaN</td>\n",
|
228 |
-
" <td>0.036697</td>\n",
|
229 |
-
" <td>NaN</td>\n",
|
230 |
-
" <td>0.061092</td>\n",
|
231 |
-
" <td>NaN</td>\n",
|
232 |
-
" <td>NaN</td>\n",
|
233 |
-
" </tr>\n",
|
234 |
-
" <tr>\n",
|
235 |
-
" <th>586713</th>\n",
|
236 |
-
" <td>845172</td>\n",
|
237 |
-
" <td>769</td>\n",
|
238 |
-
" <td>Winfield, KS</td>\n",
|
239 |
-
" <td>msa</td>\n",
|
240 |
-
" <td>KS</td>\n",
|
241 |
-
" <td>all homes (SFR + Condo)</td>\n",
|
242 |
-
" <td>2024-02-03</td>\n",
|
243 |
-
" <td>NaN</td>\n",
|
244 |
-
" <td>0.077670</td>\n",
|
245 |
-
" <td>NaN</td>\n",
|
246 |
-
" <td>0.057005</td>\n",
|
247 |
-
" <td>NaN</td>\n",
|
248 |
-
" <td>NaN</td>\n",
|
249 |
-
" </tr>\n",
|
250 |
-
" </tbody>\n",
|
251 |
-
"</table>\n",
|
252 |
-
"<p>586714 rows × 13 columns</p>\n",
|
253 |
-
"</div>"
|
254 |
-
],
|
255 |
-
"text/plain": [
|
256 |
-
" RegionID ... Median Days on Pending\n",
|
257 |
-
"0 102001 ... NaN\n",
|
258 |
-
"1 102001 ... NaN\n",
|
259 |
-
"2 102001 ... NaN\n",
|
260 |
-
"3 102001 ... NaN\n",
|
261 |
-
"4 102001 ... NaN\n",
|
262 |
-
"... ... ... ...\n",
|
263 |
-
"586709 845172 ... NaN\n",
|
264 |
-
"586710 845172 ... NaN\n",
|
265 |
-
"586711 845172 ... NaN\n",
|
266 |
-
"586712 845172 ... NaN\n",
|
267 |
-
"586713 845172 ... NaN\n",
|
268 |
-
"\n",
|
269 |
-
"[586714 rows x 13 columns]"
|
270 |
-
]
|
271 |
-
},
|
272 |
-
"execution_count": 3,
|
273 |
-
"metadata": {},
|
274 |
-
"output_type": "execute_result"
|
275 |
}
|
276 |
],
|
277 |
"source": [
|
@@ -303,12 +122,8 @@
|
|
303 |
"\n",
|
304 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
305 |
"\n",
|
306 |
-
"
|
307 |
-
"
|
308 |
-
" # change column type to string\n",
|
309 |
-
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
310 |
-
" elif \"_uc_sfr_\" in filename:\n",
|
311 |
-
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
312 |
"\n",
|
313 |
" data_frames = handle_slug_column_mappings(\n",
|
314 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
@@ -333,7 +148,7 @@
|
|
333 |
},
|
334 |
{
|
335 |
"cell_type": "code",
|
336 |
-
"execution_count":
|
337 |
"metadata": {},
|
338 |
"outputs": [
|
339 |
{
|
@@ -364,10 +179,10 @@
|
|
364 |
" <th>State</th>\n",
|
365 |
" <th>Home Type</th>\n",
|
366 |
" <th>Date</th>\n",
|
367 |
-
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
|
368 |
" <th>Percent Listings Price Cut</th>\n",
|
369 |
" <th>Mean Listings Price Cut Amount</th>\n",
|
370 |
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
|
|
|
371 |
" <th>Median Days on Pending (Smoothed)</th>\n",
|
372 |
" <th>Median Days on Pending</th>\n",
|
373 |
" </tr>\n",
|
@@ -383,11 +198,11 @@
|
|
383 |
" <td>SFR</td>\n",
|
384 |
" <td>2018-01-06</td>\n",
|
385 |
" <td>NaN</td>\n",
|
386 |
-
" <td>NaN</td>\n",
|
387 |
" <td>13508.368375</td>\n",
|
388 |
" <td>NaN</td>\n",
|
389 |
" <td>NaN</td>\n",
|
390 |
" <td>NaN</td>\n",
|
|
|
391 |
" </tr>\n",
|
392 |
" <tr>\n",
|
393 |
" <th>1</th>\n",
|
@@ -398,12 +213,12 @@
|
|
398 |
" <td>NaN</td>\n",
|
399 |
" <td>SFR</td>\n",
|
400 |
" <td>2018-01-13</td>\n",
|
401 |
-
" <td>NaN</td>\n",
|
402 |
" <td>0.049042</td>\n",
|
403 |
" <td>14114.788383</td>\n",
|
404 |
" <td>NaN</td>\n",
|
405 |
" <td>NaN</td>\n",
|
406 |
" <td>NaN</td>\n",
|
|
|
407 |
" </tr>\n",
|
408 |
" <tr>\n",
|
409 |
" <th>2</th>\n",
|
@@ -414,12 +229,12 @@
|
|
414 |
" <td>NaN</td>\n",
|
415 |
" <td>SFR</td>\n",
|
416 |
" <td>2018-01-20</td>\n",
|
417 |
-
" <td>NaN</td>\n",
|
418 |
" <td>0.044740</td>\n",
|
419 |
" <td>14326.128956</td>\n",
|
420 |
" <td>NaN</td>\n",
|
421 |
" <td>NaN</td>\n",
|
422 |
" <td>NaN</td>\n",
|
|
|
423 |
" </tr>\n",
|
424 |
" <tr>\n",
|
425 |
" <th>3</th>\n",
|
@@ -430,10 +245,10 @@
|
|
430 |
" <td>NaN</td>\n",
|
431 |
" <td>SFR</td>\n",
|
432 |
" <td>2018-01-27</td>\n",
|
433 |
-
" <td>13998.585612</td>\n",
|
434 |
" <td>0.047930</td>\n",
|
435 |
" <td>13998.585612</td>\n",
|
436 |
" <td>NaN</td>\n",
|
|
|
437 |
" <td>NaN</td>\n",
|
438 |
" <td>NaN</td>\n",
|
439 |
" </tr>\n",
|
@@ -446,10 +261,10 @@
|
|
446 |
" <td>NaN</td>\n",
|
447 |
" <td>SFR</td>\n",
|
448 |
" <td>2018-02-03</td>\n",
|
449 |
-
" <td>14120.035549</td>\n",
|
450 |
" <td>0.047622</td>\n",
|
451 |
" <td>14120.035549</td>\n",
|
452 |
" <td>0.047622</td>\n",
|
|
|
453 |
" <td>NaN</td>\n",
|
454 |
" <td>NaN</td>\n",
|
455 |
" </tr>\n",
|
@@ -476,14 +291,14 @@
|
|
476 |
" <td>Winfield, KS</td>\n",
|
477 |
" <td>msa</td>\n",
|
478 |
" <td>KS</td>\n",
|
479 |
-
" <td>all homes
|
480 |
" <td>2024-01-06</td>\n",
|
481 |
-
" <td>NaN</td>\n",
|
482 |
" <td>0.094017</td>\n",
|
483 |
" <td>NaN</td>\n",
|
484 |
" <td>0.037378</td>\n",
|
485 |
" <td>NaN</td>\n",
|
486 |
" <td>NaN</td>\n",
|
|
|
487 |
" </tr>\n",
|
488 |
" <tr>\n",
|
489 |
" <th>586710</th>\n",
|
@@ -492,14 +307,14 @@
|
|
492 |
" <td>Winfield, KS</td>\n",
|
493 |
" <td>msa</td>\n",
|
494 |
" <td>KS</td>\n",
|
495 |
-
" <td>all homes
|
496 |
" <td>2024-01-13</td>\n",
|
497 |
-
" <td>NaN</td>\n",
|
498 |
" <td>0.070175</td>\n",
|
499 |
" <td>NaN</td>\n",
|
500 |
" <td>0.043203</td>\n",
|
501 |
" <td>NaN</td>\n",
|
502 |
" <td>NaN</td>\n",
|
|
|
503 |
" </tr>\n",
|
504 |
" <tr>\n",
|
505 |
" <th>586711</th>\n",
|
@@ -508,14 +323,14 @@
|
|
508 |
" <td>Winfield, KS</td>\n",
|
509 |
" <td>msa</td>\n",
|
510 |
" <td>KS</td>\n",
|
511 |
-
" <td>all homes
|
512 |
" <td>2024-01-20</td>\n",
|
513 |
-
" <td>NaN</td>\n",
|
514 |
" <td>0.043478</td>\n",
|
515 |
" <td>NaN</td>\n",
|
516 |
" <td>0.054073</td>\n",
|
517 |
" <td>NaN</td>\n",
|
518 |
" <td>NaN</td>\n",
|
|
|
519 |
" </tr>\n",
|
520 |
" <tr>\n",
|
521 |
" <th>586712</th>\n",
|
@@ -524,14 +339,14 @@
|
|
524 |
" <td>Winfield, KS</td>\n",
|
525 |
" <td>msa</td>\n",
|
526 |
" <td>KS</td>\n",
|
527 |
-
" <td>all homes
|
528 |
" <td>2024-01-27</td>\n",
|
529 |
-
" <td>NaN</td>\n",
|
530 |
" <td>0.036697</td>\n",
|
531 |
" <td>NaN</td>\n",
|
532 |
" <td>0.061092</td>\n",
|
533 |
" <td>NaN</td>\n",
|
534 |
" <td>NaN</td>\n",
|
|
|
535 |
" </tr>\n",
|
536 |
" <tr>\n",
|
537 |
" <th>586713</th>\n",
|
@@ -540,14 +355,14 @@
|
|
540 |
" <td>Winfield, KS</td>\n",
|
541 |
" <td>msa</td>\n",
|
542 |
" <td>KS</td>\n",
|
543 |
-
" <td>all homes
|
544 |
" <td>2024-02-03</td>\n",
|
545 |
-
" <td>NaN</td>\n",
|
546 |
" <td>0.077670</td>\n",
|
547 |
" <td>NaN</td>\n",
|
548 |
" <td>0.057005</td>\n",
|
549 |
" <td>NaN</td>\n",
|
550 |
" <td>NaN</td>\n",
|
|
|
551 |
" </tr>\n",
|
552 |
" </tbody>\n",
|
553 |
"</table>\n",
|
@@ -555,57 +370,57 @@
|
|
555 |
"</div>"
|
556 |
],
|
557 |
"text/plain": [
|
558 |
-
" Region ID Size Rank Region Region Type State \\\n",
|
559 |
-
"0 102001 0 United States country NaN \n",
|
560 |
-
"1 102001 0 United States country NaN \n",
|
561 |
-
"2 102001 0 United States country NaN \n",
|
562 |
-
"3 102001 0 United States country NaN \n",
|
563 |
-
"4 102001 0 United States country NaN \n",
|
564 |
-
"... ... ... ... ... ... \n",
|
565 |
-
"586709 845172 769 Winfield, KS msa KS \n",
|
566 |
-
"586710 845172 769 Winfield, KS msa KS \n",
|
567 |
-
"586711 845172 769 Winfield, KS msa KS \n",
|
568 |
-
"586712 845172 769 Winfield, KS msa KS \n",
|
569 |
-
"586713 845172 769 Winfield, KS msa KS \n",
|
570 |
"\n",
|
571 |
-
"
|
572 |
-
"0
|
573 |
-
"1
|
574 |
-
"2
|
575 |
-
"3
|
576 |
-
"4
|
577 |
-
"... ...
|
578 |
-
"586709
|
579 |
-
"586710
|
580 |
-
"586711
|
581 |
-
"586712
|
582 |
-
"586713
|
583 |
"\n",
|
584 |
-
"
|
585 |
-
"0
|
586 |
-
"1
|
587 |
-
"2
|
588 |
-
"3
|
589 |
-
"4
|
590 |
-
"...
|
591 |
-
"586709
|
592 |
-
"586710
|
593 |
-
"586711
|
594 |
-
"586712
|
595 |
-
"586713
|
596 |
"\n",
|
597 |
-
" Mean Listings Price Cut Amount
|
598 |
-
"0
|
599 |
-
"1
|
600 |
-
"2
|
601 |
-
"3
|
602 |
-
"4
|
603 |
-
"...
|
604 |
-
"586709
|
605 |
-
"586710
|
606 |
-
"586711
|
607 |
-
"586712
|
608 |
-
"586713
|
609 |
"\n",
|
610 |
" Median Days on Pending (Smoothed) Median Days on Pending \n",
|
611 |
"0 NaN NaN \n",
|
@@ -623,7 +438,7 @@
|
|
623 |
"[586714 rows x 13 columns]"
|
624 |
]
|
625 |
},
|
626 |
-
"execution_count":
|
627 |
"metadata": {},
|
628 |
"output_type": "execute_result"
|
629 |
}
|
@@ -640,6 +455,8 @@
|
|
640 |
" }\n",
|
641 |
")\n",
|
642 |
"\n",
|
|
|
|
|
643 |
"final_df"
|
644 |
]
|
645 |
},
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 6,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 7,
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 8,
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
39 |
+
"name": "stdout",
|
40 |
+
"output_type": "stream",
|
41 |
+
"text": [
|
42 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfr_month.csv\n",
|
43 |
+
"processing Metro_perc_listings_price_cut_uc_sfr_week.csv\n",
|
44 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_month.csv\n",
|
45 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfr_week.csv\n",
|
46 |
+
"processing Metro_med_doz_pending_uc_sfrcondo_month.csv\n",
|
47 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfr_sm_month.csv\n",
|
48 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_sm_month.csv\n",
|
49 |
+
"processing Metro_mean_days_to_close_uc_sfrcondo_week.csv\n",
|
50 |
+
"processing Metro_mean_days_to_close_uc_sfrcondo_month.csv\n",
|
51 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_sm_month.csv\n",
|
52 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfr_week.csv\n",
|
53 |
+
"processing Metro_median_days_to_close_uc_sfrcondo_sm_week.csv\n",
|
54 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfr_sm_week.csv\n",
|
55 |
+
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_sm_week.csv\n",
|
56 |
+
"processing Metro_perc_listings_price_cut_uc_sfrcondo_week.csv\n",
|
57 |
+
"processing Metro_med_doz_pending_uc_sfrcondo_sm_month.csv\n",
|
58 |
+
"processing Metro_mean_days_to_close_uc_sfrcondo_sm_week.csv\n",
|
59 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_week.csv\n",
|
60 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfr_week.csv\n",
|
61 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_month.csv\n",
|
62 |
+
"processing Metro_mean_doz_pending_uc_sfrcondo_week.csv\n",
|
63 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_week.csv\n",
|
64 |
+
"processing Metro_median_days_to_close_uc_sfrcondo_week.csv\n",
|
65 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfr_sm_month.csv\n",
|
66 |
+
"processing Metro_mean_doz_pending_uc_sfrcondo_sm_month.csv\n",
|
67 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfr_sm_month.csv\n",
|
68 |
+
"processing Metro_perc_listings_price_cut_uc_sfrcondo_sm_week.csv\n",
|
69 |
+
"processing Metro_median_days_to_close_uc_sfrcondo_sm_month.csv\n",
|
70 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfr_month.csv\n",
|
71 |
+
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_week.csv\n",
|
72 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_week.csv\n",
|
73 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_sm_week.csv\n",
|
74 |
+
"processing Metro_mean_days_to_close_uc_sfrcondo_sm_month.csv\n",
|
75 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfr_sm_week.csv\n",
|
76 |
+
"processing Metro_mean_doz_pending_uc_sfrcondo_sm_week.csv\n",
|
77 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_sm_week.csv\n",
|
78 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfr_sm_week.csv\n",
|
79 |
+
"processing Metro_perc_listings_price_cut_uc_sfrcondo_sm_month.csv\n",
|
80 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_month.csv\n",
|
81 |
+
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_sm_month.csv\n",
|
82 |
+
"processing Metro_med_doz_pending_uc_sfrcondo_sm_week.csv\n",
|
83 |
+
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_sm_week.csv\n",
|
84 |
+
"processing Metro_perc_listings_price_cut_uc_sfr_month.csv\n",
|
85 |
+
"processing Metro_med_doz_pending_uc_sfrcondo_week.csv\n",
|
86 |
+
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_sm_month.csv\n",
|
87 |
+
"processing Metro_perc_listings_price_cut_uc_sfr_sm_month.csv\n",
|
88 |
+
"processing Metro_median_days_to_close_uc_sfrcondo_month.csv\n",
|
89 |
+
"processing Metro_perc_listings_price_cut_uc_sfr_sm_week.csv\n",
|
90 |
+
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_month.csv\n",
|
91 |
+
"processing Metro_mean_listings_price_cut_amt_uc_sfr_month.csv\n",
|
92 |
+
"processing Metro_mean_doz_pending_uc_sfrcondo_month.csv\n"
|
93 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
95 |
],
|
96 |
"source": [
|
|
|
122 |
"\n",
|
123 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
124 |
"\n",
|
125 |
+
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
126 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
|
|
|
|
|
|
127 |
"\n",
|
128 |
" data_frames = handle_slug_column_mappings(\n",
|
129 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
|
|
148 |
},
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
+
"execution_count": 4,
|
152 |
"metadata": {},
|
153 |
"outputs": [
|
154 |
{
|
|
|
179 |
" <th>State</th>\n",
|
180 |
" <th>Home Type</th>\n",
|
181 |
" <th>Date</th>\n",
|
|
|
182 |
" <th>Percent Listings Price Cut</th>\n",
|
183 |
" <th>Mean Listings Price Cut Amount</th>\n",
|
184 |
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
|
185 |
+
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
|
186 |
" <th>Median Days on Pending (Smoothed)</th>\n",
|
187 |
" <th>Median Days on Pending</th>\n",
|
188 |
" </tr>\n",
|
|
|
198 |
" <td>SFR</td>\n",
|
199 |
" <td>2018-01-06</td>\n",
|
200 |
" <td>NaN</td>\n",
|
|
|
201 |
" <td>13508.368375</td>\n",
|
202 |
" <td>NaN</td>\n",
|
203 |
" <td>NaN</td>\n",
|
204 |
" <td>NaN</td>\n",
|
205 |
+
" <td>NaN</td>\n",
|
206 |
" </tr>\n",
|
207 |
" <tr>\n",
|
208 |
" <th>1</th>\n",
|
|
|
213 |
" <td>NaN</td>\n",
|
214 |
" <td>SFR</td>\n",
|
215 |
" <td>2018-01-13</td>\n",
|
|
|
216 |
" <td>0.049042</td>\n",
|
217 |
" <td>14114.788383</td>\n",
|
218 |
" <td>NaN</td>\n",
|
219 |
" <td>NaN</td>\n",
|
220 |
" <td>NaN</td>\n",
|
221 |
+
" <td>NaN</td>\n",
|
222 |
" </tr>\n",
|
223 |
" <tr>\n",
|
224 |
" <th>2</th>\n",
|
|
|
229 |
" <td>NaN</td>\n",
|
230 |
" <td>SFR</td>\n",
|
231 |
" <td>2018-01-20</td>\n",
|
|
|
232 |
" <td>0.044740</td>\n",
|
233 |
" <td>14326.128956</td>\n",
|
234 |
" <td>NaN</td>\n",
|
235 |
" <td>NaN</td>\n",
|
236 |
" <td>NaN</td>\n",
|
237 |
+
" <td>NaN</td>\n",
|
238 |
" </tr>\n",
|
239 |
" <tr>\n",
|
240 |
" <th>3</th>\n",
|
|
|
245 |
" <td>NaN</td>\n",
|
246 |
" <td>SFR</td>\n",
|
247 |
" <td>2018-01-27</td>\n",
|
|
|
248 |
" <td>0.047930</td>\n",
|
249 |
" <td>13998.585612</td>\n",
|
250 |
" <td>NaN</td>\n",
|
251 |
+
" <td>13998.585612</td>\n",
|
252 |
" <td>NaN</td>\n",
|
253 |
" <td>NaN</td>\n",
|
254 |
" </tr>\n",
|
|
|
261 |
" <td>NaN</td>\n",
|
262 |
" <td>SFR</td>\n",
|
263 |
" <td>2018-02-03</td>\n",
|
|
|
264 |
" <td>0.047622</td>\n",
|
265 |
" <td>14120.035549</td>\n",
|
266 |
" <td>0.047622</td>\n",
|
267 |
+
" <td>14120.035549</td>\n",
|
268 |
" <td>NaN</td>\n",
|
269 |
" <td>NaN</td>\n",
|
270 |
" </tr>\n",
|
|
|
291 |
" <td>Winfield, KS</td>\n",
|
292 |
" <td>msa</td>\n",
|
293 |
" <td>KS</td>\n",
|
294 |
+
" <td>all homes</td>\n",
|
295 |
" <td>2024-01-06</td>\n",
|
|
|
296 |
" <td>0.094017</td>\n",
|
297 |
" <td>NaN</td>\n",
|
298 |
" <td>0.037378</td>\n",
|
299 |
" <td>NaN</td>\n",
|
300 |
" <td>NaN</td>\n",
|
301 |
+
" <td>NaN</td>\n",
|
302 |
" </tr>\n",
|
303 |
" <tr>\n",
|
304 |
" <th>586710</th>\n",
|
|
|
307 |
" <td>Winfield, KS</td>\n",
|
308 |
" <td>msa</td>\n",
|
309 |
" <td>KS</td>\n",
|
310 |
+
" <td>all homes</td>\n",
|
311 |
" <td>2024-01-13</td>\n",
|
|
|
312 |
" <td>0.070175</td>\n",
|
313 |
" <td>NaN</td>\n",
|
314 |
" <td>0.043203</td>\n",
|
315 |
" <td>NaN</td>\n",
|
316 |
" <td>NaN</td>\n",
|
317 |
+
" <td>NaN</td>\n",
|
318 |
" </tr>\n",
|
319 |
" <tr>\n",
|
320 |
" <th>586711</th>\n",
|
|
|
323 |
" <td>Winfield, KS</td>\n",
|
324 |
" <td>msa</td>\n",
|
325 |
" <td>KS</td>\n",
|
326 |
+
" <td>all homes</td>\n",
|
327 |
" <td>2024-01-20</td>\n",
|
|
|
328 |
" <td>0.043478</td>\n",
|
329 |
" <td>NaN</td>\n",
|
330 |
" <td>0.054073</td>\n",
|
331 |
" <td>NaN</td>\n",
|
332 |
" <td>NaN</td>\n",
|
333 |
+
" <td>NaN</td>\n",
|
334 |
" </tr>\n",
|
335 |
" <tr>\n",
|
336 |
" <th>586712</th>\n",
|
|
|
339 |
" <td>Winfield, KS</td>\n",
|
340 |
" <td>msa</td>\n",
|
341 |
" <td>KS</td>\n",
|
342 |
+
" <td>all homes</td>\n",
|
343 |
" <td>2024-01-27</td>\n",
|
|
|
344 |
" <td>0.036697</td>\n",
|
345 |
" <td>NaN</td>\n",
|
346 |
" <td>0.061092</td>\n",
|
347 |
" <td>NaN</td>\n",
|
348 |
" <td>NaN</td>\n",
|
349 |
+
" <td>NaN</td>\n",
|
350 |
" </tr>\n",
|
351 |
" <tr>\n",
|
352 |
" <th>586713</th>\n",
|
|
|
355 |
" <td>Winfield, KS</td>\n",
|
356 |
" <td>msa</td>\n",
|
357 |
" <td>KS</td>\n",
|
358 |
+
" <td>all homes</td>\n",
|
359 |
" <td>2024-02-03</td>\n",
|
|
|
360 |
" <td>0.077670</td>\n",
|
361 |
" <td>NaN</td>\n",
|
362 |
" <td>0.057005</td>\n",
|
363 |
" <td>NaN</td>\n",
|
364 |
" <td>NaN</td>\n",
|
365 |
+
" <td>NaN</td>\n",
|
366 |
" </tr>\n",
|
367 |
" </tbody>\n",
|
368 |
"</table>\n",
|
|
|
370 |
"</div>"
|
371 |
],
|
372 |
"text/plain": [
|
373 |
+
" Region ID Size Rank Region Region Type State Home Type \\\n",
|
374 |
+
"0 102001 0 United States country NaN SFR \n",
|
375 |
+
"1 102001 0 United States country NaN SFR \n",
|
376 |
+
"2 102001 0 United States country NaN SFR \n",
|
377 |
+
"3 102001 0 United States country NaN SFR \n",
|
378 |
+
"4 102001 0 United States country NaN SFR \n",
|
379 |
+
"... ... ... ... ... ... ... \n",
|
380 |
+
"586709 845172 769 Winfield, KS msa KS all homes \n",
|
381 |
+
"586710 845172 769 Winfield, KS msa KS all homes \n",
|
382 |
+
"586711 845172 769 Winfield, KS msa KS all homes \n",
|
383 |
+
"586712 845172 769 Winfield, KS msa KS all homes \n",
|
384 |
+
"586713 845172 769 Winfield, KS msa KS all homes \n",
|
385 |
"\n",
|
386 |
+
" Date Percent Listings Price Cut Mean Listings Price Cut Amount \\\n",
|
387 |
+
"0 2018-01-06 NaN 13508.368375 \n",
|
388 |
+
"1 2018-01-13 0.049042 14114.788383 \n",
|
389 |
+
"2 2018-01-20 0.044740 14326.128956 \n",
|
390 |
+
"3 2018-01-27 0.047930 13998.585612 \n",
|
391 |
+
"4 2018-02-03 0.047622 14120.035549 \n",
|
392 |
+
"... ... ... ... \n",
|
393 |
+
"586709 2024-01-06 0.094017 NaN \n",
|
394 |
+
"586710 2024-01-13 0.070175 NaN \n",
|
395 |
+
"586711 2024-01-20 0.043478 NaN \n",
|
396 |
+
"586712 2024-01-27 0.036697 NaN \n",
|
397 |
+
"586713 2024-02-03 0.077670 NaN \n",
|
398 |
"\n",
|
399 |
+
" Percent Listings Price Cut (Smoothed) \\\n",
|
400 |
+
"0 NaN \n",
|
401 |
+
"1 NaN \n",
|
402 |
+
"2 NaN \n",
|
403 |
+
"3 NaN \n",
|
404 |
+
"4 0.047622 \n",
|
405 |
+
"... ... \n",
|
406 |
+
"586709 0.037378 \n",
|
407 |
+
"586710 0.043203 \n",
|
408 |
+
"586711 0.054073 \n",
|
409 |
+
"586712 0.061092 \n",
|
410 |
+
"586713 0.057005 \n",
|
411 |
"\n",
|
412 |
+
" Mean Listings Price Cut Amount (Smoothed) \\\n",
|
413 |
+
"0 NaN \n",
|
414 |
+
"1 NaN \n",
|
415 |
+
"2 NaN \n",
|
416 |
+
"3 13998.585612 \n",
|
417 |
+
"4 14120.035549 \n",
|
418 |
+
"... ... \n",
|
419 |
+
"586709 NaN \n",
|
420 |
+
"586710 NaN \n",
|
421 |
+
"586711 NaN \n",
|
422 |
+
"586712 NaN \n",
|
423 |
+
"586713 NaN \n",
|
424 |
"\n",
|
425 |
" Median Days on Pending (Smoothed) Median Days on Pending \n",
|
426 |
"0 NaN NaN \n",
|
|
|
438 |
"[586714 rows x 13 columns]"
|
439 |
]
|
440 |
},
|
441 |
+
"execution_count": 4,
|
442 |
"metadata": {},
|
443 |
"output_type": "execute_result"
|
444 |
}
|
|
|
455 |
" }\n",
|
456 |
")\n",
|
457 |
"\n",
|
458 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
459 |
+
"\n",
|
460 |
"final_df"
|
461 |
]
|
462 |
},
|
processors/days_on_market.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[6]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[7]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "days_on_market/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[8]:
|
29 |
+
|
30 |
+
|
31 |
+
data_frames = []
|
32 |
+
|
33 |
+
exclude_columns = [
|
34 |
+
"RegionID",
|
35 |
+
"SizeRank",
|
36 |
+
"RegionName",
|
37 |
+
"RegionType",
|
38 |
+
"StateName",
|
39 |
+
"Home Type",
|
40 |
+
]
|
41 |
+
|
42 |
+
slug_column_mappings = {
|
43 |
+
"_mean_listings_price_cut_amt_": "Mean Listings Price Cut Amount",
|
44 |
+
"_med_doz_pending_": "Median Days on Pending",
|
45 |
+
"_median_days_to_pending_": "Median Days to Close",
|
46 |
+
"_perc_listings_price_cut_": "Percent Listings Price Cut",
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
51 |
+
if filename.endswith(".csv"):
|
52 |
+
print("processing " + filename)
|
53 |
+
# skip month files for now since they are redundant
|
54 |
+
if "month" in filename:
|
55 |
+
continue
|
56 |
+
|
57 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
58 |
+
|
59 |
+
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
60 |
+
cur_df = set_home_type(cur_df, filename)
|
61 |
+
|
62 |
+
data_frames = handle_slug_column_mappings(
|
63 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
combined_df = get_combined_df(
|
68 |
+
data_frames,
|
69 |
+
[
|
70 |
+
"RegionID",
|
71 |
+
"SizeRank",
|
72 |
+
"RegionName",
|
73 |
+
"RegionType",
|
74 |
+
"StateName",
|
75 |
+
"Home Type",
|
76 |
+
"Date",
|
77 |
+
],
|
78 |
+
)
|
79 |
+
|
80 |
+
combined_df
|
81 |
+
|
82 |
+
|
83 |
+
# In[4]:
|
84 |
+
|
85 |
+
|
86 |
+
# Adjust column names
|
87 |
+
final_df = combined_df.rename(
|
88 |
+
columns={
|
89 |
+
"RegionID": "Region ID",
|
90 |
+
"SizeRank": "Size Rank",
|
91 |
+
"RegionName": "Region",
|
92 |
+
"RegionType": "Region Type",
|
93 |
+
"StateName": "State",
|
94 |
+
}
|
95 |
+
)
|
96 |
+
|
97 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
98 |
+
|
99 |
+
final_df
|
100 |
+
|
101 |
+
|
102 |
+
# In[5]:
|
103 |
+
|
104 |
+
|
105 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
106 |
+
|
processors/for_sale_listings.ipynb
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
@@ -371,12 +372,7 @@
|
|
371 |
" if \"month\" in filename:\n",
|
372 |
" continue\n",
|
373 |
"\n",
|
374 |
-
"
|
375 |
-
" cur_df[\"Home Type\"] = \"all homes\"\n",
|
376 |
-
" elif \"sfr\" in filename:\n",
|
377 |
-
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
378 |
-
" elif \"condo\" in filename:\n",
|
379 |
-
" cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
|
380 |
"\n",
|
381 |
" data_frames = handle_slug_column_mappings(\n",
|
382 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
@@ -695,6 +691,8 @@
|
|
695 |
" }\n",
|
696 |
")\n",
|
697 |
"\n",
|
|
|
|
|
698 |
"final_df"
|
699 |
]
|
700 |
},
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
|
|
372 |
" if \"month\" in filename:\n",
|
373 |
" continue\n",
|
374 |
"\n",
|
375 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
|
|
|
|
|
|
|
|
376 |
"\n",
|
377 |
" data_frames = handle_slug_column_mappings(\n",
|
378 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
|
|
691 |
" }\n",
|
692 |
")\n",
|
693 |
"\n",
|
694 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
695 |
+
"\n",
|
696 |
"final_df"
|
697 |
]
|
698 |
},
|
processors/for_sale_listings.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[2]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "for_sale_listings/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[3]:
|
29 |
+
|
30 |
+
|
31 |
+
exclude_columns = [
|
32 |
+
"RegionID",
|
33 |
+
"SizeRank",
|
34 |
+
"RegionName",
|
35 |
+
"RegionType",
|
36 |
+
"StateName",
|
37 |
+
"Home Type",
|
38 |
+
]
|
39 |
+
|
40 |
+
slug_column_mappings = {
|
41 |
+
"_mlp_": "Median Listing Price",
|
42 |
+
"_new_listings_": "New Listings",
|
43 |
+
"new_pending": "New Pending",
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
data_frames = []
|
48 |
+
|
49 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
50 |
+
if filename.endswith(".csv"):
|
51 |
+
print("processing " + filename)
|
52 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
53 |
+
|
54 |
+
# ignore monthly data for now since it is redundant
|
55 |
+
if "month" in filename:
|
56 |
+
continue
|
57 |
+
|
58 |
+
cur_df = set_home_type(cur_df, filename)
|
59 |
+
|
60 |
+
data_frames = handle_slug_column_mappings(
|
61 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
combined_df = get_combined_df(
|
66 |
+
data_frames,
|
67 |
+
[
|
68 |
+
"RegionID",
|
69 |
+
"SizeRank",
|
70 |
+
"RegionName",
|
71 |
+
"RegionType",
|
72 |
+
"StateName",
|
73 |
+
"Home Type",
|
74 |
+
"Date",
|
75 |
+
],
|
76 |
+
)
|
77 |
+
|
78 |
+
combined_df
|
79 |
+
|
80 |
+
|
81 |
+
# In[4]:
|
82 |
+
|
83 |
+
|
84 |
+
# Adjust column names
|
85 |
+
final_df = combined_df.rename(
|
86 |
+
columns={
|
87 |
+
"RegionID": "Region ID",
|
88 |
+
"SizeRank": "Size Rank",
|
89 |
+
"RegionName": "Region",
|
90 |
+
"RegionType": "Region Type",
|
91 |
+
"StateName": "State",
|
92 |
+
}
|
93 |
+
)
|
94 |
+
|
95 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
96 |
+
|
97 |
+
final_df
|
98 |
+
|
99 |
+
|
100 |
+
# In[5]:
|
101 |
+
|
102 |
+
|
103 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
104 |
+
|
processors/helpers.py
CHANGED
@@ -19,6 +19,21 @@ def coalesce_columns(
|
|
19 |
return combined_df
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def get_combined_df(data_frames, on):
|
23 |
combined_df = None
|
24 |
if len(data_frames) > 1:
|
@@ -72,7 +87,7 @@ def save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df):
|
|
72 |
os.makedirs(FULL_PROCESSED_DIR_PATH)
|
73 |
|
74 |
final_df.to_json(
|
75 |
-
FULL_PROCESSED_DIR_PATH + "
|
76 |
)
|
77 |
|
78 |
|
|
|
19 |
return combined_df
|
20 |
|
21 |
|
22 |
+
def set_home_type(cur_df, filename):
|
23 |
+
if "_sfrcondo_" in filename:
|
24 |
+
cur_df["Home Type"] = "all homes"
|
25 |
+
if "_sfrcondomfr_" in filename:
|
26 |
+
cur_df["Home Type"] = "all homes plus multifamily"
|
27 |
+
elif "_sfr_" in filename:
|
28 |
+
cur_df["Home Type"] = "SFR"
|
29 |
+
elif "_condo_" in filename:
|
30 |
+
cur_df["Home Type"] = "condo/co-op"
|
31 |
+
elif "_mfr_" in filename:
|
32 |
+
cur_df["Home Type"] = "multifamily"
|
33 |
+
|
34 |
+
return cur_df
|
35 |
+
|
36 |
+
|
37 |
def get_combined_df(data_frames, on):
|
38 |
combined_df = None
|
39 |
if len(data_frames) > 1:
|
|
|
87 |
os.makedirs(FULL_PROCESSED_DIR_PATH)
|
88 |
|
89 |
final_df.to_json(
|
90 |
+
FULL_PROCESSED_DIR_PATH + "final.jsonl", orient="records", lines=True
|
91 |
)
|
92 |
|
93 |
|
processors/home_values.ipynb
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
@@ -436,12 +437,7 @@
|
|
436 |
" else:\n",
|
437 |
" cur_df[\"Bedroom Count\"] = \"All Bedrooms\"\n",
|
438 |
"\n",
|
439 |
-
"
|
440 |
-
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
441 |
-
" elif \"_uc_sfrcondo_\" in filename:\n",
|
442 |
-
" cur_df[\"Home Type\"] = \"all homes (SFR/condo)\"\n",
|
443 |
-
" elif \"_uc_condo_\" in filename:\n",
|
444 |
-
" cur_df[\"Home Type\"] = \"condo\"\n",
|
445 |
"\n",
|
446 |
" cur_df[\"StateName\"] = cur_df[\"StateName\"].astype(str)\n",
|
447 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
@@ -1401,6 +1397,8 @@
|
|
1401 |
" }\n",
|
1402 |
")\n",
|
1403 |
"\n",
|
|
|
|
|
1404 |
"final_df"
|
1405 |
]
|
1406 |
},
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
|
|
437 |
" else:\n",
|
438 |
" cur_df[\"Bedroom Count\"] = \"All Bedrooms\"\n",
|
439 |
"\n",
|
440 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
|
|
|
|
|
|
|
|
441 |
"\n",
|
442 |
" cur_df[\"StateName\"] = cur_df[\"StateName\"].astype(str)\n",
|
443 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
|
|
1397 |
" }\n",
|
1398 |
")\n",
|
1399 |
"\n",
|
1400 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
1401 |
+
"\n",
|
1402 |
"final_df"
|
1403 |
]
|
1404 |
},
|
processors/home_values.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[2]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "home_values/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[5]:
|
29 |
+
|
30 |
+
|
31 |
+
data_frames = []
|
32 |
+
|
33 |
+
slug_column_mappings = {
|
34 |
+
"_tier_0.0_0.33_": "Bottom Tier ZHVI",
|
35 |
+
"_tier_0.33_0.67_": "Mid Tier ZHVI",
|
36 |
+
"_tier_0.67_1.0_": "Top Tier ZHVI",
|
37 |
+
"": "ZHVI",
|
38 |
+
}
|
39 |
+
|
40 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
41 |
+
if filename.endswith(".csv"):
|
42 |
+
print("processing " + filename)
|
43 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
44 |
+
exclude_columns = [
|
45 |
+
"RegionID",
|
46 |
+
"SizeRank",
|
47 |
+
"RegionName",
|
48 |
+
"RegionType",
|
49 |
+
"StateName",
|
50 |
+
"Bedroom Count",
|
51 |
+
"Home Type",
|
52 |
+
]
|
53 |
+
|
54 |
+
if "Zip" in filename:
|
55 |
+
continue
|
56 |
+
if "Neighborhood" in filename:
|
57 |
+
continue
|
58 |
+
if "City" in filename:
|
59 |
+
continue
|
60 |
+
if "Metro" in filename:
|
61 |
+
continue
|
62 |
+
if "County" in filename:
|
63 |
+
continue
|
64 |
+
|
65 |
+
if "City" in filename:
|
66 |
+
exclude_columns = exclude_columns + ["State", "Metro", "CountyName"]
|
67 |
+
elif "Zip" in filename:
|
68 |
+
exclude_columns = exclude_columns + [
|
69 |
+
"State",
|
70 |
+
"City",
|
71 |
+
"Metro",
|
72 |
+
"CountyName",
|
73 |
+
]
|
74 |
+
elif "County" in filename:
|
75 |
+
exclude_columns = exclude_columns + [
|
76 |
+
"State",
|
77 |
+
"Metro",
|
78 |
+
"StateCodeFIPS",
|
79 |
+
"MunicipalCodeFIPS",
|
80 |
+
]
|
81 |
+
elif "Neighborhood" in filename:
|
82 |
+
exclude_columns = exclude_columns + [
|
83 |
+
"State",
|
84 |
+
"City",
|
85 |
+
"Metro",
|
86 |
+
"CountyName",
|
87 |
+
]
|
88 |
+
|
89 |
+
if "_bdrmcnt_1_" in filename:
|
90 |
+
cur_df["Bedroom Count"] = "1-Bedroom"
|
91 |
+
elif "_bdrmcnt_2_" in filename:
|
92 |
+
cur_df["Bedroom Count"] = "2-Bedrooms"
|
93 |
+
elif "_bdrmcnt_3_" in filename:
|
94 |
+
cur_df["Bedroom Count"] = "3-Bedrooms"
|
95 |
+
elif "_bdrmcnt_4_" in filename:
|
96 |
+
cur_df["Bedroom Count"] = "4-Bedrooms"
|
97 |
+
elif "_bdrmcnt_5_" in filename:
|
98 |
+
cur_df["Bedroom Count"] = "5+-Bedrooms"
|
99 |
+
else:
|
100 |
+
cur_df["Bedroom Count"] = "All Bedrooms"
|
101 |
+
|
102 |
+
cur_df = set_home_type(cur_df, filename)
|
103 |
+
|
104 |
+
cur_df["StateName"] = cur_df["StateName"].astype(str)
|
105 |
+
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
106 |
+
|
107 |
+
data_frames = handle_slug_column_mappings(
|
108 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
combined_df = get_combined_df(
|
113 |
+
data_frames,
|
114 |
+
[
|
115 |
+
"RegionID",
|
116 |
+
"SizeRank",
|
117 |
+
"RegionName",
|
118 |
+
"RegionType",
|
119 |
+
"StateName",
|
120 |
+
"Bedroom Count",
|
121 |
+
"Home Type",
|
122 |
+
"Date",
|
123 |
+
],
|
124 |
+
)
|
125 |
+
|
126 |
+
combined_df
|
127 |
+
|
128 |
+
|
129 |
+
# In[11]:
|
130 |
+
|
131 |
+
|
132 |
+
final_df = combined_df
|
133 |
+
|
134 |
+
for index, row in final_df.iterrows():
|
135 |
+
if row["RegionType"] == "city":
|
136 |
+
final_df.at[index, "City"] = row["RegionName"]
|
137 |
+
elif row["RegionType"] == "county":
|
138 |
+
final_df.at[index, "County"] = row["RegionName"]
|
139 |
+
if row["RegionType"] == "state":
|
140 |
+
final_df.at[index, "StateName"] = row["RegionName"]
|
141 |
+
|
142 |
+
# coalesce State and StateName columns
|
143 |
+
# final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
|
144 |
+
# final_df["County"] = final_df["County"].combine_first(final_df["CountyName"])
|
145 |
+
|
146 |
+
# final_df = final_df.drop(
|
147 |
+
# columns=[
|
148 |
+
# "StateName",
|
149 |
+
# # "CountyName"
|
150 |
+
# ]
|
151 |
+
# )
|
152 |
+
final_df
|
153 |
+
|
154 |
+
|
155 |
+
# In[12]:
|
156 |
+
|
157 |
+
|
158 |
+
final_df = final_df.rename(
|
159 |
+
columns={
|
160 |
+
"RegionID": "Region ID",
|
161 |
+
"SizeRank": "Size Rank",
|
162 |
+
"RegionName": "Region",
|
163 |
+
"RegionType": "Region Type",
|
164 |
+
"StateCodeFIPS": "State Code FIPS",
|
165 |
+
"StateName": "State",
|
166 |
+
"MunicipalCodeFIPS": "Municipal Code FIPS",
|
167 |
+
}
|
168 |
+
)
|
169 |
+
|
170 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
171 |
+
|
172 |
+
final_df
|
173 |
+
|
174 |
+
|
175 |
+
# In[13]:
|
176 |
+
|
177 |
+
|
178 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
179 |
+
|
processors/home_values_forecasts.ipynb
CHANGED
@@ -398,6 +398,7 @@
|
|
398 |
" else:\n",
|
399 |
" # print('Raw')\n",
|
400 |
" cur_df.columns = list(cur_df.columns[:-3]) + cols\n",
|
|
|
401 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
402 |
"\n",
|
403 |
" data_frames.append(cur_df)\n",
|
@@ -461,6 +462,8 @@
|
|
461 |
" state = regionName.split(\", \")[1]\n",
|
462 |
" final_df.at[index, \"State\"] = state\n",
|
463 |
"\n",
|
|
|
|
|
464 |
"final_df"
|
465 |
]
|
466 |
},
|
|
|
398 |
" else:\n",
|
399 |
" # print('Raw')\n",
|
400 |
" cur_df.columns = list(cur_df.columns[:-3]) + cols\n",
|
401 |
+
"\n",
|
402 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
403 |
"\n",
|
404 |
" data_frames.append(cur_df)\n",
|
|
|
462 |
" state = regionName.split(\", \")[1]\n",
|
463 |
" final_df.at[index, \"State\"] = state\n",
|
464 |
"\n",
|
465 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
466 |
+
"\n",
|
467 |
"final_df"
|
468 |
]
|
469 |
},
|
processors/home_values_forecasts.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import get_combined_df, save_final_df_as_jsonl
|
11 |
+
|
12 |
+
|
13 |
+
# In[2]:
|
14 |
+
|
15 |
+
|
16 |
+
DATA_DIR = "../data/"
|
17 |
+
PROCESSED_DIR = "../processed/"
|
18 |
+
FACET_DIR = "home_values_forecasts/"
|
19 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
20 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
21 |
+
|
22 |
+
|
23 |
+
# In[3]:
|
24 |
+
|
25 |
+
|
26 |
+
data_frames = []
|
27 |
+
|
28 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
29 |
+
if filename.endswith(".csv"):
|
30 |
+
print("processing " + filename)
|
31 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
32 |
+
|
33 |
+
cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"]
|
34 |
+
if filename.endswith("sm_sa_month.csv"):
|
35 |
+
# print('Smoothed')
|
36 |
+
cur_df.columns = list(cur_df.columns[:-3]) + [
|
37 |
+
x + " (Smoothed) (Seasonally Adjusted)" for x in cols
|
38 |
+
]
|
39 |
+
else:
|
40 |
+
# print('Raw')
|
41 |
+
cur_df.columns = list(cur_df.columns[:-3]) + cols
|
42 |
+
|
43 |
+
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
44 |
+
|
45 |
+
data_frames.append(cur_df)
|
46 |
+
|
47 |
+
|
48 |
+
combined_df = get_combined_df(
|
49 |
+
data_frames,
|
50 |
+
[
|
51 |
+
"RegionID",
|
52 |
+
"RegionType",
|
53 |
+
"SizeRank",
|
54 |
+
"StateName",
|
55 |
+
"BaseDate",
|
56 |
+
],
|
57 |
+
)
|
58 |
+
|
59 |
+
combined_df
|
60 |
+
|
61 |
+
|
62 |
+
# In[1]:
|
63 |
+
|
64 |
+
|
65 |
+
# Adjust columns
|
66 |
+
final_df = combined_df
|
67 |
+
final_df = combined_df.drop("StateName", axis=1)
|
68 |
+
final_df = final_df.rename(
|
69 |
+
columns={
|
70 |
+
"CountyName": "County",
|
71 |
+
"BaseDate": "Date",
|
72 |
+
"RegionName": "Region",
|
73 |
+
"RegionType": "Region Type",
|
74 |
+
"RegionID": "Region ID",
|
75 |
+
"SizeRank": "Size Rank",
|
76 |
+
}
|
77 |
+
)
|
78 |
+
|
79 |
+
# iterate over rows of final_df and populate State and City columns if the regionType is msa
|
80 |
+
for index, row in final_df.iterrows():
|
81 |
+
if row["Region Type"] == "msa":
|
82 |
+
regionName = row["Region"]
|
83 |
+
# final_df.at[index, 'Metro'] = regionName
|
84 |
+
|
85 |
+
city = regionName.split(", ")[0]
|
86 |
+
final_df.at[index, "City"] = city
|
87 |
+
|
88 |
+
state = regionName.split(", ")[1]
|
89 |
+
final_df.at[index, "State"] = state
|
90 |
+
|
91 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
92 |
+
|
93 |
+
final_df
|
94 |
+
|
95 |
+
|
96 |
+
# In[9]:
|
97 |
+
|
98 |
+
|
99 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
100 |
+
|
processors/new_construction.ipynb
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
@@ -289,12 +290,7 @@
|
|
289 |
" print(\"processing \" + filename)\n",
|
290 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
291 |
"\n",
|
292 |
-
"
|
293 |
-
" cur_df[\"Home Type\"] = \"all homes\"\n",
|
294 |
-
" elif \"sfr\" in filename:\n",
|
295 |
-
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
296 |
-
" elif \"condo\" in filename:\n",
|
297 |
-
" cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
|
298 |
"\n",
|
299 |
" data_frames = handle_slug_column_mappings(\n",
|
300 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
@@ -551,6 +547,8 @@
|
|
551 |
" }\n",
|
552 |
")\n",
|
553 |
"\n",
|
|
|
|
|
554 |
"final_df.sort_values(by=[\"Region ID\", \"Home Type\", \"Date\"])"
|
555 |
]
|
556 |
},
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
|
|
290 |
" print(\"processing \" + filename)\n",
|
291 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
292 |
"\n",
|
293 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
|
|
|
|
|
|
|
|
294 |
"\n",
|
295 |
" data_frames = handle_slug_column_mappings(\n",
|
296 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
|
|
547 |
" }\n",
|
548 |
")\n",
|
549 |
"\n",
|
550 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
551 |
+
"\n",
|
552 |
"final_df.sort_values(by=[\"Region ID\", \"Home Type\", \"Date\"])"
|
553 |
]
|
554 |
},
|
processors/new_construction.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[2]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "new_construction/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[3]:
|
29 |
+
|
30 |
+
|
31 |
+
exclude_columns = [
|
32 |
+
"RegionID",
|
33 |
+
"SizeRank",
|
34 |
+
"RegionName",
|
35 |
+
"RegionType",
|
36 |
+
"StateName",
|
37 |
+
"Home Type",
|
38 |
+
]
|
39 |
+
|
40 |
+
slug_column_mappings = {
|
41 |
+
"_median_sale_price_per_sqft": "Median Sale Price per Sqft",
|
42 |
+
"_median_sale_price": "Median Sale Price",
|
43 |
+
"sales_count": "Sales Count",
|
44 |
+
}
|
45 |
+
|
46 |
+
data_frames = []
|
47 |
+
|
48 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
49 |
+
if filename.endswith(".csv"):
|
50 |
+
print("processing " + filename)
|
51 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
52 |
+
|
53 |
+
cur_df = set_home_type(cur_df, filename)
|
54 |
+
|
55 |
+
data_frames = handle_slug_column_mappings(
|
56 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
combined_df = get_combined_df(
|
61 |
+
data_frames,
|
62 |
+
[
|
63 |
+
"RegionID",
|
64 |
+
"SizeRank",
|
65 |
+
"RegionName",
|
66 |
+
"RegionType",
|
67 |
+
"StateName",
|
68 |
+
"Home Type",
|
69 |
+
"Date",
|
70 |
+
],
|
71 |
+
)
|
72 |
+
|
73 |
+
combined_df
|
74 |
+
|
75 |
+
|
76 |
+
# In[4]:
|
77 |
+
|
78 |
+
|
79 |
+
final_df = combined_df
|
80 |
+
final_df = final_df.rename(
|
81 |
+
columns={
|
82 |
+
"RegionID": "Region ID",
|
83 |
+
"SizeRank": "Size Rank",
|
84 |
+
"RegionName": "Region",
|
85 |
+
"RegionType": "Region Type",
|
86 |
+
"StateName": "State",
|
87 |
+
}
|
88 |
+
)
|
89 |
+
|
90 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
91 |
+
|
92 |
+
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
93 |
+
|
94 |
+
|
95 |
+
# In[5]:
|
96 |
+
|
97 |
+
|
98 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
99 |
+
|
processors/rentals.ipynb
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
@@ -368,56 +369,51 @@
|
|
368 |
" \"Home Type\",\n",
|
369 |
" ]\n",
|
370 |
"\n",
|
371 |
-
"
|
372 |
-
" cur_df[\"Home Type\"] = \"all homes plus multifamily\"\n",
|
373 |
-
" # change column type to string\n",
|
374 |
-
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
375 |
-
" if \"City\" in filename:\n",
|
376 |
-
" exclude_columns = [\n",
|
377 |
-
" \"RegionID\",\n",
|
378 |
-
" \"SizeRank\",\n",
|
379 |
-
" \"RegionName\",\n",
|
380 |
-
" \"RegionType\",\n",
|
381 |
-
" \"StateName\",\n",
|
382 |
-
" \"Home Type\",\n",
|
383 |
-
" # City Specific\n",
|
384 |
-
" \"State\",\n",
|
385 |
-
" \"Metro\",\n",
|
386 |
-
" \"CountyName\",\n",
|
387 |
-
" ]\n",
|
388 |
-
" elif \"Zip\" in filename:\n",
|
389 |
-
" exclude_columns = [\n",
|
390 |
-
" \"RegionID\",\n",
|
391 |
-
" \"SizeRank\",\n",
|
392 |
-
" \"RegionName\",\n",
|
393 |
-
" \"RegionType\",\n",
|
394 |
-
" \"StateName\",\n",
|
395 |
-
" \"Home Type\",\n",
|
396 |
-
" # Zip Specific\n",
|
397 |
-
" \"State\",\n",
|
398 |
-
" \"City\",\n",
|
399 |
-
" \"Metro\",\n",
|
400 |
-
" \"CountyName\",\n",
|
401 |
-
" ]\n",
|
402 |
-
" elif \"County\" in filename:\n",
|
403 |
-
" exclude_columns = [\n",
|
404 |
-
" \"RegionID\",\n",
|
405 |
-
" \"SizeRank\",\n",
|
406 |
-
" \"RegionName\",\n",
|
407 |
-
" \"RegionType\",\n",
|
408 |
-
" \"StateName\",\n",
|
409 |
-
" \"Home Type\",\n",
|
410 |
-
" # County Specific\n",
|
411 |
-
" \"State\",\n",
|
412 |
-
" \"Metro\",\n",
|
413 |
-
" \"StateCodeFIPS\",\n",
|
414 |
-
" \"MunicipalCodeFIPS\",\n",
|
415 |
-
" ]\n",
|
416 |
"\n",
|
417 |
-
"
|
418 |
-
"
|
419 |
-
"
|
420 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
"\n",
|
422 |
" data_frames = handle_slug_column_mappings(\n",
|
423 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
@@ -1075,6 +1071,8 @@
|
|
1075 |
" }\n",
|
1076 |
")\n",
|
1077 |
"\n",
|
|
|
|
|
1078 |
"final_df"
|
1079 |
]
|
1080 |
},
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
|
|
369 |
" \"Home Type\",\n",
|
370 |
" ]\n",
|
371 |
"\n",
|
372 |
+
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
"\n",
|
374 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
375 |
+
"\n",
|
376 |
+
" if \"City\" in filename:\n",
|
377 |
+
" exclude_columns = [\n",
|
378 |
+
" \"RegionID\",\n",
|
379 |
+
" \"SizeRank\",\n",
|
380 |
+
" \"RegionName\",\n",
|
381 |
+
" \"RegionType\",\n",
|
382 |
+
" \"StateName\",\n",
|
383 |
+
" \"Home Type\",\n",
|
384 |
+
" # City Specific\n",
|
385 |
+
" \"State\",\n",
|
386 |
+
" \"Metro\",\n",
|
387 |
+
" \"CountyName\",\n",
|
388 |
+
" ]\n",
|
389 |
+
" elif \"Zip\" in filename:\n",
|
390 |
+
" exclude_columns = [\n",
|
391 |
+
" \"RegionID\",\n",
|
392 |
+
" \"SizeRank\",\n",
|
393 |
+
" \"RegionName\",\n",
|
394 |
+
" \"RegionType\",\n",
|
395 |
+
" \"StateName\",\n",
|
396 |
+
" \"Home Type\",\n",
|
397 |
+
" # Zip Specific\n",
|
398 |
+
" \"State\",\n",
|
399 |
+
" \"City\",\n",
|
400 |
+
" \"Metro\",\n",
|
401 |
+
" \"CountyName\",\n",
|
402 |
+
" ]\n",
|
403 |
+
" elif \"County\" in filename:\n",
|
404 |
+
" exclude_columns = [\n",
|
405 |
+
" \"RegionID\",\n",
|
406 |
+
" \"SizeRank\",\n",
|
407 |
+
" \"RegionName\",\n",
|
408 |
+
" \"RegionType\",\n",
|
409 |
+
" \"StateName\",\n",
|
410 |
+
" \"Home Type\",\n",
|
411 |
+
" # County Specific\n",
|
412 |
+
" \"State\",\n",
|
413 |
+
" \"Metro\",\n",
|
414 |
+
" \"StateCodeFIPS\",\n",
|
415 |
+
" \"MunicipalCodeFIPS\",\n",
|
416 |
+
" ]\n",
|
417 |
"\n",
|
418 |
" data_frames = handle_slug_column_mappings(\n",
|
419 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
|
|
1071 |
" }\n",
|
1072 |
")\n",
|
1073 |
"\n",
|
1074 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
1075 |
+
"\n",
|
1076 |
"final_df"
|
1077 |
]
|
1078 |
},
|
processors/rentals.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[2]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[3]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "rentals/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[7]:
|
29 |
+
|
30 |
+
|
31 |
+
data_frames = []
|
32 |
+
|
33 |
+
slug_column_mappings = {"": "Rent"}
|
34 |
+
|
35 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
36 |
+
if filename.endswith(".csv"):
|
37 |
+
# print("processing " + filename)
|
38 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
39 |
+
exclude_columns = [
|
40 |
+
"RegionID",
|
41 |
+
"SizeRank",
|
42 |
+
"RegionName",
|
43 |
+
"RegionType",
|
44 |
+
"StateName",
|
45 |
+
"Home Type",
|
46 |
+
]
|
47 |
+
|
48 |
+
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
49 |
+
|
50 |
+
cur_df = set_home_type(cur_df, filename)
|
51 |
+
|
52 |
+
if "City" in filename:
|
53 |
+
exclude_columns = [
|
54 |
+
"RegionID",
|
55 |
+
"SizeRank",
|
56 |
+
"RegionName",
|
57 |
+
"RegionType",
|
58 |
+
"StateName",
|
59 |
+
"Home Type",
|
60 |
+
# City Specific
|
61 |
+
"State",
|
62 |
+
"Metro",
|
63 |
+
"CountyName",
|
64 |
+
]
|
65 |
+
elif "Zip" in filename:
|
66 |
+
exclude_columns = [
|
67 |
+
"RegionID",
|
68 |
+
"SizeRank",
|
69 |
+
"RegionName",
|
70 |
+
"RegionType",
|
71 |
+
"StateName",
|
72 |
+
"Home Type",
|
73 |
+
# Zip Specific
|
74 |
+
"State",
|
75 |
+
"City",
|
76 |
+
"Metro",
|
77 |
+
"CountyName",
|
78 |
+
]
|
79 |
+
elif "County" in filename:
|
80 |
+
exclude_columns = [
|
81 |
+
"RegionID",
|
82 |
+
"SizeRank",
|
83 |
+
"RegionName",
|
84 |
+
"RegionType",
|
85 |
+
"StateName",
|
86 |
+
"Home Type",
|
87 |
+
# County Specific
|
88 |
+
"State",
|
89 |
+
"Metro",
|
90 |
+
"StateCodeFIPS",
|
91 |
+
"MunicipalCodeFIPS",
|
92 |
+
]
|
93 |
+
|
94 |
+
data_frames = handle_slug_column_mappings(
|
95 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
combined_df = get_combined_df(
|
100 |
+
data_frames,
|
101 |
+
[
|
102 |
+
"RegionID",
|
103 |
+
"SizeRank",
|
104 |
+
"RegionName",
|
105 |
+
"RegionType",
|
106 |
+
"StateName",
|
107 |
+
"Home Type",
|
108 |
+
"Date",
|
109 |
+
],
|
110 |
+
)
|
111 |
+
|
112 |
+
combined_df
|
113 |
+
|
114 |
+
|
115 |
+
# In[8]:
|
116 |
+
|
117 |
+
|
118 |
+
final_df = combined_df
|
119 |
+
|
120 |
+
for index, row in final_df.iterrows():
|
121 |
+
if row["RegionType"] == "city":
|
122 |
+
final_df.at[index, "City"] = row["RegionName"]
|
123 |
+
elif row["RegionType"] == "county":
|
124 |
+
final_df.at[index, "County"] = row["RegionName"]
|
125 |
+
|
126 |
+
# coalesce State and StateName columns
|
127 |
+
final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
|
128 |
+
final_df["State"] = final_df["County"].combine_first(final_df["CountyName"])
|
129 |
+
|
130 |
+
final_df = final_df.drop(columns=["StateName", "CountyName"])
|
131 |
+
final_df
|
132 |
+
|
133 |
+
|
134 |
+
# In[6]:
|
135 |
+
|
136 |
+
|
137 |
+
# Adjust column names
|
138 |
+
final_df = final_df.rename(
|
139 |
+
columns={
|
140 |
+
"RegionID": "Region ID",
|
141 |
+
"SizeRank": "Size Rank",
|
142 |
+
"RegionName": "Region",
|
143 |
+
"RegionType": "Region Type",
|
144 |
+
"StateCodeFIPS": "State Code FIPS",
|
145 |
+
"MunicipalCodeFIPS": "Municipal Code FIPS",
|
146 |
+
}
|
147 |
+
)
|
148 |
+
|
149 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
150 |
+
|
151 |
+
final_df
|
152 |
+
|
153 |
+
|
154 |
+
# In[7]:
|
155 |
+
|
156 |
+
|
157 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
158 |
+
|
processors/sales.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -13,12 +13,13 @@
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
|
|
16 |
")"
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
@@ -31,7 +32,7 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"metadata": {},
|
36 |
"outputs": [
|
37 |
{
|
@@ -441,7 +442,7 @@
|
|
441 |
"[255024 rows x 18 columns]"
|
442 |
]
|
443 |
},
|
444 |
-
"execution_count":
|
445 |
"metadata": {},
|
446 |
"output_type": "execute_result"
|
447 |
}
|
@@ -476,10 +477,7 @@
|
|
476 |
"\n",
|
477 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
478 |
"\n",
|
479 |
-
"
|
480 |
-
" cur_df[\"Home Type\"] = \"all homes\"\n",
|
481 |
-
" elif \"_sfr_\" in filename:\n",
|
482 |
-
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
483 |
"\n",
|
484 |
" data_frames = handle_slug_column_mappings(\n",
|
485 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
@@ -504,7 +502,7 @@
|
|
504 |
},
|
505 |
{
|
506 |
"cell_type": "code",
|
507 |
-
"execution_count":
|
508 |
"metadata": {},
|
509 |
"outputs": [
|
510 |
{
|
@@ -880,7 +878,7 @@
|
|
880 |
"[255024 rows x 18 columns]"
|
881 |
]
|
882 |
},
|
883 |
-
"execution_count":
|
884 |
"metadata": {},
|
885 |
"output_type": "execute_result"
|
886 |
}
|
@@ -903,7 +901,396 @@
|
|
903 |
},
|
904 |
{
|
905 |
"cell_type": "code",
|
906 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
907 |
"metadata": {},
|
908 |
"outputs": [],
|
909 |
"source": [
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
+
" set_home_type,\n",
|
17 |
")"
|
18 |
]
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 3,
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 4,
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
|
|
442 |
"[255024 rows x 18 columns]"
|
443 |
]
|
444 |
},
|
445 |
+
"execution_count": 4,
|
446 |
"metadata": {},
|
447 |
"output_type": "execute_result"
|
448 |
}
|
|
|
477 |
"\n",
|
478 |
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
479 |
"\n",
|
480 |
+
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
|
|
|
|
481 |
"\n",
|
482 |
" data_frames = handle_slug_column_mappings(\n",
|
483 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
|
|
502 |
},
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
+
"execution_count": 52,
|
506 |
"metadata": {},
|
507 |
"outputs": [
|
508 |
{
|
|
|
878 |
"[255024 rows x 18 columns]"
|
879 |
]
|
880 |
},
|
881 |
+
"execution_count": 52,
|
882 |
"metadata": {},
|
883 |
"output_type": "execute_result"
|
884 |
}
|
|
|
901 |
},
|
902 |
{
|
903 |
"cell_type": "code",
|
904 |
+
"execution_count": 53,
|
905 |
+
"metadata": {},
|
906 |
+
"outputs": [
|
907 |
+
{
|
908 |
+
"data": {
|
909 |
+
"text/html": [
|
910 |
+
"<div>\n",
|
911 |
+
"<style scoped>\n",
|
912 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
913 |
+
" vertical-align: middle;\n",
|
914 |
+
" }\n",
|
915 |
+
"\n",
|
916 |
+
" .dataframe tbody tr th {\n",
|
917 |
+
" vertical-align: top;\n",
|
918 |
+
" }\n",
|
919 |
+
"\n",
|
920 |
+
" .dataframe thead th {\n",
|
921 |
+
" text-align: right;\n",
|
922 |
+
" }\n",
|
923 |
+
"</style>\n",
|
924 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
925 |
+
" <thead>\n",
|
926 |
+
" <tr style=\"text-align: right;\">\n",
|
927 |
+
" <th></th>\n",
|
928 |
+
" <th>Region ID</th>\n",
|
929 |
+
" <th>Size Rank</th>\n",
|
930 |
+
" <th>Region</th>\n",
|
931 |
+
" <th>Region Type</th>\n",
|
932 |
+
" <th>State</th>\n",
|
933 |
+
" <th>Home Type</th>\n",
|
934 |
+
" <th>Date</th>\n",
|
935 |
+
" <th>Median Sale to List Ratio</th>\n",
|
936 |
+
" <th>Median Sale Price</th>\n",
|
937 |
+
" <th>Median Sale Price (Smoothed) (Seasonally Adjusted)</th>\n",
|
938 |
+
" <th>Median Sale Price (Smoothed)</th>\n",
|
939 |
+
" <th>% Sold Below List (Smoothed)</th>\n",
|
940 |
+
" <th>Median Sale to List Ratio (Smoothed)</th>\n",
|
941 |
+
" <th>% Sold Above List</th>\n",
|
942 |
+
" <th>Mean Sale to List Ratio (Smoothed)</th>\n",
|
943 |
+
" <th>Mean Sale to List Ratio</th>\n",
|
944 |
+
" <th>% Sold Below List</th>\n",
|
945 |
+
" <th>% Sold Above List (Smoothed)</th>\n",
|
946 |
+
" </tr>\n",
|
947 |
+
" </thead>\n",
|
948 |
+
" <tbody>\n",
|
949 |
+
" <tr>\n",
|
950 |
+
" <th>0</th>\n",
|
951 |
+
" <td>102001</td>\n",
|
952 |
+
" <td>0</td>\n",
|
953 |
+
" <td>United States</td>\n",
|
954 |
+
" <td>country</td>\n",
|
955 |
+
" <td>NaN</td>\n",
|
956 |
+
" <td>SFR</td>\n",
|
957 |
+
" <td>2008-02-02</td>\n",
|
958 |
+
" <td>NaN</td>\n",
|
959 |
+
" <td>172000.0</td>\n",
|
960 |
+
" <td>NaN</td>\n",
|
961 |
+
" <td>NaN</td>\n",
|
962 |
+
" <td>NaN</td>\n",
|
963 |
+
" <td>NaN</td>\n",
|
964 |
+
" <td>NaN</td>\n",
|
965 |
+
" <td>NaN</td>\n",
|
966 |
+
" <td>NaN</td>\n",
|
967 |
+
" <td>NaN</td>\n",
|
968 |
+
" <td>NaN</td>\n",
|
969 |
+
" </tr>\n",
|
970 |
+
" <tr>\n",
|
971 |
+
" <th>1</th>\n",
|
972 |
+
" <td>102001</td>\n",
|
973 |
+
" <td>0</td>\n",
|
974 |
+
" <td>United States</td>\n",
|
975 |
+
" <td>country</td>\n",
|
976 |
+
" <td>NaN</td>\n",
|
977 |
+
" <td>SFR</td>\n",
|
978 |
+
" <td>2008-02-09</td>\n",
|
979 |
+
" <td>NaN</td>\n",
|
980 |
+
" <td>165400.0</td>\n",
|
981 |
+
" <td>NaN</td>\n",
|
982 |
+
" <td>NaN</td>\n",
|
983 |
+
" <td>NaN</td>\n",
|
984 |
+
" <td>NaN</td>\n",
|
985 |
+
" <td>NaN</td>\n",
|
986 |
+
" <td>NaN</td>\n",
|
987 |
+
" <td>NaN</td>\n",
|
988 |
+
" <td>NaN</td>\n",
|
989 |
+
" <td>NaN</td>\n",
|
990 |
+
" </tr>\n",
|
991 |
+
" <tr>\n",
|
992 |
+
" <th>2</th>\n",
|
993 |
+
" <td>102001</td>\n",
|
994 |
+
" <td>0</td>\n",
|
995 |
+
" <td>United States</td>\n",
|
996 |
+
" <td>country</td>\n",
|
997 |
+
" <td>NaN</td>\n",
|
998 |
+
" <td>SFR</td>\n",
|
999 |
+
" <td>2008-02-16</td>\n",
|
1000 |
+
" <td>NaN</td>\n",
|
1001 |
+
" <td>168000.0</td>\n",
|
1002 |
+
" <td>NaN</td>\n",
|
1003 |
+
" <td>NaN</td>\n",
|
1004 |
+
" <td>NaN</td>\n",
|
1005 |
+
" <td>NaN</td>\n",
|
1006 |
+
" <td>NaN</td>\n",
|
1007 |
+
" <td>NaN</td>\n",
|
1008 |
+
" <td>NaN</td>\n",
|
1009 |
+
" <td>NaN</td>\n",
|
1010 |
+
" <td>NaN</td>\n",
|
1011 |
+
" </tr>\n",
|
1012 |
+
" <tr>\n",
|
1013 |
+
" <th>3</th>\n",
|
1014 |
+
" <td>102001</td>\n",
|
1015 |
+
" <td>0</td>\n",
|
1016 |
+
" <td>United States</td>\n",
|
1017 |
+
" <td>country</td>\n",
|
1018 |
+
" <td>NaN</td>\n",
|
1019 |
+
" <td>SFR</td>\n",
|
1020 |
+
" <td>2008-02-23</td>\n",
|
1021 |
+
" <td>NaN</td>\n",
|
1022 |
+
" <td>167600.0</td>\n",
|
1023 |
+
" <td>NaN</td>\n",
|
1024 |
+
" <td>167600.0</td>\n",
|
1025 |
+
" <td>NaN</td>\n",
|
1026 |
+
" <td>NaN</td>\n",
|
1027 |
+
" <td>NaN</td>\n",
|
1028 |
+
" <td>NaN</td>\n",
|
1029 |
+
" <td>NaN</td>\n",
|
1030 |
+
" <td>NaN</td>\n",
|
1031 |
+
" <td>NaN</td>\n",
|
1032 |
+
" </tr>\n",
|
1033 |
+
" <tr>\n",
|
1034 |
+
" <th>4</th>\n",
|
1035 |
+
" <td>102001</td>\n",
|
1036 |
+
" <td>0</td>\n",
|
1037 |
+
" <td>United States</td>\n",
|
1038 |
+
" <td>country</td>\n",
|
1039 |
+
" <td>NaN</td>\n",
|
1040 |
+
" <td>SFR</td>\n",
|
1041 |
+
" <td>2008-03-01</td>\n",
|
1042 |
+
" <td>NaN</td>\n",
|
1043 |
+
" <td>168100.0</td>\n",
|
1044 |
+
" <td>NaN</td>\n",
|
1045 |
+
" <td>168100.0</td>\n",
|
1046 |
+
" <td>NaN</td>\n",
|
1047 |
+
" <td>NaN</td>\n",
|
1048 |
+
" <td>NaN</td>\n",
|
1049 |
+
" <td>NaN</td>\n",
|
1050 |
+
" <td>NaN</td>\n",
|
1051 |
+
" <td>NaN</td>\n",
|
1052 |
+
" <td>NaN</td>\n",
|
1053 |
+
" </tr>\n",
|
1054 |
+
" <tr>\n",
|
1055 |
+
" <th>...</th>\n",
|
1056 |
+
" <td>...</td>\n",
|
1057 |
+
" <td>...</td>\n",
|
1058 |
+
" <td>...</td>\n",
|
1059 |
+
" <td>...</td>\n",
|
1060 |
+
" <td>...</td>\n",
|
1061 |
+
" <td>...</td>\n",
|
1062 |
+
" <td>...</td>\n",
|
1063 |
+
" <td>...</td>\n",
|
1064 |
+
" <td>...</td>\n",
|
1065 |
+
" <td>...</td>\n",
|
1066 |
+
" <td>...</td>\n",
|
1067 |
+
" <td>...</td>\n",
|
1068 |
+
" <td>...</td>\n",
|
1069 |
+
" <td>...</td>\n",
|
1070 |
+
" <td>...</td>\n",
|
1071 |
+
" <td>...</td>\n",
|
1072 |
+
" <td>...</td>\n",
|
1073 |
+
" <td>...</td>\n",
|
1074 |
+
" </tr>\n",
|
1075 |
+
" <tr>\n",
|
1076 |
+
" <th>255019</th>\n",
|
1077 |
+
" <td>845160</td>\n",
|
1078 |
+
" <td>198</td>\n",
|
1079 |
+
" <td>Prescott Valley, AZ</td>\n",
|
1080 |
+
" <td>msa</td>\n",
|
1081 |
+
" <td>AZ</td>\n",
|
1082 |
+
" <td>all homes</td>\n",
|
1083 |
+
" <td>2023-11-11</td>\n",
|
1084 |
+
" <td>0.985132</td>\n",
|
1085 |
+
" <td>515000.0</td>\n",
|
1086 |
+
" <td>480020.0</td>\n",
|
1087 |
+
" <td>480020.0</td>\n",
|
1088 |
+
" <td>0.651221</td>\n",
|
1089 |
+
" <td>0.982460</td>\n",
|
1090 |
+
" <td>0.080000</td>\n",
|
1091 |
+
" <td>0.978546</td>\n",
|
1092 |
+
" <td>0.983288</td>\n",
|
1093 |
+
" <td>0.680000</td>\n",
|
1094 |
+
" <td>0.119711</td>\n",
|
1095 |
+
" </tr>\n",
|
1096 |
+
" <tr>\n",
|
1097 |
+
" <th>255020</th>\n",
|
1098 |
+
" <td>845160</td>\n",
|
1099 |
+
" <td>198</td>\n",
|
1100 |
+
" <td>Prescott Valley, AZ</td>\n",
|
1101 |
+
" <td>msa</td>\n",
|
1102 |
+
" <td>AZ</td>\n",
|
1103 |
+
" <td>all homes</td>\n",
|
1104 |
+
" <td>2023-11-18</td>\n",
|
1105 |
+
" <td>0.972559</td>\n",
|
1106 |
+
" <td>510000.0</td>\n",
|
1107 |
+
" <td>476901.0</td>\n",
|
1108 |
+
" <td>476901.0</td>\n",
|
1109 |
+
" <td>0.659583</td>\n",
|
1110 |
+
" <td>0.980362</td>\n",
|
1111 |
+
" <td>0.142857</td>\n",
|
1112 |
+
" <td>0.972912</td>\n",
|
1113 |
+
" <td>0.958341</td>\n",
|
1114 |
+
" <td>0.625000</td>\n",
|
1115 |
+
" <td>0.120214</td>\n",
|
1116 |
+
" </tr>\n",
|
1117 |
+
" <tr>\n",
|
1118 |
+
" <th>255021</th>\n",
|
1119 |
+
" <td>845160</td>\n",
|
1120 |
+
" <td>198</td>\n",
|
1121 |
+
" <td>Prescott Valley, AZ</td>\n",
|
1122 |
+
" <td>msa</td>\n",
|
1123 |
+
" <td>AZ</td>\n",
|
1124 |
+
" <td>all homes</td>\n",
|
1125 |
+
" <td>2023-11-25</td>\n",
|
1126 |
+
" <td>0.979644</td>\n",
|
1127 |
+
" <td>484500.0</td>\n",
|
1128 |
+
" <td>496540.0</td>\n",
|
1129 |
+
" <td>496540.0</td>\n",
|
1130 |
+
" <td>0.669387</td>\n",
|
1131 |
+
" <td>0.979179</td>\n",
|
1132 |
+
" <td>0.088235</td>\n",
|
1133 |
+
" <td>0.971177</td>\n",
|
1134 |
+
" <td>0.973797</td>\n",
|
1135 |
+
" <td>0.705882</td>\n",
|
1136 |
+
" <td>0.107185</td>\n",
|
1137 |
+
" </tr>\n",
|
1138 |
+
" <tr>\n",
|
1139 |
+
" <th>255022</th>\n",
|
1140 |
+
" <td>845160</td>\n",
|
1141 |
+
" <td>198</td>\n",
|
1142 |
+
" <td>Prescott Valley, AZ</td>\n",
|
1143 |
+
" <td>msa</td>\n",
|
1144 |
+
" <td>AZ</td>\n",
|
1145 |
+
" <td>all homes</td>\n",
|
1146 |
+
" <td>2023-12-02</td>\n",
|
1147 |
+
" <td>0.978261</td>\n",
|
1148 |
+
" <td>538000.0</td>\n",
|
1149 |
+
" <td>510491.0</td>\n",
|
1150 |
+
" <td>510491.0</td>\n",
|
1151 |
+
" <td>0.678777</td>\n",
|
1152 |
+
" <td>0.978899</td>\n",
|
1153 |
+
" <td>0.126761</td>\n",
|
1154 |
+
" <td>0.970576</td>\n",
|
1155 |
+
" <td>0.966876</td>\n",
|
1156 |
+
" <td>0.704225</td>\n",
|
1157 |
+
" <td>0.109463</td>\n",
|
1158 |
+
" </tr>\n",
|
1159 |
+
" <tr>\n",
|
1160 |
+
" <th>255023</th>\n",
|
1161 |
+
" <td>845160</td>\n",
|
1162 |
+
" <td>198</td>\n",
|
1163 |
+
" <td>Prescott Valley, AZ</td>\n",
|
1164 |
+
" <td>msa</td>\n",
|
1165 |
+
" <td>AZ</td>\n",
|
1166 |
+
" <td>all homes</td>\n",
|
1167 |
+
" <td>2023-12-09</td>\n",
|
1168 |
+
" <td>0.981498</td>\n",
|
1169 |
+
" <td>485000.0</td>\n",
|
1170 |
+
" <td>503423.0</td>\n",
|
1171 |
+
" <td>503423.0</td>\n",
|
1172 |
+
" <td>0.658777</td>\n",
|
1173 |
+
" <td>0.977990</td>\n",
|
1174 |
+
" <td>0.100000</td>\n",
|
1175 |
+
" <td>0.970073</td>\n",
|
1176 |
+
" <td>0.981278</td>\n",
|
1177 |
+
" <td>0.600000</td>\n",
|
1178 |
+
" <td>0.114463</td>\n",
|
1179 |
+
" </tr>\n",
|
1180 |
+
" </tbody>\n",
|
1181 |
+
"</table>\n",
|
1182 |
+
"<p>255024 rows × 18 columns</p>\n",
|
1183 |
+
"</div>"
|
1184 |
+
],
|
1185 |
+
"text/plain": [
|
1186 |
+
" Region ID Size Rank Region Region Type State \\\n",
|
1187 |
+
"0 102001 0 United States country NaN \n",
|
1188 |
+
"1 102001 0 United States country NaN \n",
|
1189 |
+
"2 102001 0 United States country NaN \n",
|
1190 |
+
"3 102001 0 United States country NaN \n",
|
1191 |
+
"4 102001 0 United States country NaN \n",
|
1192 |
+
"... ... ... ... ... ... \n",
|
1193 |
+
"255019 845160 198 Prescott Valley, AZ msa AZ \n",
|
1194 |
+
"255020 845160 198 Prescott Valley, AZ msa AZ \n",
|
1195 |
+
"255021 845160 198 Prescott Valley, AZ msa AZ \n",
|
1196 |
+
"255022 845160 198 Prescott Valley, AZ msa AZ \n",
|
1197 |
+
"255023 845160 198 Prescott Valley, AZ msa AZ \n",
|
1198 |
+
"\n",
|
1199 |
+
" Home Type Date Median Sale to List Ratio Median Sale Price \\\n",
|
1200 |
+
"0 SFR 2008-02-02 NaN 172000.0 \n",
|
1201 |
+
"1 SFR 2008-02-09 NaN 165400.0 \n",
|
1202 |
+
"2 SFR 2008-02-16 NaN 168000.0 \n",
|
1203 |
+
"3 SFR 2008-02-23 NaN 167600.0 \n",
|
1204 |
+
"4 SFR 2008-03-01 NaN 168100.0 \n",
|
1205 |
+
"... ... ... ... ... \n",
|
1206 |
+
"255019 all homes 2023-11-11 0.985132 515000.0 \n",
|
1207 |
+
"255020 all homes 2023-11-18 0.972559 510000.0 \n",
|
1208 |
+
"255021 all homes 2023-11-25 0.979644 484500.0 \n",
|
1209 |
+
"255022 all homes 2023-12-02 0.978261 538000.0 \n",
|
1210 |
+
"255023 all homes 2023-12-09 0.981498 485000.0 \n",
|
1211 |
+
"\n",
|
1212 |
+
" Median Sale Price (Smoothed) (Seasonally Adjusted) \\\n",
|
1213 |
+
"0 NaN \n",
|
1214 |
+
"1 NaN \n",
|
1215 |
+
"2 NaN \n",
|
1216 |
+
"3 NaN \n",
|
1217 |
+
"4 NaN \n",
|
1218 |
+
"... ... \n",
|
1219 |
+
"255019 480020.0 \n",
|
1220 |
+
"255020 476901.0 \n",
|
1221 |
+
"255021 496540.0 \n",
|
1222 |
+
"255022 510491.0 \n",
|
1223 |
+
"255023 503423.0 \n",
|
1224 |
+
"\n",
|
1225 |
+
" Median Sale Price (Smoothed) % Sold Below List (Smoothed) \\\n",
|
1226 |
+
"0 NaN NaN \n",
|
1227 |
+
"1 NaN NaN \n",
|
1228 |
+
"2 NaN NaN \n",
|
1229 |
+
"3 167600.0 NaN \n",
|
1230 |
+
"4 168100.0 NaN \n",
|
1231 |
+
"... ... ... \n",
|
1232 |
+
"255019 480020.0 0.651221 \n",
|
1233 |
+
"255020 476901.0 0.659583 \n",
|
1234 |
+
"255021 496540.0 0.669387 \n",
|
1235 |
+
"255022 510491.0 0.678777 \n",
|
1236 |
+
"255023 503423.0 0.658777 \n",
|
1237 |
+
"\n",
|
1238 |
+
" Median Sale to List Ratio (Smoothed) % Sold Above List \\\n",
|
1239 |
+
"0 NaN NaN \n",
|
1240 |
+
"1 NaN NaN \n",
|
1241 |
+
"2 NaN NaN \n",
|
1242 |
+
"3 NaN NaN \n",
|
1243 |
+
"4 NaN NaN \n",
|
1244 |
+
"... ... ... \n",
|
1245 |
+
"255019 0.982460 0.080000 \n",
|
1246 |
+
"255020 0.980362 0.142857 \n",
|
1247 |
+
"255021 0.979179 0.088235 \n",
|
1248 |
+
"255022 0.978899 0.126761 \n",
|
1249 |
+
"255023 0.977990 0.100000 \n",
|
1250 |
+
"\n",
|
1251 |
+
" Mean Sale to List Ratio (Smoothed) Mean Sale to List Ratio \\\n",
|
1252 |
+
"0 NaN NaN \n",
|
1253 |
+
"1 NaN NaN \n",
|
1254 |
+
"2 NaN NaN \n",
|
1255 |
+
"3 NaN NaN \n",
|
1256 |
+
"4 NaN NaN \n",
|
1257 |
+
"... ... ... \n",
|
1258 |
+
"255019 0.978546 0.983288 \n",
|
1259 |
+
"255020 0.972912 0.958341 \n",
|
1260 |
+
"255021 0.971177 0.973797 \n",
|
1261 |
+
"255022 0.970576 0.966876 \n",
|
1262 |
+
"255023 0.970073 0.981278 \n",
|
1263 |
+
"\n",
|
1264 |
+
" % Sold Below List % Sold Above List (Smoothed) \n",
|
1265 |
+
"0 NaN NaN \n",
|
1266 |
+
"1 NaN NaN \n",
|
1267 |
+
"2 NaN NaN \n",
|
1268 |
+
"3 NaN NaN \n",
|
1269 |
+
"4 NaN NaN \n",
|
1270 |
+
"... ... ... \n",
|
1271 |
+
"255019 0.680000 0.119711 \n",
|
1272 |
+
"255020 0.625000 0.120214 \n",
|
1273 |
+
"255021 0.705882 0.107185 \n",
|
1274 |
+
"255022 0.704225 0.109463 \n",
|
1275 |
+
"255023 0.600000 0.114463 \n",
|
1276 |
+
"\n",
|
1277 |
+
"[255024 rows x 18 columns]"
|
1278 |
+
]
|
1279 |
+
},
|
1280 |
+
"execution_count": 53,
|
1281 |
+
"metadata": {},
|
1282 |
+
"output_type": "execute_result"
|
1283 |
+
}
|
1284 |
+
],
|
1285 |
+
"source": [
|
1286 |
+
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
|
1287 |
+
"\n",
|
1288 |
+
"final_df"
|
1289 |
+
]
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"cell_type": "code",
|
1293 |
+
"execution_count": 54,
|
1294 |
"metadata": {},
|
1295 |
"outputs": [],
|
1296 |
"source": [
|
processors/sales.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[2]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
from helpers import (
|
11 |
+
get_combined_df,
|
12 |
+
save_final_df_as_jsonl,
|
13 |
+
handle_slug_column_mappings,
|
14 |
+
set_home_type,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
# In[3]:
|
19 |
+
|
20 |
+
|
21 |
+
DATA_DIR = "../data"
|
22 |
+
PROCESSED_DIR = "../processed/"
|
23 |
+
FACET_DIR = "sales/"
|
24 |
+
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
+
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
+
|
27 |
+
|
28 |
+
# In[4]:
|
29 |
+
|
30 |
+
|
31 |
+
exclude_columns = [
|
32 |
+
"RegionID",
|
33 |
+
"SizeRank",
|
34 |
+
"RegionName",
|
35 |
+
"RegionType",
|
36 |
+
"StateName",
|
37 |
+
"Home Type",
|
38 |
+
]
|
39 |
+
|
40 |
+
slug_column_mappings = {
|
41 |
+
"_median_sale_to_list_": "Median Sale to List Ratio",
|
42 |
+
"_mean_sale_to_list_": "Mean Sale to List Ratio",
|
43 |
+
"_median_sale_price_": "Median Sale Price",
|
44 |
+
"_pct_sold_above_list_": "% Sold Above List",
|
45 |
+
"_pct_sold_below_list_": "% Sold Below List",
|
46 |
+
"_sales_count_now_": "Nowcast",
|
47 |
+
}
|
48 |
+
|
49 |
+
data_frames = []
|
50 |
+
|
51 |
+
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
52 |
+
if filename.endswith(".csv"):
|
53 |
+
print("processing " + filename)
|
54 |
+
# ignore monthly data for now since it is redundant
|
55 |
+
if "month" in filename:
|
56 |
+
continue
|
57 |
+
|
58 |
+
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
59 |
+
|
60 |
+
cur_df = set_home_type(cur_df, filename)
|
61 |
+
|
62 |
+
data_frames = handle_slug_column_mappings(
|
63 |
+
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
combined_df = get_combined_df(
|
68 |
+
data_frames,
|
69 |
+
[
|
70 |
+
"RegionID",
|
71 |
+
"SizeRank",
|
72 |
+
"RegionName",
|
73 |
+
"RegionType",
|
74 |
+
"StateName",
|
75 |
+
"Home Type",
|
76 |
+
"Date",
|
77 |
+
],
|
78 |
+
)
|
79 |
+
|
80 |
+
combined_df
|
81 |
+
|
82 |
+
|
83 |
+
# In[52]:
|
84 |
+
|
85 |
+
|
86 |
+
# Adjust column names
|
87 |
+
final_df = combined_df.rename(
|
88 |
+
columns={
|
89 |
+
"RegionID": "Region ID",
|
90 |
+
"SizeRank": "Size Rank",
|
91 |
+
"RegionName": "Region",
|
92 |
+
"RegionType": "Region Type",
|
93 |
+
"StateName": "State",
|
94 |
+
}
|
95 |
+
)
|
96 |
+
|
97 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"])
|
98 |
+
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
99 |
+
|
100 |
+
|
101 |
+
# In[53]:
|
102 |
+
|
103 |
+
|
104 |
+
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
105 |
+
|
106 |
+
final_df
|
107 |
+
|
108 |
+
|
109 |
+
# In[54]:
|
110 |
+
|
111 |
+
|
112 |
+
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
113 |
+
|