File size: 4,941 Bytes
aaf5555
256b18b
30d7412
 
 
aaf5555
30d7412
 
 
 
 
 
 
 
 
477bf25
30d7412
 
1f5b8cf
30d7412
 
 
 
aaf5555
30d7412
1f5b8cf
 
 
 
 
572664c
112785a
30d7412
aaf5555
cc36cbe
aaf5555
30d7412
 
c9f41b3
89991b9
7742117
89991b9
d87f6f6
89991b9
8258d5e
8bc369b
aaf5555
7742117
 
2244cf2
7742117
 
112785a
7cfc1a4
 
 
30d7412
7cfc1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
f4eda52
7cfc1a4
 
 
4374727
aaf5555
cfd6fff
30d7412
4374727
30d7412
eb71e30
fc74df6
112785a
30d7412
 
112785a
30d7412
 
e2ab970
112785a
30d7412
 
aaf5555
 
17d7c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599a10f
ab8afac
 
 
d10ffea
17d7c85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from datasets import GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Value, Sequence, ClassLabel, Image, BuilderConfig, SplitGenerator, Version
import datasets
import pandas as pd
import json
import zipfile
import os

_DESCRIPTION = """\
This dataset is curated from the original “The MultiCaRe Dataset” to focus on the chest tuberculosis patients and can be used to develop algorithms of the segmentation of chest CT images and the classification of tuberculosis positive or control.
"""

_CITATION = """\
Nievas Offidani, M. and Delrieux, C. (2023) “The MultiCaRe Dataset: A Multimodal Case Report Dataset with Clinical Cases, Labeled Images and Captions from Open Access PMC Articles”. Zenodo. doi: 10.5281/zenodo.10079370.
"""

class TuberculosisDataset(GeneratorBasedBuilder):
    # Define dataset's name
    BUILDER_CONFIGS = [
        BuilderConfig(name="tuberculosis_dataset", version=Version("1.0.0"))
    ]

    def _info(self):
        return DatasetInfo(
            description=_DESCRIPTION,
            features=Features({
                "case_id": Value("string"),
                "gender": Value("string"),
                "age": Value("int8"),
                "case_text": Value("string"),
                "keywords": Value("string"),
                "image_file": Image(),  # Using Image type
                "caption": Value("string"),
            }),
            supervised_keys=None,
            homepage="https://zenodo.org/records/10079370",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        base_url = "https://raw.githubusercontent.com/zhankai-ye/tuberculosis_dataset/main/"
        urls = {
            "cases_csv": f"{base_url}cases.csv",
            "keywords_json": "https://raw.githubusercontent.com/zhankai-ye/tuberculosis_dataset/a774776663fe4ce5e960f502dc337b0e77451ca7/article_metadata.json",
            "caption_json": f"{base_url}image_metadata.json",
            "images_zip": "https://github.com/zhankai-ye/tuberculosis_dataset/raw/main/images/PMC.zip"
        }
        downloaded_files = dl_manager.download_and_extract(urls)

        return [
            SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=downloaded_files),
        ]

    def _generate_examples(self, cases_csv, keywords_json, caption_json, images_zip):
        # Load CSV
        cases_df = pd.read_csv(cases_csv)
        cases_df.dropna(subset=['age'], inplace=True)

        # Load Keywords JSON
        with open(keywords_json, 'r') as f:
            keywords_json_data = json.load(f)
        keywords = pd.json_normalize(keywords_json_data)
        keywords['keywords'] = keywords['keywords'].apply(lambda x: ', '.join(x) if isinstance(x, list) else x)

        # Load Caption JSON
        caption_json_data = []
        with open(caption_json, 'r') as f:
            for line in f:
                caption_json_data.append(json.loads(line))
        caption = pd.json_normalize(caption_json_data)

        # Merge DataFrames
        merged_df = pd.merge(cases_df, keywords[['pmcid', 'keywords']], left_on='pmcid', right_on='pmcid', how='left')
        merged_df = pd.merge(merged_df, caption[['case_id', 'caption']], on='case_id', how='left')
        merged_df = merged_df.where(pd.notnull(merged_df), None)
        merged_df['age'] = merged_df['age'].astype('int8')

        # Extract and prepare image file paths
        image_file_paths = self._prepare_image_file_paths(images_zip)

        # Yield examples
        for idx, row in merged_df.iterrows():
            image_file = image_file_paths.get(row["pmcid"],None)
            
            yield idx, {
                "case_id": row["case_id"],
                "gender": row["gender"],
                "age": int(row["age"]),
                "case_text": row["case_text"],
                "keywords": row["keywords"],
                "image_file": image_file,
                "caption": row["caption"],
            }

    def _prepare_image_file_paths(self, images_zip_path):
        image_file_paths = {}
        temp_dir = "temp_images"
    
        # Check if images_zip_path is a directory or a zip file
        if os.path.isdir(images_zip_path):
            base_path = images_zip_path
        elif os.path.isfile(images_zip_path) and zipfile.is_zipfile(images_zip_path):
            # Extract the zip file to a temporary directory
            with zipfile.ZipFile(images_zip_path, 'r') as zip_ref:
                zip_ref.extractall(temp_dir)
            base_path = temp_dir
        else:
            raise ValueError("images_zip_path must be a directory or a zip file")
        
        # Walk through the base_path
        for root, _, files in os.walk(base_path):
            for file in files:
                key = file.split('_')[0]
                if key not in image_file_paths:
                    image_file_paths[key] = os.path.join(root, file)

        return image_file_paths