from datasets import GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Value, Sequence, ClassLabel, Image, BuilderConfig, SplitGenerator, Version import datasets import pandas as pd import json import zipfile import os import shutil _DESCRIPTION = """\ This dataset is curated from the original “The MultiCaRe Dataset” to focus on the chest tuberculosis patients and can be used to develop algorithms of the segmentation of chest CT images and the classification of tuberculosis positive or control. """ _CITATION = """\ Nievas Offidani, M. and Delrieux, C. (2023) “The MultiCaRe Dataset: A Multimodal Case Report Dataset with Clinical Cases, Labeled Images and Captions from Open Access PMC Articles”. Zenodo. doi: 10.5281/zenodo.10079370. """ class TuberculosisDataset(GeneratorBasedBuilder): # Define dataset's name BUILDER_CONFIGS = [ BuilderConfig(name="tuberculosis_dataset", version=Version("1.0.0")) ] def _info(self): return DatasetInfo( description=_DESCRIPTION, features=Features({ "case_id": Value("string"), "gender": Value("string"), "age": Value("int8"), "case_text": Value("string"), "keywords": Value("string"), "image_file": Image(), # Updated to singular and using Image type "caption": Value("string"), }), supervised_keys=None, homepage="https://zenodo.org/api/records/10079370/files-archive", citation=_CITATION, ) def _split_generators(self, dl_manager): base_url = "https://raw.githubusercontent.com/zhankai-ye/tuberculosis_dataset/main/" urls = { "cases_csv": f"{base_url}cases.csv", "keywords_json": "https://raw.githubusercontent.com/zhankai-ye/tuberculosis_dataset/a774776663fe4ce5e960f502dc337b0e77451ca7/article_metadata.json", "caption_json": f"{base_url}image_metadata.json", "images_zip": "https://github.com/zhankai-ye/tuberculosis_dataset/raw/main/images/PMC.zip" } downloaded_files = dl_manager.download_and_extract(urls) return [ SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=downloaded_files), ] def _generate_examples(self, cases_csv, keywords_json, caption_json, images_zip): # Load CSV cases_df = pd.read_csv(cases_csv) cases_df.dropna(subset=['age'], inplace=True) # Load Keywords JSON with open(keywords_json, 'r') as f: keywords_json_data = json.load(f) keywords = pd.json_normalize(keywords_json_data) keywords['keywords'] = keywords['keywords'].apply(lambda x: ', '.join(x) if isinstance(x, list) else x) # Load Caption JSON caption_json_data = [] with open(caption_json, 'r') as f: for line in f: caption_json_data.append(json.loads(line)) caption = pd.json_normalize(caption_json_data) # Merge DataFrames merged_df = pd.merge(cases_df, keywords[['pmcid', 'keywords']], left_on='pmcid', right_on='pmcid', how='left') merged_df = pd.merge(merged_df, caption[['case_id', 'caption']], on='case_id', how='left') merged_df = merged_df.where(pd.notnull(merged_df), None) merged_df['age'] = merged_df['age'].astype('int8') # Extract and prepare image file paths image_file_paths = self._prepare_image_file_paths(images_zip) # Yield examples for idx, row in merged_df.iterrows(): image_file = image_file_paths.get(row["pmcid"]) yield idx, { "case_id": row["case_id"], "gender": row["gender"], "age": int(row["age"]), "case_text": row["case_text"], "keywords": row["keywords"], "image_file": image_file, "caption": row["caption"], } def _prepare_image_file_paths(self, images_zip_path): image_file_paths = {} temp_dir = "temp_images" # Check if images_zip_path is a directory or a zip file if os.path.isdir(images_zip_path): base_path = images_zip_path elif os.path.isfile(images_zip_path) and zipfile.is_zipfile(images_zip_path): # Extract the zip file to a temporary directory with zipfile.ZipFile(images_zip_path, 'r') as zip_ref: zip_ref.extractall(temp_dir) base_path = temp_dir else: raise ValueError("images_zip_path must be a directory or a zip file") # Walk through the base_path for root, _, files in os.walk(base_path): for file in files: key = file.split('_')[0] if key not in image_file_paths: image_file_paths[key] = os.path.join(root, file) return image_file_paths