method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
_llm_type | return 'chat_glm' | @property
def _llm_type(self) ->str:
return 'chat_glm' | null |
test_search_call | """Test that call gives the correct answer from search."""
search = GoogleSerperAPIWrapper()
output = search.run("What was Obama's first name?")
assert 'Barack Hussein Obama II' in output | def test_search_call() ->None:
"""Test that call gives the correct answer from search."""
search = GoogleSerperAPIWrapper()
output = search.run("What was Obama's first name?")
assert 'Barack Hussein Obama II' in output | Test that call gives the correct answer from search. |
_get_python_function_required_args | """Get the required arguments for a Python function."""
spec = inspect.getfullargspec(function)
required = spec.args[:-len(spec.defaults)] if spec.defaults else spec.args
required += [k for k in spec.kwonlyargs if k not in (spec.kwonlydefaults or {})
]
is_class = type(function) is type
if is_class and required[0] == 'self':
required = required[1:]
return required | def _get_python_function_required_args(function: Callable) ->List[str]:
"""Get the required arguments for a Python function."""
spec = inspect.getfullargspec(function)
required = spec.args[:-len(spec.defaults)] if spec.defaults else spec.args
required += [k for k in spec.kwonlyargs if k not in (spec.
kwonlydefaults or {})]
is_class = type(function) is type
if is_class and required[0] == 'self':
required = required[1:]
return required | Get the required arguments for a Python function. |
__init__ | """Initialize the IUGU resource.
Args:
resource: The name of the resource to fetch.
api_token: The IUGU API token to use.
"""
self.resource = resource
api_token = api_token or get_from_env('api_token', 'IUGU_API_TOKEN')
self.headers = {'Authorization': f'Bearer {api_token}'} | def __init__(self, resource: str, api_token: Optional[str]=None) ->None:
"""Initialize the IUGU resource.
Args:
resource: The name of the resource to fetch.
api_token: The IUGU API token to use.
"""
self.resource = resource
api_token = api_token or get_from_env('api_token', 'IUGU_API_TOKEN')
self.headers = {'Authorization': f'Bearer {api_token}'} | Initialize the IUGU resource.
Args:
resource: The name of the resource to fetch.
api_token: The IUGU API token to use. |
test_with_include_parameter | """Test end to end construction and include parameter."""
texts = ['hello bagel', 'this is langchain']
docsearch = Bagel.from_texts(cluster_name='testing', texts=texts)
output = docsearch.get(include=['embeddings'])
assert output['embeddings'] is not None
output = docsearch.get()
assert output['embeddings'] is None
docsearch.delete_cluster() | def test_with_include_parameter() ->None:
"""Test end to end construction and include parameter."""
texts = ['hello bagel', 'this is langchain']
docsearch = Bagel.from_texts(cluster_name='testing', texts=texts)
output = docsearch.get(include=['embeddings'])
assert output['embeddings'] is not None
output = docsearch.get()
assert output['embeddings'] is None
docsearch.delete_cluster() | Test end to end construction and include parameter. |
mset | """Set the values for the given keys."""
encoded_pairs = [(self.key_encoder(key), self.value_serializer(value)) for
key, value in key_value_pairs]
self.store.mset(encoded_pairs) | def mset(self, key_value_pairs: Sequence[Tuple[K, V]]) ->None:
"""Set the values for the given keys."""
encoded_pairs = [(self.key_encoder(key), self.value_serializer(value)) for
key, value in key_value_pairs]
self.store.mset(encoded_pairs) | Set the values for the given keys. |
test_all_imports | assert set(__all__) == set(EXPECTED_ALL) | def test_all_imports() ->None:
assert set(__all__) == set(EXPECTED_ALL) | null |
test_fireworks_streaming | """Test stream completion."""
generator = llm.stream("Who's the best quarterback in the NFL?")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str) | @pytest.mark.scheduled
def test_fireworks_streaming(llm: Fireworks) ->None:
"""Test stream completion."""
generator = llm.stream("Who's the best quarterback in the NFL?")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str) | Test stream completion. |
run | """Run Places search and get k number of places that exists that match."""
search_results = self.google_map_client.places(query)['results']
num_to_return = len(search_results)
places = []
if num_to_return == 0:
return 'Google Places did not find any places that match the description'
num_to_return = num_to_return if self.top_k_results is None else min(
num_to_return, self.top_k_results)
for i in range(num_to_return):
result = search_results[i]
details = self.fetch_place_details(result['place_id'])
if details is not None:
places.append(details)
return '\n'.join([f'{i + 1}. {item}' for i, item in enumerate(places)]) | def run(self, query: str) ->str:
"""Run Places search and get k number of places that exists that match."""
search_results = self.google_map_client.places(query)['results']
num_to_return = len(search_results)
places = []
if num_to_return == 0:
return (
'Google Places did not find any places that match the description')
num_to_return = num_to_return if self.top_k_results is None else min(
num_to_return, self.top_k_results)
for i in range(num_to_return):
result = search_results[i]
details = self.fetch_place_details(result['place_id'])
if details is not None:
places.append(details)
return '\n'.join([f'{i + 1}. {item}' for i, item in enumerate(places)]) | Run Places search and get k number of places that exists that match. |
_auth | """Authenticates the OneDrive API client
Returns:
The authenticated Account object.
"""
try:
from O365 import Account, FileSystemTokenBackend
except ImportError:
raise ImportError(
'O365 package not found, please install it with `pip install o365`')
if self.auth_with_token:
token_storage = _O365TokenStorage()
token_path = token_storage.token_path
token_backend = FileSystemTokenBackend(token_path=token_path.parent,
token_filename=token_path.name)
account = Account(credentials=(self.settings.client_id, self.settings.
client_secret.get_secret_value()), scopes=self._scopes,
token_backend=token_backend, **{'raise_http_errors': False})
else:
token_backend = FileSystemTokenBackend(token_path=Path.home() /
'.credentials')
account = Account(credentials=(self.settings.client_id, self.settings.
client_secret.get_secret_value()), scopes=self._scopes,
token_backend=token_backend, **{'raise_http_errors': False})
account.authenticate()
return account | def _auth(self) ->Account:
"""Authenticates the OneDrive API client
Returns:
The authenticated Account object.
"""
try:
from O365 import Account, FileSystemTokenBackend
except ImportError:
raise ImportError(
'O365 package not found, please install it with `pip install o365`'
)
if self.auth_with_token:
token_storage = _O365TokenStorage()
token_path = token_storage.token_path
token_backend = FileSystemTokenBackend(token_path=token_path.parent,
token_filename=token_path.name)
account = Account(credentials=(self.settings.client_id, self.
settings.client_secret.get_secret_value()), scopes=self._scopes,
token_backend=token_backend, **{'raise_http_errors': False})
else:
token_backend = FileSystemTokenBackend(token_path=Path.home() /
'.credentials')
account = Account(credentials=(self.settings.client_id, self.
settings.client_secret.get_secret_value()), scopes=self._scopes,
token_backend=token_backend, **{'raise_http_errors': False})
account.authenticate()
return account | Authenticates the OneDrive API client
Returns:
The authenticated Account object. |
_import_arcee | from langchain_community.llms.arcee import Arcee
return Arcee | def _import_arcee() ->Any:
from langchain_community.llms.arcee import Arcee
return Arcee | null |
_load_rapidfuzz | """
Load the RapidFuzz library.
Raises:
ImportError: If the rapidfuzz library is not installed.
Returns:
Any: The rapidfuzz.distance module.
"""
try:
import rapidfuzz
except ImportError:
raise ImportError(
'Please install the rapidfuzz library to use the FuzzyMatchStringEvaluator.Please install it with `pip install rapidfuzz`.'
)
return rapidfuzz.distance | def _load_rapidfuzz() ->Any:
"""
Load the RapidFuzz library.
Raises:
ImportError: If the rapidfuzz library is not installed.
Returns:
Any: The rapidfuzz.distance module.
"""
try:
import rapidfuzz
except ImportError:
raise ImportError(
'Please install the rapidfuzz library to use the FuzzyMatchStringEvaluator.Please install it with `pip install rapidfuzz`.'
)
return rapidfuzz.distance | Load the RapidFuzz library.
Raises:
ImportError: If the rapidfuzz library is not installed.
Returns:
Any: The rapidfuzz.distance module. |
_create_engine | return sqlalchemy.create_engine(url=self.connection_string, **self.engine_args) | def _create_engine(self) ->sqlalchemy.engine.Engine:
return sqlalchemy.create_engine(url=self.connection_string, **self.
engine_args) | null |
test_simple_memory | """Test SimpleMemory."""
memory = SimpleMemory(memories={'baz': 'foo'})
output = memory.load_memory_variables({})
assert output == {'baz': 'foo'}
assert ['baz'] == memory.memory_variables | def test_simple_memory() ->None:
"""Test SimpleMemory."""
memory = SimpleMemory(memories={'baz': 'foo'})
output = memory.load_memory_variables({})
assert output == {'baz': 'foo'}
assert ['baz'] == memory.memory_variables | Test SimpleMemory. |
_call | if self.streaming:
completion = ''
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
response = self.client.chat(params)
return response.get('choice', {}).get('message', {}).get('content', '') | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
if self.streaming:
completion = ''
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
response = self.client.chat(params)
return response.get('choice', {}).get('message', {}).get('content', '') | null |
from_texts | """
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
embeddings = embedding.embed_documents(list(texts))
return cls.__from(texts, embeddings, embedding, metadatas=metadatas, ids=
ids, collection_name=collection_name, distance_strategy=
distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs) | @classmethod
def from_texts(cls: Type[PGVector], texts: List[str], embedding: Embeddings,
metadatas: Optional[List[dict]]=None, collection_name: str=
_LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy
=DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]]=None,
pre_delete_collection: bool=False, **kwargs: Any) ->PGVector:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
embeddings = embedding.embed_documents(list(texts))
return cls.__from(texts, embeddings, embedding, metadatas=metadatas,
ids=ids, collection_name=collection_name, distance_strategy=
distance_strategy, pre_delete_collection=pre_delete_collection, **
kwargs) | Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable. |
test_importable_all | for path in glob.glob('../experimental/langchain_experimental/*'):
relative_path = Path(path).parts[-1]
if relative_path.endswith('.typed'):
continue
module_name = relative_path.split('.')[0]
module = importlib.import_module('langchain_experimental.' + module_name)
all_ = getattr(module, '__all__', [])
for cls_ in all_:
getattr(module, cls_) | def test_importable_all() ->None:
for path in glob.glob('../experimental/langchain_experimental/*'):
relative_path = Path(path).parts[-1]
if relative_path.endswith('.typed'):
continue
module_name = relative_path.split('.')[0]
module = importlib.import_module('langchain_experimental.' +
module_name)
all_ = getattr(module, '__all__', [])
for cls_ in all_:
getattr(module, cls_) | null |
test_hybrid_score_normalization | """Test if we can get two 1.0 documents with RRF"""
text_embeddings = FakeEmbeddingsWithOsDimension().embed_documents(texts)
text_embedding_pairs = list(zip(['foo'], text_embeddings))
docsearch = Neo4jVector.from_embeddings(text_embeddings=
text_embedding_pairs, embedding=FakeEmbeddingsWithOsDimension(), url=
url, username=username, password=password, pre_delete_collection=True,
search_type=SearchType.HYBRID)
rrf_query = _get_search_index_query(SearchType.HYBRID).rstrip(
'WITH node, max(score) AS score ORDER BY score DESC LIMIT $k').replace(
'UNION', 'UNION ALL') + 'RETURN node.text AS text, score LIMIT 2'
output = docsearch.query(rrf_query, params={'index': 'vector', 'k': 1,
'embedding': FakeEmbeddingsWithOsDimension().embed_query('foo'),
'query': 'foo', 'keyword_index': 'keyword'})
assert output == [{'text': 'foo', 'score': 1.0}, {'text': 'foo', 'score': 1.0}]
drop_vector_indexes(docsearch) | def test_hybrid_score_normalization() ->None:
"""Test if we can get two 1.0 documents with RRF"""
text_embeddings = FakeEmbeddingsWithOsDimension().embed_documents(texts)
text_embedding_pairs = list(zip(['foo'], text_embeddings))
docsearch = Neo4jVector.from_embeddings(text_embeddings=
text_embedding_pairs, embedding=FakeEmbeddingsWithOsDimension(),
url=url, username=username, password=password,
pre_delete_collection=True, search_type=SearchType.HYBRID)
rrf_query = _get_search_index_query(SearchType.HYBRID).rstrip(
'WITH node, max(score) AS score ORDER BY score DESC LIMIT $k').replace(
'UNION', 'UNION ALL') + 'RETURN node.text AS text, score LIMIT 2'
output = docsearch.query(rrf_query, params={'index': 'vector', 'k': 1,
'embedding': FakeEmbeddingsWithOsDimension().embed_query('foo'),
'query': 'foo', 'keyword_index': 'keyword'})
assert output == [{'text': 'foo', 'score': 1.0}, {'text': 'foo',
'score': 1.0}]
drop_vector_indexes(docsearch) | Test if we can get two 1.0 documents with RRF |
_validate_prompt | if DOCUMENTS_KEY not in prompt.input_variables:
raise ValueError(
f'Prompt must accept {DOCUMENTS_KEY} as an input variable. Received prompt with input variables: {prompt.input_variables}'
) | def _validate_prompt(prompt: BasePromptTemplate) ->None:
if DOCUMENTS_KEY not in prompt.input_variables:
raise ValueError(
f'Prompt must accept {DOCUMENTS_KEY} as an input variable. Received prompt with input variables: {prompt.input_variables}'
) | null |
_import_requests_tool_RequestsGetTool | from langchain_community.tools.requests.tool import RequestsGetTool
return RequestsGetTool | def _import_requests_tool_RequestsGetTool() ->Any:
from langchain_community.tools.requests.tool import RequestsGetTool
return RequestsGetTool | null |
delete | """DELETE the URL and return the text."""
return requests.delete(url, headers=self.headers, auth=self.auth, **kwargs) | def delete(self, url: str, **kwargs: Any) ->requests.Response:
"""DELETE the URL and return the text."""
return requests.delete(url, headers=self.headers, auth=self.auth, **kwargs) | DELETE the URL and return the text. |
_create_action_request | data = self._create_action_payload(instructions, params, preview_only)
return Request('POST', self._create_action_url(action_id), json=data) | def _create_action_request(self, action_id: str, instructions: str, params:
Optional[Dict]=None, preview_only=False) ->Request:
data = self._create_action_payload(instructions, params, preview_only)
return Request('POST', self._create_action_url(action_id), json=data) | null |
test_large_batches | documents = ['foo bar' for _ in range(0, 251)]
model_uscentral1 = VertexAIEmbeddings(location='us-central1')
model_asianortheast1 = VertexAIEmbeddings(location='asia-northeast1')
model_uscentral1.embed_documents(documents)
model_asianortheast1.embed_documents(documents)
assert model_uscentral1.instance['batch_size'] >= 250
assert model_asianortheast1.instance['batch_size'] < 50 | def test_large_batches() ->None:
documents = ['foo bar' for _ in range(0, 251)]
model_uscentral1 = VertexAIEmbeddings(location='us-central1')
model_asianortheast1 = VertexAIEmbeddings(location='asia-northeast1')
model_uscentral1.embed_documents(documents)
model_asianortheast1.embed_documents(documents)
assert model_uscentral1.instance['batch_size'] >= 250
assert model_asianortheast1.instance['batch_size'] < 50 | null |
test_character_text_splitter_long | """Test splitting by character count on long words."""
text = 'foo bar baz a a'
splitter = CharacterTextSplitter(separator=' ', chunk_size=3, chunk_overlap=1)
output = splitter.split_text(text)
expected_output = ['foo', 'bar', 'baz', 'a a']
assert output == expected_output | def test_character_text_splitter_long() ->None:
"""Test splitting by character count on long words."""
text = 'foo bar baz a a'
splitter = CharacterTextSplitter(separator=' ', chunk_size=3,
chunk_overlap=1)
output = splitter.split_text(text)
expected_output = ['foo', 'bar', 'baz', 'a a']
assert output == expected_output | Test splitting by character count on long words. |
evaluation_name | return 'Contextual Accuracy' | @property
def evaluation_name(self) ->str:
return 'Contextual Accuracy' | null |
test_amazontextract_loader_failures | two_page_pdf = str(Path(__file__).parent.parent /
'examples/multi-page-forms-sample-2-page.pdf')
loader = AmazonTextractPDFLoader(two_page_pdf)
with pytest.raises(ValueError):
loader.load() | @pytest.mark.skip(reason='Requires AWS credentials to run')
def test_amazontextract_loader_failures() ->None:
two_page_pdf = str(Path(__file__).parent.parent /
'examples/multi-page-forms-sample-2-page.pdf')
loader = AmazonTextractPDFLoader(two_page_pdf)
with pytest.raises(ValueError):
loader.load() | null |
_create_message_dicts | params = self._client_params
if stop is not None:
if 'stop' in params:
raise ValueError('`stop` found in both the input and default params.')
params['stop'] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params | def _create_message_dicts(self, messages: List[BaseMessage], stop: Optional
[List[str]]) ->Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._client_params
if stop is not None:
if 'stop' in params:
raise ValueError(
'`stop` found in both the input and default params.')
params['stop'] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params | null |
_format_func | self._validate_func(func)
return f'${func.value}' | def _format_func(self, func: Union[Operator, Comparator]) ->str:
self._validate_func(func)
return f'${func.value}' | null |
test_aleph_alpha_call | """Test valid call to cohere."""
llm = AlephAlpha(maximum_tokens=10)
output = llm('Say foo:')
assert isinstance(output, str) | def test_aleph_alpha_call() ->None:
"""Test valid call to cohere."""
llm = AlephAlpha(maximum_tokens=10)
output = llm('Say foo:')
assert isinstance(output, str) | Test valid call to cohere. |
index_exists | """Verifies if the specified index name during instance
construction exists on the collection
Returns:
Returns True on success and False if no such index exists
on the collection
"""
cursor = self._collection.list_indexes()
index_name = self._index_name
for res in cursor:
current_index_name = res.pop('name')
if current_index_name == index_name:
return True
return False | def index_exists(self) ->bool:
"""Verifies if the specified index name during instance
construction exists on the collection
Returns:
Returns True on success and False if no such index exists
on the collection
"""
cursor = self._collection.list_indexes()
index_name = self._index_name
for res in cursor:
current_index_name = res.pop('name')
if current_index_name == index_name:
return True
return False | Verifies if the specified index name during instance
construction exists on the collection
Returns:
Returns True on success and False if no such index exists
on the collection |
lazy_parse | """Lazily parse the blob."""
import pypdf
with blob.as_bytes_io() as pdf_file_obj:
pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password)
yield from [Document(page_content=page.extract_text() + self.
_extract_images_from_page(page), metadata={'source': blob.source,
'page': page_number}) for page_number, page in enumerate(pdf_reader
.pages)] | def lazy_parse(self, blob: Blob) ->Iterator[Document]:
"""Lazily parse the blob."""
import pypdf
with blob.as_bytes_io() as pdf_file_obj:
pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password)
yield from [Document(page_content=page.extract_text() + self.
_extract_images_from_page(page), metadata={'source': blob.
source, 'page': page_number}) for page_number, page in
enumerate(pdf_reader.pages)] | Lazily parse the blob. |
test_gpt_router_call_incorrect_model | """Test invalid modelName"""
anthropic_claude = GPTRouterModel(name='model_does_not_exist',
provider_name='anthropic')
chat = GPTRouter(models_priority_list=[anthropic_claude])
message = HumanMessage(content='Hello World')
with pytest.raises(Exception):
chat([message]) | def test_gpt_router_call_incorrect_model() ->None:
"""Test invalid modelName"""
anthropic_claude = GPTRouterModel(name='model_does_not_exist',
provider_name='anthropic')
chat = GPTRouter(models_priority_list=[anthropic_claude])
message = HumanMessage(content='Hello World')
with pytest.raises(Exception):
chat([message]) | Test invalid modelName |
embeddings | """Access the query embedding object if available."""
logger.debug(
f'{Embeddings.__name__} is not implemented for {self.__class__.__name__}')
return None | @property
def embeddings(self) ->Optional[Embeddings]:
"""Access the query embedding object if available."""
logger.debug(
f'{Embeddings.__name__} is not implemented for {self.__class__.__name__}'
)
return None | Access the query embedding object if available. |
_call | """Call to Banana endpoint."""
try:
from banana_dev import Client
except ImportError:
raise ImportError(
'Could not import banana-dev python package. Please install it with `pip install banana-dev`.'
)
params = self.model_kwargs or {}
params = {**params, **kwargs}
api_key = self.banana_api_key
model_key = self.model_key
model_url_slug = self.model_url_slug
model_inputs = {'prompt': prompt, **params}
model = Client(api_key=api_key, model_key=model_key, url=
f'https://{model_url_slug}.run.banana.dev')
response, meta = model.call('/', model_inputs)
try:
text = response['outputs']
except (KeyError, TypeError):
raise ValueError(
"""Response should be of schema: {'outputs': 'text'}.
To fix this:
- fork the source repo of the Banana model
- modify app.py to return the above schema
- deploy that as a custom repo"""
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
"""Call to Banana endpoint."""
try:
from banana_dev import Client
except ImportError:
raise ImportError(
'Could not import banana-dev python package. Please install it with `pip install banana-dev`.'
)
params = self.model_kwargs or {}
params = {**params, **kwargs}
api_key = self.banana_api_key
model_key = self.model_key
model_url_slug = self.model_url_slug
model_inputs = {'prompt': prompt, **params}
model = Client(api_key=api_key, model_key=model_key, url=
f'https://{model_url_slug}.run.banana.dev')
response, meta = model.call('/', model_inputs)
try:
text = response['outputs']
except (KeyError, TypeError):
raise ValueError(
"""Response should be of schema: {'outputs': 'text'}.
To fix this:
- fork the source repo of the Banana model
- modify app.py to return the above schema
- deploy that as a custom repo"""
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | Call to Banana endpoint. |
_stream | self._load_model(self.model_name)
invocation_params = self._get_invocation_params(**kwargs, prompt=[[prompt]])
stop_words = stop if stop is not None else self.stop
inputs = self._generate_inputs(stream=True, **invocation_params)
outputs = self._generate_outputs()
result_queue = self._invoke_triton(self.model_name, inputs, outputs, stop_words
)
for token in result_queue:
yield GenerationChunk(text=token)
if run_manager:
run_manager.on_llm_new_token(token)
self.client.stop_stream() | def _stream(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->Iterator[
GenerationChunk]:
self._load_model(self.model_name)
invocation_params = self._get_invocation_params(**kwargs, prompt=[[prompt]]
)
stop_words = stop if stop is not None else self.stop
inputs = self._generate_inputs(stream=True, **invocation_params)
outputs = self._generate_outputs()
result_queue = self._invoke_triton(self.model_name, inputs, outputs,
stop_words)
for token in result_queue:
yield GenerationChunk(text=token)
if run_manager:
run_manager.on_llm_new_token(token)
self.client.stop_stream() | null |
_run | try:
result = self.client.chat_postMessage(channel=channel, text=message)
output = 'Message sent: ' + str(result)
return output
except Exception as e:
return 'Error creating conversation: {}'.format(e) | def _run(self, message: str, channel: str, run_manager: Optional[
CallbackManagerForToolRun]=None) ->str:
try:
result = self.client.chat_postMessage(channel=channel, text=message)
output = 'Message sent: ' + str(result)
return output
except Exception as e:
return 'Error creating conversation: {}'.format(e) | null |
_stream_response_to_generation_chunk | """Convert a stream response to a generation chunk."""
if not stream_response['results']:
return GenerationChunk(text='')
return GenerationChunk(text=stream_response['results'][0]['generated_text'],
generation_info=dict(finish_reason=stream_response['results'][0].get(
'stop_reason', None), llm_output={'generated_token_count':
stream_response['results'][0].get('generated_token_count', None),
'model_id': self.model_id, 'deployment_id': self.deployment_id})) | def _stream_response_to_generation_chunk(self, stream_response: Dict[str, Any]
) ->GenerationChunk:
"""Convert a stream response to a generation chunk."""
if not stream_response['results']:
return GenerationChunk(text='')
return GenerationChunk(text=stream_response['results'][0][
'generated_text'], generation_info=dict(finish_reason=
stream_response['results'][0].get('stop_reason', None), llm_output=
{'generated_token_count': stream_response['results'][0].get(
'generated_token_count', None), 'model_id': self.model_id,
'deployment_id': self.deployment_id})) | Convert a stream response to a generation chunk. |
__getattr__ | if name == 'AI21':
return _import_ai21()
elif name == 'AlephAlpha':
return _import_aleph_alpha()
elif name == 'AmazonAPIGateway':
return _import_amazon_api_gateway()
elif name == 'Anthropic':
return _import_anthropic()
elif name == 'Anyscale':
return _import_anyscale()
elif name == 'Aphrodite':
return _import_aphrodite()
elif name == 'Arcee':
return _import_arcee()
elif name == 'Aviary':
return _import_aviary()
elif name == 'AzureMLOnlineEndpoint':
return _import_azureml_endpoint()
elif name == 'QianfanLLMEndpoint':
return _import_baidu_qianfan_endpoint()
elif name == 'Banana':
return _import_bananadev()
elif name == 'Baseten':
return _import_baseten()
elif name == 'Beam':
return _import_beam()
elif name == 'Bedrock':
return _import_bedrock()
elif name == 'NIBittensorLLM':
return _import_bittensor()
elif name == 'CerebriumAI':
return _import_cerebriumai()
elif name == 'ChatGLM':
return _import_chatglm()
elif name == 'Clarifai':
return _import_clarifai()
elif name == 'Cohere':
return _import_cohere()
elif name == 'CTransformers':
return _import_ctransformers()
elif name == 'CTranslate2':
return _import_ctranslate2()
elif name == 'Databricks':
return _import_databricks()
elif name == 'DeepInfra':
return _import_deepinfra()
elif name == 'DeepSparse':
return _import_deepsparse()
elif name == 'EdenAI':
return _import_edenai()
elif name == 'FakeListLLM':
return _import_fake()
elif name == 'Fireworks':
return _import_fireworks()
elif name == 'ForefrontAI':
return _import_forefrontai()
elif name == 'GigaChat':
return _import_gigachat()
elif name == 'GooglePalm':
return _import_google_palm()
elif name == 'GooseAI':
return _import_gooseai()
elif name == 'GPT4All':
return _import_gpt4all()
elif name == 'GradientLLM':
return _import_gradient_ai()
elif name == 'HuggingFaceEndpoint':
return _import_huggingface_endpoint()
elif name == 'HuggingFaceHub':
return _import_huggingface_hub()
elif name == 'HuggingFacePipeline':
return _import_huggingface_pipeline()
elif name == 'HuggingFaceTextGenInference':
return _import_huggingface_text_gen_inference()
elif name == 'HumanInputLLM':
return _import_human()
elif name == 'JavelinAIGateway':
return _import_javelin_ai_gateway()
elif name == 'KoboldApiLLM':
return _import_koboldai()
elif name == 'LlamaCpp':
return _import_llamacpp()
elif name == 'ManifestWrapper':
return _import_manifest()
elif name == 'Minimax':
return _import_minimax()
elif name == 'Mlflow':
return _import_mlflow()
elif name == 'MlflowAIGateway':
return _import_mlflow_ai_gateway()
elif name == 'Modal':
return _import_modal()
elif name == 'MosaicML':
return _import_mosaicml()
elif name == 'NLPCloud':
return _import_nlpcloud()
elif name == 'OCIModelDeploymentTGI':
return _import_oci_md_tgi()
elif name == 'OCIModelDeploymentVLLM':
return _import_oci_md_vllm()
elif name == 'OctoAIEndpoint':
return _import_octoai_endpoint()
elif name == 'Ollama':
return _import_ollama()
elif name == 'OpaquePrompts':
return _import_opaqueprompts()
elif name == 'AzureOpenAI':
return _import_azure_openai()
elif name == 'OpenAI':
return _import_openai()
elif name == 'OpenAIChat':
return _import_openai_chat()
elif name == 'OpenLLM':
return _import_openllm()
elif name == 'OpenLM':
return _import_openlm()
elif name == 'PaiEasEndpoint':
return _import_pai_eas_endpoint()
elif name == 'Petals':
return _import_petals()
elif name == 'PipelineAI':
return _import_pipelineai()
elif name == 'Predibase':
return _import_predibase()
elif name == 'PredictionGuard':
return _import_predictionguard()
elif name == 'PromptLayerOpenAI':
return _import_promptlayer()
elif name == 'PromptLayerOpenAIChat':
return _import_promptlayer_chat()
elif name == 'Replicate':
return _import_replicate()
elif name == 'RWKV':
return _import_rwkv()
elif name == 'SagemakerEndpoint':
return _import_sagemaker_endpoint()
elif name == 'SelfHostedPipeline':
return _import_self_hosted()
elif name == 'SelfHostedHuggingFaceLLM':
return _import_self_hosted_hugging_face()
elif name == 'StochasticAI':
return _import_stochasticai()
elif name == 'Nebula':
return _import_symblai_nebula()
elif name == 'TextGen':
return _import_textgen()
elif name == 'TitanTakeoff':
return _import_titan_takeoff()
elif name == 'TitanTakeoffPro':
return _import_titan_takeoff_pro()
elif name == 'Together':
return _import_together()
elif name == 'Tongyi':
return _import_tongyi()
elif name == 'VertexAI':
return _import_vertex()
elif name == 'VertexAIModelGarden':
return _import_vertex_model_garden()
elif name == 'VLLM':
return _import_vllm()
elif name == 'VLLMOpenAI':
return _import_vllm_openai()
elif name == 'WatsonxLLM':
return _import_watsonxllm()
elif name == 'Writer':
return _import_writer()
elif name == 'Xinference':
return _import_xinference()
elif name == 'YandexGPT':
return _import_yandex_gpt()
elif name == 'VolcEngineMaasLLM':
return _import_volcengine_maas()
elif name == 'type_to_cls_dict':
type_to_cls_dict: Dict[str, Type[BaseLLM]] = {k: v() for k, v in
get_type_to_cls_dict().items()}
return type_to_cls_dict
else:
raise AttributeError(f'Could not find: {name}') | def __getattr__(name: str) ->Any:
if name == 'AI21':
return _import_ai21()
elif name == 'AlephAlpha':
return _import_aleph_alpha()
elif name == 'AmazonAPIGateway':
return _import_amazon_api_gateway()
elif name == 'Anthropic':
return _import_anthropic()
elif name == 'Anyscale':
return _import_anyscale()
elif name == 'Aphrodite':
return _import_aphrodite()
elif name == 'Arcee':
return _import_arcee()
elif name == 'Aviary':
return _import_aviary()
elif name == 'AzureMLOnlineEndpoint':
return _import_azureml_endpoint()
elif name == 'QianfanLLMEndpoint':
return _import_baidu_qianfan_endpoint()
elif name == 'Banana':
return _import_bananadev()
elif name == 'Baseten':
return _import_baseten()
elif name == 'Beam':
return _import_beam()
elif name == 'Bedrock':
return _import_bedrock()
elif name == 'NIBittensorLLM':
return _import_bittensor()
elif name == 'CerebriumAI':
return _import_cerebriumai()
elif name == 'ChatGLM':
return _import_chatglm()
elif name == 'Clarifai':
return _import_clarifai()
elif name == 'Cohere':
return _import_cohere()
elif name == 'CTransformers':
return _import_ctransformers()
elif name == 'CTranslate2':
return _import_ctranslate2()
elif name == 'Databricks':
return _import_databricks()
elif name == 'DeepInfra':
return _import_deepinfra()
elif name == 'DeepSparse':
return _import_deepsparse()
elif name == 'EdenAI':
return _import_edenai()
elif name == 'FakeListLLM':
return _import_fake()
elif name == 'Fireworks':
return _import_fireworks()
elif name == 'ForefrontAI':
return _import_forefrontai()
elif name == 'GigaChat':
return _import_gigachat()
elif name == 'GooglePalm':
return _import_google_palm()
elif name == 'GooseAI':
return _import_gooseai()
elif name == 'GPT4All':
return _import_gpt4all()
elif name == 'GradientLLM':
return _import_gradient_ai()
elif name == 'HuggingFaceEndpoint':
return _import_huggingface_endpoint()
elif name == 'HuggingFaceHub':
return _import_huggingface_hub()
elif name == 'HuggingFacePipeline':
return _import_huggingface_pipeline()
elif name == 'HuggingFaceTextGenInference':
return _import_huggingface_text_gen_inference()
elif name == 'HumanInputLLM':
return _import_human()
elif name == 'JavelinAIGateway':
return _import_javelin_ai_gateway()
elif name == 'KoboldApiLLM':
return _import_koboldai()
elif name == 'LlamaCpp':
return _import_llamacpp()
elif name == 'ManifestWrapper':
return _import_manifest()
elif name == 'Minimax':
return _import_minimax()
elif name == 'Mlflow':
return _import_mlflow()
elif name == 'MlflowAIGateway':
return _import_mlflow_ai_gateway()
elif name == 'Modal':
return _import_modal()
elif name == 'MosaicML':
return _import_mosaicml()
elif name == 'NLPCloud':
return _import_nlpcloud()
elif name == 'OCIModelDeploymentTGI':
return _import_oci_md_tgi()
elif name == 'OCIModelDeploymentVLLM':
return _import_oci_md_vllm()
elif name == 'OctoAIEndpoint':
return _import_octoai_endpoint()
elif name == 'Ollama':
return _import_ollama()
elif name == 'OpaquePrompts':
return _import_opaqueprompts()
elif name == 'AzureOpenAI':
return _import_azure_openai()
elif name == 'OpenAI':
return _import_openai()
elif name == 'OpenAIChat':
return _import_openai_chat()
elif name == 'OpenLLM':
return _import_openllm()
elif name == 'OpenLM':
return _import_openlm()
elif name == 'PaiEasEndpoint':
return _import_pai_eas_endpoint()
elif name == 'Petals':
return _import_petals()
elif name == 'PipelineAI':
return _import_pipelineai()
elif name == 'Predibase':
return _import_predibase()
elif name == 'PredictionGuard':
return _import_predictionguard()
elif name == 'PromptLayerOpenAI':
return _import_promptlayer()
elif name == 'PromptLayerOpenAIChat':
return _import_promptlayer_chat()
elif name == 'Replicate':
return _import_replicate()
elif name == 'RWKV':
return _import_rwkv()
elif name == 'SagemakerEndpoint':
return _import_sagemaker_endpoint()
elif name == 'SelfHostedPipeline':
return _import_self_hosted()
elif name == 'SelfHostedHuggingFaceLLM':
return _import_self_hosted_hugging_face()
elif name == 'StochasticAI':
return _import_stochasticai()
elif name == 'Nebula':
return _import_symblai_nebula()
elif name == 'TextGen':
return _import_textgen()
elif name == 'TitanTakeoff':
return _import_titan_takeoff()
elif name == 'TitanTakeoffPro':
return _import_titan_takeoff_pro()
elif name == 'Together':
return _import_together()
elif name == 'Tongyi':
return _import_tongyi()
elif name == 'VertexAI':
return _import_vertex()
elif name == 'VertexAIModelGarden':
return _import_vertex_model_garden()
elif name == 'VLLM':
return _import_vllm()
elif name == 'VLLMOpenAI':
return _import_vllm_openai()
elif name == 'WatsonxLLM':
return _import_watsonxllm()
elif name == 'Writer':
return _import_writer()
elif name == 'Xinference':
return _import_xinference()
elif name == 'YandexGPT':
return _import_yandex_gpt()
elif name == 'VolcEngineMaasLLM':
return _import_volcengine_maas()
elif name == 'type_to_cls_dict':
type_to_cls_dict: Dict[str, Type[BaseLLM]] = {k: v() for k, v in
get_type_to_cls_dict().items()}
return type_to_cls_dict
else:
raise AttributeError(f'Could not find: {name}') | null |
__validate_distance_strategy | if distance_strategy not in [DistanceStrategy.COSINE, DistanceStrategy.
MAX_INNER_PRODUCT, DistanceStrategy.MAX_INNER_PRODUCT]:
raise ValueError(f'Distance strategy {distance_strategy} not implemented.') | @staticmethod
def __validate_distance_strategy(distance_strategy: DistanceStrategy) ->None:
if distance_strategy not in [DistanceStrategy.COSINE, DistanceStrategy.
MAX_INNER_PRODUCT, DistanceStrategy.MAX_INNER_PRODUCT]:
raise ValueError(
f'Distance strategy {distance_strategy} not implemented.') | null |
query | if similarity is DistanceStrategy.COSINE:
similarityAlgo = (
f"cosineSimilarity(params.query_vector, '{vector_query_field}') + 1.0")
elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE:
similarityAlgo = (
f"1 / (1 + l2norm(params.query_vector, '{vector_query_field}'))")
elif similarity is DistanceStrategy.DOT_PRODUCT:
similarityAlgo = f"""
double value = dotProduct(params.query_vector, '{vector_query_field}');
return sigmoid(1, Math.E, -value);
"""
else:
raise ValueError(f'Similarity {similarity} not supported.')
queryBool: Dict = {'match_all': {}}
if filter:
queryBool = {'bool': {'filter': filter}}
return {'query': {'script_score': {'query': queryBool, 'script': {'source':
similarityAlgo, 'params': {'query_vector': query_vector}}}}} | def query(self, query_vector: Union[List[float], None], query: Union[str,
None], k: int, fetch_k: int, vector_query_field: str, text_field: str,
filter: Union[List[dict], None], similarity: Union[DistanceStrategy, None]
) ->Dict:
if similarity is DistanceStrategy.COSINE:
similarityAlgo = (
f"cosineSimilarity(params.query_vector, '{vector_query_field}') + 1.0"
)
elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE:
similarityAlgo = (
f"1 / (1 + l2norm(params.query_vector, '{vector_query_field}'))")
elif similarity is DistanceStrategy.DOT_PRODUCT:
similarityAlgo = f"""
double value = dotProduct(params.query_vector, '{vector_query_field}');
return sigmoid(1, Math.E, -value);
"""
else:
raise ValueError(f'Similarity {similarity} not supported.')
queryBool: Dict = {'match_all': {}}
if filter:
queryBool = {'bool': {'filter': filter}}
return {'query': {'script_score': {'query': queryBool, 'script': {
'source': similarityAlgo, 'params': {'query_vector': query_vector}}}}} | null |
plan | """Given input, decide what to do.""" | @abstractmethod
def plan(self, inputs: dict, callbacks: Callbacks=None, **kwargs: Any) ->Plan:
"""Given input, decide what to do.""" | Given input, decide what to do. |
__init__ | super().__init__(**kwargs)
self.tot_controller.c = self.c | def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self.tot_controller.c = self.c | null |
_embed_query | """Embed query text.
Used to provide backward compatibility with `embedding_function` argument.
Args:
query: Query text.
Returns:
List of floats representing the query embedding.
"""
if self.embeddings is not None:
embedding = self.embeddings.embed_query(query)
elif self._embeddings_function is not None:
embedding = self._embeddings_function(query)
else:
raise ValueError('Neither of embeddings or embedding_function is set')
return embedding.tolist() if hasattr(embedding, 'tolist') else embedding | def _embed_query(self, query: str) ->List[float]:
"""Embed query text.
Used to provide backward compatibility with `embedding_function` argument.
Args:
query: Query text.
Returns:
List of floats representing the query embedding.
"""
if self.embeddings is not None:
embedding = self.embeddings.embed_query(query)
elif self._embeddings_function is not None:
embedding = self._embeddings_function(query)
else:
raise ValueError('Neither of embeddings or embedding_function is set')
return embedding.tolist() if hasattr(embedding, 'tolist') else embedding | Embed query text.
Used to provide backward compatibility with `embedding_function` argument.
Args:
query: Query text.
Returns:
List of floats representing the query embedding. |
test_json_schema_evaluator_evaluation_name | assert json_schema_evaluator.evaluation_name == 'json_schema_validation' | @pytest.mark.requires('jsonschema')
def test_json_schema_evaluator_evaluation_name(json_schema_evaluator:
JsonSchemaEvaluator) ->None:
assert json_schema_evaluator.evaluation_name == 'json_schema_validation' | null |
test_multiple_messages | """Tests multiple messages works."""
chat = VolcEngineMaasChat()
message = HumanMessage(content='Hi, how are you?')
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content | def test_multiple_messages() ->None:
"""Tests multiple messages works."""
chat = VolcEngineMaasChat()
message = HumanMessage(content='Hi, how are you?')
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content | Tests multiple messages works. |
_get_tracer_project | run_tree = get_run_tree_context()
return getattr(run_tree, 'session_name', getattr(tracing_v2_callback_var.
get(), 'project', str(ls_utils.get_tracer_project()))) | def _get_tracer_project() ->str:
run_tree = get_run_tree_context()
return getattr(run_tree, 'session_name', getattr(
tracing_v2_callback_var.get(), 'project', str(ls_utils.
get_tracer_project()))) | null |
test_custom_index_add_documents | """This test checks the construction of a custom
ElasticSearch index using the 'add_documents'."""
from elasticsearch import Elasticsearch
index_name = f'custom_index_{uuid.uuid4().hex}'
elastic_vector_search = ElasticVectorSearch(embedding=embedding_openai,
elasticsearch_url=elasticsearch_url, index_name=index_name)
es = Elasticsearch(hosts=elasticsearch_url)
elastic_vector_search.add_documents(documents)
index_names = es.indices.get(index='_all').keys()
assert index_name in index_names
search_result = elastic_vector_search.similarity_search('sharks')
assert len(search_result) != 0 | @pytest.mark.vcr(ignore_localhost=True)
def test_custom_index_add_documents(self, documents: List[Document],
embedding_openai: OpenAIEmbeddings, elasticsearch_url: str) ->None:
"""This test checks the construction of a custom
ElasticSearch index using the 'add_documents'."""
from elasticsearch import Elasticsearch
index_name = f'custom_index_{uuid.uuid4().hex}'
elastic_vector_search = ElasticVectorSearch(embedding=embedding_openai,
elasticsearch_url=elasticsearch_url, index_name=index_name)
es = Elasticsearch(hosts=elasticsearch_url)
elastic_vector_search.add_documents(documents)
index_names = es.indices.get(index='_all').keys()
assert index_name in index_names
search_result = elastic_vector_search.similarity_search('sharks')
assert len(search_result) != 0 | This test checks the construction of a custom
ElasticSearch index using the 'add_documents'. |
construct_instance | try:
import qdrant_client
except ImportError:
raise ValueError(
'Could not import qdrant-client python package. Please install it with `pip install qdrant-client`.'
)
from grpc import RpcError
from qdrant_client.http import models as rest
from qdrant_client.http.exceptions import UnexpectedResponse
partial_embeddings = embedding.embed_documents(texts[:1])
vector_size = len(partial_embeddings[0])
collection_name = collection_name or uuid.uuid4().hex
distance_func = distance_func.upper()
client, async_client = cls._generate_clients(location=location, url=url,
port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https,
api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path,
**kwargs)
try:
if force_recreate:
raise ValueError
collection_info = client.get_collection(collection_name=collection_name)
current_vector_config = collection_info.config.params.vectors
if isinstance(current_vector_config, dict) and vector_name is not None:
if vector_name not in current_vector_config:
raise QdrantException(
f"Existing Qdrant collection {collection_name} does not contain vector named {vector_name}. Did you mean one of the existing vectors: {', '.join(current_vector_config.keys())}? If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
current_vector_config = current_vector_config.get(vector_name)
elif isinstance(current_vector_config, dict) and vector_name is None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} uses named vectors. If you want to reuse it, please set `vector_name` to any of the existing named vectors: {', '.join(current_vector_config.keys())}.If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
elif not isinstance(current_vector_config, dict
) and vector_name is not None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} doesn't use named vectors. If you want to reuse it, please set `vector_name` to `None`. If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
if current_vector_config.size != vector_size:
raise QdrantException(
f'Existing Qdrant collection is configured for vectors with {current_vector_config.size} dimensions. Selected embeddings are {vector_size}-dimensional. If you want to recreate the collection, set `force_recreate` parameter to `True`.'
)
current_distance_func = current_vector_config.distance.name.upper()
if current_distance_func != distance_func:
raise QdrantException(
f'Existing Qdrant collection is configured for {current_distance_func} similarity, but requested {distance_func}. Please set `distance_func` parameter to `{current_distance_func}` if you want to reuse it. If you want to recreate the collection, set `force_recreate` parameter to `True`.'
)
except (UnexpectedResponse, RpcError, ValueError):
vectors_config = rest.VectorParams(size=vector_size, distance=rest.
Distance[distance_func], on_disk=on_disk)
if vector_name is not None:
vectors_config = {vector_name: vectors_config}
client.recreate_collection(collection_name=collection_name,
vectors_config=vectors_config, shard_number=shard_number,
replication_factor=replication_factor, write_consistency_factor=
write_consistency_factor, on_disk_payload=on_disk_payload,
hnsw_config=hnsw_config, optimizers_config=optimizers_config,
wal_config=wal_config, quantization_config=quantization_config,
init_from=init_from, timeout=timeout)
qdrant = cls(client=client, collection_name=collection_name, embeddings=
embedding, content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key, distance_strategy=
distance_func, vector_name=vector_name, async_client=async_client)
return qdrant | @classmethod
def construct_instance(cls: Type[Qdrant], texts: List[str], embedding:
Embeddings, location: Optional[str]=None, url: Optional[str]=None, port:
Optional[int]=6333, grpc_port: int=6334, prefer_grpc: bool=False, https:
Optional[bool]=None, api_key: Optional[str]=None, prefix: Optional[str]
=None, timeout: Optional[float]=None, host: Optional[str]=None, path:
Optional[str]=None, collection_name: Optional[str]=None, distance_func:
str='Cosine', content_payload_key: str=CONTENT_KEY,
metadata_payload_key: str=METADATA_KEY, vector_name: Optional[str]=
VECTOR_NAME, shard_number: Optional[int]=None, replication_factor:
Optional[int]=None, write_consistency_factor: Optional[int]=None,
on_disk_payload: Optional[bool]=None, hnsw_config: Optional[
common_types.HnswConfigDiff]=None, optimizers_config: Optional[
common_types.OptimizersConfigDiff]=None, wal_config: Optional[
common_types.WalConfigDiff]=None, quantization_config: Optional[
common_types.QuantizationConfig]=None, init_from: Optional[common_types
.InitFrom]=None, on_disk: Optional[bool]=None, force_recreate: bool=
False, **kwargs: Any) ->Qdrant:
try:
import qdrant_client
except ImportError:
raise ValueError(
'Could not import qdrant-client python package. Please install it with `pip install qdrant-client`.'
)
from grpc import RpcError
from qdrant_client.http import models as rest
from qdrant_client.http.exceptions import UnexpectedResponse
partial_embeddings = embedding.embed_documents(texts[:1])
vector_size = len(partial_embeddings[0])
collection_name = collection_name or uuid.uuid4().hex
distance_func = distance_func.upper()
client, async_client = cls._generate_clients(location=location, url=url,
port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=
https, api_key=api_key, prefix=prefix, timeout=timeout, host=host,
path=path, **kwargs)
try:
if force_recreate:
raise ValueError
collection_info = client.get_collection(collection_name=collection_name
)
current_vector_config = collection_info.config.params.vectors
if isinstance(current_vector_config, dict) and vector_name is not None:
if vector_name not in current_vector_config:
raise QdrantException(
f"Existing Qdrant collection {collection_name} does not contain vector named {vector_name}. Did you mean one of the existing vectors: {', '.join(current_vector_config.keys())}? If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
current_vector_config = current_vector_config.get(vector_name)
elif isinstance(current_vector_config, dict) and vector_name is None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} uses named vectors. If you want to reuse it, please set `vector_name` to any of the existing named vectors: {', '.join(current_vector_config.keys())}.If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
elif not isinstance(current_vector_config, dict
) and vector_name is not None:
raise QdrantException(
f"Existing Qdrant collection {collection_name} doesn't use named vectors. If you want to reuse it, please set `vector_name` to `None`. If you want to recreate the collection, set `force_recreate` parameter to `True`."
)
if current_vector_config.size != vector_size:
raise QdrantException(
f'Existing Qdrant collection is configured for vectors with {current_vector_config.size} dimensions. Selected embeddings are {vector_size}-dimensional. If you want to recreate the collection, set `force_recreate` parameter to `True`.'
)
current_distance_func = current_vector_config.distance.name.upper()
if current_distance_func != distance_func:
raise QdrantException(
f'Existing Qdrant collection is configured for {current_distance_func} similarity, but requested {distance_func}. Please set `distance_func` parameter to `{current_distance_func}` if you want to reuse it. If you want to recreate the collection, set `force_recreate` parameter to `True`.'
)
except (UnexpectedResponse, RpcError, ValueError):
vectors_config = rest.VectorParams(size=vector_size, distance=rest.
Distance[distance_func], on_disk=on_disk)
if vector_name is not None:
vectors_config = {vector_name: vectors_config}
client.recreate_collection(collection_name=collection_name,
vectors_config=vectors_config, shard_number=shard_number,
replication_factor=replication_factor, write_consistency_factor
=write_consistency_factor, on_disk_payload=on_disk_payload,
hnsw_config=hnsw_config, optimizers_config=optimizers_config,
wal_config=wal_config, quantization_config=quantization_config,
init_from=init_from, timeout=timeout)
qdrant = cls(client=client, collection_name=collection_name, embeddings
=embedding, content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key, distance_strategy=
distance_func, vector_name=vector_name, async_client=async_client)
return qdrant | null |
exception | """Add an Exception element to the container and return its index."""
kwargs = {'exception': exception}
new_dg = self._get_dg(index).exception(**kwargs)
record = ChildRecord(ChildType.EXCEPTION, kwargs, new_dg)
return self._add_record(record, index) | def exception(self, exception: BaseException, *, index: Optional[int]=None
) ->int:
"""Add an Exception element to the container and return its index."""
kwargs = {'exception': exception}
new_dg = self._get_dg(index).exception(**kwargs)
record = ChildRecord(ChildType.EXCEPTION, kwargs, new_dg)
return self._add_record(record, index) | Add an Exception element to the container and return its index. |
_call | if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
if stop is None:
return 'foo'
else:
return 'bar' | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
if stop is None:
return 'foo'
else:
return 'bar' | null |
__init__ | super().__init__(mapper=mapper, **kwargs) | def __init__(self, mapper: RunnableParallel[Dict[str, Any]], **kwargs: Any
) ->None:
super().__init__(mapper=mapper, **kwargs) | null |
test_maximal_marginal_relevance | query_embedding = np.array([1, 0])
embedding_list = [[3 ** 0.5, 1], [1, 1], [1, 2 + 3 ** 0.5]]
expected = [0, 2]
actual = maximal_marginal_relevance(query_embedding, embedding_list,
lambda_mult=25 / 71, k=2)
assert expected == actual
expected = [0, 1]
actual = maximal_marginal_relevance(query_embedding, embedding_list,
lambda_mult=27 / 71, k=2)
assert expected == actual | def test_maximal_marginal_relevance() ->None:
query_embedding = np.array([1, 0])
embedding_list = [[3 ** 0.5, 1], [1, 1], [1, 2 + 3 ** 0.5]]
expected = [0, 2]
actual = maximal_marginal_relevance(query_embedding, embedding_list,
lambda_mult=25 / 71, k=2)
assert expected == actual
expected = [0, 1]
actual = maximal_marginal_relevance(query_embedding, embedding_list,
lambda_mult=27 / 71, k=2)
assert expected == actual | null |
_get_schema_type_for_array | from openapi_pydantic import Reference, Schema
items = schema.items
if isinstance(items, Schema):
schema_type = APIProperty._cast_schema_list_type(items)
elif isinstance(items, Reference):
ref_name = items.ref.split('/')[-1]
schema_type = ref_name
else:
raise ValueError(f'Unsupported array items: {items}')
if isinstance(schema_type, str):
schema_type = schema_type,
return schema_type | @staticmethod
def _get_schema_type_for_array(schema: Schema) ->Optional[Union[str, Tuple[
str, ...]]]:
from openapi_pydantic import Reference, Schema
items = schema.items
if isinstance(items, Schema):
schema_type = APIProperty._cast_schema_list_type(items)
elif isinstance(items, Reference):
ref_name = items.ref.split('/')[-1]
schema_type = ref_name
else:
raise ValueError(f'Unsupported array items: {items}')
if isinstance(schema_type, str):
schema_type = schema_type,
return schema_type | null |
test_google_palm_embedding_query | """Test Google PaLM embeddings."""
document = 'foo bar'
embedding = GooglePalmEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 768 | def test_google_palm_embedding_query() ->None:
"""Test Google PaLM embeddings."""
document = 'foo bar'
embedding = GooglePalmEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 768 | Test Google PaLM embeddings. |
test_singlestoredb_euclidean_distance | """Test adding a new document"""
table_name = 'test_singlestoredb_euclidean_distance'
drop(table_name)
docsearch = SingleStoreDB.from_texts(texts, FakeEmbeddings(),
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name=
table_name, host=TEST_SINGLESTOREDB_URL)
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == TEST_RESULT
drop(table_name) | @pytest.mark.skipif(not singlestoredb_installed, reason=
'singlestoredb not installed')
def test_singlestoredb_euclidean_distance(texts: List[str]) ->None:
"""Test adding a new document"""
table_name = 'test_singlestoredb_euclidean_distance'
drop(table_name)
docsearch = SingleStoreDB.from_texts(texts, FakeEmbeddings(),
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name=
table_name, host=TEST_SINGLESTOREDB_URL)
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == TEST_RESULT
drop(table_name) | Test adding a new document |
test_unstructured_email_loader_with_attachments | file_path = Path(__file__).parent.parent / 'examples/fake-email-attachment.eml'
loader = UnstructuredEmailLoader(str(file_path), mode='elements',
process_attachments=True)
docs = loader.load()
assert docs[-1].page_content == 'Hey this is a fake attachment!'
assert docs[-1].metadata['filename'] == 'fake-attachment.txt'
assert docs[-1].metadata['source'].endswith('fake-email-attachment.eml') | def test_unstructured_email_loader_with_attachments() ->None:
file_path = Path(__file__
).parent.parent / 'examples/fake-email-attachment.eml'
loader = UnstructuredEmailLoader(str(file_path), mode='elements',
process_attachments=True)
docs = loader.load()
assert docs[-1].page_content == 'Hey this is a fake attachment!'
assert docs[-1].metadata['filename'] == 'fake-attachment.txt'
assert docs[-1].metadata['source'].endswith('fake-email-attachment.eml') | null |
test_load | os.environ['MS_GRAPH_CLIENT_ID'] = 'CLIENT_ID'
os.environ['MS_GRAPH_CLIENT_SECRET'] = 'CLIENT_SECRET'
mocker.patch('requests.get', return_value=mocker.MagicMock(json=lambda : {
'value': []}, links=None))
loader = OneNoteLoader(notebook_name='test_notebook', section_name=
'test_section', page_title='test_title', access_token='access_token')
documents = loader.load()
assert documents == []
mocker.patch(
'langchain_community.document_loaders.onenote.OneNoteLoader._get_page_content'
, return_value=
'<html><head><title>Test Title</title></head><body><p>Test Content</p></body></html>'
)
loader = OneNoteLoader(object_ids=['test_id'], access_token='access_token')
documents = loader.load()
assert documents == [Document(page_content="""Test Title
Test Content""",
metadata={'title': 'Test Title'})] | @pytest.mark.requires('bs4')
def test_load(mocker: MockerFixture) ->None:
os.environ['MS_GRAPH_CLIENT_ID'] = 'CLIENT_ID'
os.environ['MS_GRAPH_CLIENT_SECRET'] = 'CLIENT_SECRET'
mocker.patch('requests.get', return_value=mocker.MagicMock(json=lambda :
{'value': []}, links=None))
loader = OneNoteLoader(notebook_name='test_notebook', section_name=
'test_section', page_title='test_title', access_token='access_token')
documents = loader.load()
assert documents == []
mocker.patch(
'langchain_community.document_loaders.onenote.OneNoteLoader._get_page_content'
, return_value=
'<html><head><title>Test Title</title></head><body><p>Test Content</p></body></html>'
)
loader = OneNoteLoader(object_ids=['test_id'], access_token='access_token')
documents = loader.load()
assert documents == [Document(page_content='Test Title\nTest Content',
metadata={'title': 'Test Title'})] | null |
__init__ | super().__init__()
self.directory_path = Path(path) if isinstance(path, str) else path | def __init__(self, path: Union[str, Path]) ->None:
super().__init__()
self.directory_path = Path(path) if isinstance(path, str) else path | null |
with_retry | """Create a new Runnable that retries the original runnable on exceptions.
Args:
retry_if_exception_type: A tuple of exception types to retry on
wait_exponential_jitter: Whether to add jitter to the wait time
between retries
stop_after_attempt: The maximum number of attempts to make before giving up
Returns:
A new Runnable that retries the original runnable on exceptions.
"""
from langchain_core.runnables.retry import RunnableRetry
return RunnableRetry(bound=self, kwargs={}, config={},
retry_exception_types=retry_if_exception_type, wait_exponential_jitter=
wait_exponential_jitter, max_attempt_number=stop_after_attempt) | def with_retry(self, *, retry_if_exception_type: Tuple[Type[BaseException],
...]=(Exception,), wait_exponential_jitter: bool=True,
stop_after_attempt: int=3) ->Runnable[Input, Output]:
"""Create a new Runnable that retries the original runnable on exceptions.
Args:
retry_if_exception_type: A tuple of exception types to retry on
wait_exponential_jitter: Whether to add jitter to the wait time
between retries
stop_after_attempt: The maximum number of attempts to make before giving up
Returns:
A new Runnable that retries the original runnable on exceptions.
"""
from langchain_core.runnables.retry import RunnableRetry
return RunnableRetry(bound=self, kwargs={}, config={},
retry_exception_types=retry_if_exception_type,
wait_exponential_jitter=wait_exponential_jitter, max_attempt_number
=stop_after_attempt) | Create a new Runnable that retries the original runnable on exceptions.
Args:
retry_if_exception_type: A tuple of exception types to retry on
wait_exponential_jitter: Whether to add jitter to the wait time
between retries
stop_after_attempt: The maximum number of attempts to make before giving up
Returns:
A new Runnable that retries the original runnable on exceptions. |
search_results_with_query_embedding | return_count = 2
return [gen_mock_zep_document(collection_name='test_collection',
embedding_dimensions=VECTOR_DIMS) for _ in range(return_count)
], gen_vector() | @pytest.fixture
def search_results_with_query_embedding() ->Tuple[List['ZepDocument'], List
[float]]:
return_count = 2
return [gen_mock_zep_document(collection_name='test_collection',
embedding_dimensions=VECTOR_DIMS) for _ in range(return_count)
], gen_vector() | null |
create | """
create the vector store on the backend database
Args:
metadata_str (str): columns and their types
Returns:
True if successful; False if not successful
"""
podstore = self._pod + '.' + self._store
"""
source column is required.
v:text column is required.
"""
q = 'create store '
q += podstore
q += f' ({self._vector_index} vector({self._vector_dimension},'
q += f" '{self._vector_type}'),"
q += f' source char(256), v:text char({text_size}),'
q += metadata_str + ')'
self.run(q) | def create(self, metadata_str: str, text_size: int) ->None:
"""
create the vector store on the backend database
Args:
metadata_str (str): columns and their types
Returns:
True if successful; False if not successful
"""
podstore = self._pod + '.' + self._store
"""
source column is required.
v:text column is required.
"""
q = 'create store '
q += podstore
q += f' ({self._vector_index} vector({self._vector_dimension},'
q += f" '{self._vector_type}'),"
q += f' source char(256), v:text char({text_size}),'
q += metadata_str + ')'
self.run(q) | create the vector store on the backend database
Args:
metadata_str (str): columns and their types
Returns:
True if successful; False if not successful |
_default_knn_query | knn: Dict = {'field': self.vector_query_field, 'k': k, 'num_candidates':
num_candidates}
if query_vector and not model_id:
knn['query_vector'] = query_vector
elif query and model_id:
knn['query_vector_builder'] = {'text_embedding': {'model_id': model_id,
'model_text': query}}
else:
raise ValueError(
'Either `query_vector` or `model_id` must be provided, but not both.')
return knn | def _default_knn_query(self, query_vector: Optional[List[float]]=None,
query: Optional[str]=None, model_id: Optional[str]=None, k: Optional[
int]=10, num_candidates: Optional[int]=10) ->Dict:
knn: Dict = {'field': self.vector_query_field, 'k': k, 'num_candidates':
num_candidates}
if query_vector and not model_id:
knn['query_vector'] = query_vector
elif query and model_id:
knn['query_vector_builder'] = {'text_embedding': {'model_id':
model_id, 'model_text': query}}
else:
raise ValueError(
'Either `query_vector` or `model_id` must be provided, but not both.'
)
return knn | null |
cosine_similarity | """Row-wise cosine similarity between two equal-width matrices."""
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f'Number of columns in X and Y must be the same. X has shape {X.shape} and Y has shape {Y.shape}.'
)
try:
import simsimd as simd
X = np.array(X, dtype=np.float32)
Y = np.array(Y, dtype=np.float32)
Z = 1 - simd.cdist(X, Y, metric='cosine')
if isinstance(Z, float):
return np.array([Z])
return Z
except ImportError:
logger.info(
'Unable to import simsimd, defaulting to NumPy implementation. If you want to use simsimd please install with `pip install simsimd`.'
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
with np.errstate(divide='ignore', invalid='ignore'):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity | def cosine_similarity(X: Matrix, Y: Matrix) ->np.ndarray:
"""Row-wise cosine similarity between two equal-width matrices."""
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f'Number of columns in X and Y must be the same. X has shape {X.shape} and Y has shape {Y.shape}.'
)
try:
import simsimd as simd
X = np.array(X, dtype=np.float32)
Y = np.array(Y, dtype=np.float32)
Z = 1 - simd.cdist(X, Y, metric='cosine')
if isinstance(Z, float):
return np.array([Z])
return Z
except ImportError:
logger.info(
'Unable to import simsimd, defaulting to NumPy implementation. If you want to use simsimd please install with `pip install simsimd`.'
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
with np.errstate(divide='ignore', invalid='ignore'):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity | Row-wise cosine similarity between two equal-width matrices. |
test_minimax_call_successful | """Test valid call to minimax."""
llm = Minimax()
output = llm(
'A chain is a serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression but linear, rigid, and load-bearing in tension. A chain may consist of two or more links.'
)
assert isinstance(output, str) | def test_minimax_call_successful() ->None:
"""Test valid call to minimax."""
llm = Minimax()
output = llm(
'A chain is a serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression but linear, rigid, and load-bearing in tension. A chain may consist of two or more links.'
)
assert isinstance(output, str) | Test valid call to minimax. |
create_demo_server_configurable | return create_demo_server(config_keys=['configurable']) | def create_demo_server_configurable():
return create_demo_server(config_keys=['configurable']) | null |
raise_deprecation | if 'llm' in values:
warnings.warn(
'Directly instantiating an LLMCheckerChain with an llm is deprecated. Please instantiate with question_to_checked_assertions_chain or using the from_llm class method.'
)
if 'question_to_checked_assertions_chain' not in values and values['llm'
] is not None:
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(values['llm'],
values.get('create_draft_answer_prompt',
CREATE_DRAFT_ANSWER_PROMPT), values.get(
'list_assertions_prompt', LIST_ASSERTIONS_PROMPT), values.get(
'check_assertions_prompt', CHECK_ASSERTIONS_PROMPT), values.get
('revised_answer_prompt', REVISED_ANSWER_PROMPT)))
values['question_to_checked_assertions_chain'
] = question_to_checked_assertions_chain
return values | @root_validator(pre=True)
def raise_deprecation(cls, values: Dict) ->Dict:
if 'llm' in values:
warnings.warn(
'Directly instantiating an LLMCheckerChain with an llm is deprecated. Please instantiate with question_to_checked_assertions_chain or using the from_llm class method.'
)
if 'question_to_checked_assertions_chain' not in values and values[
'llm'] is not None:
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(values['llm'],
values.get('create_draft_answer_prompt',
CREATE_DRAFT_ANSWER_PROMPT), values.get(
'list_assertions_prompt', LIST_ASSERTIONS_PROMPT), values.
get('check_assertions_prompt', CHECK_ASSERTIONS_PROMPT),
values.get('revised_answer_prompt', REVISED_ANSWER_PROMPT)))
values['question_to_checked_assertions_chain'
] = question_to_checked_assertions_chain
return values | null |
from_texts | index = create_index(texts, embeddings)
return cls(embeddings=embeddings, index=index, texts=texts, metadatas=
metadatas, **kwargs) | @classmethod
def from_texts(cls, texts: List[str], embeddings: Embeddings, metadatas:
Optional[List[dict]]=None, **kwargs: Any) ->SVMRetriever:
index = create_index(texts, embeddings)
return cls(embeddings=embeddings, index=index, texts=texts, metadatas=
metadatas, **kwargs) | null |
_llm_type | """Return type of llm."""
return 'fake' | @property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'fake' | Return type of llm. |
parse_issues | """
Extracts title and number from each Issue and puts them in a dictionary
Parameters:
issues(List[Issue]): A list of Github Issue objects
Returns:
List[dict]: A dictionary of issue titles and numbers
"""
parsed = []
for issue in issues:
title = issue.title
number = issue.number
opened_by = issue.user.login if issue.user else None
issue_dict = {'title': title, 'number': number}
if opened_by is not None:
issue_dict['opened_by'] = opened_by
parsed.append(issue_dict)
return parsed | def parse_issues(self, issues: List[Issue]) ->List[dict]:
"""
Extracts title and number from each Issue and puts them in a dictionary
Parameters:
issues(List[Issue]): A list of Github Issue objects
Returns:
List[dict]: A dictionary of issue titles and numbers
"""
parsed = []
for issue in issues:
title = issue.title
number = issue.number
opened_by = issue.user.login if issue.user else None
issue_dict = {'title': title, 'number': number}
if opened_by is not None:
issue_dict['opened_by'] = opened_by
parsed.append(issue_dict)
return parsed | Extracts title and number from each Issue and puts them in a dictionary
Parameters:
issues(List[Issue]): A list of Github Issue objects
Returns:
List[dict]: A dictionary of issue titles and numbers |
img_prompt_func | """
GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict['context']['images']:
for image in data_dict['context']['images'][:num_images]:
image_message = {'type': 'image_url', 'image_url':
f'data:image/jpeg;base64,{image}'}
messages.append(image_message)
text_message = {'type': 'text', 'text':
"""You are a helpful assistant that gives a description of food pictures.
Give a detailed summary of the image.
Give reccomendations for similar foods to try.
"""
}
messages.append(text_message)
return [HumanMessage(content=messages)] | def img_prompt_func(data_dict, num_images=1):
"""
GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict['context']['images']:
for image in data_dict['context']['images'][:num_images]:
image_message = {'type': 'image_url', 'image_url':
f'data:image/jpeg;base64,{image}'}
messages.append(image_message)
text_message = {'type': 'text', 'text':
"""You are a helpful assistant that gives a description of food pictures.
Give a detailed summary of the image.
Give reccomendations for similar foods to try.
"""
}
messages.append(text_message)
return [HumanMessage(content=messages)] | GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt. |
add_texts | """Insert text data into TencentVectorDB."""
texts = list(texts)
try:
embeddings = self.embedding_func.embed_documents(texts)
except NotImplementedError:
embeddings = [self.embedding_func.embed_query(x) for x in texts]
if len(embeddings) == 0:
logger.debug('Nothing to insert, skipping.')
return []
pks: list[str] = []
total_count = len(embeddings)
for start in range(0, total_count, batch_size):
docs = []
end = min(start + batch_size, total_count)
for id in range(start, end, 1):
metadata = '{}'
if metadatas is not None:
metadata = json.dumps(metadatas[id])
doc = self.document.Document(id='{}-{}-{}'.format(time.time_ns(),
hash(texts[id]), id), vector=embeddings[id], text=texts[id],
metadata=metadata)
docs.append(doc)
pks.append(str(id))
self.collection.upsert(docs, timeout)
return pks | def add_texts(self, texts: Iterable[str], metadatas: Optional[List[dict]]=
None, timeout: Optional[int]=None, batch_size: int=1000, **kwargs: Any
) ->List[str]:
"""Insert text data into TencentVectorDB."""
texts = list(texts)
try:
embeddings = self.embedding_func.embed_documents(texts)
except NotImplementedError:
embeddings = [self.embedding_func.embed_query(x) for x in texts]
if len(embeddings) == 0:
logger.debug('Nothing to insert, skipping.')
return []
pks: list[str] = []
total_count = len(embeddings)
for start in range(0, total_count, batch_size):
docs = []
end = min(start + batch_size, total_count)
for id in range(start, end, 1):
metadata = '{}'
if metadatas is not None:
metadata = json.dumps(metadatas[id])
doc = self.document.Document(id='{}-{}-{}'.format(time.time_ns(
), hash(texts[id]), id), vector=embeddings[id], text=texts[
id], metadata=metadata)
docs.append(doc)
pks.append(str(id))
self.collection.upsert(docs, timeout)
return pks | Insert text data into TencentVectorDB. |
_log_trace_from_run | """Logs a LangChain Run to W*B as a W&B Trace."""
self._ensure_run()
root_span = self.run_processor.process_span(run)
model_dict = self.run_processor.process_model(run)
if root_span is None:
return
model_trace = self._trace_tree.WBTraceTree(root_span=root_span, model_dict=
model_dict)
if self._wandb.run is not None:
self._wandb.run.log({'langchain_trace': model_trace}) | def _log_trace_from_run(self, run: Run) ->None:
"""Logs a LangChain Run to W*B as a W&B Trace."""
self._ensure_run()
root_span = self.run_processor.process_span(run)
model_dict = self.run_processor.process_model(run)
if root_span is None:
return
model_trace = self._trace_tree.WBTraceTree(root_span=root_span,
model_dict=model_dict)
if self._wandb.run is not None:
self._wandb.run.log({'langchain_trace': model_trace}) | Logs a LangChain Run to W*B as a W&B Trace. |
from_chain_type | """Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(llm, chain_type=chain_type, **
_chain_type_kwargs)
return cls(combine_documents_chain=combine_documents_chain, **kwargs) | @classmethod
def from_chain_type(cls, llm: BaseLanguageModel, chain_type: str='stuff',
chain_type_kwargs: Optional[dict]=None, **kwargs: Any) ->BaseRetrievalQA:
"""Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(llm, chain_type=chain_type, **
_chain_type_kwargs)
return cls(combine_documents_chain=combine_documents_chain, **kwargs) | Load chain from chain type. |
prep_prompts | """Prepare prompts from inputs."""
stop = None
if len(input_list) == 0:
return [], stop
if 'stop' in input_list[0]:
stop = input_list[0]['stop']
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), 'green')
_text = 'Prompt after formatting:\n' + _colored_text
if run_manager:
run_manager.on_text(_text, end='\n', verbose=self.verbose)
if 'stop' in inputs and inputs['stop'] != stop:
raise ValueError(
'If `stop` is present in any inputs, should be present in all.')
prompts.append(prompt)
return prompts, stop | def prep_prompts(self, input_list: List[Dict[str, Any]], run_manager:
Optional[CallbackManagerForChainRun]=None) ->Tuple[List[PromptValue],
Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if len(input_list) == 0:
return [], stop
if 'stop' in input_list[0]:
stop = input_list[0]['stop']
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), 'green')
_text = 'Prompt after formatting:\n' + _colored_text
if run_manager:
run_manager.on_text(_text, end='\n', verbose=self.verbose)
if 'stop' in inputs and inputs['stop'] != stop:
raise ValueError(
'If `stop` is present in any inputs, should be present in all.'
)
prompts.append(prompt)
return prompts, stop | Prepare prompts from inputs. |
query_with_sources | """Query the vectorstore and get back sources."""
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(llm, retriever=self.
vectorstore.as_retriever(**retriever_kwargs), **kwargs)
return chain({chain.question_key: question}) | def query_with_sources(self, question: str, llm: Optional[BaseLanguageModel
]=None, retriever_kwargs: Optional[Dict[str, Any]]=None, **kwargs: Any
) ->dict:
"""Query the vectorstore and get back sources."""
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(llm, retriever=self
.vectorstore.as_retriever(**retriever_kwargs), **kwargs)
return chain({chain.question_key: question}) | Query the vectorstore and get back sources. |
test_vertexai_instantiation | if model_name:
model = ChatVertexAI(model_name=model_name)
else:
model = ChatVertexAI()
assert model._llm_type == 'vertexai'
try:
assert model.model_name == model.client._model_id
except AttributeError:
assert model.model_name == model.client._model_name.split('/')[-1] | @pytest.mark.parametrize('model_name', model_names_to_test)
def test_vertexai_instantiation(model_name: str) ->None:
if model_name:
model = ChatVertexAI(model_name=model_name)
else:
model = ChatVertexAI()
assert model._llm_type == 'vertexai'
try:
assert model.model_name == model.client._model_id
except AttributeError:
assert model.model_name == model.client._model_name.split('/')[-1] | null |
deprecated | """Decorator to mark a function, a class, or a property as deprecated.
When deprecating a classmethod, a staticmethod, or a property, the
``@deprecated`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* ``@property``.
When deprecating a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@deprecated`` would mess up ``__init__`` inheritance when installing its
own (deprecation-emitting) ``C.__init__``).
Parameters are the same as for `warn_deprecated`, except that *obj_type*
defaults to 'class' if decorating a class, 'attribute' if decorating a
property, and 'function' otherwise.
Arguments:
since : str
The release at which this API became deprecated.
message : str, optional
Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
The name of the deprecated object.
alternative : str, optional
An alternative API that the user may use in place of the
deprecated API. The deprecation warning will tell the user
about this alternative if provided.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type : str, optional
The object type being deprecated.
addendum : str, optional
Additional text appended directly to the final message.
removal : str, optional
The expected removal version. With the default (an empty
string), a removal version is automatically computed from
since. Set to other Falsy values to not schedule a removal
date. Cannot be used together with pending.
Examples
--------
.. code-block:: python
@deprecated('1.4.0')
def the_function_to_deprecate():
pass
"""
def deprecate(obj: T, *, _obj_type: str=obj_type, _name: str=name, _message:
str=message, _alternative: str=alternative, _pending: bool=pending,
_addendum: str=addendum) ->T:
"""Implementation of the decorator returned by `deprecated`."""
if isinstance(obj, type):
if not _obj_type:
_obj_type = 'class'
wrapped = obj.__init__
_name = _name or obj.__name__
old_doc = obj.__doc__
def finalize(wrapper: Callable[..., Any], new_doc: str) ->T:
"""Finalize the deprecation of a class."""
try:
obj.__doc__ = new_doc
except AttributeError:
pass
obj.__init__ = functools.wraps(obj.__init__)(wrapper)
return obj
elif isinstance(obj, property):
if not _obj_type:
_obj_type = 'attribute'
wrapped = None
_name = _name or obj.fget.__name__
old_doc = obj.__doc__
class _deprecated_property(type(obj)):
"""A deprecated property."""
def __get__(self, instance, owner=None):
if instance is not None or owner is not None:
emit_warning()
return super().__get__(instance, owner)
def __set__(self, instance, value):
if instance is not None:
emit_warning()
return super().__set__(instance, value)
def __delete__(self, instance):
if instance is not None:
emit_warning()
return super().__delete__(instance)
def __set_name__(self, owner, set_name):
nonlocal _name
if _name == '<lambda>':
_name = set_name
def finalize(_: Any, new_doc: str) ->Any:
"""Finalize the property."""
return _deprecated_property(fget=obj.fget, fset=obj.fset, fdel=
obj.fdel, doc=new_doc)
else:
if not _obj_type:
_obj_type = 'function'
wrapped = obj
_name = _name or obj.__name__
old_doc = wrapped.__doc__
def finalize(wrapper: Callable[..., Any], new_doc: str) ->T:
"""Wrap the wrapped function using the wrapper and update the docstring.
Args:
wrapper: The wrapper function.
new_doc: The new docstring.
Returns:
The wrapped function.
"""
wrapper = functools.wraps(wrapped)(wrapper)
wrapper.__doc__ = new_doc
return wrapper
def emit_warning() ->None:
"""Emit the warning."""
warn_deprecated(since, message=_message, name=_name, alternative=
_alternative, pending=_pending, obj_type=_obj_type, addendum=
_addendum, removal=removal)
def warning_emitting_wrapper(*args: Any, **kwargs: Any) ->Any:
"""Wrapper for the original wrapped callable that emits a warning.
Args:
*args: The positional arguments to the function.
**kwargs: The keyword arguments to the function.
Returns:
The return value of the function being wrapped.
"""
emit_warning()
return wrapped(*args, **kwargs)
old_doc = inspect.cleandoc(old_doc or '').strip('\n')
if not old_doc:
new_doc = '[*Deprecated*]'
else:
new_doc = f'[*Deprecated*] {old_doc}'
notes_header = '\nNotes\n-----'
components = [message, f'Use {alternative} instead.' if alternative else
'', addendum]
details = ' '.join([component.strip() for component in components if
component])
new_doc += f"""[*Deprecated*] {old_doc}
{notes_header if notes_header not in old_doc else ''}
.. deprecated:: {since}
{details}"""
return finalize(warning_emitting_wrapper, new_doc)
return deprecate | def deprecated(since: str, *, message: str='', name: str='', alternative:
str='', pending: bool=False, obj_type: str='', addendum: str='',
removal: str='') ->Callable[[T], T]:
"""Decorator to mark a function, a class, or a property as deprecated.
When deprecating a classmethod, a staticmethod, or a property, the
``@deprecated`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* ``@property``.
When deprecating a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@deprecated`` would mess up ``__init__`` inheritance when installing its
own (deprecation-emitting) ``C.__init__``).
Parameters are the same as for `warn_deprecated`, except that *obj_type*
defaults to 'class' if decorating a class, 'attribute' if decorating a
property, and 'function' otherwise.
Arguments:
since : str
The release at which this API became deprecated.
message : str, optional
Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
The name of the deprecated object.
alternative : str, optional
An alternative API that the user may use in place of the
deprecated API. The deprecation warning will tell the user
about this alternative if provided.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type : str, optional
The object type being deprecated.
addendum : str, optional
Additional text appended directly to the final message.
removal : str, optional
The expected removal version. With the default (an empty
string), a removal version is automatically computed from
since. Set to other Falsy values to not schedule a removal
date. Cannot be used together with pending.
Examples
--------
.. code-block:: python
@deprecated('1.4.0')
def the_function_to_deprecate():
pass
"""
def deprecate(obj: T, *, _obj_type: str=obj_type, _name: str=name,
_message: str=message, _alternative: str=alternative, _pending:
bool=pending, _addendum: str=addendum) ->T:
"""Implementation of the decorator returned by `deprecated`."""
if isinstance(obj, type):
if not _obj_type:
_obj_type = 'class'
wrapped = obj.__init__
_name = _name or obj.__name__
old_doc = obj.__doc__
def finalize(wrapper: Callable[..., Any], new_doc: str) ->T:
"""Finalize the deprecation of a class."""
try:
obj.__doc__ = new_doc
except AttributeError:
pass
obj.__init__ = functools.wraps(obj.__init__)(wrapper)
return obj
elif isinstance(obj, property):
if not _obj_type:
_obj_type = 'attribute'
wrapped = None
_name = _name or obj.fget.__name__
old_doc = obj.__doc__
class _deprecated_property(type(obj)):
"""A deprecated property."""
def __get__(self, instance, owner=None):
if instance is not None or owner is not None:
emit_warning()
return super().__get__(instance, owner)
def __set__(self, instance, value):
if instance is not None:
emit_warning()
return super().__set__(instance, value)
def __delete__(self, instance):
if instance is not None:
emit_warning()
return super().__delete__(instance)
def __set_name__(self, owner, set_name):
nonlocal _name
if _name == '<lambda>':
_name = set_name
def finalize(_: Any, new_doc: str) ->Any:
"""Finalize the property."""
return _deprecated_property(fget=obj.fget, fset=obj.fset,
fdel=obj.fdel, doc=new_doc)
else:
if not _obj_type:
_obj_type = 'function'
wrapped = obj
_name = _name or obj.__name__
old_doc = wrapped.__doc__
def finalize(wrapper: Callable[..., Any], new_doc: str) ->T:
"""Wrap the wrapped function using the wrapper and update the docstring.
Args:
wrapper: The wrapper function.
new_doc: The new docstring.
Returns:
The wrapped function.
"""
wrapper = functools.wraps(wrapped)(wrapper)
wrapper.__doc__ = new_doc
return wrapper
def emit_warning() ->None:
"""Emit the warning."""
warn_deprecated(since, message=_message, name=_name,
alternative=_alternative, pending=_pending, obj_type=
_obj_type, addendum=_addendum, removal=removal)
def warning_emitting_wrapper(*args: Any, **kwargs: Any) ->Any:
"""Wrapper for the original wrapped callable that emits a warning.
Args:
*args: The positional arguments to the function.
**kwargs: The keyword arguments to the function.
Returns:
The return value of the function being wrapped.
"""
emit_warning()
return wrapped(*args, **kwargs)
old_doc = inspect.cleandoc(old_doc or '').strip('\n')
if not old_doc:
new_doc = '[*Deprecated*]'
else:
new_doc = f'[*Deprecated*] {old_doc}'
notes_header = '\nNotes\n-----'
components = [message, f'Use {alternative} instead.' if alternative
else '', addendum]
details = ' '.join([component.strip() for component in components if
component])
new_doc += f"""[*Deprecated*] {old_doc}
{notes_header if notes_header not in old_doc else ''}
.. deprecated:: {since}
{details}"""
return finalize(warning_emitting_wrapper, new_doc)
return deprecate | Decorator to mark a function, a class, or a property as deprecated.
When deprecating a classmethod, a staticmethod, or a property, the
``@deprecated`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* ``@property``.
When deprecating a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@deprecated`` would mess up ``__init__`` inheritance when installing its
own (deprecation-emitting) ``C.__init__``).
Parameters are the same as for `warn_deprecated`, except that *obj_type*
defaults to 'class' if decorating a class, 'attribute' if decorating a
property, and 'function' otherwise.
Arguments:
since : str
The release at which this API became deprecated.
message : str, optional
Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
The name of the deprecated object.
alternative : str, optional
An alternative API that the user may use in place of the
deprecated API. The deprecation warning will tell the user
about this alternative if provided.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type : str, optional
The object type being deprecated.
addendum : str, optional
Additional text appended directly to the final message.
removal : str, optional
The expected removal version. With the default (an empty
string), a removal version is automatically computed from
since. Set to other Falsy values to not schedule a removal
date. Cannot be used together with pending.
Examples
--------
.. code-block:: python
@deprecated('1.4.0')
def the_function_to_deprecate():
pass |
get_triples | """Get all triples in the graph."""
return [(u, v, d['relation']) for u, v, d in self._graph.edges(data=True)] | def get_triples(self) ->List[Tuple[str, str, str]]:
"""Get all triples in the graph."""
return [(u, v, d['relation']) for u, v, d in self._graph.edges(data=True)] | Get all triples in the graph. |
_make_id | return f'{_hash(prompt)}#{_hash(llm_string)}' | @staticmethod
def _make_id(prompt: str, llm_string: str) ->str:
return f'{_hash(prompt)}#{_hash(llm_string)}' | null |
_call | """Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\\n\\nHuman: {prompt}\\n\\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ''
for chunk in self._stream(prompt=prompt, stop=stop, run_manager=
run_manager, **kwargs):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(prompt=self._wrap_prompt(prompt),
stop_sequences=stop, **params)
return response.completion | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\\n\\nHuman: {prompt}\\n\\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ''
for chunk in self._stream(prompt=prompt, stop=stop, run_manager=
run_manager, **kwargs):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(prompt=self._wrap_prompt(
prompt), stop_sequences=stop, **params)
return response.completion | Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt) |
_get_diffbot_data | """Get Diffbot file from Diffbot REST API."""
diffbot_url = self._diffbot_api_url('article')
params = {'token': self.api_token, 'url': url}
response = requests.get(diffbot_url, params=params, timeout=10)
return response.json() if response.ok else {} | def _get_diffbot_data(self, url: str) ->Any:
"""Get Diffbot file from Diffbot REST API."""
diffbot_url = self._diffbot_api_url('article')
params = {'token': self.api_token, 'url': url}
response = requests.get(diffbot_url, params=params, timeout=10)
return response.json() if response.ok else {} | Get Diffbot file from Diffbot REST API. |
get_lc_namespace | """Get the namespace of the langchain object."""
return ['langchain', 'schema', 'output'] | @classmethod
def get_lc_namespace(cls) ->List[str]:
"""Get the namespace of the langchain object."""
return ['langchain', 'schema', 'output'] | Get the namespace of the langchain object. |
parse | """Returns the input text with no changes."""
return text | def parse(self, text: str) ->str:
"""Returns the input text with no changes."""
return text | Returns the input text with no changes. |
on_llm_start | self.on_llm_start_common() | def on_llm_start(self, *args: Any, **kwargs: Any) ->Any:
self.on_llm_start_common() | null |
test_timescalevector | """Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = TimescaleVector.from_texts(texts=texts, collection_name=
'test_collection', embedding=FakeEmbeddingsWithAdaDimension(),
service_url=SERVICE_URL, pre_delete_collection=True)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')] | def test_timescalevector() ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = TimescaleVector.from_texts(texts=texts, collection_name=
'test_collection', embedding=FakeEmbeddingsWithAdaDimension(),
service_url=SERVICE_URL, pre_delete_collection=True)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')] | Test end to end construction and search. |
test_parse_json_with_python_dict | parsed = parse_json_markdown(JSON_WITH_PYTHON_DICT)
assert parsed == {'action': 'Final Answer', 'action_input': {'foo': 'bar',
'bar': 'foo'}} | def test_parse_json_with_python_dict() ->None:
parsed = parse_json_markdown(JSON_WITH_PYTHON_DICT)
assert parsed == {'action': 'Final Answer', 'action_input': {'foo':
'bar', 'bar': 'foo'}} | null |
parse | """Parse text into agent action/finish.""" | @abstractmethod
def parse(self, text: str) ->Union[AgentAction, AgentFinish]:
"""Parse text into agent action/finish.""" | Parse text into agent action/finish. |
test_embed_query_different_lengths | """Test embedding queries of different lengths."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
result = model.embed_query(query)
assert len(result) == 768 | @pytest.mark.parametrize('query', ['Hi',
'This is a longer query string to test the embedding functionality of the model against the pickle rick?'
])
def test_embed_query_different_lengths(query: str) ->None:
"""Test embedding queries of different lengths."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
result = model.embed_query(query)
assert len(result) == 768 | Test embedding queries of different lengths. |
load | """Load data into document objects."""
return list(self.lazy_load()) | def load(self) ->List[Document]:
"""Load data into document objects."""
return list(self.lazy_load()) | Load data into document objects. |
test_bedrock_streaming | """Test streaming tokens from OpenAI."""
for token in chat.stream("I'm Pickle Rick"):
assert isinstance(token.content, str) | @pytest.mark.scheduled
def test_bedrock_streaming(chat: BedrockChat) ->None:
"""Test streaming tokens from OpenAI."""
for token in chat.stream("I'm Pickle Rick"):
assert isinstance(token.content, str) | Test streaming tokens from OpenAI. |
test_run_kwargs | """Test run method with kwargs."""
chain = FakeChain(the_input_keys=['foo', 'bar'])
output = chain.run(foo='bar', bar='foo')
assert output == 'baz' | def test_run_kwargs() ->None:
"""Test run method with kwargs."""
chain = FakeChain(the_input_keys=['foo', 'bar'])
output = chain.run(foo='bar', bar='foo')
assert output == 'baz' | Test run method with kwargs. |
test_partial_with_chat_prompts | prompt_a = ChatPromptTemplate(input_variables=['foo'], messages=[
MessagesPlaceholder(variable_name='foo')])
prompt_b = ChatPromptTemplate.from_template('jim {bar}')
pipeline_prompt = PipelinePromptTemplate(final_prompt=prompt_a,
pipeline_prompts=[('foo', prompt_b)])
assert pipeline_prompt.input_variables == ['bar']
output = pipeline_prompt.format_prompt(bar='okay')
assert output.to_messages()[0].content == 'jim okay' | def test_partial_with_chat_prompts() ->None:
prompt_a = ChatPromptTemplate(input_variables=['foo'], messages=[
MessagesPlaceholder(variable_name='foo')])
prompt_b = ChatPromptTemplate.from_template('jim {bar}')
pipeline_prompt = PipelinePromptTemplate(final_prompt=prompt_a,
pipeline_prompts=[('foo', prompt_b)])
assert pipeline_prompt.input_variables == ['bar']
output = pipeline_prompt.format_prompt(bar='okay')
assert output.to_messages()[0].content == 'jim okay' | null |
test_elasticsearch_with_relevance_score | """Test to make sure the relevance score is scaled to 0-1."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
embeddings = FakeEmbeddings()
docsearch = ElasticsearchStore.from_texts(index_name=index_name, texts=
texts, embedding=embeddings, metadatas=metadatas, **
elasticsearch_connection)
embedded_query = embeddings.embed_query('foo')
output = docsearch.similarity_search_by_vector_with_relevance_scores(embedding
=embedded_query, k=1)
assert output == [(Document(page_content='foo', metadata={'page': '0'}), 1.0)] | def test_elasticsearch_with_relevance_score(self, elasticsearch_connection:
dict, index_name: str) ->None:
"""Test to make sure the relevance score is scaled to 0-1."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
embeddings = FakeEmbeddings()
docsearch = ElasticsearchStore.from_texts(index_name=index_name, texts=
texts, embedding=embeddings, metadatas=metadatas, **
elasticsearch_connection)
embedded_query = embeddings.embed_query('foo')
output = docsearch.similarity_search_by_vector_with_relevance_scores(
embedding=embedded_query, k=1)
assert output == [(Document(page_content='foo', metadata={'page': '0'}),
1.0)] | Test to make sure the relevance score is scaled to 0-1. |
test_shell_input_validation | shell_input = ShellInput(commands=test_commands)
assert isinstance(shell_input.commands, list)
assert len(shell_input.commands) == 2
with warnings.catch_warnings(record=True) as w:
ShellInput(commands=test_commands)
assert len(w) == 1
assert str(w[-1].message
) == 'The shell tool has no safeguards by default. Use at your own risk.' | def test_shell_input_validation() ->None:
shell_input = ShellInput(commands=test_commands)
assert isinstance(shell_input.commands, list)
assert len(shell_input.commands) == 2
with warnings.catch_warnings(record=True) as w:
ShellInput(commands=test_commands)
assert len(w) == 1
assert str(w[-1].message
) == 'The shell tool has no safeguards by default. Use at your own risk.' | null |
replace_file | try:
content = source.read_text()
except UnicodeDecodeError:
return
new_content = find_and_replace(content, replacements)
if new_content != content:
source.write_text(new_content) | def replace_file(source: Path, replacements: Dict[str, str]) ->None:
try:
content = source.read_text()
except UnicodeDecodeError:
return
new_content = find_and_replace(content, replacements)
if new_content != content:
source.write_text(new_content) | null |
lazy_parse | """Load documents from a blob."""
mimetype = blob.mimetype
if mimetype is None:
raise ValueError(f'{blob} does not have a mimetype.')
if mimetype in self.handlers:
handler = self.handlers[mimetype]
yield from handler.lazy_parse(blob)
elif self.fallback_parser is not None:
yield from self.fallback_parser.lazy_parse(blob)
else:
raise ValueError(f'Unsupported mime type: {mimetype}') | def lazy_parse(self, blob: Blob) ->Iterator[Document]:
"""Load documents from a blob."""
mimetype = blob.mimetype
if mimetype is None:
raise ValueError(f'{blob} does not have a mimetype.')
if mimetype in self.handlers:
handler = self.handlers[mimetype]
yield from handler.lazy_parse(blob)
elif self.fallback_parser is not None:
yield from self.fallback_parser.lazy_parse(blob)
else:
raise ValueError(f'Unsupported mime type: {mimetype}') | Load documents from a blob. |
test_find_all_links_single | htmls = ["href='foobar.com'", 'href="foobar.com"',
'<div><a class="blah" href="foobar.com">hullo</a></div>']
actual = [find_all_links(html) for html in htmls]
assert actual == [['foobar.com']] * 3 | def test_find_all_links_single() ->None:
htmls = ["href='foobar.com'", 'href="foobar.com"',
'<div><a class="blah" href="foobar.com">hullo</a></div>']
actual = [find_all_links(html) for html in htmls]
assert actual == [['foobar.com']] * 3 | null |
test_singlestoredb_new_vector | """Test adding a new document"""
table_name = 'test_singlestoredb_new_vector'
drop(table_name)
docsearch = SingleStoreDB.from_texts(texts, NormilizedFakeEmbeddings(),
table_name=table_name, host=TEST_SINGLESTOREDB_URL)
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == TEST_RESULT
drop(table_name) | @pytest.mark.skipif(not singlestoredb_installed, reason=
'singlestoredb not installed')
def test_singlestoredb_new_vector(texts: List[str]) ->None:
"""Test adding a new document"""
table_name = 'test_singlestoredb_new_vector'
drop(table_name)
docsearch = SingleStoreDB.from_texts(texts, NormilizedFakeEmbeddings(),
table_name=table_name, host=TEST_SINGLESTOREDB_URL)
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == TEST_RESULT
drop(table_name) | Test adding a new document |
test_transform_empty_html | bs_transformer = BeautifulSoupTransformer()
empty_html = '<html></html>'
documents = [Document(page_content=empty_html)]
docs_transformed = bs_transformer.transform_documents(documents)
assert docs_transformed[0].page_content == '' | @pytest.mark.requires('bs4')
def test_transform_empty_html() ->None:
bs_transformer = BeautifulSoupTransformer()
empty_html = '<html></html>'
documents = [Document(page_content=empty_html)]
docs_transformed = bs_transformer.transform_documents(documents)
assert docs_transformed[0].page_content == '' | null |
worker | old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
try:
exec(command, globals, locals)
sys.stdout = old_stdout
queue.put(mystdout.getvalue())
except Exception as e:
sys.stdout = old_stdout
queue.put(repr(e)) | @classmethod
def worker(cls, command: str, globals: Optional[Dict], locals: Optional[
Dict], queue: multiprocessing.Queue) ->None:
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
try:
exec(command, globals, locals)
sys.stdout = old_stdout
queue.put(mystdout.getvalue())
except Exception as e:
sys.stdout = old_stdout
queue.put(repr(e)) | null |